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Abstract

This research addresses limitations in lensless holographic microscopy with highly coherent

sources, particularly speckle noise. We propose and validate a Schell-Gaussian illumination

source with adjustable spatial coherence to optimize system resolution and robustness.

The illumination source was implemented and characterized using rotating diffuser disks,

demonstrating that rotation velocity effectively suppresses speckle by transforming the inten-

sity distribution from exponential to Gaussian - indicating improved uniformity. Constant

interference fringe visibility in Young’s experiment confirmed characteristic Schell-Gauss

behavior regardless of slit displacement.

Evaluation of autofocus metrics identified Intensity Variance and Local Contrast as most

precise, exhibiting sharper peaks and lower uncertainty with reduced coherence. Speckle

suppression significantly improved resolution, decreasing the limit from 22.09 µm to 17.59

µm, and further to 9.8 µm (from 11.0 µm) using a high-resolution sensor. The system

demonstrated multi-plane focusing capability and effective operation with biological samples.

This study validates spatial coherence control as fundamental for optimizing resolution

and image quality in lensless digital holographic microscopy, establishing foundations for

designing accessible high-performance systems.

Keywords: Spatial coherence, diffraction, autofocusing metrics, visibility, contrast.
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Chapter 1

Introduction

Despite significant advances, conventional microscopy faces inherent limitations associated

with the use of refractive optical elements. The presence of lenses introduces chromatic and

monochromatic aberrations that necessitate complex compensation designs, increasing both

technical sophistication and implementation costs. These constraints motivate the develop-

ment of alternative approaches such as lensless holographic microscopy, which eliminates the

need for intermediate optical elements between the object and sensor, offering advantages in

portability, mechanical simplicity, and reduction of systematic aberrations.

A critical aspect in these systems is the nature of the illumination source. While highly

coherent laser sources guarantee high resolution, they present drawbacks such as speckle

noise patterns, high cost, and safety requirements. Partially coherent sources emerge as a

promising alternative, but their impact on the spatial resolution of the reconstructed object

requires rigorous characterization.

Here we propose that the use of engineered sources with tunable spatial coherence (Schell-

Gaussian model) enables optimization of the trade-off between resolution, cost, and system

robustness. This hypothesis is grounded in the fact that the degree of spatial coherence

modulates digital hologram formation, directly affecting the transfer of spatial frequencies

and the recoverable resolution. Validating this premise requires systematically characterizing

how key source parameters (coherence width, angular distribution) relate to resolution

metrics in test objects.

This research addresses this challenge through structured objectives combining experimental

implementation, quantitative characterization, and performance evaluation, aiming to estab-

lish optimal design guidelines for accessible, high-performance lensless microscopy systems.
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1.1 Objectives

1.1.1 General objective

Evaluate the effects of the degree of spatial coherence of an illumination source on the

resolution of the reconstructed holographic image in a lensless microscopy system.

1.1.2 Specific objectives

• Implement and characterize a synthetic partially coherent light source of the Schell-

Gaussian model type based on a rotating optical diffuser.

• Implement and characterize a lensless microscopy system for the generation of holo-

graphic images of an object of interest.

• Quantitative evaluation of the effects of the spatial coherence set in the synthetic

illumination source on the resolution of the reconstructed object with the lensless

microscopy system.

1.2 Justification

One limitation of conventional microscopy is precisely the use of basic elements such as lenses.

When implemented in an optical setup, they necessitate compensating for unwanted contri-

butions to the system such as aberrations, whether chromatic or monochromatic depending

on the experimental configuration. In this context, developing lensless microscopy techniques

becomes essential, as they would eliminate the need to compensate for the aforementioned

effects while enabling the design of systems that maintain good resolution, significant cost

efficiency, and yield compact, portable assemblies when implemented. Characterizing the

lateral resolution of the optical system developed and implemented for this project is critically

important, since the proposed illumination sources for implementation are partially coherent

sources. These are lower-cost alternatives to high-coherence sources such as lasers.

This research project aims to generate new knowledge in digital in-line holographic microscopy

by proposing the use of illumination sources with adjustable spatial coherence. The effects

of this light property will be evaluated in the resolution of the reconstructed image of the

object under study.
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1.3 State of the Art

1.3.1 Introduction to Lensless Microscopy

Microscopy has been a fundamental technique since its invention in the 16th century,

revolutionizing numerous fields of knowledge, particularly biology. [1] However, traditional

lens-based optical microscopy presents inherent limitations, such as the relationship between

spatial resolution and field of view. [2] Additionally, the presence of lenses can introduce

aberrations that distort the image and limit resolution. [3, 4] Conventional microscopic

systems tend to be costly and require complex configurations. [5] Furthermore, the analysis

of biological samples requires labeling, which can be invasive and alter the sample’s natural

properties. [6, 7]

As a promising alternative addressing these limitations, lensless microscopy has emerged.

[8, 9, 10] This technique is based on holography principles, initiated by Dennis Gabor in 1948

with his proposal of a new microscopic principle to overcome lens limitations in electron

microscopy. [11] Gabor’s original concept, known as in-line holography or Gabor holography,

involved recording an interference pattern (hologram) between a reference wave from the

source and an object wave scattered by the sample. [12, 6] Subsequently, object image

reconstruction was achieved by illuminating the hologram with a wave similar to the reference

wave. [6]

With the advent of digital sensors (CCD and CMOS sensors) and increased computational

capacity, optical reconstruction has been replaced by numerical algorithms. [6, 13, 14, 15]

This variant, known as digital in-line holography (DIH), has established itself as a key lensless

microscopy technique. [14]

Lensless microscopy, and particularly DIH, offers significant advantages over conventional

microscopy. Unlike lens-based systems, it avoids optical aberrations associated with lenses.

[16, 17] Lensless microscopy devices can be compact, portable, and low-cost, [18, 19] making

them particularly attractive for point-of-care applications or resource-limited settings.

Another crucial advantage, especially for biological applications, is the ability to operate

with label-free samples. [20] DIH enables retrieval of both amplitude and phase information

from the complex optical field, [21, 22] which is valuable for analyzing transparent biological

structures. Moreover, from a single two-dimensional hologram, pseudo-3D reconstructions of

volumetric objects can be performed, [23] and the technique can be faster for large-volume

analysis than scanning techniques like confocal microscopy (which, while improving detail by

blocking out-of-focus light, requires point-by-point or line scanning). [24] The simplicity of

the in-line configuration contributes to its ease of operation. [18, 25, 7] Various biological

applications, including studies of blood cells, spermatozoa, [2, 7] parasites, [26] and cell

culture analysis, have been successfully demonstrated using this technique. [20]
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1.3.2 The Role of Coherence in Holographic Microscopy

By its very nature, holography requires sufficient coherence between the object wave and

reference wave to generate stable interference patterns that can be recorded as holograms.

[5] The coherence properties of the illumination source – both temporal and spatial –

fundamentally influence light propagation [27] and the quality of the resulting image.

Traditionally, Gabor’s in-line holography employed high-coherence sources, such as lasers

spatially filtered through small pinholes, to ensure well-defined hologram formation. [12, 28]

However, to achieve more compact and cost-effective systems, the use of spatially or temporally

partially coherent sources like LEDs (light-emitting diodes) or LDs (laser diodes) has been

explored. [9, 29] Although these sources are more accessible and suitable for portable devices,

[18, 30] their coherence length is significantly shorter than that of highly coherent lasers.

The use of partially coherent sources presents challenges in lensless holographic microscopy.

Numerical reconstruction algorithms, being based on wave diffraction and propagation theory

(such as Fresnel methods [6, 31]), often assume fully coherent illumination. This can affect

the quality of the reconstructed image. Experimental studies have analyzed the performance

of lensless microscopy under partially coherent illumination, [32, 9, 9] finding, for example,

that autofocus algorithms designed for highly coherent light do not perform as effectively. [6]

Resolution capability may also be influenced by the source type (LED vs LD) and sample

distance. [9] Moreover, attempting to improve the spatial coherence of an LED using very

small spatial filters does not always enhance resolution and may reduce available light

intensity, increasing exposure times. [9]

The relationship between coherence and resolution remains an active research topic in optics.

[33, 34, 35] It has been demonstrated that in imaging systems with obstacles in the Fourier

plane (analogous to certain microscopy scenarios), reducing the degree of spatial coherence

may in some cases improve image quality but inevitably introduces distortions. [35] These

effects can be interpreted by decomposing the partially coherent source into a set of coherent

pseudo-modes, where modes with specific characteristics (such as maxima at obstacle edges)

are responsible for the distortions.

Lensless holographic microscopy with partially coherent sources (primarily LEDs) has been

demonstrated for various biological applications and in low-cost portable devices. [2, 14] For

instance, portable lensless microscopes have been developed using LEDs coupled to multimode

fibers or for detecting waterborne parasites. [8, 36] Recent work describes the development of

low-cost, automated portable microscopes employing multi-height and multi-spectral phase

retrieval methods with LEDs as illumination sources, achieving resolutions of approximately

5 µm. [7] However, most of these studies utilize sources with a partial coherence degree

that is fixed by the source’s intrinsic properties (such as LED chip size) or modified in a
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limited manner with simple spatial filters. [9] While it is recognized that coherence affects

performance, systematic investigation into how controlled variation of spatial coherence

quantitatively affects the resolution of reconstructed objects in lensless holographic

microscopy (DIH/Gabor) appears to be an area requiring more detailed exploration.

Theoretical and experimental work exists on generating sources with controllable spatial co-

herence, such as Gaussian-Schell model (GSM) sources, Multi-Gaussian Schell-model sources,

[35] or non-uniformly correlated (NUC) sources, [37] along with methods to independently

control the field statistics and irradiance of partially coherent beams. It has been demon-

strated that adapting the spatial coherence structure of illumination can improve image

quality in systems with obstacles, achieving results comparable to obstacle-free systems. [35]

Nevertheless, the specific application and systematic study of these controllable-coherence

sources to evaluate their direct impact on object reconstruction resolution in a digital in-line

holographic microscopy (lensless) configuration is not prevalent in the reviewed literature.

This research project lies at the intersection of lensless microscopy, digital holography, and the

study of spatial coherence of light, addressing a fundamental question: How does controlled

variation of the spatial coherence of the illumination source affect the resolution at which

objects can be reconstructed in a lensless digital holographic microscope?

The relevance of this project rests on several key points:

1. Maximizing advantages of lensless microscopy: Lensless microscopy offers signifi-

cant potential due to its portability and wide FOV, making it ideal for decentralized

applications and resource-limited settings. [20] However, its performance, particularly

resolution, is intrinsically linked to the properties of the illumination source used.

[38] A deep understanding of how spatial coherence influences resolution is crucial for

optimizing the design of these systems and expanding their practical applications.

2. Addressing a specific knowledge gap: While the importance of coherence in

holography is recognized [9, 39] and its general effect on image quality, [40] a systematic

study quantifying the impact of varying the spatial coherence of the illumination source

on reconstruction resolution in a DIH setup, using sources specifically designed to vary

this parameter, is not widely documented. Existing projects with partially coherent

sources typically use sources with fixed coherence (LEDs), [18] without exploring the

gradual influence of different coherence levels.

3. Development of optimal illumination strategies: By understanding the rela-

tionship between spatial coherence and resolution, more sophisticated illumination

strategies can be developed. This could involve designing sources with specific spatial

coherence profiles tailored to the application (e.g., optimized for resolving certain

types of biological samples) or developing more robust reconstruction algorithms ca-

pable of compensating for the effects of partial or non-uniform coherence. [41, 33]
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Controllable-coherence sources provide the necessary experimental tool for conducting

this fundamental research.

4. Improvement of numerical reconstruction: The problems observed with recon-

struction and autofocus algorithms under partially coherent illumination [9] highlight

the need to adapt these methods to controllable illumination conditions. Investigat-

ing how different coherence levels directly impact reconstruction quality will provide

valuable data for implementing autofocus metrics and their application in holographic

reconstructions of complex optical fields.

Compared to other techniques, this project focuses on optimizing the performance of lensless

DIH/Gabor microscopy through a fundamental understanding of the illumination source’s

spatial coherence role. While traditional microscopy is constrained by lenses and the resolution-

FOV trade-off, lensless microscopy overcomes this. Techniques such as SA (Synthetic

Aperture) or PSR (Pixel Super-Resolution) enhance resolution at the cost of increased

hardware or computational complexity but remain limited by partially coherent illumination

quality. This project does not seek to replace these techniques but rather to understand

and potentially mitigate a fundamental limitation imposed by the light source, providing a

foundation for designing better lensless systems from first principles.

In summary, developing a lensless microscope with a controllable spatial coherence illumi-

nation source is highly relevant because it enables systematic quantitative investigation of

a key optical parameter (spatial coherence) and its direct effect on reconstructed image

resolution in a minimal-component microscopic system with high potential (lensless DIH).

This will contribute to optimizing lensless microscope design and implementing reconstruction

algorithms based on autofocus metrics adapted to partially coherent illumination sources,

thereby advancing the adoption of this technology across diverse applications, particularly in

biological domains.

1.3.3 Methodological Approach

The project will address this research by combining a digital in-line holographic microscopy

setup with a light source enabling controlled variation of its spatial coherence by using

rotating diffuser disks. Digital holograms of test objects will be recorded at different levels of

controlled spatial coherence. Subsequently, numerical reconstruction algorithms based on the

Fresnel transform and angular spectrum propagation will be applied to obtain reconstructed

images of both amplitude and phase of the complex optical field. Resolution analysis will be

performed using standard test targets (such as the USAF 1951) and autofocus metrics to

determine the optimal focal plane, establishing how the resolution of reconstructed features

varies with the degree of spatial coherence of the illumination. This integrated experimental-

computational methodology is expected to quantify the relationship between source spatial

coherence and image resolution in lensless digital holographic microscopy.



Chapter 2

Theoretical framework

In this chapter, some of the fundamental principles governing lensless Gabor microscopy

will be explored. Topics such as interference and diffraction, the influence of the source’s

spatial coherence on hologram formation, and how these factors affect contrast metrics

(fringe visibility) and system resolution criteria will be addressed. Furthermore, two of

the most widely used numerical reconstruction techniques will be examined, along with

how they enable the extraction of quantitative and morphological information from various

study samples. This foundation supports applications in digital holographic microscopy with

partially coherent illumination sources.

2.1 Interference

Holography emerged from the pursuit of improved resolution in microscopy (initially electron

microscopy). Gabor’s fundamental idea, which he initially termed wavefront reconstruction,

was to record not only the intensity of light but also the complete wavefront information,

including its amplitude and phase. [5]

Recall that a wave represents a disturbance in the electromagnetic field caused by a moving

electric charge. Furthermore, associated with the electric field are a magnetic field and a

direction of propagation. The simplest mathematical expression for an electric field is:

E⃗(z, t) = E⃗0(t) cos(kz ± ωt+ ϕ(t)) (2-1)

where k relates to the spatial period of the wave and ω is its angular frequency. The description

could alternatively be formulated in terms of the magnetic field; however, laboratory detectors

are more sensitive to electric fields, given the known relationship |E⃗0| = c|B⃗0|. Therefore, in
subsequent discussions on wave interference, we will specifically refer to the interference of

electric fields.

Since physical recording media, such as the photographic plates originally used, are only
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sensitive to light intensity, interference between two waves becomes the fundamental optical

principle for achieving this recording. [42]

For observable interference between two optical waves to occur, four fundamental conditions

based on the concept of coherence are primarily required:

1. Wave Superposition: The two waves must meet and overlap at the same point in

space and at the same instant in time. The resulting intensity at that point is the

coherent sum of the complex amplitudes of the two waves.

2. Coherence: The electric field amplitude and absolute phase do not vary during the

observation time.

3. Polarization: The two waves must be in the same polarization state (the electric field

vectors must be parallel).

4. Bandwidth: The spectral content or wavelengths should be minimal (quasi-

monochromatic).

If the electric field amplitude in (2-1) and the phase ϕ are constant, then it takes the form:

E(z, t) = E0 cos(kz ± ωt+ ϕ) (2-2)

Assuming two waves with these characteristics, both quasi-monochromatic and having the

same polarization state, represented by:

E⃗1 = E01e
i(kz−ωt+ϕ1)ê1

E⃗2 = E02e
i(kz−ωt+ϕ2)ê2

Then, the superposition of these two waves will be represented by:

E⃗T = E⃗1 + E⃗2 (2-3)

And irradiance is defined as the time average of E⃗T · E⃗∗
T , where (∗) denotes the complex

conjugate of the field, i.e. [43]

I =
1

2
ε0c⟨E⃗T · E⃗∗

T ⟩

I =
1

2
ε0c⟨(E⃗1 + E⃗2) · (E⃗1 + E⃗2)

∗⟩

I =
1

2
ε0c

[
E⃗2

01 + E⃗2
01 + 2E⃗01 · E⃗02 cos(ϕ1 − ϕ2)

]
(2-4)
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And if E⃗01 = E⃗02, (2-4) reduces to:

I = 2I0 + 2I0 cos(ϕ1 − ϕ2) = 2I0[1 + cos(ϕ1 − ϕ2)] = 2I0 cos
2

(
ϕ1 − ϕ2

2

)
(2-5)

From (2-5), the maximum and minimum irradiance can be obtained when ϕ1 − ϕ2 = 2mπ

where m ∈ Z, and ϕ1 − ϕ2 = 2

(
m+

1

2

)
π.

On the other hand, another definition to be used later for determining fringe visibility is

optical visibility, defined as:

V =
Imax − Imin

Imax + Imin

(2-6)

where Imax = I1 + I2 + 2
√
I1I2 and Imin = I1 + I2 − 2

√
I1I2

2.2 Scalar Diffraction Theory

Light, in its most fundamental essence, is an electromagnetic wave. Its behavior is precisely

governed by Maxwell’s equations, a set of differential equations that describe the intercon-

nection between electric and magnetic fields and their sources. [44] These equations reveal

the vectorial nature of light, where polarization is a crucial property describing the spatially

homogeneous or heterogeneous distribution of its field components. [38]

Although the complete vectorial description is rigorous, the exhaustive treatment of optical

phenomena through Maxwell’s equations can be extraordinarily complex for many practical

problems. Addressing the behavior of all field components, especially when considering

complex polarization interactions, often exceeds the needs of most applications and adds

considerable computational burden. Therefore, to simplify the analysis and make wave optics

more manageable under certain conditions, approximations are resorted to. [5]

This is where scalar diffraction theory comes into play. This theory represents a powerful

simplification by considering light as a scalar wave, meaning it focuses on a single polarization

component of the electric or magnetic field. The key assumption is that, under certain

conditions, different polarization components can be treated independently. Fortunately, this

approximation yields accurate and precise results as long as the involved diffraction angles

are small or moderate. Although scalar theory intrinsically omits the effects of coupling

between the various components of the electromagnetic field imposed by Maxwell’s equations,

its experimental validity has been demonstrated in a wide range of practical scenarios. [45]

By adopting a scalar approach, the theory focuses on the propagation of a complex scalar

amplitude and its associated phase, allowing characterization of how a wave propagates from
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an illuminated object to an observation plane. [44, 45] This simplified framework, while not

encompassing all the nuances of the vectorial nature of light, is exceptionally effective for

understanding and predicting a vast range of diffraction and interference phenomena.

2.2.1 Derivation of the Wave Equation

The scalar wave equation must be derived from the principles of Maxwell’s equations, laying

the foundations for understanding the propagation and diffraction of optical fields in the

scalar regime.

Scalar diffraction theory provides a mathematical framework for analyzing the propagation

of light waves when polarization effects can be neglected. This approximation is valid under

two fundamental conditions:

1. Size condition: The characteristic dimension a of apertures or obstacles must be

much larger than the illumination wavelength (a ≫ λ).

2. Distance condition: The observation distance z must satisfy the Fresnel criterion:

z ≫ a2

λ
(2-7)

This condition ensures that we are in the far-field region, where diffraction effects are

fully developed.

Starting from Maxwell’s equations in a source-free medium:

∇× E⃗ = −µ
∂H⃗

∂t
(2-8)

∇× H⃗ = ϵ
∂E⃗

∂t
(2-9)

∇ · E⃗ = 0 (2-10)

∇ · (µH⃗) = 0 (2-11)

where E⃗ represents the electric field, H⃗ the magnetic field, µ and ϵ represent the magnetic

permeability and electric permittivity in the medium in which the wave is propagating. [27]

For a linear, isotropic, homogeneous, non-dispersive, and non-magnetic medium,

applying the curl to equation (2-8):

∇× (∇× E⃗) = −µ
∂

∂t
(∇× H⃗) (2-12)
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Recalling the vector identity stating that ∇ × (∇ × E⃗) = ∇(∇ · E⃗) − ∇2E⃗ and equation

(2-9), then equation (2-12) takes the form:

∇(∇ · E⃗)−∇2E⃗ = −µϵ
∂2E⃗

∂t2

Considering ∇ · E⃗ = 0 and defining v = 1/
√
µϵ:

∇2E⃗ − 1

v2
∂2E⃗

∂t2
= 0 (2-13)

Each Cartesian component individually satisfies the scalar wave equation:

∇2U − n2

c2
∂2U

∂t2
= 0, where n =

√
µϵ

µ0ϵ0
(2-14)

This separation justifies the scalar treatment when:

• Polarization effects are secondary.

• There is no significant coupling between components.

• Boundary conditions are primarily scalar.

For what follows, which is the derivation of the Rayleigh-Sommerfeld principle, it is necessary

to recall Green’s Theorem. Let U(P ) and G(P ) be complex functions with continuous

single-valued first and second derivatives within a volume V enclosed by a surface S:∫
V

(U∇2G−G∇2U)dv =

∫∫
S

(U∇ ·G−G∇ · U) · dS⃗

The physical interpretation indicates whether there are sources or sinks in a region.

The right-hand side of the equation can be written as a directional derivative. If ∂f
∂v⃗

= ∇v⃗f =

∇ · v⃗ and dS⃗ = dSn̂, then the integral becomes:∫
V

(U∇2G−G∇2U)dV =

∫∫
S

(
U
∂G

∂n
−G

∂U

∂n

)
dS (2-15)

This last result is known as Green’s theorem for diffraction.

2.2.2 Derivation of the Rayleigh-Sommerfeld Principle from

Green’s Theorem

Consider a monochromatic scalar field U(r) satisfying the Helmholtz equation in the half-space

z > 0: [44, 46]

(∇2 + k2)U = 0, k =
2π

λ
, (2-16)
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where λ is the wavelength. Let A be an aperture in the plane z = 0 (opaque screen), and P

an observation point at z > 0. The objective is to express U(P ) in terms of the values of U

over A.

We apply Green’s theorem to the functions U(r) and GD(r, r
′) (Dirichlet Green’s function)

in the volume V defined by the half-space z > 0, excluding a small sphere of radius ϵ around

P (to avoid the singularity). The function GD satisfies:

(∇2 + k2)GD = −4πδ(r− r′), (2-17)

and vanishes in the plane z = 0:

GD(r, r
′) =

eik|r−r′|

|r− r′|
− eik|r−r′∗|

|r− r′∗|
, (2-18)

where r′∗ = (x′, y′,−z′) is the mirror image of r′ = (x′, y′, z′) with respect to the plane z = 0.

Green’s theorem states:∫∫∫
V

(
U∇2GD −GD∇2U

)
dV =

∫∫
S

(
U
∂GD

∂n
−GD

∂U

∂n

)
dS, (2-19)

where S is the surface enclosing V (plane z = 0 excluding A, plus a hemispherical surface

at infinity S∞, plus the surface of the small sphere Sϵ), and ∂/∂n is the derivative in the

direction of the outward normal.

Substituting the Helmholtz equations (2-16) and (2-17) into (2-19):

∫∫∫
V

[
U(−k2GD − 4πδ(r− rP )) +GDk

2U
]
dV =

∫∫
S

(
U
∂GD

∂n
−GD

∂U

∂n

)
dS, (2-20)

which simplifies to:

−4πU(P ) =

∫∫
S

(
U
∂GD

∂n
−GD

∂U

∂n

)
dS, (2-21)

where the volume integral includes the Dirac delta function property.

The surface S consists of three parts:

1. Plane z = 0 (includes screen P and aperture A), denoted S1.

2. Hemispherical surface S∞ at |r| → ∞, z > 0.

3. Spherical surface Sϵ of radius ϵ around P .

The integral over S∞ vanishes due to the Sommerfeld radiation condition (R|∇U − ikU | → 0

as R → ∞). On Sϵ, we parametrize using spherical coordinates centered at P :∫∫
Sϵ

(
U
∂GD

∂n
−GD

∂U

∂n

)
dS = lim

ϵ→0

∫∫
Sϵ

[
U

∂

∂r

(
eikr

r

)
− eikr

r

∂U

∂r

]
r2dΩ, (2-22)
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where dΩ is the solid angle element. Expanding:

∂

∂r

(
eikr

r

)
= eikr

(
ik

r
− 1

r2

)
, (2-23)∫∫

Sϵ

U
∂GD

∂r
r2dΩ =

∫∫
Sϵ

Ueikϵ (ikϵ− 1) dΩ
ϵ→0−−→ −4πU(P ), (2-24)∫∫

Sϵ

GD
∂U

∂r
r2dΩ =

∫∫
Sϵ

eikϵ

ϵ

∂U

∂r
ϵ2dΩ

ϵ→0−−→ 0. (2-25)

Thus, the integral over Sϵ is −4πU(P ).

Substituting into (2-21):

−4πU(P ) =

∫∫
S1

(
U
∂GD

∂n
−GD

∂U

∂n

)
dS − 4πU(P ), (2-26)

which implies:

0 =

∫∫
S1

(
U
∂GD

∂n
−GD

∂U

∂n

)
dS. (2-27)

On S1 (z = 0), GD = 0 by construction. Furthermore, in the screen region (outside A), we

assume U = 0 (opaque screen condition). Thus, (2-27) reduces to:∫∫
A

U
∂GD

∂n
dS = 0. (2-28)

To include the singularity contribution, we consider the complete equation:

−4πU(P ) =

∫∫
S1

(
U
∂GD

∂n
−GD

∂U

∂n

)
dS︸ ︷︷ ︸

0 (from 2-28)

+

∫∫
Sϵ

· · · dS︸ ︷︷ ︸
−4πU(P )

, (2-29)

leading to an inconsistency. The correction requires explicitly including Sϵ from the beginning.

Starting from (2-21) and using the results for Sϵ and S∞:

−4πU(P ) =

∫∫
S1

(
U
∂GD

∂n
−GD

∂U

∂n

)
dS − 4πU(P ), (2-30)

adding 4πU(P ) to both sides:

0 =

∫∫
S1

(
U
∂GD

∂n
−GD

∂U

∂n

)
dS. (2-31)

With GD|S1 = 0 and U = 0 on the screen:∫∫
A

U
∂GD

∂n
dS = 0. (2-32)
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This indicates that the expression for U(P ) must be derived considering the homogeneous

solution. The correct form is:

U(P ) = − 1

4π

∫∫
S1

U
∂GD

∂n
dS, (2-33)

valid when P is not on S1. In A, U is the incident field, and on the screen U = 0, so:

U(P ) = − 1

4π

∫∫
A

U(r′)
∂GD

∂n

∣∣∣∣
r′
dS ′. (2-34)

We compute ∂GD/∂n at z = 0. The outward normal to V (z > 0) is n̂ = −ẑ, so ∂/∂n =

−∂/∂z. For r′ at z = 0, with GD defined as in (2-18):

GD(r, r
′) =

eikR1

R1

− eikR2

R2

, (2-35)

R1 =
√

(x− x′)2 + (y − y′)2 + (z − z′)2, (2-36)

R2 =
√

(x− x′)2 + (y − y′)2 + (z + z′)2. (2-37)

At z′ = 0, R1 = R2 = R =
√

(x− x′)2 + (y − y′)2 + z2. The normal derivative is:

∂GD

∂n
= −∂GD

∂z′

∣∣∣∣
z′=0

= −
[
∂

∂z′

(
eikR1

R1

)
− ∂

∂z′

(
eikR2

R2

)]
z′=0

. (2-38)

Each term:

∂

∂z′

(
eikR

R

)
= eikR

(
ik − 1

R

)
1

R

∂R

∂z′
. (2-39)

For R1: ∂R1/∂z
′ = −(z−z′)/R1, at z

′ = 0: ∂R1/∂z
′ = −z/R. For R2: ∂R2/∂z

′ = (z+z′)/R2,

at z′ = 0: ∂R2/∂z
′ = z/R. Substituting:

∂GD

∂n
= −

[
eikR

(
ik − 1

R

)
1

R

(
− z

R

)
− eikR

(
ik − 1

R

)
1

R

( z

R

)]
(2-40)

=
2z

R
eikR

(
ik − 1

R

)
1

R
= 2

∂

∂z

(
eikR

R

)
. (2-41)

Substituting into (2-34):

U(P ) = − 1

4π

∫∫
A

U(r′) · 2 ∂

∂z

(
eikR

R

)
dS ′ = − 1

2π

∫∫
A

U(r′)
∂

∂z

(
eikR

R

)
dS ′. (2-42)

Expanding the derivative:
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∂

∂z

(
eikR

R

)
= eikR

(
ik − 1

R

)
z

R2
, (2-43)

and noting that z/R = cos θ (where θ is the angle between vector R = r− r′ and the normal

ẑ), we obtain the first Rayleigh-Sommerfeld formula:

U(P ) = − 1

2π

∫∫
A

U(r′)eikR
(
ik − 1

R

)
cos θ

R
dS ′. (2-44)

In the far-field approximation (R ≫ λ), the 1/R term is negligible compared to k = 2π/λ,

resulting in the standard form:

U(P ) =
1

iλ

∫∫
A

U(r′)
eikR

R
cos θdS ′, (2-45)

which is the Rayleigh-Sommerfeld diffraction principle.

2.2.3 Angular Spectrum Approximation

The angular spectrum formulation provides an exact method for optical field propagation

through plane wave decomposition. We start from the Rayleigh-Sommerfeld expression in

Fourier space: [27, 47]

U(x, y, z) =
1

(2π)2

∫∫ ∞

−∞
Ũ(kx, ky; 0) e

i(kxx+kyy+kzz)dkxdky, (2-46)

where Ũ(kx, ky; 0) is the Fourier transform of the field at plane z = 0:

Ũ(kx, ky; 0) =

∫∫ ∞

−∞
U(x′, y′, 0) e−i(kxx′+kyy′)dx′dy′, (2-47)

and kz is given by the dispersion relation:

kz =

{√
k2 − k2

x − k2
y for k2

x + k2
y ≤ k2

i
√

k2
x + k2

y − k2 for k2
x + k2

y > k2
(2-48)

The physical interpretation is:

• When k2
x + k2

y ≤ k2, kz is real and corresponds to propagating waves.

• When k2
x + k2

y > k2, kz is imaginary and represents evanescent waves.

The propagation algorithm consists of:

1. Compute the Fourier transform of the initial field: Ũ(kx, ky; 0)

2. Multiply by the propagator: H(kx, ky; z) = eikzz
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3. Compute the inverse Fourier transform

Mathematically:

U(x, y, z) = F−1
{
F{U(x, y, 0)} · eikzz } (2-49)

This formulation is exact and valid for any distance z > 0, including the near-field region

where evanescent components dominate.

2.2.4 Fresnel Approximation

The Fresnel approximation, valid in the paraxial region (z ≫ λ and small angles), is obtained

through binomial expansion of R in the Rayleigh-Sommerfeld integral:[47, 27]

R =
√
(x− x′)2 + (y − y′)2 + z2 = z

√
1 +

(x− x′)2

z2
+

(y − y′)2

z2
(2-50)

Taylor series expansion:

R ≈ z

[
1 +

(x− x′)2

2z2
+

(y − y′)2

2z2
− [(x− x′)2 + (y − y′)2]2

8z4
+ · · ·

]
(2-51)

In the Fresnel approximation we retain only quadratic terms:

R ≈ z +
(x− x′)2 + (y − y′)2

2z
(2-52)

Substituting into the Rayleigh-Sommerfeld expression:

U(x, y, z) =
1

iλ

∫∫ ∞

−∞
U(x′, y′, 0)

eikR

R
cos θ dx′dy′ (2-53)

≈ 1

iλz

∫∫ ∞

−∞
U(x′, y′, 0) e

ik

[
z+

(x−x′)2+(y−y′)2
2z

]
dx′dy′ (2-54)

Simplifying yields the Fresnel diffraction formula:

U(x, y, z) =
eikz

iλz
ei

k
2z

(x2+y2)

∫∫ ∞

−∞
U(x′, y′, 0)ei

k
2z

(x′2+y′2)e−i 2π
λz

(xx′+yy′)dx′dy′ (2-55)

Recognizing the Fourier transform form:

U(x, y, z) =
eikz

iλz
ei

k
2z

(x2+y2) · F
{
U(x′, y′, 0)ei

k
2z

(x′2+y′2)
}

fx=
x
λz

,fy=
y
λz

(2-56)

The approximation is valid when the Fresnel criterion is satisfied:

z3 ≫ π

4λ

[
(x− x′)2 + (y − y′)2

]2
max

(2-57)

The Fresnel formula can be interpreted as:
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• A Fourier transform of the field multiplied by a quadratic phase factor

• A convolution with the Fresnel kernel: h(x, y) = eikz

iλz
ei

k
2z

(x2+y2)

• An approximation that preserves diffraction characteristics while significantly simplifying

calculations

2.3 Coherence Theory

The theory of optical coherence is a fundamental field of optics focused on studying the

statistical properties of light and their influence on the observable characteristics of optical

fields. [48] Specifically, this theory describes the statistical similarity correlation of light

fields at different points in space and/or instants in time. [49]

Historically, the modern concept of coherence dates to the late 19th and early 20th centuries,

with key figures including Verdet, Von Laue, Berek, van Cittert, and Zernike. [45] However,

Emil Wolf emerged as the dominant figure in optical coherence theory from the mid-20th

century onward, making significant contributions to its formulation in the space-frequency

domain. [48] Classical experiments such as Young’s demonstration of spatial interference and

the Michelson interferometer for temporal interference were crucial to its initial development.

[45] A fundamental milestone is the van Cittert-Zernike theorem, which demonstrates how

a spatially incoherent source can generate a partially coherent field upon light propaga-

tion. This theorem has been generalized to electromagnetic fields, where the degree of

coherence increases with propagation while the degree of polarization remains unchanged. [50]

Coherence is primarily divided into two aspects: temporal coherence and spatial coherence.

[45, 5] Temporal coherence describes the correlation between fields emitted at different

time instants. Spatial coherence, conversely, describes the correlation between fields at

distinct spatial positions. These concepts are generalized through the mutual coherence

function (MCF) and its Fourier transform, the cross-spectral density (CSD). [51] The CSD is

fundamental for describing optical fields in the space-frequency domain, extending coherence

theory to this domain. [52] For electromagnetic fields, the concept is expanded through the

beam coherence-polarization matrix (BCPM) and the cross-spectral density matrix (CSDM).

[53] The degree of coherence (DOC), or complex spectral degree of coherence (SDOC), is

a normalized function quantifying correlation and is directly related to fringe visibility in

interference patterns.

Various approaches model and study partially coherent light. Schell-model (SM) sources

are widely used, characterized by Gaussian spectral density and spectral degree of coher-

ence. [54] Quasi-homogeneous sources serve as excellent models for many physical thermal
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sources (e.g., stars) and are globally nearly spatially incoherent. [48] Pseudo-Schell model

(PSM) sources exhibit radial symmetry, where all points on concentric circles are perfectly

correlated, and can generate beams with sharper profiles and higher peak values. [55]

Coherent mode decomposition allows representing a partially coherent field as an incoherent

superposition of individual coherent modes, facilitating analysis and propagation. [51] Alterna-

tively, pseudo-modes provide a flexible approach for generating partially coherent sources. [53]

Propagation of partially coherent light through media and optical systems can be addressed

by solving Helmholtz equations for the correlation function or using the Wigner function in

phase space. [56] The extended Huygens-Fresnel principle is also employed for propagation

in random media. [48] Furthermore, partially coherent beams exhibit reduced sensitivity to

atmospheric turbulence effects compared to coherent beams, making them promising for

free-space optical communications. [57, 58]

Understanding optical coherence is vital for numerous practical applications. Partially coher-

ent light is extensively used in microscopy, [59] lithography, and optical communications. [57]

In lensless digital in-line holographic microscopy (DIHM)—which overcomes lens limitations

through numerical image reconstruction—partially coherent light reduces speckle noise and

enhances the signal-to-noise ratio. [9] This technique is compact, cost-effective, and has been

used for 3D tracking of cells and microorganisms, as well as telemedicine applications. [56]

Multi-height and multi-spectral phase retrieval methods have been developed to improve

image quality in lensless microscopy. [7] Other notable applications include optical coherence

tomography (OCT), optical particle manipulation, and remote sensing. [5] Holography,

particularly digital holography, relies on adequate coherence for wavefront recording and

reconstruction, with algorithms developed for twin-image removal in in-line holography. [32]

This chapter will explore these fundamentals of optical coherence theory, focusing specifically

on definitions related to the spatial coherence theory of electromagnetic waves.

2.3.1 Mathematical Foundations of Optical Coherence

Mutual Coherence Function

The mutual coherence function Γ(P1, P2, τ) characterizes the spatiotemporal correlations

between two points P1 and P2 on the wavefront Σ1 as depicted in Fig. 2-1
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P1

P2

θ1

θ2

r1

r2

Q1

Q2

Σ1 : Γ(P1, P2, τ) Σ2 : Γ(Q1, Q2, τ
′)

Figure 2-1: Geometry for propagation of mutual coherence, where θ1 and θ2 represent the

angle between the lines r1 and r2 respectively and a normal line to the surface where are the

points P1 and P2 Σ1 and Σ2.

Consider two wave-fronts where Σ1 is fully characterized. The objective is to propagate each

point from Σ1 to Σ2. Applying the narrow-band condition, i.e., the illumination source has

a narrow spectral width. The statistical description of partially coherent optical fields is

based on the mutual coherence function (MCF), defined as the second-order cross-correlation

between two field points:

Γ(Q1, Q2, τ
′) = ⟨u(Q1, t+ τ ′)× u∗(Q2, t)⟩ (2-58)

where u(r, t) is the complex optical disturbance, ⟨·⟩T denotes time average, and τ is the time

delay. [45] This function unifies the concepts of temporal and spatial coherence.

To propagate this coherence to Σ2, we start from the disturbances at Q1 and Q2:

u(Q1, t+ τ ′) =

∫∫
Σ1

1

jλr1
u
(
P1, t+ τ ′ − r1

c

)
χ(θ1)dS1 (2-59)

u(Q2, t) =

∫∫
Σ1

1

jλr2
u
(
P2, t−

r2
c

)
χ(θ2)dS2 (2-60)

Where χ(θ1) and χ(θ2) are the obliquity factors for each disturbance. Substituting into

Γ(Q1, Q2; τ
′) = ⟨u(Q1, t+ τ ′)u∗(Q2, t)⟩ and using the Γ definition for P1 and P2:

Γ(Q1, Q2; τ
′) =

∫∫
Σ1

∫∫
Σ1

⟨u(P1, t+ τ ′ − r1
c
)u∗(P2, t− r2

c
)⟩

λ̄2r1r2
χ(θ1)χ(θ2)dS1dS2 (2-61)

Γ(Q1, Q2; τ
′) =

∫∫
Σ1

∫∫
Σ1

Γ

(
P1, P2; τ

′ +
r2 − r1

c

)
χ(θ1)

λ̄r1

χ(θ2)

λ̄r2
dS1dS2. (2-62)

For quasi-monochromatic light (∆ν ≪ ν̄), the mutual intensity J(Q1, Q2) = Γ(Q1, Q2; 0) is:

J(Q1, Q2) =

∫∫
Σ1

∫∫
Σ1

J(P1, P2)e
−j 2π

λ̄
(r2−r1)

χ(θ1)

λ̄r1

χ(θ2)

λ̄r2
dS1dS2. (2-63)
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Note that both coherence and mutual intensity functions exhibit forms similar to the Fresnel

diffraction integral, while also satisfying wave propagation properties. Furthermore, to

determine the intensity distribution at a point Q, it is obtained when Q1 → Q2:

I(Q) =

∫∫
Σ1

∫∫
Σ1

J(P1, P2)e
−j 2π

λ̄
(r′2−r′1)

χ(θ′1)

λ̄r′1

χ(θ′2)

λ̄r′2
dS1dS2, (2-64)

where r′1 and r′2 are the distances from P1 and P2 to Q.

P1

P2

θ′1

θ′2

r′1

r′2

Q

Σ1 Σ2

Figure 2-2: Propagation geometry from surfaces Σ1 to Σ2 from points P1, P2 to point Q.

Coherent, Incoherent, and Partially Coherent Fields

The statistical description of a random optical wave relies on information about its correlation

(average similarity) with its own versions and other (reference) waves taken at various sets

of positions and/or times, [45] a process known as amplitude division. In practice, no light

source is perfectly monochromatic; all contain a range of frequencies. [60] An interferogram,

for example, is a photographic record of intensity as a function of optical path difference

between two interfering waves.

Various instruments exist to measure temporal coherence, the most relevant (due to its

historical importance) being the Michelson interferometer. Near zero path difference, elemen-

tary fringes add in phase, producing high fringe visibility. [45] As the delay increases, phase

changes lead to partially destructive addition and decreased fringe visibility. The loss of

fringe visibility can be understood as decorrelation. The complex degree of coherence (γ(τ))

mathematically describes the interference, its modulus |γ(τ)| being related to the fringe

visibility ν defined in equation (2-6), a concept introduced by Michelson.

Spatial coherence, on the other hand, refers to the ability of a light beam to interfere with itself

after a spatial displacement (without temporal delay). This process is known as wavefront

division. [45] Young’s classic double-slit experiment is fundamental for demonstrating and

studying spatial coherence. In this experiment, light from two pinholes (P1 and P2) interferes

to form fringes on a screen, and its corresponding complex degree of mutual coherence
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γ(P1, P2) describes the correlation between two spatial points P1 and P2.

An optical field is fully coherent (in the spatial context) when the waveforms at two points P1

and P2 are perfectly correlated for all delays τ . If its complex degree of coherence satisfies:

|γ(P1, P2, τ)| = 1 ∀P1, P2 and ∀τ (2-65)

where γ is defined as: [27]

γ(P1, P2, τ) =
Γ(P1, P2, τ)√
I(P1)I(P2)

, Γ(P1, P2, τ) = ⟨U(P1, t+ τ)U∗(P2, t)⟩ (2-66)

However, this definition is restrictive and applies perfectly only to ideal monochromatic

waves. [45, 48]

Conversely, a field is incoherent if:

|γ(P1, P2; τ)| = 0 for P1 ̸= P2, and ∀τ (2-67)

This means there is no correlation between any two distinct points P1 and P2. In practice,

this definition is of limited utility, as it would imply vanishing intensity after integration.

Finally, a field is partially coherent when 0 < |γ(τ)| < 1. Such fields exhibit random fluctua-

tions in space and time, and the coherence functions describing them may contain phase

singularities, and as mentioned before, the spatial degree of coherence can be determined

through the visibility ν (2-6). [5]

Coherence is a crucial property of light beams that can be used to reduce turbulence-induced

degradation in optical communications, enhance information encryption, and achieve robust

far-field imaging. [38]

2.3.2 Gaussian Schell-Model

Gaussian Schell-model (GSM) fields constitute a fundamental framework in statistical optics

for describing partially coherent light fields. Their significance stems from mathematical

tractability and analytical convenience, making them particularly valuable in coherence

theory. [5]

A Schell-model field is defined by having a complex spectral degree of coherence (or spectral

mutual coherence function) that depends exclusively on the difference between spatial

coordinates of observation points. This implies translational invariance in coherence properties,

expressed as:

µ(r⃗1, r⃗2, ω) = µ(r⃗2 − r⃗1, ω) (2-68)
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where µ denotes the complex degree of coherence and ω the angular frequency. This model

was initially proposed by A.C. Schell. [45, 48, 5] GSM fields represent a special case where

both the spectral intensity I(r⃗) and spectral degree of coherence µ(∆r⃗) exhibit Gaussian

distributions in the source plane. [5]

The mutual intensity function J(r⃗1, r⃗2) (corresponding to mutual coherence at τ = 0) for a

GSM field is defined as:

J(r⃗1, r⃗2) =
√
I(r⃗1)I(r⃗2)µ(r⃗2 − r⃗1) (2-69)

Equivalently, when expressed in center-difference coordinates (ξ̄ = ξ1+ξ2
2

, η̄ = η1+η2
2

) and

coordinate differences (∆ξ = ξ2 − ξ1, ∆η = η2 − η1):

J(ξ̄, η̄,∆ξ,∆η) = A
(
ξ̄ − ∆ξ

2
, η̄ − ∆η

2

)
A
(
ξ̄ + ∆ξ

2
, η̄ + ∆η

2

)
µ(∆ξ,∆η) (2-70)

where A(r⃗) =
√

I(r⃗) is the field amplitude.

This coordinate transformation is not merely mathematical: it reveals fundamental physical

properties about the spatial structure of coherence. As established by Goodman [45], the

transition to center-difference coordinates (ξ̄, η̄,∆ξ,∆η) allows expressing the mutual intensity

as:

J(¯⃗r,∆r⃗) = A
(
¯⃗r − ∆r⃗

2

)
A
(
¯⃗r + ∆r⃗

2

)
µ(∆r⃗) (2-71)

where ¯⃗r = (ξ̄, η̄) is the coherence center position and ∆r⃗ = (∆ξ,∆η) is the spatial separation

vector. This formulation highlights two key physical aspects: First, the separability of spatial

coherence. The function µ(∆r⃗) depends exclusively on the spatial separation ∆r⃗, reflecting

that coherence is a statistical property intrinsic to point pairs, independent of their absolute

location in the source plane. This is the defining characteristic of Schell-model fields. [45]

Second is the geometric coupling of intensities; the term A(¯⃗r − ∆r⃗
2
)A(¯⃗r + ∆r⃗

2
) describes how

optical intensity modulates coherence as a function of central position ¯⃗r. For Gaussian

profiles, this product simplifies remarkably:

A
(
ξ̄ ∓ ∆ξ

2
, η̄ ∓ ∆η

2

)
=

√
I0 exp

[
−
(ξ̄ ∓ ∆ξ

2
)2 + (η̄ ∓ ∆η

2
)2

4σ2
s

]
(2-72)

Third, translational symmetry: when µ(∆r⃗) depends solely on ∆r⃗ (as in GSM), the field

exhibits wide-sense stationarity [45], implying invariance under translations of the point pair.

This property enables complete factorization:

J(¯⃗r,∆r⃗) =
√

I0 exp

(
− ξ̄2 + η̄2

2σ2
s

)
exp

(
−(∆ξ)2 + (∆η)2

8σ2
s

)
︸ ︷︷ ︸

Intensity term

· exp
(
−(∆ξ)2 + (∆η)2

2σ2
µ

)
︸ ︷︷ ︸

Coherence term

(2-73)
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Equation (2-73) explicitly shows the separation between intensity contributions (dependent on
¯⃗r) and coherence contributions (dependent on ∆r⃗), an essential characteristic that facilitates

propagation analysis through optical systems using linear operators. [45]

For a Gaussian Schell-model source, the spatial profiles are:

I(ξ, η) = I0 exp

(
−ξ2 + η2

2σ2
s

)
= I0 exp

(
− ρ2

2σ2
s

)
(2-74)

µ(∆ξ,∆η) = exp

(
−∆ξ2 +∆η2

2σ2
µ

)
= exp

(
− ρ′2

2σ2
µ

)
(2-75)

with ρ =
√

ξ2 + η2 and ρ′ =
√
∆ξ2 +∆η2. Here, σs denotes the spatial intensity width and

σµ the transverse correlation length. The relationship between these parameters determines

the coherence state:

• σµ ≫ σs: Coherent field (µ ≈ 1)

• σµ ≪ σs: Incoherent field (µ ≈ δ(∆r⃗))

• σµ ∼ σs: Partially coherent field

The GSM framework has been extended to vector electromagnetic fields and underlies

generalized Schell-model sources where µ depends on coordinate difference powers. This

enables exotic propagation effects like self-shifting and self-focusing, with applications in

optical particle manipulation and materials processing. [61] It also plays a fundamental role

in light scattering studies. [62]

These models serve as powerful analytical tools for investigating how interference visibility

(directly linked to |µ|) governs intensity redistribution during propagation. In Young’s

experiments with GSM sources, fringe visibility depends solely on aperture separation (∆r⃗)

and remains position-independent—a direct consequence of coherence translational invariance.

2.4 Auto-focus Metrics

Auto-focus metrics are essential tools for determining the plane of best focus in optical and

imaging systems, particularly in digital microscopy and holography contexts. They enable the

calculation of the axial position (distance z) where the image or pattern of interest exhibits

maximum sharpness or quality. Below, we explore the theoretical foundations, application,

use cases, and advantages/disadvantages of intensity variance, total gradient, information

entropy, and local contrast metrics, based on the provided information.
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2.4.1 Intensity Variance

Intensity variance is a statistical measure quantifying intensity fluctuations in an image

[45, 51]. In thermal or pseudo-thermal light contexts, it directly relates to integrated intensity

variance and light fluctuation contrast. A related term is the scintillation index, defined as

the normalized variance of fluctuating intensity [48]. For electromagnetic fields, intensity

fluctuation contrast (cI(r)) is expressed as Tr[Γ(r, r; 0)2]/Tr[Γ(r, r; 0)]2. [51]

In autofocus, intensity variance identifies the axial plane where intensity fluctuations are

maximized. A focused image contains sharper details (edges and textures), resulting in

higher intensity variance compared to a defocused image, which appears blurred with lower

variance. The variance is calculated for multiple images at different z-planes, selecting the

plane maximizing this value.

This metric applies to analyzing statistical properties of light, especially when fluctuations

follow non-Gaussian statistics, or in electromagnetic theory where contrast values depend

on beam polarization properties beyond coherence. [51] It is relevant for systems handling

stochastic light (e.g., thermal or pseudo-thermal sources). [45, 53]

Advantages include direct measurement of image sharpness and detail since well-focused

images exhibit greater intensity variations. The ability to control intensity fluctuations is

key in light beam characterization. [63] Disadvantages include noise sensitivity, as noise

introduces intensity fluctuations that may cause incorrect focusing if unmanaged.

Variance quantifies intensity dispersion relative to its mean, defined as:

σ2(z) =
1

NxNy

Nx∑
x=1

Ny∑
y=1

[I(x, y; z)− µ(z)]2 (2-76)

where:

• I(x, y; z): Reconstructed intensity at position (x, y) at distance z

• µ(z) = 1
NxNy

∑
x,y I(x, y; z): Mean intensity value

• Nx, Ny: Spatial dimensions of the hologram

This metric peaks at the best-focus plane due to maximal intensity dispersion.

2.4.2 Total Gradient Metric (Sum-of-Gradients)

Known as Sum-of-gradients based Focus Measure, it sums gradient magnitudes of intensity

in an image. [9] Gradients measure pixel intensity change rates, peaking at edges and fine
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features. Total Variation (TV), while not a direct autofocus metric, is a related concept used

as a regularizer in image denoising and de-blurring, based on image gradient sums. [64, 65]

It quantifies spatial sharpness via the gradient operator:

Gr(m,n) =
√

(∂xG(m,n))2 + (∂yG(m,n))2 (2-77)

where Gx(m,n) is the gradient of G(m,n) along the x direction, and Gy(m,n) is the gradient

of G(m,n) along the y direction. [9]

Auto-focus with this metric calculates gradient magnitude sums across z-planes. The best-

focus plane maximizes this sum, indicating the sharpest edges and most detail. Its use has

been investigated in lensless microscopy with partially coherent illumination. [9] Gradient-

based variants (e.g., Gini-index-of-gradients, Tamura-coefficients-of-gradients) effectively

identify focus points, showing clear peaks in auto-focus curves.

These metrics are robust for focus determination since focused images maximize edge infor-

mation. Their predictable peak behavior favors computational automation. However, noise

can influence gradient values, and performance varies with illumination type and sample [9].

Some metrics may generate multiple peaks/valleys, complicating automated focus detection

when seeking absolute maxima/minima.

2.4.3 Information Entropy Metric

While not conventionally described as an auto-focus metric, entropy is referenced as eigenvalue

entropy for measuring partial coherence. [56] Here, lower entropy implies higher coherence

in the light field. Entropy measures randomness or disorder in a probability distribution;

applied to images, a focused image may have a more ordered intensity distribution than a

defocused one.

Typically for auto-focus, a focused image would exhibit minimum entropy (or maximum,

depending on the specific sharpness definition). However, sources focus on its use for coherence

measurement, not direct image sharpness. We used the definition adapted for 8-bit digital

images:[66]

H(z) = −
255∑
k=0

pk(z) log2[pk(z) + ϵ] (2-78)

where pk(z) is the probability of intensity level k (estimated as normalized histogram count),

and ϵ = 2.22 × 10−16 prevents logarithmic singularities. The upper limit of summation

(k = 255) explicitly constrains this metric to 8-bit imagery, as:

1. Digital 8-bit sensors encode intensity values in the range [0, 255] (28 = 256 discrete

levels)
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2. The probability mass function pk(z) is derived from the image histogram with exactly

256 bits

3. This quantization matches the discrete formulation of Shannon entropy for digital

systems

This formulation primarily characterizes light coherence properties through intensity distri-

bution. While its direct application as an auto-focus metric for determining the optimal

image plane is not extensively documented in the literature, it was selected for comparative

evaluation with other metrics to assess auto-focus efficiency in 8-bit imaging systems.

An advantage is its potential to measure information order/structure in images, theoretically

correlating with focus. However, its direct relationship with image sharpness for auto-focus

is less clear than conventional metrics.

2.4.4 Local Contrast Metric

Local contrast is intrinsically related to interference fringe visibility. [45] In Young’s experi-

ment, fringe visibility measures the spatial coherence degree. [51] Intensity interferometers

(e.g., Hanbury Brown-Twiss) extract modulus information of the complex coherence factor.

[48, 53] The term Concentration-Based Focus Measure [9] is relevant since higher intensity

concentration at the focus implies greater contrast/sharpness.

For auto-focus, this metric identifies the axial plane maximizing image contrast. A contrast

metric (based on max-min intensity differences or energy concentration) is computed at

each z-plane, selecting the z with the highest value. It evaluates spatial variations via local

standard deviation:

C =
1

Nw

Nw∑
m=1

σm

µm + ϵ
(2-79)

calculated in 9× 9 pixel windows, with ϵ = 10−6 for numerical stability.

It is fundamental in optical coherence experiments (e.g., interferometry) for characterizing

light sources and coherence. [45] In microscopy, interference fringe contrast is crucial for

spatial resolution, [8] implying good resolution (and focus) associates with high contrast.

Intensity concentration metrics have been tested in lensless microscopy with LED/laser illumi-

nation. [9] Advantages include intuitiveness and effectiveness since focused images naturally

exhibit higher contrast. Theoretical support comes from fringe visibility in interferometry. [51]

Disadvantages include susceptibility to noise and image quality (SNR), reducing observable

resolution/contrast. [67] Self-image contrast decreases with illumination coherence length,

affecting focus range in some systems. [54]
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2.5 Resolution Criteria

For lateral calibration of an optical system, the U.S.A.F. 1951 test target is typically employed.

This target comprises groups of horizontal and vertical line patterns with standardized

dimensions and spacings that progressively decrease in size. Here, lateral resolution refers

specifically to the minimum spatial separation between distinguishable features in the

transverse plane. To determine this parameter, the reconstructed image is inspected to

identify the smallest resolvable element (specified by group and element number) where

individual lines remain clearly distinguishable under standard resolution criteria. [14, 68]

Resolution is conventionally expressed in line pairs per millimeter (lp/mm) or equivalently as

the corresponding line width in micrometers. As shown in Fig. 2-3, the USAF 1951 target

follows a standardized structure organized into groups and elements :

• The target contains 7 distinct groups (typically numbered from -2 to 7 or 1 to 7

depending on configuration)

• Each group consists of 6 elements (numbered 1 to 6)

• Resolution increases progressively: Group n has higher resolution than Group n− 1

• Within each group, element m has higher resolution than element m− 1

The resolution value for any element is calculated as:

Resolution (lp/mm) = 2(Group+Element−1
6 ) (2-80)

This logarithmic scaling explains the division by 6 in the exponent: each group spans one

octave (factor of 2 in resolution), while the 6 elements provide equally spaced logarithmic

steps within each octave. For instance, element 1 of group 7 corresponds to:

2(7+
1−1
6 ) = 27 = 128lp/mm

equivalent to a line width of 3.91µm (calculated as 1000µm/mm
2×128

= 3.91µm per line + space

pair).
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Figure 2-3: Graphical representation of a U.S.A.F. 1951 calibration target.

The resolution limit of an experimental setup depends on various factors, such as numerical

aperture, wavelength, pixel size, and the reconstruction algorithms employed (depending

on near-field or far-field regimes); however, for this particular case, the aim is to determine

how variations in the spatial coherence of the illumination source impact the resolution of

reconstructed objects.

The 10%-90% criterion is a practical methodology used to quantify resolution or edge

sharpness in reconstructed images of microscopy systems, particularly in lensless microscopy.

This criterion is applied to intensity profiles (lineouts) taken across reconstructed patterns,

such as the lines of a USAF 1951 test target. It involves measuring the distance (in pixels)

over which the intensity transition at an edge spans from 10% to 90% of its maximum value

(or minimum value in the case of a dark line). This measurement reflects the edge slope in

the digital image.[20]

This distance can be converted to micrometers by multiplying the number of pixels by the

sensor pixel size and the system magnification factor. The resolution (R) is calculated as:

R = n(10%−90%) ×∆pixel where n10%−90% denotes the number of pixels comprising the rising

(or falling) edge between 10% and 90% intensity levels, and ∆pixel is the effective pixel size in

the transverse direction.
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Experimental Setup

Lensless microscopy or lensless Holographic Microscopy (LHM), is an emerging and promising

imaging technique distinguished by its simplicity and compact configuration, often eliminating

traditional optical lenses. Unlike conventional microscopes that rely on complex optical

systems for image formation, lensless systems replace these lenses with computational

algorithms that process light scattered by the sample. [20]

This technique is based on the original holographic principle proposed by Gabor in 1948

to enhance electron microscopy resolution. The fundamental concept involves recording an

interference pattern, known as a hologram, which encodes both the amplitude and phase of

the object’s light wave, unlike conventional photography that only records intensity. [? ]

Experimental setups for lensless microscopy are typically remarkably simple, contributing to

advantages such as low cost, portability, and a large field of view (FOV).

A typical lensless microscope requires only a few principal components [42], including: (1) A

light source, which may be a laser diode (LD) or light-emitting diode (LED). Semiconductor

laser sources, such as those from Blu-ray players, are valued for their compactness and

efficiency. LEDs are also employed due to their lower cost, high reliability, and reduced

safety concerns, though they may require spatial filters to improve coherence. [18] (2) A

pinhole (spatial aperture), commonly used to generate a diverging spherical point source. [14]

The pinhole diameter is critical for image quality and illumination coherence. [42] (3) The

sample under study, positioned between the light source and detector. For in-line microscopy,

samples are typically small and semi-transparent. (4) A digital image sensor, usually a

CCD (charge-coupled device) or CMOS (complementary metal-oxide-semiconductor) camera.

Advances in CMOS technology have increased their adoption due to enhanced sensitivity and

reduced pixel size. (5) A processing unit (computer) for sample acquisition and processing.

[18]
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3.1 Experimental Setup for lensless Microscopy

The first implemented experimental arrangement was a classical lensless microscopy configu-

ration. Hologram recording utilized a 532nm wavelength laser beam and a system comprising

a 40X microscope objective with a 20µm pinhole. This assembly functioned as a spatial filter

and beam expander to uniformly illuminate the sample. Polystyrene microspheres deposited

on a glass slide served as the test object. The setup is illustrated in Fig. 3-1.

Figure 3-1: Experimental setup for holographic recordings. L.S.: Illumination source, P:

Beam expanding system, S: Sample under study, CMOS: CMOS sensor for holographic

recording.

The beam from the illumination source (L.B.) impinges on the beam expanding system. After

expansion, it illuminates the sample, and the light transmitted through the microspheres and

coverslip strikes the CMOS sensor. For this experiment, a monochromatic CMOS sensor of

2.3 MP with 4.8× 4.8µm pixel size with a pixel depth of 10 bits and 1920X1200@165 FPS

resolution model MV-SUA202GM was used.

The reference beam was defined as the light transmitted through the coverslip with a

refractive index of 1.515 alone, while the object beam corresponded to light diffracted by the

red polystyrene microspheres with average sizes between 53− 63µm. These beams interfered

at the sensor plane, where holograms were recorded for subsequent complex optical field

reconstruction (see appendix A).

3.2 Experimental Setup for Spatially Controllable Co-

herence Source

For the development of this research project stage, a modification to the illumination source

of the system shown in Fig. 3-1 was implemented. Instead of directly using the highly
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coherent illumination source represented in the system as L.S, a system to control the spatial

coherence of the illumination source was implemented, as depicted in Fig. 3-2.

Figure 3-2: Experimental setup for a lensless microscopy system and schematic of the

proposed configuration to obtain a partially coherent beam of the Schell-Gaussian model.

S.C: Illumination source with controlled coherence, L.B: 532nm laser source, converging

lenses L1 and L2, RGGD: rotating optical diffuser, A.F : Optical fiber couplers. O.F : Optical

fiber. S: Sample. E: Stepper motor. C.C.D: CCD camera.

The inset represents the various components comprising the source (S.C), utilizing the

high-coherence illumination source with a wavelength of 532nm, followed by a lens (L1)

and a rotating diffuser disk with variable grain size (models DG10-120-F01, DG10-220-F01,

DG10-600-F01, and DG10-1500-F011, for different tests) positioned at the Fourier plane of

this lens. Following the diffuser, a second lens (L2) was placed at its focal length distance

(note this is a collimator system with a diffuser at the Fourier plane). A motor connected to

the diffuser disk was installed to rotate it at various speeds, thereby controlling the spatial

coherence of the illumination source.

1The number 120, 220,600 and 1500 refers to the approximate number of grains per square inch
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For the optical fiber tests, multi-mode optical fibers were used. Initial tests employed fibers

with 400µm core diameters, followed by 100µm and 50µm fibers respectively. Tests were

conducted with various diffuser disk assemblies, lens focal lengths, and fiber sizes to determine

the role of each element in reconstruction results and identify the optimal combination of

optical components; for instance, different grain sizes offer scattering ranging from fine to

coarse. Finer grains produce a small diffusion pattern, while coarser grains yield a broader

diffusion pattern, as observed in Fig. 3-3.

Figure 3-3: Bidirectional Scattering Distribution Function

Speckle pattern formation is inherently non-deterministic. This results from the random

nature of microscopic height variations (roughness) on a surface when illuminated by co-

herent laser light. Each point on this surface acts as a light scattering center. Random

height differences between these points induce corresponding random phase variations

in the scattered light. When these randomly phased scattered waves coherently interfere

at an observation plane (such as a sensor or screen), the characteristic speckle pattern emerges.

Typical dimensions of individual speckle grains are on the order of the diffraction limit,

expressed by the relation λz/D; where λ is the light wavelength, z is the distance from the

diffusing surface to the observation plane, and D is the diameter of the laser beam incident

on said surface [47]. To mitigate the adverse effect of speckle in imaging systems, a rotating
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diffuser disk is commonly employed. The rotation drastically reduces the coherence time

(τc = a/v, where a is the beam diameter and v is the tangential velocity of the diffuser).

When this effective coherence time is significantly shorter than the detector exposure time,

the highly dynamic speckle pattern averages out during capture. This temporal averaging is

essential for suppressing speckle-associated visual noise and consequently improving perceived

image quality. [47]

3.3 Contrast Coefficient Measurement

A challenge with highly coherent sources is increased speckle, arising from mutual interference

of coherent waves scattered from rough surfaces. Speckle patterns are characterized by

detectors responding to optical intensity rather than complex amplitude. For fully developed

speckle, the intensity distribution follows [47, 69, 70, 71]:

pI =
1

⟨I⟩
exp

(
−I

⟨I⟩

)
(3-1)

where ⟨I⟩ denotes mean intensity. Speckle magnitude is quantified by contrast, defined as

the ratio of standard deviation to mean intensity:

C =
σI

⟨I⟩
(3-2)

where σI is the standard deviation of the speckle intensity pattern.

Using equation (3-2) and the experimental setup shown in Fig. 3-2 without any sample,

recordings were performed to determine the coefficient as a function of the rotation speed of

the diffuser disks, employing a different diffuser disk for each test (See appendix B).

3.3.1 Verification of a Schell-Gauss model source

An experimental setup was arranged to perform a Young’s double-slit experiment to verify

the correlation between various points across the screen by calculating the fringe visibility.

The following experimental configuration was implemented:
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Figure 3-4: Modified experimental setup for the Young’s experiment. S.C: Illumination

source with controlled coherence, A.F : Optical fiber couplers. O.F : Optical fiber. S: Double

slit with 0.08mm width and 0.250mm slit separation. E: Stepper motor. C.C.D: CCD

camera. In panels a), b), c) and d), the recording of the interference pattern by shifting the

double slit along the observation screen is shown.

For this experimental setup, a double slit was positioned as the sample and translated across

the screen. Corresponding recordings were made as the double slit was controllably displaced

horizontally. Intensity profiles were obtained by vertically scanning all pixel rows from the top

to the bottom of the sensor, calculating average visibility values and associated uncertainties

for each holographic recording (see appendix C). This experiment allowed us to verify one

of the properties of Schell-Gauss model sources, which states that spatial coherence does

not depend on the absolute positions of the radiating elements, but only on the differences

between their positions.

3.3.2 Computational implementation

For the computational implementation of the contrast coefficient, visibility coefficient,

propagation and reconstruction, and metric calculations, several programs were developed

using MATLAB software (see appendix A. For the reconstruction of the amplitude and phase

of the optical complex field, propagation methods utilizing the Fresnel approximation, as well
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as angular spectrum propagation, are employed. These methods reconstruct the amplitude

and phase of the complex optical field.

After obtaining these fields, the calculation of metrics for each propagation distance z between

the sensor and the illumination source is executed in parallel. Alternatively, a region of

interest can be defined. Finally, to enable comparative analysis between metrics, the results

for each metric are normalized. Uncertainties associated with each metric are also calculated

(see appendices B, C and D).

3.4 Samples study

As study samples, polystyrene microspheres reference REDPMS − 0.98 with average size

between 53.63µm arranged on different planes were used. Some samples were positioned

very close to the sensor plane, while others were placed approximately 2cm away from the

sensor. For lateral calibration and calculation of the system resolution limits, a U.S.A.F. 1951

resolution test target (as described in Fig. 3-5) was employed, containing groups from 2 to 7.

Finally, biological samples of molar tissues were utilized; samples supplied by the laboratory

Laboratorio de Citopatoloǵıa, Neuropatoloǵıa, Anatomı́a Patológica, Inmunohistoqúımica

y Bioloǵıa Molecular (CITOPAT); the detailed information will be shown in the analysis

chapter.

Figure 3-5: a) polystyrene microspheres reference REDPMS − 0.98. b) a U.S.A.F. 1951

resolution test target. c) biological samples of molar tissues.
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Results and Analysis

4.1 Lensless Microscopy

The digital hologram, recorded using the experimental setup shown in Fig. 3-1, was

numerically reconstructed at different planes using the algorithm implemented (see appendix

A). This propagation distance scanning allows us to select the best reconstruction plane

that was located, approximately, at z = 1225 µm, This was achieved after conducting 12

experimental trials by varying the sample distance. For these specific tests, it was decided to

place the microspheres directly on the sensor’s filters. At this stage, the primary objective was

solely to verify that the implemented software functioned adequately. For the experiments

performed using a source with controllable spatial coherence, other configurations were taken

into account. With this in hand, it was possible to contrast the efficiency performance

between both numerical reconstruction techniques: the angular spectrum algorithm and the

Fresnel propagation method. Furthermore, it was feasible to evaluate the diffractive effects on

the reconstructed holograms. Due to the propagation distance, the diffraction pattern spreads

over a reduced area at the image sensor plane, preventing adequate intensity sampling. In the

case of polystyrene microspheres spread over a cover-slip as the object, high frequency details

are lost in the reconstructed image at the optimized propagation distance. At the numerical

holographic reconstruction stage, with the aim of compensating for substrate thickness, a

reference hologram of the cover-slip clean was acquired to be subtracted.

Fig.s 4-1 and 4-3 exhibit artifacts in the upper-right, lower-right, and left corners, attributed

to the Bayer filters of the CCD sensor. This conclusion is supported by comparative tests

with reference holograms, where complex optical field subtraction consistently reproduced

identical irregularities. These anomalies disappeared when using Bayer-free sensors (naked

sensors).

Notably, both reconstruction methods (angular spectrum and Fresnel) show significant

similarities: under these experimental conditions, they resolve identical details.

It should be noted that no additional processing techniques were employed, such as pixel
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super-resolution (PSR), [72] a method for resolution enhancement using multiple images

with sample displacements or the phase retrieval algorithms (e.g., Gerchberg-Saxton), [67]

determining phases from image and diffraction plane measurements. This is because the

primary objective was to analyze the effects of spatial coherence variation on the resolution of

reconstructed objects; hence, these techniques were not implemented. However, their future

implementation could be considered.

Figure 4-1: Amplitude reconstruction of the complex optical field at 1225µm using angular

spectrum propagation.

Figure 4-2: Phase reconstruction of the complex optical field at 1225µm using angular

spectrum propagation.
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Under identical conditions, the optical field was reconstructed using the Fresnel propagation

algorithm. The computed holographic image is shown in Fig. 4-3

Figure 4-3: Amplitude reconstruction of the complex optical field at 1225µm via Fresnel

diffraction integral.

This experimental stage served as the foundation for implementing the lensless microscopy

setup and for testing the developed algorithms, specifically, the angular spectrum method

and Fresnel propagation method to reconstruct the amplitude and phase of complex optical

fields. It further enabled the identification of key variables for implementing the Schell-Gauss

type source.

4.2 Controllable Spatial Coherence Source

Using the experimental setup depicted in Fig. 3-2, a variable spatial coherence light source

was implemented. This pseudo-thermal source employed a high-coherence 532 nm illumi-

nation source and diffuser disks from THORLABS (models DG10-120-F01, DG10-220-F01,

DG10-600-F01, and DG10-1500-F01). The spatial coherence of the resulting beam was

modulated by rotating the diffuser disks.

Intensity distributions were recorded at different speeds while maintaining a fixed exposure

time of 4.998 ms for each measurement. The beam incidence point on each diffuser was

positioned 9 mm from the rotation center. To obtain robust measurements of the light field

statistical properties, 10 recordings were taken for each motion state (i.e., 10 stationary
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recordings and 10 recordings for each speed from one to ten revolutions per second (linear

speed of vi=0 m/s, vf =0.38 m/s)). Average images for each speed were computed from

these series. Speckle contrast calculations were performed on these averaged images using

Equation (3-2), with associated uncertainties computed for each motion state.

For a configuration using lenses L1 = L2 = 10 cm focal length and a 400 µm core multimode

fiber (defining the spot size on the diffuser), the plot shown in Fig. 4-4.

Figure 4-4: Speckle contrast versus rotation speed for f = 10 cm focal length lenses.

It is observed that speckle contrast decreases as the diffuser rotation speed increases. This

phenomenon is attributed to temporal averaging of speckle patterns at the detector since

the exposure time (4.998 ms) is significantly longer than the light field temporal coherence

time (determined by the linear spot velocity on the diffuser). Additionally, the calculated

uncertainties decrease substantially, consistent with the expected reduction in statistical

fluctuations from this averaging process.

To visualize the reduction in data dispersion more clearly, the coefficient of variation (CV)

was computed. In this context, CV is analogous to speckle contrast and is defined as:
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CV =
(σ
x̄

)
× 100% (4-1)

where σ denotes the standard deviation of a data series and x̄ represents its arithmetic mean.

The following plot illustrates how dispersion values decrease with diffuser rotation speed:

Figure 4-5: Coefficient of variation versus diffuser rotation speed for L1 = L2 = 10 cm lenses

Fig. 4-5 shows that the computed dispersion values (i.e., speckle contrast) converge to

between 3% and 4% for most disks, indicating strong speckle suppression and approaching

spatially incoherent light. However, the DG10-1500-F01 diffuser exhibits distinct behavior

with consistently higher residual contrast values.

This result correlates with the intrinsic properties of the diffuser disk shown in Fig. 3-3, as

this is the only disk whose Bidirectional Scattering Distribution Function (BSDF) approaches

high values at normal light incidence. This suggests that its inherent scattering characteristics

(potentially related to the correlation length of its surface roughness) affect the efficacy of
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temporal averaging, resulting in less complete speckle suppression.

Rotating diffuser disks are an effective component for reducing speckle and enhancing image

uniformity in optical systems. As illustrated in Fig. 4-6, as the diffuser rotation speed

increases (from 0 m/s to 0.38 m/s), the captured image becomes visually more uniform

with reduced noise. This phenomenon occurs because continuous diffuser rotation generates

multiple statistical realizations of the speckle pattern within the detector’s integration time,

resulting in the averaging of intensity fluctuations. Speckle, a random granular pattern, is a

type of coherent noise arising from the interference of coherent light scattered by optically

rough surfaces.

Figure 4-6: Intensity distributions using DG10-120-F01 diffuser filter. a) 0 m/s, b) 0.114

m/s, c) 0.228 m/s, d) 0.38 m/s.

Speckle reduction is quantitatively reflected in the probability distribution of recorded

intensities. Analysis of intensity histograms obtained with a diffuser disk system (such as

DG10-120-F01) reveals in the Fig. 4-7.
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Figure 4-7: Intensity histograms for DG10-120-F01 diffuser filter at various rotation speeds.

a) 0 m/s, b) 0.114 m/s, c) 0.228 m/s, d) 0.38 m/s.

When the diffuser disk is stationary, the intensity distribution (Fig. 4-7a) behaves similarly

to that of a pseudo-thermal source. In this state, fully developed speckle intensities follow

a negative exponential distribution. This characteristic is a hallmark of speckle patterns

formed by interference of numerous random phasors [47, 45].

As diffuser rotation speed increases, faster intensity fluctuations occur; the detector averages

a greater number of independent speckle patterns during its exposure time. Consequently,

intensity histograms progressively cluster around a mean value. The probability distribution

of integrated intensity tends to approach a Gaussian form, with its width (variance) decreasing

significantly. This contraction of intensity distribution directly manifests effective speckle

contrast reduction, leading to a smoother final image. This behavior is consistent with

properties expected from partially coherent light sources, such as those characterized by
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Gaussian Schell-model (GSM) sources.

Now, modifying the focal length such that L1 remains at 10 cm while L2 is adjusted to 5

cm, and repeating the procedure described for the previous configuration yields the following

comparative plot:

Figure 4-8: Speckle contrast versus rotation speed for DG10-120-F01 diffuser disk, comparing

configurations L1 = L2 =10 cm versus L1 =10 cm and L2 =5 cm.

Fig. 4-8 shows statistically indistinguishable speckle contrast behavior between the L1 =

L2 = 10 cm and L1 = 10 cm with L2 = 5 cm configurations. This result aligns with

Gaussian Schell-model (GSM) source theory. The spatial coherence width of the GSM source

is primarily governed by the size of the laser beam focused spot on the diffuser disk (denoted

w0), which is determined by lens L1.

Since L1 the focal length remained constant (10 cm) in both configurations, the spot size

w0 on the diffuser remained essentially identical. Furthermore, a fundamental property of

GSM beams is the invariance of the coherence width to beam radius ratio when propagating

through optical systems such as lenses. Therefore, although the lens L2 altered the output

beam size by changing its focal length, it proportionally scaled both beam size and coherence
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width, preserving their effective coherence ratio. As speckle contrast directly reflects this

relative beam coherence, and the rotating diffuser temporally averages the speckle, residual

speckle behavior showed no significant changes between configurations.

Upon implementing a new modification to the experimental setup, lens L2 was replaced by a

lens with a focal length of 15 cm; additionally, the 400 µm optical fiber was replaced by a

105 µm optical fiber. The results are presented in Fig. 4-9

Figure 4-9: Plot of speckle contrast vs. rotation speed using diffuser disk DG10-120-F01

and comparison of configurations L2 =50 cm, L2 =10cm, L2 =15 cm with 400 µm optical

fiber, versus configuration with L2 =15 cm and 105 µm optical fiber

From Fig. 4-9, it can be observed that although the speckle contrast values at rest are lower

for the configuration with 105 µm optical fiber (and lens L2 = 15 cm) compared to the

400 µm optical fiber configurations (with lenses L2 = 50 cm, L2 = 10 cm, L2 = 15 cm), a

result that might suggest reduced effective spatial coherence in the 105 µm configuration, [9]

as the rotation speed of the diffuser disk increases, both configurations exhibit asymptotic

convergence toward the same average speckle contrast value. This asymptotic behavior

is explained by effective speckle suppression through temporal averaging of the intensity

patterns generated by rapid diffuser disk rotation. This process reduces coherent noise, [8]
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driving the speckle contrast to a minimum stable value representing the average illumination,

independent of the initial static coherence conditions of the beam. [47]

The key findings of this section reveal that following experimental modifications, including

replacement of lens L2 with a 15 cm focal length lens and substitution of the optical fiber

with 105 µm core, the system exhibited lower initial speckle contrast values compared to

previous 400 µm configurations. This initial contrast reduction is particularly intriguing

since smaller fiber diameters typically correlate with higher spatial coherence, [9, 20] which

would theoretically produce higher speckle contrast under static conditions. Despite these

differences in static coherence properties, all evaluated configurations (both 400 µm and 105

µm fibers) demonstrated asymptotic convergence to the same minimum speckle contrast

value as the diffuser rotation speed increased. This unified behavior confirms effective speckle

suppression achieved through temporal averaging of intensity patterns, which drastically

reduces coherent noise and erases initial coherence variations of the beam incident on the

diffuser.

4.3 Experimental Verification of a Schell-Gauss Model

Source

To verify that the illumination source behaves as a Schell-Gauss source – as previously

discussed in Section 2.3.2 regarding lensless microscopy systems with variable spatial coherence

achieved through rotating diffusers – the following checks must be performed, consistent with

statistical optics principles:

• Statistical Properties Verification (Diffuser Effect): Intensity frequency distribu-

tions (histograms) from the source must cluster around a central value. The spread of

these distributions should decrease with higher diffuser rotation speeds, as anticipated

in Fig. 4-7. This behavior characterizes pseudo-thermal sources from rotating diffusers,

where temporal averaging of speckle fluctuations increases the effective degrees of

freedom captured during fixed integration times. Higher degrees of freedom reduce

intensity measurement dispersion around the mean, indicating enhanced statistical

stability and effective temporal averaging.

• Spatial Coherence Homogeneity (Young’s Experiment): For Schell-Gauss

sources, the modulus of the complex degree of spatial coherence (|µ|) must remain

invariant under lateral shifts of a double-slit across the source plane while maintaining

fixed slit separation. This spatial homogeneity reflects the defining feature of Schell-

model sources where coherence depends solely on the vector difference r2 − r1, not

absolute positions. Crucially, while a Gaussian intensity profile causes individual slit

intensities (I1, I2) to vary during translation affecting the classical fringe visibility



4.3 Experimental Verification of a Schell-Gauss Model Source 47

V = 2
√
I1I2/(I1 + I2) · |µ| – the coherence modulus |µ| itself must stay constant for

fixed slit separation to confirm Schell-model behavior.

The experimental setup (Fig. 3-4) employed four double slits:

• Slits A and B: widths 0.04mm with separations of 0.25 mm and 0.50mm respectively.

• Slits C and D: widths 0.08mm with separations of 0.25 mm and 0.50mm respectively.

This configuration probes coherence properties under different spatial sampling conditions.

Young’s experiment used a 532 nm source with a Thorlabs DG10-120-F01 diffuser. Double-slit

positions were shifted in 25 µm steps across the source plane to sample representative beam

regions. This procedure evaluates spatial homogeneity of the degree of coherence, a hallmark

of Schell-model sources where coherence depends exclusively on point separation, not absolute

location.

Figure 4-10: Interference patterns using double-slit A (0.04 mm width, 0.25 mm separation)

with DG10-120-F01 diffuser at ∼0.314 m/s rotation speed.

Interference patterns (e.g., Fig. 4-10 a-b) are shown regions (1920× 800 pixels) with full

vertical coverage of interference fringes. Quantitative analysis employed horizontally averaged

profiles across all 800 vertical pixels, computing the mean and standard deviation for all 98

captured images.

Experimental results are summarized in:
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Figure 4-11: Fringe visibility vs. displacement for slits A-D using DG10-120-F01 diffuser at

∼0.314 m/s

Fig. 4-11 demonstrates behavior consistent with Schell-Gauss theory: The complex degree of

spatial coherence (and thus fringe visibility in Young’s experiment) depends fundamentally

on sampled point separation, not absolute position. Constant visibility during slit translation

confirms spatial coherence homogeneity.

Visibility measurement reliability was quantified via coefficient of variation (CV ): CVA =

9.42%, CVB = 9.66%, CVC = 5.67%, CVD = 7.58%. Lower variability for slits C-D (<7.58%)

versus A-B (>9.42%) indicates superior statistical stability. Consequently, subsequent analyses

used slits C-D as they provide more consistent ensemble-averaged field properties from the

rotating diffuser.

To understand the relevance of using an illumination source with controllable spatial coherence,

such as the Schell-Gauss source implemented in our initial experiment, a series of comparative

tests were performed. The purpose of these experiments was to demonstrate how the visibility

behavior of interference fringes manifests under different illumination source coherence
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conditions. Three distinct scenarios were configured:

• Source with controllable spatial coherence (Schell-Gauss model): This scenario

replicates the pseudo-thermal source generated by laser illumination on a rotating

diffuser disk. As established in our initial experimental setup, such sources are expected

to maintain relatively constant fringe visibility when displacing the double-slit, indicating

spatial homogeneity of the coherence degree after ensemble averaging of instantaneous

field realizations.

• High spatial coherence source: A 532nm wavelength laser source with high coherence

was used. For an ideally coherent source, near unity fringe visibility (maximum contrast)

is anticipated in the Young’s interference pattern. On average, higher visibility values

are expected compared to sources with variable spatial coherence.

• Pseudo-thermal source (stationary diffuser disk): In this third scenario, the

diffuser disk remained static. Crucially, unlike the rotating diffuser case where coherence

statistics are averaged, a stationary diffuser generates a static speckle pattern. The

observed visibility in this case therefore represents neither the ensemble-averaged

spatial coherence degree nor the inherent speckle contrast within a single instantaneous

realization of the optical field. This setup allows direct evaluation of static speckle’s

impact on interference pattern observation.

The geometric and optical parameters from the initial Young’s experiment were maintained,

with only the exposure time modified to 2.5952 ms to avoid saturation effects on the

interference patterns of the different double slits. Experiments were performed on double

slits C and D, selected for their demonstrated measurement stability and reliability. All three

sources were tested on slit C, while only comparative plots between the controllable-spatial-

coherence source and the high-spatial-coherence source were generated for slit D.

For double slit C, the results illustrated in Fig. 4-12 were obtained:



50 4 Results and Analysis

Figure 4-12: Visibility versus displacement for slit C with DG10-120-F01 diffuser disk

stationary, rotating at approximately 0.314 m/s, and without diffuser.

Fig. 4-12 demonstrates that the fringe visibility behavior fully satisfies theoretical expecta-

tions for each source type, consistent with prior discussion:

• For the high-spatial-coherence source (no diffuser), the average fringe visibility values

remain consistently high, approaching the maximum (ν ≈ 1). This aligns with expecta-

tions for an ideal coherent source where light waves maintain stable phase relationships,

maximizing interference contrast.

• Results for the pseudo-thermal source (stationary diffuser) show random, erratic visibil-

ity distributions without predictable displacement dependence. This directly manifests

the static speckle pattern generated by the stationary diffuser. Since each measurement

corresponds to a single instantaneous realization of the fluctuating optical field without

temporal or ensemble averaging, the visibility at specific slit positions varies drastically

according to local speckle intensity and phase. This interpretation is strongly supported
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by high dispersion values calculated for each recorded image during slit displacement,

confirming the random and unpredictable nature of individual speckle realizations.

• For the controllable-coherence source (rotating diffuser), visibility exhibits remarkably

stable behavior throughout displacement. This stability characterizes Schell-Gauss-type

sources where the complex spatial coherence degree depends solely on point separation,

not absolute position. Moreover, this configuration shows the lowest dispersion values

in the experiment, even compared to the high-coherence source. This empirical result

is crucial and explained by the ensemble-averaging inherent to diffuser rotation. By

averaging multiple random field realizations, speckle noise is significantly mitigated,

enabling more robust measurement of the underlying spatial coherence statistics. This

behavior perfectly matches expectations for Schell-Gauss sources and validates their

implementation as controllable, statistically stable spatial coherence sources.

For double-slit D, the results illustrated in Fig. 4-13 were obtained:

Figure 4-13: Visibility versus displacement for slit D with DG10-120-F01 diffuser disk

rotating at approximately 0.314 m/s and without diffuser.
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Fig. 4-13 shows general fringe visibility behavior similar to slit C for both source configura-

tions. Specifically:

• For the high-spatial-coherence source (no diffuser), average fringe visibility remains

consistently high (ν ≈ 1), as expected when stable phase relationships maximize

interference contrast.

• For the controllable-coherence source (rotating diffuser), visibility shows character-

istically stable behavior with low dispersion during displacement. This pattern is

distinctive of Schell-Gauss sources where the complex spatial coherence degree is spa-

tially homogeneous, and field statistics stabilize through ensemble averaging during

diffuser rotation. However, a key difference emerges between slits D and C for the

Schell-Gauss source: the average visibility is consistently lower for slit D. This behavior

is directly attributable to visibility’s dependence on slit separation in Young experiment.

For partially coherent sources like Schell-Gauss models, the magnitude of the complex

spatial coherence degree (equivalent to visibility for equal slit intensities) decreases

with increasing transverse separation between observation points. Given that slit C

separation is smaller than slit D (as previously indicated), the higher average visibility

for slit C constitutes an expected and coherent result.

In summary, the results for double-slit D, both in their general behavior and visibility

differences compared to slit C, are fully consistent with theoretical expectations for sources

with different coherence states. They validate the relationship between system geometry and

the manifestation of the spatial coherence degree.

4.4 Autofocus Metrics

Section 2.4 presented the theoretical framework for the implemented autofocus metrics. The

core objectives of applying these metrics to experimental analysis are summarized below,

crucial for evaluating optical system performance with controlled illumination sources:

Identification of optimal focal planes: The primary objective is to precisely determine

optimal focal planes for each experimental configuration. This computational identification

of diffraction distances (z-distance) is essential for the faithful reconstruction of complex

light fields in lensless systems such as holographic microscopes.

Quantifying spatial coherence effects on focusing accuracy: We quantify how vari-

ations in the spatial coherence degree of illumination sources influence the reliability and

precision of focal plane determination. This analysis is vital since partially coherent sources

(e.g., LEDs, LDs) commonly used in compact, low-cost devices exhibit distinct behaviors

in autofocus algorithms compared to highly coherent sources. Spatial coherence directly
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modulates interference pattern formation (fringe visibility) and coherent noise reduction (e.g.,

speckle suppression), thereby impacting the robustness and accuracy of focus metrics.

Various autofocus metrics were implemented, categorized by the image properties they

quantify. The metrics implemented were the local contrast metric, the intensity variance

metric, the gradient metric, and the entropy metric; these were described in section 2.4.

To enable comparative analysis of autofocus metrics and evaluate their sensitivity and

robustness in identifying optimal focal planes, all metric outputs were normalized. This

normalization established a unified scale to:

Characterize metric response profiles: Assessing how each autofocus function varies

with axial displacement (z-distance), critical for evaluating its capacity to identify a unique

focus peak (or valley).

Determine inter-metric consistency: Verifying convergence of different metrics toward

identical focal planes. Agreement among metrics serves as a key reliability indicator for

autofocus performance across experimental configurations, particularly important given the

established influence of spatial coherence on autofocus algorithm precision.

The experimental configuration positioned the sample (24 ± 0.05) mm from the sensor, with

(230 ± 0.57) mm between the source and sensor. Camera exposure time was fixed at 5 ms.

A DG10-120-F01 rotating diffuser disk was implemented at 0.38013 m/s. Normalized metric

outputs are shown in Fig. 4-14.

Two primary observations emerge from the normalized autofocus metrics in Fig. 4-14: First,

nearly all metrics exhibit maxima at the origin (except entropy, minimized at focus). This

artifact is attributed to microscopic particulates or dust motes on the sensor surface (evident

in Fig. 4-15 a), which generate spurious focus peaks at z ≈ 0 due to direct in-plane focusing.

Second, gradient-based and local contrast metrics reveal sample focusing at a distinct plane,

showing a prominent local maximum at 2.24× 104µm. This measured focal distance shows

minimal deviation from the expected 2.4 × 104µm sample position, demonstrating strong

consistency with the experimental setup despite positioning challenges inherent to the vertical

configuration.



54 4 Results and Analysis

Figure 4-14: Normalized metrics with DG10-120-F01 diffuser disk at 0.38013 m/s.

Figure 4-15: Reconstructed amplitude of the complex optical field at a) 0µm. b) 2.24×
104µm.
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Having validated the metrics, we now investigate how spatial coherence manipulation affects

autofocus metric behavior.

For the subsequent experiment, key parameters were held constant to ensure rigorous control

of illumination and acquisition conditions. These included the camera exposure time, physical

configuration of the diffuser disk, and precise distances between the sensor and the U.S.A.F.

1951 calibration target. Measurements started with the stationary diffuser disk (0 m/s

velocity), establishing a high-coherence baseline. Systematic measurements then followed

with linear disk velocities incrementally increased from 0 to 0.2618 m/s in controlled 0.052

m/s steps. This velocity modulation strategy enabled precise control of the illumination’s

spatial coherence degree - a crucial factor for evaluating speckle noise reduction and image

quality enhancement in the holographic system. Metric calculations were performed at

z = 100µm intervals.

Results for the variance metric are shown below:

(a) (b)

Figure 4-16: (a) Intensity variance metric at different rotation velocities of DG10-120-F01

diffuser disk. (b) Region of interest detail.

Fig. 4.16(b) demonstrates that increasing diffuser rotation velocity sharpens the best-focus

plane region. This directly results from effective speckle noise suppression, which enhances

image quality through improved contrast and signal-to-noise ratio (SNR) in holographic

reconstructions. Consequently, the variance metric - intrinsically sensitive to image sharpness

and contrast - identifies and characterizes the optimal focal plane with greater precision

and reliability as the illumination’s spatial coherence decreases. This enables more defined

best-focus determination, essential for obtaining clear images and robust autofocus in lensless

microscopy systems.

Results for the local contrast metric are presented below:
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(a) (b)

Figure 4-17: (a) Local contrast metric at different rotation velocities of DG10-120-F01

diffuser disk. (b) Region of interest detail.

Fig. 4.17(a) and 4.17(b) reveal analogous behavior to the variance metric regarding focal

plane resolution. For pseudo-thermal sources, the local contrast metric loses discrimination

with axial distance, evidenced by increasing off-focus values in Fig. 4.17(a). This reduced

focal discrimination stems from inherent speckle noise under partial spatial coherence, which

diminishes effective image contrast and obscures the true focal plane. However, increasing

diffuser rotation velocity improves speckle suppression, enabling more efficient and precise

identification of the best-focus plane even at extended axial distances by reducing coherent

noise that otherwise masks object contrast.

Similar behavior appears in the gradient metric Fig. 4.18(a), which also benefits from

increased rotation velocity for focal plane definition. However, this metric exhibits greater

sensitivity to high-frequency fluctuations and image components. While these fluctuations

regularize with increasing calculation plane distance, post-focus values remain persistently

elevated, suggesting susceptibility to residual artifacts or high-frequency coherent noise that

persists despite speckle suppression.

Conversely, the entropy metric Fig. 4.18(b) shows neither consistent results nor clear

trends comparable to other focus metrics. This suggests that entropy - quantifying global

randomness or disorder in image intensity distribution - fails as an effective metric for precise

best-focus determination in this experimental configuration. Its fundamental nature appears

uncorrelated with focal sharpness when imaging complex dynamic patterns generated by

speckle in pseudo-thermal sources, even under partial suppression.
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(a) (b)

Figure 4-18: (a) Gradient metric at different rotation velocities of DG10-120-F01 diffuser

disk. (b) Entropy metric.

Additional tests employed modified samples to evaluate spatial coherence impact on resolving

objects with distinct optical properties. Reference polystyrene microspheres (REDPMS-098)

with average diameters of 53-63 µm were used. Unlike the amplitude-modulating USAF 1951

target where dark regions absorb/block light and transparent zones permit full transmission,

these microspheres primarily function as phase objects, modifying the light wave phase rather

than amplitude.

Microspheres were mounted on a 0.16 mm-thick cover glass positioned approximately 2 cm

from the illumination source. System parameters remained constant while diffuser rotation

velocity varied systematically from 0.1885 m/s to 0.3770 m/s.

This study focused on observing morphology and resolution in reconstructed objects under

different spatial coherence conditions, rather than quantitative phase recovery. Specific

refractive indices are not presented since visibility was evaluated through resulting amplitude

information. Crucially, the red microspheres were illuminated with green light (∼532 nm).

Being complementary colors, the spheres pigments absorbed green photons, causing detectable

amplitude reduction in transmitted/reflected waves due to energy loss. This absorption-

induced contrast enables clear morphological discrimination in amplitude reconstructions

despite their primary phase-object nature.

Autofocus metric results for polystyrene microspheres are summarized in Fig. 4-19:
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Figure 4-19: Autofocus metrics applied to polystyrene microsphere study

Fig. 4-19 shows all four metrics successfully identified the best-focus plane, a significant

finding particularly for entropy. Unlike previous amplitude-object experiments (e.g., USAF

1951 target) where entropy proved ineffective, its success here stems from the microspheres

properties. Though primarily phase objects, their red pigmentation under ∼550 nm green

illumination causes incident light absorption, introducing detectable amplitude modulations

in transmitted/reflected waves. These modulations create intensity distribution variations

that entropy - quantifying image randomness - can now correlate with focal position. However,

entropy exhibits pronounced variations away from focus, reflecting its inherent sensitivity to

randomness and noise in severely defocused images or residual speckle.

Conversely, intensity variance and local contrast metrics demonstrate superior focal-plane

determination precision. This aligns with prior observations since both metrics are highly

sensitive to image sharpness, edges, and contrast. Effective speckle noise suppression via

temporal averaging through diffuser rotation dramatically improves SNR and contrast,

enabling robust focus identification. The reliable ensemble-averaged properties provided by

the Schell-Gauss source are crucial for measurement stability.

Intensity variance metric results are shown in 4-20.
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(a) (b)

Figure 4-20: (a) Intensity variance metric at different rotation velocities of DG10-120-F01

diffuser disk. (b) Region of interest detail.

Figure 4-21: Intensity variance metric with associated uncertainties at different rotation

velocities

Near the diffuser’s maximum rotation velocity (∼0.380 m/s), intensity variance behavior

converges across reported speeds. This occurs because maximal achievable speckle suppression
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via temporal averaging has been attained - further velocity increases produce negligible

changes in averaged intensity patterns. When plotting metric uncertainties (Fig. 4-21),

a crucial phenomenon emerges: uncertainties progressively decrease with higher rotation

velocities. This directly results from effective temporal averaging of speckle noise.

Diffuser rotation integrates more spatially independent speckle realizations within the sensor

exposure time. Theoretically, speckle contrast decreases inversely with the square root of

averaged independent realizations, significantly reducing intensity signal variability. [45] This

enables reliable ensemble-averaged property extraction from the generated Schell-Gauss field,

essential for statistical optics.

This uncertainty reduction and stability enhancement mirrors findings in Section 2.3.2 for

Schell-Gauss sources. There, lower coefficients of variation (CV) in Young’s experiment fringe

visibility measurements indicated greater data stability and reliability, demonstrating how

controlled spatial coherence and speckle suppression enable precise metrology. Reducing

uncertainties to achieve stable measurements constitutes a critical factor for reliability in

lensless microscopy applications.

Comparative tests evaluated image quality metric behavior against two fundamental nu-

merical propagation methods in lensless holographic microscopy: Fresnel propagation and

angular spectrum propagation. These trials assessed reconstruction consistency and numerical

precision. Results demonstrated that under our experimental conditions, both methods yield

virtually identical metric behavior, with minimal differences appearing only in the least

significant decimal digits.

For instance, at a focusing distance of 2.05 ×104µm, the intensity variance metric (identified

as optimal for best-focus determination in our setup) yielded values of 0.40497 (Fresnel)

and 0.40492 (Angular Spectrum). For the local contrast metric (second-best performer),

values at the same plane were 0.10357 (Fresnel) and 0.10302 (Angular Spectrum) (see Fig.

4.22(a), 4.22(b), 4.23(a), 4.23(b)). These fourth-decimal-place differences for variance and

third-decimal-place differences for local contrast are numerically insignificant, indicating

strong agreement.

This close similarity aligns with literature predictions for specific operational regimes. While

the Angular Spectrum method is recognized as an exact solution to the Rayleigh-Sommerfeld

diffraction problem (valid even at short propagation distances), Fresnel propagation constitutes

a paraxial approximation. However, when propagation distances and apertures satisfy

Fresnel approximation validity conditions (i.e., for low to moderate Fresnel numbers) or

when numerical implementations are optimized - such as the SDD approach maintaining

a constant field-of-view for microscopic objects in Angular Spectrum propagation - both

methods can produce nearly identical numerical results. The observed minimal differences

confirm reconstruction robustness under this study’s conditions and suggest practical method
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interchangeability, which is fundamental for measurement reliability in lensless microscopy

applications.

(a) (b)

Figure 4-22: (a) Intensity variance metric calculated via Fresnel and Angular Spectrum

propagation methods. (b) Region of interest detail.

(a) (b)

Figure 4-23: (a) Local contrast metric calculated via Fresnel and Angular Spectrum

propagation methods. (b) Region of interest detail.
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4.5 Effects of Spatial Coherence

Analysis of intensity profiles in amplitude reconstructions at the best-focus plane (Section

2.5), Fig. 4-28 revealed significant improvements in contrast and resolution as functions of

diffuser disk rotation velocity.

Figure 4-24: Reconstructed complex optical field amplitude at velocities: a) 0 m/s, b)

0.1257 m/s, c) 0.3770 m/s

For the stationary diffuser (0 m/s), the dynamic intensity range was considerably compressed

(grayscale: 26.5-48). Rotation at 0.1257 m/s and 0.3770 m/s expanded this range to 50 - 118.5

grayscale units. This contrast enhancement directly results from speckle reduction, where

temporal averaging of spatially independent speckle patterns during sensor exposure converts

coherent speckle noise into incoherent noise. This process increases the signal-to-noise ratio

(SNR) of recorded holograms and reconstructed images - a key benefit of partially coherent

illumination in lensless holographic systems.

Image quality enhancement directly improved the system’s resolution limit from 22.09±0.08µm
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(stationary diffuser) to 17.59± 0.06µm (speckle-reduced conditions). This aligns with theoret-

ical expectations in lensless holographic microscopy, where reduced coherent noise facilitates

fine detail discrimination. The result underscores coherence management’s importance for

high-resolution imaging in such configurations.

A final experimental configuration employed an IDS U3-36P2XLS-M Rev.1.2 image sensor

(20 MP resolution, 1.4 µm pixel size, 10-bit depth). Exposure time remained fixed at 5 ms

(operational range: 0.017-1144 ms) for consistency. A USAF resolution target was positioned

approximately 7 cm from the sensor.

Intensity variance metric results (Fig. 4-25) previously identified as optimal for focus

determination revealed significant findings. The zoomed view (Fig. 4.25(b)) shows a notably

sharper peak near best focus under controllable spatial coherence versus high spatial coherence

(H.S.C.) or stationary diffuser conditions.

This variance peak sharpness robustly indicates optimized focus detection and substantial

image quality improvement. Effective speckle reduction drives this result: speckle constitutes

coherent noise inherent to laser illumination, manifesting as granular interference patterns

that degrade contrast and resolution. Thus, variance metric enhancement confirms speckle

mitigation is essential for high-fidelity reconstructions and precise focus determination in

lensless microscopy.

(a) (b)

Figure 4-25: (a) Intensity variance metric via Fresnel propagation. High Spatial Coherence

source (H.S.C). (b) Region of interest detail.

Local contrast metric results reinforce image quality consistency, showing harmonic behavior

with variance observations. Fig. 4.26(b) demonstrates sharper peaks coinciding with the

variance-identified focus plane. This contrast enhancement directly manifests effective speckle
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suppression under controllable coherence. The variance-contrast correlation robustly indicates

autofocus reliability and system effectiveness in artifact removal. Enhanced local contrast

facilitates fine detail discrimination - crucial for resolving USAF targets - confirming spatial

coherence management’s positive impact on quantitative reconstruction quality.

(a) (b)

Figure 4-26: (a) Local contrast metric via Fresnel propagation. H.S.C.: high spatial

coherence source. (b) Region of interest detail.

This 20 MP configuration (pixel size: 1.4 µm vs. prior 4.8 µm; sample distance: ∼7 cm)

significantly improved metric performance. Entropy results (Fig. 4.27(b)) showed superior

behavior versus the 2.3 MP setup. This enhancement stems from the sensor’s capacity

to capture finer details: entropy quantifying intensity distribution randomness develops

sharper peaks at maximum sharpness due to higher pixel density, enabling precise focus

discrimination.

The gradient metric (Fig. 4.27(a)) effectively identified the focus region but exhibited lower

precision than variance and contrast metrics. This may arise from the gradient’s heightened

sensitivity to noise or inherent edge-definition characteristics, causing focus determination

fluctuations despite correct region identification.
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(a) Gradient metric (b) Entropy metric

Figure 4-27: Metrics for high spatial coherence source (H.S.C), stationary diffuser, and

diffuser at ∼0.3770 m/s.

Plots for both metrics (Fig. 4-27) reconfirm controllable spatial coherence’s impact on image

quality.

To evaluate system performance with the 20 MP sensor configuration, resolution analysis

followed the methodology previously established for the 2.3 MP camera. Characterized by

a 1.4 µm pixel size, the 20 MP sensor inherently enables higher potential resolution. The

reconstructed complex optical field amplitude at the USAF target’s best-focus plane appears

in Fig. 4-28.

Figure 4-28: Reconstructed complex optical field amplitude at best-focus plane for USAF

target

Resolution limit analysis revealed significant spatial coherence effects. Using a Schell-Gauss
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source (S.G.S.), the system resolved element 5 of group 6 on the USAF target, corresponding

to a resolution limit of 9.8± 0.5µm. With a high spatial coherence source (H.C.S.), resolution

only reached element 4 of group 6 (11.0± 0.4µm). These findings are evident in the intensity

profile shown in Fig. 4-29.

Figure 4-29: Intensity profile over element 4, group 6 of USAF target corresponding to

Figure 4-28.

The resolution improvement from 11.0 µm (H.C.S.) to 9.8 µm (S.G.S.) despite high spatial

coherence sources theoretically offering superior point spread function (PSF) behavior directly

results from effective speckle suppression via the Schell-Gauss source’s controllable spatial

coherence. As discussed in prior variance and local contrast metric analyses, this speckle

reduction enhances contrast and clarity, enabling finer feature discrimination essential for

precise resolution limit determination in USAF patterns.

Furthermore, spatial coherence control through Schell-Gauss sources not only improves

resolution but reduces high-coherence distortions. Lensless system resolution capability

depends on factors including sensor pixel size and effective magnification. Here, combining

a higher-resolution sensor (20 MP with 1.4 µm pixels) with optimized source coherence

management achieves superior resolution limits.

A test verified metric capability to detect objects at different depth planes. Recordings of

microspheres positioned at distinct planes are shown in Fig. 4-30 and Fig.4-31.

A critical finding, evident when comparing results from Fig. 4-30 and Fig. 4-31 with

the amplitude reconstruction in Fig. 4-1, is the significant enhancement in suppressing
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diffraction artifacts generated by microspheres. This optimization is directly attributed to the

implementation of a 20 MP camera featuring substantially smaller pixels (1.4 µm), compared

to the previous 2.3 MP camera with 4.8 µm pixels.

Pixel size reduction is critical as it enables denser and more precise sampling of high spatial

frequencies present in diffraction patterns and complex interference fringes produced by

microspheres. [8] In lensless microscopy, achievable lateral resolution is intrinsically tied

to sensor pixel size. Smaller pixels permit the sensor to capture finer details and rapid

oscillations of the holographic field – essential for avoiding aliasing and reconstructed image

distortions. [42]

Furthermore, the higher megapixel count (20 MP) translates to either increased detection

area or superior sampling density. This enhances the system’s capacity to record complete

diffraction patterns from objects, particularly those exhibiting wide-angle light scattering.

Through denser sampling over an extended area, the effective numerical aperture (NA) of the

detection system is increased. This improved sampling enables reconstruction algorithms to

generate images with enhanced detail and significant reduction of artifacts such as diffraction

rings and coherent background noise [20]. Consequently, superior high-frequency sampling

yields more faithful object representation, mitigating undesirable diffraction effects while

improving overall reconstruction quality.

(a) (b)

Figure 4-30: (a) Amplitude reconstruction at 9.55 ×104µm. (b) Best-focus plane determi-

nation via intensity variance metric.
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(a) (b)

Figure 4-31: (a) Amplitude reconstruction at 7.55 ×104µm. (b) Best-focus plane determi-

nation via intensity variance metric.

(a) (b)

Figure 4-32: (a) Amplitude reconstruction at 7.55 ×104µm for biological tissue sample. (b)

Best-focus plane determination via intensity variance metric.

Comprehensive tests were conducted on biological samples, such as the tissue shown in Fig.

4.32(a), to evaluate focus metric performance when imaging inherently complex biological

structures. Lensless microscopy offers significant advantages for such samples - wide field-

of-view, low cost, and label-free imaging capability. However, reconstructing complex and
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potentially transparent objects like cells or tissues requires careful coherence management to

achieve clear, precise results.

Metric performance proved notably more efficient when using Schell-Gauss sources (partial

coherence) compared to high spatial coherence sources. Fig. 4.32(b) demonstrates that even

for intricate biological structures, controlled spatial coherence implementation significantly

enhances metric precision in determining the optimal focus plane.
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Conclusions

A pseudo-thermal Schell-Gaussian illumination source was successfully implemented and char-

acterized using a laser and rotating optical diffuser disk. Experimental results demonstrated

that diffuser rotation velocity drastically reduces speckle contrast through temporal averaging

of coherent noise patterns. This process transforms the speckle intensity distribution from

exponential (static diffuser) to Gaussian - indicating improved uniformity and effective coher-

ent noise suppression. Schell-Gauss behavior was verified via Young’s double-slit experiment,

where interference fringe visibility remained constant regardless of slit displacement (for fixed

separation), confirming the source’s spatial coherence depends solely on point separation, not

absolute position.

The Intensity Variance and Local Contrast metrics proved most efficient and precise for

best-focus plane determination in our system. Both exhibited sharper, more defined peaks

with increasing diffuser velocity, indicating enhanced autofocus precision through spatial

coherence reduction and speckle suppression. Though initially less effective for amplitude

objects (e.g., USAF target), the Entropy metric showed significantly improved performance

with phase objects (polystyrene microspheres) and higher-resolution sensors. Crucially,

higher rotation velocities (lower spatial coherence) reduced autofocus metric uncertainties,

yielding more stable and reliable focal plane measurements. Additionally, Fresnel and

Angular Spectrum propagation methods produced virtually identical autofocus results under

experimental conditions, validating their robustness and applicability.

Effective speckle suppression via spatial coherence control substantially improved recon-

structed object contrast and detail visibility. Resolution limits decreased from 22.09±0.08µm

(stationary diffuser) to 17.59± 0.06µm (rotating diffuser). Using a high-resolution sensor (20

MP, 1.4 µm pixels), resolution further improved from 11.0± 0.4µm (high spatial coherence

source) to 9.8± 0.5µm (Schell-Gauss source). This enhancement directly stems from speckle

mitigation and the sensor’s enhanced ability to sample fine details and high spatial frequencies,

producing a more faithful object representation.
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The implemented autofocus metrics successfully detected and focused objects at different

depth planes. Moreover, the system operated efficiently with complex biological samples,

highlighting the promising potential of lensless digital holographic microscopy with controlled

spatial coherence sources - particularly for biomedical applications.

In summary, this research confirms that controlling illumination spatial coherence can increase

the resolution of the reconstructed objects, image quality, and auto-focus precision through

effective speckle noise suppression - particularly notable given no super-resolution algorithms

were implemented.
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Algorithm for reconstructing complex

optical fields by Fresnel propagation

and angular spectrum

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %%%%%%%%%%%%%%%%% XXXXXXXXXXX Algorithm for reconstructing complex

↪→ optical fields by Fresnel propagation and angular spectrum

↪→ XXXXXXXXXXX %%%%%%%%%%%%%%%%%

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4

5 clc

6 close all

7 clear all

8

9

10

11 lambda =0.542;

12

13 d=1225;

14 L=60000;

15

16 dx =4.7;

17 dy=dx;

18 k = (2.0*pi)/lambda;

19

20 %%

21 ruta=’D:\ MAESTRIA EN CIENCIA (OPTICA)\CUATRIMESTRE 2\ PTICA DE

↪→ FOURIER\miguel\microesferas\microesferas\’;
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22 ruta1=’D:\ MAESTRIA EN CIENCIA (OPTICA)\CUATRIMESTRE 2\ PTICA DE

↪→ FOURIER\miguel\microesferas\microesferas\Amplitud \2\’;

23 ruta2=’D:\ MAESTRIA EN CIENCIA (OPTICA)\CUATRIMESTRE 2\ PTICA DE

↪→ FOURIER\miguel\microesferas\microesferas\fase\2’;

24 ruta3=’D:\ MAESTRIA EN CIENCIA (OPTICA)\CUATRIMESTRE 2\ PTICA DE

↪→ FOURIER\miguel\microesferas\microesferas\fresnel\’;

25

26 h=adquisicion ([ruta ,’\h2.bmp’]);

27 h0=adquisicion ([ruta ,’\r1.bmp’]);

28 h1=h0-h;

29 h1=h;

30

31

32 [NX ,MY]=size(h1);

33

34 tx=-NX/2:1:NX/2-1;

35 ty=-MY/2:1:MY/2-1;

36

37 jx=dx*tx;

38 jy=dy*ty;

39

40 dvx =1/(NX*dx);

41 dvy =1/(MY*dy);

42 vx=dvx*tx;

43 vy=dvy*ty;

44

45 Auv=fft2(h1);

46 Auv=fftshift(Auv);

47

48

49

50

51

52 [x,y]= meshgrid ((1:NX)*dx ,(1:MY)*dy);

53 U = sqrt(h1)*exp(-1.j*k*sqrt(x.*x+y.*y+L^2));

54

55 U1=fft2(U);

56 U2=fftshift(U);

57

58

59

60 [U V]= meshgrid(vy,vx);
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propagation and angular spectrum

61

62 r=exp(1i*2*pi*d*(sqrt(1-( lambda ^2)*(U.*U+V.*V)))/lambda);

63 Auvexp=Auv.*r;

64

65 X=fftshift(Auvexp);

66 rec1=ifft2(X);

67 rec1 =255* abs(rec1)/max(max(abs(rec1)));

68

69 figure ,image(vy ,vx ,rec1),colormap(gray (256)),axis square;

70 set(gcf ,’Color’ ,[0.5 0.5 1],’NumberTitle ’,’on’,’Name’,’ P a t r n ’);

71 title(’\bf P r o p a g a c i n de Fresnel ’);

72 imwrite(rec1 ,colormap(gray (256)),[ruta3 ,’\fres_’,num2str(d),’.tif’])

↪→ ;

73

74 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

75

76 [x,y]= meshgrid (1:(NX) ,1:(MY));

77 Auv=fft2(h1);

78 Auv=fftshift(Auv);

79

80 [U V]= meshgrid(vy ,vx);

81

82 r=exp(1i*2*pi*d*(sqrt(1-( lambda ^2)*(U.*U+V.*V)))/lambda);

83 Auvexp=Auv.*r;

84

85 X=fftshift(Auvexp);

86 rec2=ifft2(X);

87 rec3=rec2/max(rec2 (:))*256;

88 figure ,imagesc(abs(rec3)),colormap(gray (256));

89 title ([’Reconstruccion en amplitud 2D ’,num2str(d),’ micras ’]);

90 %set(gcf ,’Color ’ ,[0.5 0.5 1],’NumberTitle ’,’on’,’Name ’,’ P a t r n ’);

91 title(’\bf Espectro Angular ’);

92 fa=angle(rec2);

93 fa1 = fa+(2*pi)*(fa <0);

94 fa1=fa1/max(fa1(:))*256;

95 rec1_view =256* rec2/(max(max(rec2)));

96 figure , imagesc(fa1), axis image , colorbar , colormap(gray);

97 title ([’Reconstruccion en fase 2D ’,num2str(d),’ micras ’]);

98 imwrite(fa1 ,colormap(gray (256)),[ruta2 ,’\fa_’,num2str(d),’.tif’]);

99 imwrite(mat2gray(abs(rec3)),[ruta1 ,’\Amp_’,num2str(d),’.tif’]);
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Algorithm for average contrast

1

2 close all

3 clear all

4 clc

5

6 [filenames , pathname] = uigetfile ({’*.png;*.jpg;*.bmp;*.tif’, ’Image

↪→ Files’}, ...

7 ’Select Images ’, ’MultiSelect ’, ’

↪→ on’);

8

9

10 if isequal(filenames , 0)

11 error(’No images were selected.’);

12 end

13

14

15 % Cell Array

16 if ischar(filenames)

17 filenames = {filenames };

18 end

19

20

21 num_images = length(filenames);

22 img_sum = [];

23 img_list = cell(1, num_images);

24 intensity_data = struct ();

25 excel_data = {’Imagen ’, ’Promedio ’, ’ D e s v i a c i n E s t n d a r ’, ’

↪→ M x i m o ’, ’ M n i m o ’, ’Contraste de Speckle ’};

26
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27

28 for i = 1: num_images

29 img = imread(fullfile(pathname , filenames{i}));

30 img_list{i} = img;

31 if isempty(img_sum)

32 img_sum = double(img);

33 else

34 img_sum = img_sum + double(img);

35 end

36

37 % Calcular e s t a d s t i c a s de intensidad para la imagen actual

38 img_intensities = double(img(:));

39 intensity_mean = mean(img_intensities);

40 intensity_std = std(img_intensities);

41 intensity_max = max(img_intensities);

42 intensity_min = min(img_intensities);

43 speckle_contrast = intensity_std / intensity_mean;

44

45 % Stadistics

46 [~, name , ~] = fileparts(filenames{i});

47 var_name = sprintf(’Ipromedio_%s’, name);

48 intensity_data .( var_name) = struct(’mean’, intensity_mean ,’std’,

↪→ intensity_std , ’max’, intensity_max , ’min’, intensity_min

↪→ , ’speckle_contrast ’, speckle_contrast);

49

50 % Export Excel

51 excel_data(end+1, :) = {name , intensity_mean , intensity_std ,

↪→ intensity_max , intensity_min , speckle_contrast };

52

53 % Show stadistics

54 fprintf(’Imagen %d: %s\n’, i, filenames{i});

55 fprintf(’ Promedio de intensidad: %.2f\n’, intensity_mean);

56 fprintf(’ D e s v i a c i n e s t n d a r de intensidad: %.2f\n’,

↪→ intensity_std);

57 fprintf(’ Intensidad m x i m a : %d\n’, intensity_max);

58 fprintf(’ Intensidad m n i m a : %d\n’, intensity_min);

59 fprintf(’ Contraste de speckle: %.2f\n’, speckle_contrast);

60 end

61

62 % Average

63 img_avg = img_sum / num_images;

64
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65 % Saving Average

66 imwrite(uint8(img_avg), fullfile(pathname , ’imagen_promedio.png’));

67

68 %

69 all_intensities = [];

70 for i = 1: num_images

71 all_intensities = [all_intensities; double(img_list{i}(:))];

72 end

73

74 overall_intensity_mean = mean(all_intensities);

75 overall_intensity_std = std(all_intensities);

76 overall_intensity_max = max(all_intensities);

77 overall_intensity_min = min(all_intensities);

78 overall_speckle_contrast = overall_intensity_std /

↪→ overall_intensity_mean;

79

80 % Save stadistics

81 intensity_data.Ipromedio_global = struct(’mean’,

↪→ overall_intensity_mean , ’std’, overall_intensity_std , ’max’,

↪→ overall_intensity_max , ’min’, overall_intensity_min , ’

↪→ speckle_contrast ’, overall_speckle_contrast);

82

83

84 base_name = filenames {1}(1:end -5); % Asumimos que todas las

↪→ i m g e n e s tienen el mismo prefijo

85 mat_filename = sprintf(’%s_intensity_data.mat’, base_name);

86 save(fullfile(pathname , mat_filename), ’-struct ’, ’intensity_data ’);

87

88 % saving .xls

89 xls_filename = sprintf(’%s_intensity_data.xls’, base_name);

90 xlswrite(fullfile(pathname , xls_filename), excel_data);

91

92

93 % figure;

94 % subplot(1, 2, 1);

95 % imshow(uint8(img_avg));

96 % title(’Imagen Promedio ’);

97 %

98 subplot(1, 1, 1);

99 histogram(all_intensities);

100 title(’ D i s t r i b u c i n de Intensidades ’);

101 xlabel(’Intensidad ’);
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102 ylabel(’Frecuencia ’);

103

104 %

105 disp(’ E s t a d s t i c a s de intensidad para todas las i m g e n e s

↪→ combinadas:’);

106 fprintf(’ Promedio de intensidad: %.2f\n’, overall_intensity_mean);

107 fprintf(’ D e s v i a c i n e s t n d a r de intensidad: %.2f\n’,

↪→ overall_intensity_std);

108 fprintf(’ Intensidad m x i m a : %d\n’, overall_intensity_max);

109 fprintf(’ Intensidad m n i m a : %d\n’, overall_intensity_min);

110 fprintf(’ Contraste de speckle: %.2f\n’, overall_speckle_contrast);
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Algorithm for calculating visibility

1

2

3 [filenames , pathname] = uigetfile ({’*.jpg;*.png;*.bmp’, ’Image Files

↪→ (*.jpg , *.png , *.bmp)’; ...

4 ’*.*’, ’All Files (*.*)’}, ...

5 ’Seleccione las i m g e n e s a

↪→ analizar ’, ...

6 ’MultiSelect ’, ’on’);

7

8 if isequal(filenames , 0)

9 disp(’No se s e l e c c i o n ninguna imagen.’);

10 return;

11 end

12

13 %

14 outputFolder = uigetdir(’’, ’Seleccione la carpeta para guardar los

↪→ resultados ’);

15 if outputFolder == 0

16 disp(’No se s e l e c c i o n ninguna carpeta.’);

17 return;

18 end

19

20 %

21 if ischar(filenames)

22 filenames = {filenames };

23 end

24

25
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26 outputFilename = fullfile(outputFolder , ’Resultados_Visibilidad.xlsx

↪→ ’);

27

28

29 results = cell(length(filenames), 3);

30

31

32 for i = 1: length(filenames)

33

34 img = imread(fullfile(pathname , filenames{i}));

35

36

37 if size(img , 3) == 3

38 img = rgb2gray(img);

39 end

40

41 visibilities = zeros (800, 1);

42

43 for row = 1:800

44 profile = double(img(row , :)); % Obtener el perfil

↪→ horizontal

45

46

47 I_max = max(profile);

48 I_min = min(profile);

49 visibility = (I_max - I_min) / (I_max + I_min);

50 visibilities(row) = visibility;

51 end

52

53

54 avg_visibility = mean(visibilities);

55 std_visibility = std(visibilities);

56

57

58 results{i, 1} = filenames{i};

59 results{i, 2} = avg_visibility;

60 results{i, 3} = std_visibility;

61

62 fprintf(’Promedio y d e s v i a c i n e s t n d a r calculados para la

↪→ imagen %s\n’, filenames{i});

63 end

64
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65

66 resultsTable = cell2table(results , ’VariableNames ’, {’Imagen ’, ’

↪→ Promedio_Visibilidad ’, ’Desviacion_Estandar ’});

67 writetable(resultsTable , outputFilename);

68

69 disp(’Proceso de c l c u l o de visibilidad completado y resultados

↪→ almacenados.’);



Appendix D

Auto-focus Metrics algorithm

1

2 clc;

3 clear;

4 close all;

5

6 %%

7 config = struct ();

8 config.lambda = 0.532;

9 config.L = 40000;

10 config.dx = 2;

11 config.step_size = 100;

12 config.ruta = ’C:\ Users\maomm\OneDrive\Documentos\TESIS\experimentos

↪→ \2025\1 - febrero \200225\281024\ h2\’;

13 config.inicio_busqueda = 0;

14

15

16 metricas = {’Varianza ’, ’Gradiente ’, ’Entropia ’, ’ContrasteLocal ’, ’

↪→ SSIM’};

17 metodos = {’Fresnel ’, ’EspectroAngular ’};

18

19

20 datos_completos = cell (0,6);

21

22 min_max_metrics = struct(’Varianza ’, [inf , -inf],’Gradiente ’, [inf ,

↪→ -inf],’Entropia ’,[inf , -inf],’ContrasteLocal ’, [inf , -inf],’

↪→ SSIM’, [inf , -inf]);

23

24 resultados_optimos = cell (0,7);

25
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26

27 holograma = im2double(imread(fullfile(config.ruta , ’h2.bmp’)));

28 if size(holograma , 3) == 3

29 holograma = rgb2gray(holograma);

30 end

31 [NY , NX] = size(holograma);

32

33 % SSIM (Este es provisional)

34 holograma_ssim = (holograma - min(holograma (:))) ./ (max(holograma

↪→ (:)) - min(holograma (:)) + eps);

35

36

37 [fx , fy] = meshgrid (...

38 (-NX/2:NX/2-1)/(NX*config.dx), ...

39 (-NY/2:NY/2-1)/(NY*config.dx));

40

41

42 for metodo = 1: length(metodos)

43 optimos = struct ();

44 for met = 1: length(metricas)

45 if strcmp(metricas{met}, ’Entropia ’)

46 optimos .( metricas{met}) = struct(’valor’, inf , ’

↪→ distancia ’, -1, ’desviacion ’, 0);

47 else

48 optimos .( metricas{met}) = struct(’valor’, -inf , ’

↪→ distancia ’, -1, ’desviacion ’, 0);

49 end

50 end

51

52 for z = config.inicio_busqueda:config.step_size:config.L

53 % C l c u l o del kernel de p r o p a g a c i n

54 if metodo == 1

55 H = exp(1i*(2*pi/config.lambda)*z) .* exp(-1i*pi*config.

↪→ lambda*z*(fx.^2 + fy.^2));

56 else

57 H = exp(1i*(2*pi/config.lambda)*z*sqrt(1 - (config.

↪→ lambda ^2)*(fx.^2 + fy.^2)));

58 end

59

60

61 campo = ifft2(ifftshift(fftshift(fft2(holograma)) .* H));

62 amplitud = abs(campo);
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63

64 amplitud_normalizada = (amplitud - min(amplitud (:))) ./ (max

↪→ (amplitud (:)) - min(amplitud (:)) + eps);

65

66

67 [var_val , var_std] = calcularVarianza(amplitud);

68 [grad_val , grad_std] = calcularGradiente(amplitud);

69 [ent_val , ent_std] = calcularEntropia(amplitud);

70 [cont_val , cont_std] = calcularContraste(amplitud);

71 [ssim_val , ssim_std] = calcularSSIM(amplitud_normalizada ,

↪→ holograma_ssim);

72

73 metricas_val = struct(’Varianza ’, var_val ,’Gradiente ’,

↪→ grad_val ,’Entropia ’, ent_val ,’ContrasteLocal ’,

↪→ cont_val ,’SSIM’, ssim_val);

74

75 metricas_std = struct(’Varianza ’, var_std ,’Gradiente ’,

↪→ grad_std ,’Entropia ’, ent_std ,’ContrasteLocal ’,

↪→ cont_std ,’SSIM’, ssim_std);

76

77

78 for met = 1: length(metricas)

79 current_val = metricas_val .( metricas{met});

80 min_max_metrics .( metricas{met}) = [...

81 min(current_val , min_max_metrics .( metricas{met})(1))

↪→ , max(current_val , min_max_metrics .( metricas{

↪→ met})(2))];

82 end

83

84

85 for met = 1: length(metricas)

86 datos_completos = [datos_completos; {metodos{metodo},

↪→ metricas{met},z,metricas_val .( metricas{met}),NaN ,

↪→ ... % ValorNorm

87 metricas_std .( metricas{met})}];

88

89 current_val = metricas_val .( metricas{met});

90 current_std = metricas_std .( metricas{met});

91 if (strcmp(metricas{met}, ’Entropia ’))

92 if current_val < optimos .( metricas{met}).valor

93 optimos .( metricas{met}).valor = current_val;

94 optimos .( metricas{met}).distancia = z;
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95 optimos .( metricas{met}).desviacion = current_std

↪→ ;

96 end

97 else

98 if current_val > optimos .( metricas{met}).valor

99 optimos .( metricas{met}).valor = current_val;

100 optimos .( metricas{met}).distancia = z;

101 optimos .( metricas{met}).desviacion = current_std

↪→ ;

102 end

103 end

104 end

105 end

106

107 for met = 1: length(metricas)

108 resultados_optimos = [resultados_optimos; { metodos{metodo},

↪→ metricas{met},optimos .( metricas{met}).distancia ,

↪→ optimos .( metricas{met}).valor ,NaN , % ValorNorm

109 optimos .( metricas{met}).desviacion ,char(" M n i m o " +

↪→ string(strcmp(metricas{met}, ’Entropia ’)) + "

↪→ M x i m o ")}];

110 end

111 end

112

113

114 for i = 1:size(datos_completos ,1)

115 metrica = datos_completos{i,2};

116 min_val = min_max_metrics .( metrica)(1);

117 max_val = min_max_metrics .( metrica)(2);

118 datos_completos{i,5} = (datos_completos{i,4} - min_val) / (

↪→ max_val - min_val + eps);

119

120 if strcmp(metrica , ’Entropia ’)

121 datos_completos{i,5} = 1 - datos_completos{i,5};

122 end

123 end

124

125 for i = 1:size(resultados_optimos ,1)

126 metrica = resultados_optimos{i,2};

127 min_val = min_max_metrics .( metrica)(1);

128 max_val = min_max_metrics .( metrica)(2);
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129 resultados_optimos{i,5} = (resultados_optimos{i,4} - min_val) /

↪→ (max_val - min_val + eps);

130

131 if strcmp(metrica , ’Entropia ’)

132 resultados_optimos{i,5} = 1 - resultados_optimos{i,5};

133 end

134 end

135

136

137 nombre_archivo = fullfile(config.ruta , ’Resultados_Completos_h2.xlsx

↪→ ’);

138 if exist(nombre_archivo , ’file’), delete(nombre_archivo); end

139

140

141 tabla_completa = cell2table(datos_completos ,...

142 ’VariableNames ’, {’Metodo ’,’Metrica ’,’Distancia ’,’ValorCrudo ’,’

↪→ ValorNormalizado ’,’DesviacionEstandar ’});

143 writetable(tabla_completa , nombre_archivo , ’Sheet ’, ’Datos_Completos

↪→ ’);

144

145

146 tabla_optimos = cell2table(resultados_optimos ,...

147 ’VariableNames ’, {’Metodo ’,’Metrica ’,’MejorDistancia ’,’

↪→ ValorCrudo ’,’ValorNormalizado ’,’DesviacionEstandar ’,’

↪→ TipoOptimizacion ’});

148 writetable(tabla_optimos , nombre_archivo , ’Sheet ’, ’

↪→ Resultados_Optimos ’);

149 %% For acces to the auxiliar functions open the url: "https :// drive.

↪→ google.com/file/d/1qQFcfiskb -bqYJcjqmU2 -VwsCuCoucOd/view?usp=

↪→ drive_link"
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[29] T. C. Magalhães and J. M. Rebordão. Simulation of partially coherent light prop-

agation using parallel computing devices. In Proc. SPIE 10453, 104531U, 2017.

doi:10.1117/12.2272339.

[30] H. Tobon-Maya, S. Zapata-Valencia, E. Zora-Guzmán, C. Buitrago-Duque, and J. Garcia-

Sucerquia. Open-source, cost-effective, portable, 3d-printed digital lensless holographic

microscope. Appl. Opt., 60(4):A205–A214, Feb 2021. URL: https://opg.optica.org/

ao/abstract.cfm?URI=ao-60-4-A205, doi:10.1364/AO.405605.

[31] T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki,

N. Masuda, and T. Ito. Computational wave optics library for c++: Cwo++ library.

Comp. Phys. Com., 183(5):1124–1138, 2012. doi:10.1016/j.cpc.2011.12.027.

[32] J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer.

Digital in-line holographic microscopy. Appl. Opt., 45(5):836–850, Feb 2006. URL: https:

//opg.optica.org/ao/abstract.cfm?URI=ao-45-5-836, doi:10.1364/AO.45.000836.

[33] T. van Dijk, G. Gbur, and T. D. Visser. Shaping the focal intensity distri-

bution using spatial coherence. J. Opt. Soc. Am. A, 25(3):575–581, Mar 2008.

doi:10.1364/JOSAA.25.000575.

[34] G. Gbur and T. D. Visser. Can spatial coherence effects produce a local minimum of

intensity at focus? Opt. Lett., 28(18):1627–1629, Sep 2003. doi:10.1364/OL.28.001627.

[35] Y. Shen, H. Sun, D. Peng, Y. Chen, Q. Cai, D. Wu, F. Wang, Y. Cai,

and S. A. Ponomarenko. Optical image reconstruction in 4f imaging sys-

tem: Role of spatial coherence structure engineering. Applied Physics

Letters, 118(18):181102, 05 2021. arXiv:https://pubs.aip.org/aip/apl/article-

pdf/doi/10.1063/5.0046288/13008374/181102 1 online.pdf, doi:10.1063/5.0046288.

[36] B. Yinxu, T. T. Xing, K. Jiao, Q. Kong, Jiaxiong W., Xiaofei Y., Shenmin Y., Yannan

J., Renbing S., Hua S., and Cuifang K. Computational portable microscopes for point-

of-care-test and tele-diagnosis. Cells, 11(22), 2022. URL: https://www.mdpi.com/

2073-4409/11/22/3670, doi:10.3390/cells11223670.

[37] M. W. Hyde. Independently controlling stochastic field realization magnitude and phase

statistics for the construction of novel partially coherent sources. Photonics, 8(2), 2021.

URL: https://www.mdpi.com/2304-6732/8/2/60, doi:10.3390/photonics8020060.

[38] Y. Peng, S. Choi, J. Kim, and G. Wetzstein. Speckle-free holography with par-

tially coherent light sources and camera-in-the-loop calibration. Sci. Adv., 7, 11 2021.

doi:10.1126/sciadv.abg5040.

https://doi.org/10.1117/12.2272339
https://opg.optica.org/ao/abstract.cfm?URI=ao-60-4-A205
https://opg.optica.org/ao/abstract.cfm?URI=ao-60-4-A205
https://doi.org/10.1364/AO.405605
https://doi.org/10.1016/j.cpc.2011.12.027
https://opg.optica.org/ao/abstract.cfm?URI=ao-45-5-836
https://opg.optica.org/ao/abstract.cfm?URI=ao-45-5-836
https://doi.org/10.1364/AO.45.000836
https://doi.org/10.1364/JOSAA.25.000575
https://doi.org/10.1364/OL.28.001627
https://arxiv.org/abs/https://pubs.aip.org/aip/apl/article-pdf/doi/10.1063/5.0046288/13008374/181102_1_online.pdf
https://arxiv.org/abs/https://pubs.aip.org/aip/apl/article-pdf/doi/10.1063/5.0046288/13008374/181102_1_online.pdf
https://doi.org/10.1063/5.0046288
https://www.mdpi.com/2073-4409/11/22/3670
https://www.mdpi.com/2073-4409/11/22/3670
https://doi.org/10.3390/cells11223670
https://www.mdpi.com/2304-6732/8/2/60
https://doi.org/10.3390/photonics8020060
https://doi.org/10.1126/sciadv.abg5040


BIBLIOGRAPHY 91

[39] C. Buitrago-Duque, H. Tobón-Maya, A. Gómez-Ramı́rez, S. I. Zapata-Valencia, M. J.
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