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Abstract

The strong coupling between spatial and polarization degrees of freedom in vectorial
structured light beams gives rise to structured light fields with rich and versatile be-
havior. This intrinsic coupling has driven significant recent interest in their study and
application across various fields.

This thesis primarily focuses on analyzing the interaction between a Dove prism and
vortex vector beams. While the individual effects of a Dove prism on light polarization
and orbital angular momentum (OAM) are well-documented, its influence on vector
beams, where these degrees of freedom are fundamentally coupled, has remained
largely unexplored. Our investigation reveals that the impact of Dove prisms on vector
beams differs significantly from what might be anticipated by considering polarization
or OAM independently. For instance, a polarization-only prediction might suggest a
linear pattern transforming into a mix of linear and elliptical polarization. Similarly, an
OAM-only perspective would merely anticipate a reversal of the OAM value and beam
rotation.

However, our findings, supported by theoretical calculations, simulations, and ex-
perimental results, demonstrate a more complex behavior. To accurately model this
phenomenon, we developed an extended Jones matrix that combined the effect of dove
prisms on both the OAM and polarization degrees of freedom. A MATLAB code was
created to simulate these effects, and the experimental results show excellent agree-
ment with our theoretical models. A key result is that when polarization and OAM are
coupled within a vector beam, the dove prism not only reverses the sign of the OAM
but also induces an intermodal phase shift. This remarkable effect enables a smooth
transition between fundamental vector beam types, specifically azimuthal and radial
polarizations, as well as their hybrid states.

As an additional contribution, this work also introduces two novel forms of vector
beams: Vector Vortex Pearcey-Gauss beams and curvilinear polarized beams, which
were constructed for the first time. These beams were named on the basis of the distinc-
tive shape of their electric field distributions, which exhibit characteristic curvilinear and
vortex-like polarization patterns, and in the case of the Vector Vortex Pearcey-Gauss
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beams are distinguished by an intensity profile that resembles a caustic-shaped pattern,
characteristic of the Pearcey function. The insights gained from this research signifi-
cantly advance our understanding of vector beam manipulation and lay the groundwork
for their advanced applications in various optical systems.
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1 | Introduction

Light, as an electromagnetic wave, has numerous degrees of freedom (DoFs), includ-
ing phase, amplitude, polarization, frequency, and angular momentum. All of this fully
defines the state of an optical field and they can be manipulated by specific optical com-
ponents, facilitating the creation of beams with tailored characteristics. This meticulous
control of its DoFs has enabled innovative applications across various scientific and
technical fields, including high-resolution microscopy, image processing algorithms, op-
tical communication systems, and optical trapping techniques, among others. The DoFs
can be adjusted either independently or in a coupled manner, resulting in the formation
of vector beams. Such beams are characterized by their spatially varying and complex
polarization distributions. They have been studied in depth in recent years due to their
inherent flexibility and unique properties.

This thesis analyzes the interaction between vectorial light fields, coupled in spin and
orbital angular momentum, and a Dove prism (DP). The prism’s influence on indepen-
dent polarization and orbital angular momentum (OAM) is well established. Nonethe-
less, the case in which these DoFs are coupled, a fundamental feature of vector beams,
remains mostly unexamined. Comprehending the prism’s impact on these intercon-
nected features is crucial for using vector beams in optical systems.

The thesis is organized as follows. First, in Chapter 2, we establish the theoretical
basis for the subsequent chapters. This chapter covers the fundamentals of structured
light and is divided into four sections. The first section explains what scalar beams
are, how they arise from solving the wave equation in different coordinate systems, and
presents examples of various beam families. The second section introduces the con-
cept of vector beams, emphasizing the differences between them and scalar beams.
The third section discusses methods for generating these types of beams, focusing on
two main techniques: using q-plates and spatial light modulators (SLMs). Finally, the
fourth section explores Stokes polarimetry, a crucial tool for analyzing the polarization
patterns of vector beams. Chapter 3 focuses on the generation of two novel types
of vector beams and is divided into two sections. The first discusses Pearcey-Gauss
beams, while the second explores curvilinear polarized beams. Chapter 4 discusses
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INTRODUCTION

the analysis of the effect of a DP on vector beams. This chapter is divided into six
sections, beginning with an examination of how a rotating DP influences scalar beams,
with particular attention to polarization (Section 4.1). Section 4.2 continues the study
of scalar beams by analyzing the effect of the prism on the OAM of light. Section 4.3
extends the Jones matrix formalism to describe the interaction of vector beams with the
DP, offering a generalized framework that accounts for both the spatial and polariza-
tion DoFs. In Section 4.4, a numerical simulation is presented to model the theoretical
predictions, followed by a description of the experimental setup used to validate these
results in Section 4.5. Finally, Section 4.6 presents and discusses the experimental
results, highlighting the key findings and comparing them with the theoretical and sim-
ulated expectations.
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2 | Structured beams

At a certain stage in optics research, the use of conventional laser modes proved
to be insufficient for specific applications [1]. This limitation gave rise to the field of
structured light, which focuses on exploring field distributions with novel characteristics
and developing techniques to shape light accordingly. These tailored field distribu-
tions are achieved by controlling the DoFs of light—that is, its amplitude, polarization,
and phase—typically using SLMs [2]. The ability to tailor light in such precise ways
has transformed both fundamental research and practical technologies, paving the way
for innovations in fields such as optical trapping and tweezing [3], quantum information
processing [4], mode division multiplexing [5], advanced microscopy [6], 3D holographic
imaging and metrology [7, 8, 9], and even laser design [10, 11].

This chapter first introduces the fundamental properties of scalar beams, focusing
on two widely used modes that arise from solving the wave equation in different coor-
dinate systems: Laguerre and Hermite-Gauss beams. The discussion then change to
vector beams, highlighting their unique polarization structures and the methods used
for their generation, including numerical simulations and experimental techniques that
involve optical elements such as q-plates and SLMs. Finally, we will address the char-
acterization of structured light using Stokes polarimetry.

2.1 Scalar beams

The simplest approach to structuring light involves shaping its field distribution by con-
trolling its phase and amplitude, while leaving polarization as a free degree of freedom
(DoF) in the design process. The former leads to various spatial modes, which are
specific solutions to the Helmholtz equation in its exact form [12]:

∇2E(r) = −E(r)k2, (2.1)

where E(r) is the electric field as a function of the position vector r = (x, y, z), ∇2 is the
Laplacian operator, and k = 2π/λ is the wavenumber, with λ being the wavelength of
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STRUCTURED BEAMS

the light in the medium.
In the paraxial approximation—valid when the field varies slowly along the propaga-

tion direction z—the Helmholtz equation reduces to the paraxial wave equation [13]:

∇2
TE0(r)− 2ik

∂E0(r)

∂z
= 0, (2.2)

where ∇2
T = ∂2

∂x2 +
∂2

∂y2
is the transverse Laplacian operator, and ∂/∂z denotes the partial

derivative with respect to the propagation direction.
These spatial modes can be grouped into distinct families based on the coordinate

system chosen for solving the Helmholtz equation and its paraxial approximation. Typ-
ical examples of such vector modes include Bessel [14, 15] and Laguerre -Gauss [16]
beams, for polar symmetry; Mathieu [17, 18] and Ince-Gauss beams [19], for elliptical
symmetry; and more recently, parabolic [20, 21], helico-conical [22], and Pearcey [23]
beams. We will now briefly discuss two of the most popular modes, the Laguerre-Gauss
(LG) and the Hermite-Gauss (HG) beams.

2.1.1 Hermite-Gauss modes

If we solve the paraxial Helmholtz equation in a rectangular coordinate system, the
solution can be expressed in the following form [24]:

HGu,n(r) = ψ0

[
ω0

ω(z)

]
Hu

(√
2x

ω(z)

)
Hn

(√
2y

ω(z)

)
. . . (2.3)

. . . exp

[
i

(
−kz − kρ2

2R(z)
+ (u+ n+ 1)ζ(z)

)]
,

where

Hp

[√
2qi

ω(z)

]
= Hp

(√
2qi

ω(z)

)
exp

(
− 2q2i
ω2(z)

)
, with qi = x, y, (2.4)

is referred to as the HG function of order p, where Hp represents the Hermite polynomi-
als. In this expression, ψ0 denotes the initial amplitude of the beam, and ω0 is the waist
of the beam (the minimum radius of the beam) in z = 0. The parameter ω(z) describes
the beam width as a function of z, while k is the wave number. The term ρ2 = x2 + y2

represents the squared radial coordinate in the transverse plane. The function R(z)

corresponds to the radius of curvature of the beam’s wavefronts, and ζ(z) is the Gouy
phase, which introduces a phase shift that depends on z.

A beam with a complex amplitude described by Equation 2.3 is known as a Hermite-
Gaussian mode of order (u, n), where u and n represent the number of nodes (null
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STRUCTURED BEAMS

S

E

(a) (b) (c) (d) (e)

Figure 2.1: Intensity distribution for several HG beams in the transverse plane. Each
column corresponds to a specific mode: (a) HG00, (b) HG10, (c) HG11, (d) HG22, and
(e) HG33 . Numerical simulations (S) are on top and experiments (E) are on the bottom.

intensity points) along the x- and y-axes, respectively. The HG beam of order (0, 0)

corresponds to the fundamental Gaussian beam.
The intensity distribution of a HGu,n is given by Iu,n = |HGu,n|2, and it can be ex-

pressed as:

Iu,n = |ψ0|2
[
ω0

ω(z)

]2
H2

u

(√
2x

ω(z)

)
H2

n

(√
2y

ω(z)

)
. (2.5)

Figure 2.1 illustrates the experimental and simulated intensity distributions for Hermite-
Gaussian beams in the transverse plane. It can be observed that higher-order beams
(Figure 2.1e) exhibit broader spatial distributions compared to lower-order beams (Fig-
ure 2.1b). Additionally, the fundamental Gaussian beam (Figure 2.1a) is the only circu-
larly symmetric member of the HG family.

Finally, it is important to highlight that the HG family forms a complete orthogonal
basis, allowing any arbitrary beam to be represented as a superposition of Hermite-
Gaussian modes [25].

2.1.2 Laguerre-Gauss modes

An alternative complete set of solutions, known as LG beams, is obtained by solving the
paraxial Helmholtz equation in cylindrical coordinates (ρ, φ, z). The complex amplitude
of the LG beam, denoted LGℓp, can be expressed as [2]

LGℓ
p(ρ, φ, z) =

ω0

ω(z)

√
2p!

π(|ℓ|+ p)!

(√
2ρ

ω(z)

)|ℓ|

L|ℓ|
p

[
2

(
ρ

ω(z)

)2
]
exp[−ikz] (2.6)
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× exp [i(2p+ |ℓ|+ 1)ζ(z)] exp

[
−
(

ρ

ω(z)

)2
]
exp

[
− ikρ2

2R(z)

]
exp[−iℓφ],

where

Lℓ
p(x) =

x−ℓex

p!

(
dp

dxp

)[
xℓ+pe−x

]
, (2.7)

are the generalized Laguerre polynomials. The parameters ω(z), R(z), and ζ(z) are
the same as those in HG beams. The integers ℓ = 0, 1, 2, . . . (azimuthal index) and
p = 0, 1, 2, . . . (radial index) represent the beam’s mode structure. The lowest-order LG
beam, LG00, like the lowest-order HG beam, HG00, is equivalent to the fundamental
Gaussian beam.

The intensity Iℓ,p = |LGℓp|2 of the LG modes is given by:

Iℓ,p = |ψ0|2
∣∣∣∣ ω0

ω(z)

∣∣∣∣2
[√

2ρ

ω(z)

]2|ℓ| ∣∣∣∣L|ℓ|
p

[
2ρ2

ω2(z)

]∣∣∣∣2 exp [− 2ρ2

ω2(z)

]
,

and is a function of ρ and z but not of φ, meaning that the intensity is circularly sym-
metric (see Figure 2.2). Figure 2.2 illustrates various LG beam modes, including their
simulated intensity distributions (top row) and experimentally generated counterparts
(bottom row). The modes are labeled (a) through (e) and correspond to a fixed az-
imuthal index ℓ = 3 and increasing radial indices p = 0 to p = 4. These images highlight
the characteristic ring-like intensity profiles of LG modes, where the number of rings
increases with the radial index p, while maintaining the same topological charge ℓ = 3.
These beams are also commonly referred to as optical vortices, a term that highlights

S

E

(a) (b) (c) (d) (e)

Figure 2.2: Simulated (S) and experimental (E) intensity profiles of LG modes. Each
column corresponds to a fixed azimuthal index ℓ = 3 and increasing radial indices p.
The values of p are: (a) p = 0, (b) p = 1, (c) p = 2, (d) p = 3, and (e) p = 4.
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(a) (b) (c)

Figure 2.3: Wave-fronts of the electric fields; the plane wave (a) has linear momentum
and the helical wave (b) has both linear and angular momentum. The Poynting vector
of the beam is perpendicular to the wave but since the wave is twisted the Poynting
vector is not in the direction of propagation anymore (c).

the phase singularity at the beam center. This singularity leads to a zero-intensity point
at the center.

The phase behavior of the LG beam has the same dependence on ρ and z as
the Gaussian beam, with two notable differences: (1) the Gouy phase is enhanced by
the factor (ℓ + 2p + 1), and (2) there is an additional phase factor e±jℓφ proportional
to the azimuthal angle φ. This phase component, ℓφ, results in the wavefront taking
the form of a helical structure as the beam propagates along z. For ℓ > 1, the beam
consists of ℓ intertwined helices, where the pitch of each helix is ℓλ, and the ± sign
determines the handedness of the helices [24]. The helical wavefront structure of these
beams directly gives rise to the presence of OAM; as the linear momentum of the optical
wave, orthogonal to its wavefront, gains azimuthal components that revolve about the
beam axis, as illustrated in Figure 2.3. Each photon in an LG beam with azimuthal
index ℓ carries an OAM of ℓℏ, where ℏ is the reduced Planck constant. This property
makes LG beams highly significant in applications such as quantum communication
and microscopy [26, 27].

2.2 Generalities about vector beams

Another approach to structuring light involves manipulating various degrees of freedom
simultaneously, such as, phase, amplitude, and polarization of a beam. An example
of this and of interest for this thesis are vector beams, non separable in their spatial
and polarization DoF, which are commonly generated as a non-separable weighted
superposition of the form

U(r) = cosΘuR(r) êR + sinΘuL(r) e
iδ êL, (2.8)
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LP

LP
0°

0°

Figure 2.4: Scalar and vector beams: scalar beams have homogeneous polarization,
whereas vector beams exhibit inhomogeneous polarization. As a consequence, when a
scalar beam passes through a horizontal polarizer, its spatial mode remains unchanged
apart from an overall amplitude reduction. In contrast, for a vector beam, passing
through a horizontal polarizer modifies the spatial intensity distribution, revealing dif-
ferent patterns depending on the beam’s polarization structure.

where uR(r) and uL(r) are orthogonal functions associated with the spatial DoF, and Θ

is a weighting coefficient. The orthogonal unit vectors êR and êL represent right- and
left-handed circular polarization states, respectively, while δ is the intermodal phase
between the elements of the superposition [28, 2].

The non-separability of this superposition establishes a coupling between the DoFs
of the beam, and also a pattern of inhomogeneous polarization. As a result, altering
one DoFs, such as the spatial structure, inherently affects the other, such as the po-
larization state. In contrast with scalar beams that exhibit a uniform polarization that
is independent of their spatial structure; hence, modifying their polarization does not
alter their spatial form. This fundamental difference between scalar and vector beams,
particularly the coupling between the DoFs, can be observed in Figure 2.4.

2.3 Generation of vector beams

As mentioned earlier, Equation 2.8 indicates that generating a vector beam requires
the superposition of two orthogonal beams, both orthogonal in their spatial structure
and polarization (see Figure 2.5). Such non-separable superposition can be simulated
through numerical simulations using MATLAB. Using for example optical vortices we
can generate cylindrical vector beams by giving equal weight to both components, i.e.,

8
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setting Θ = π
4
, and choosing the spatial modes uR(r) and uL(r) as vortices with topo-

logical charges ℓ = ±1, we can generate different vector beams. Furthermore, the
intermodal phase δ can take values of 0 or π, leading to distinct polarization structures.
These configurations result in four fundamental vector beams, described by the follow-
ing equations [29]

UR(r) = uℓ=1
R êR + uℓ=−1

L êL, (2.9)

UA(r) = uℓ=1
R êR − uℓ=−1

L êL, (2.10)

UHR(r) = uℓ=−1
R êR + uℓ=1

L êL, (2.11)

UHA(r) = uℓ=−1
R êR − uℓ=1

L êL. (2.12)

These four modes are illustrated in Figure 2.6; the beam shown in (a) is known
as radial mode, (b) is an azimuthal mode, (c) is a radial-hybrid mode, and (d) is an
azimuthal-hybrid mode.

Experimentally, the most straightforward method to implement a wavefront reshap-
ing, and thus generate these beams, is by introducing optics that make the optical
path-length of the light beam vary across the beam transverse section, hence adding
to the beam a spatially variant phase shift. This is achieved, for instance, by using a
spiral phase plate or a SLM, both of which will be discussed in the following sections.

2.3.1 Experimental generation through q-plates

A q-plate is an optical element that can be fabricated using liquid crystals [30] or di-
electric metasurfaces [31]. In its LC-based form, a q-plate consists of an azimuthal
arrangement of the molecular director around a central singularity. This pattern is pri-
marily characterized by the topological charge q, which can take integer or half-integer
values. In particular, a q-plate with q = 1 exhibits global rotational symmetry around its

Figure 2.5: Superposition of two orthogonal modes with orthogonal polarization states.
The orange and green circles within each mode represent right- and left-handed circular
polarization respectively, while the white radial lines in the resulting mode indicate linear
polarization.
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center and enables a direct conversion of SAM into OAM within the same beam, without
any net angular momentum exchange with the medium. This phenomenon is known as
spin-to-orbital angular momentum conversion [32]. More generally, q-plates with arbi-
trary topological charges q allow the generation of light beams carrying an OAM of 2qℏ
per photon, with the OAM sign determined by the input polarization.

When a q-plate is illuminated with a uniformly polarized beam, it imposes a space-
dependent phase, converting the input polarization into a spatially varying distribution.
For an incident circularly polarized beam, the q-plate flips the polarization handedness
and imparts an azimuthal phase factor e±2iqφ, generating an optical vortex. If the input
beam is linearly polarized, it can be expressed as a superposition of left- and right-
handed circular polarization components:

ELP =
1√
2
(ELCP + ERCP) , (2.13)

where ELCP and ERCP represent the left- and right-circular polarization states, respec-
tively. Upon passing through the q-plate, each circular component experiences a dis-
tinct transformation: the handedness of polarization is flipped, and an azimuthal phase
factor e±2iqϕ is introduced, where the sign depends on the initial handedness of the com-
ponent. After propagation through the q-plate, the transformed components recombine,
giving rise to a vector beam:

Eout =
1√
2

(
e+2iqφERCP + e−2iqφELCP

)
. (2.14)

(a)

(c)

(b)

(d)

Figure 2.6: Polarization distributions of vector vortex beams with different polarization
distributions. The white arrows represent the local polarization direction. (a) Radial
polarization, (b) Azimuthal polarization, (c) and (d) Hybrid vector beams.
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This results in a polarization state that varies across the transverse plane. For ex-
ample, if the input linear polarization is horizontal, the output will be a radial polarization
pattern, and if the input is vertical, the output will have azimuthal polarization, as illus-
trated in Figure 2.7 [33].

2.3.2 Experimental generation through spatial ligth modulators

A SLM is a device that modulates the phase of incident light, typically for a specific
polarization—commonly horizontal. Although it does not directly modulate amplitude
or polarization, complex amplitude modulation techniques can be employed to encode
both amplitude and phase information into the phase pattern displayed on the SLM
[34]. The operation of SLMs relies on the properties of LCs and can be implemented
in either reflective or transmissive configurations. Fundamentally, an SLM consists of a
pixelated display containing millions of individually controllable LC-filled cells.

One of the main advantages of SLM technology is its user-friendliness, as it does not
require specialized software. Instead, it can be connected to a computer and utilized as
an external monitor. By displaying grayscale images, the intensity of each pixel dictates
the orientation of the LCs, enabling the modulation of an incident light beam [2].

Vector beams can be produced using the Sagnac-based optical arrangement shown

q-plate

Figure 2.7: Schematic representation of a q-plate converting a scalar beam into a vec-
torial beam. The q-plate modifies the wavefront of the transmitted light, imprinting a
helical phase structure.
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L2

SLM

L1
Laser

L3

L4

M2

M1

SF

SF

HWP

QWP

Figure 2.8: Schematic representation of a Sagnac-based experimental setup to gen-
erate vector beams using an SLM. PBS, polarizing beam splitter; M, mirror; HWP, half
wave-plate; QWP, quarter wave-plate; L, lenses; SF, spatial filter.

in Figure 2.8 [35]. Initially, an expanded and collimated laser beam with horizontal po-
larization is directed toward two distinct regions of an SLM’s screen, each programmed
with an independent digital hologram. These holograms are specifically designed to
generate the desired beam and incorporate a linear grating to separate and filter the
first diffraction order of each hologram. The optical beams emerging from the SLM
are subsequently passed through a half-wave plate oriented at 22.5 degrees to rotate
their polarization state to diagonal. These beams then enter a common-path triangular
Sagnac interferometer, whose principal component is a polarizing beam splitter (PBS).
The PBS separates each beam into horizontal and vertical polarization components,
which propagate along opposite directions within the interferometer. After completing a
round trip, the interferometer outputs four beams—two with horizontal polarization and
two with vertical polarization—on the opposite side of the PBS. To generate a vector
beam, one beam from the first SLM region, carrying horizontal polarization, is over-
lapped with the corresponding beam from the second region, which has vertical polar-
ization. The precise alignment required for this superposition can be digitally adjusted
through the linear gratings encoded on the SLM. Additionally, a quarter-wave plate is
introduced to convert the vector beam from a linear to a circular polarization state.
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2.4 Polarization reconstruction: Stokes polarimetry

The transverse polarization distribution of a vector beam can be reconstructed using
Stokes polarimetry, an intensity-based technique that determines the state of polariza-
tion. While conventionally requiring six intensity measurements for different polarization
projections, it is possible to fully characterize the polarization state with only four [36].

The Stokes parameters are originally computed as [37]:

S0 = IH + IV ,

S1 = IH − IV ,

S2 = ID − IA,

S3 = IR − IL,

(2.15)

where IH , IV , ID, IA, IR, and IL are the intensities for horizontal, vertical, diagonal, anti-
diagonal, right-circular, and left-circular polarizations, respectively. Since S0 = IH + IV ,
we express IV = S0 − IH and substitute it into S1:

S1 = 2IH − S0. (2.16)

Similarly, using S0 = ID + IA, we obtain:

S2 = 2ID − S0. (2.17)

Since S3 remains unchanged, the Stokes parameters can be determined with only four
intensity measurements:

S0 = IR + IL,

S1 = 2IH − S0,

S2 = 2ID − S0,

S3 = IR − IL.

(2.18)

Experimentally, IR and IL are acquired by passing the beam through the combina-
tion of a QWP and a LP. To measure the former, the QWP is set to an angle of 45◦,
while the LP is set to 0◦; to measure the latter, the LP is rotated to 90◦. Finally, IH and
ID are obtained by passing the beam through a LP oriented at 0◦ and 45◦, respectively.
By way of example, Fig. 2.9(b) shows a set of experimentally measured intensity distri-
butions, from which the Stokes parameters shown in Fig. 2.9(c) were computed. The
corresponding transverse polarization pattern, reconstructed from these parameters, is
presented in Fig. 2.9(a). The reconstruction of the polarization pattern is performed
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(a) (b) (c)

Figure 2.9: (a) Reconstructed transverse polarization pattern of a vector beam. (b)
Experimentally measured intensity distributions for right-circular (R), left-circular (L),
horizontal (H), and diagonal (D) polarization components. (c) Corresponding Stokes
parameters S0, S1, S2, S3 obtained from these intensity measurements.

by dividing the transverse plane of the beam into small spatial regions and calculating
the local Stokes parameters S0, S1, S2, S3 at each point. These parameters fully char-
acterize the state of polarization at each position within the beam profile. From this
information, the orientation and ellipticity of the polarization ellipse at every point can
be retrieved, allowing visualization of the complete polarization distribution across the
beam.
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3 | Generation of new vector beams

The use of a SLM enables the generation of a wide variety of both scalar and vector
beams due to its remarkable versatility. In the previous chapter, an experimental setup
based on a Sagnac interferometer was briefly described for the generation of vector
beams. However, such beams can also be produced without relying on an interfero-
metric configuration.

This chapter presents two alternative techniques for generating vector beams, both
developed as part of research studies in which I participated. One of these studies has
already been published, while the other is currently in the writing process. The exper-
imental methodology and results will be detailed, highlighting the first-time generation
of two distinct types of vector beams.

3.1 Scalar and Vector Vortex Pearcey-Gauss Beam Gen-
eration

Light can naturally form intricate structures that may seem almost unreal, yet they
emerge purely from its interaction with the environment. A striking example of such
phenomena is the formation of caustics, which can be observed in everyday scenarios
such as the patterns at the bottom of swimming pools, within a cup of coffee, or in the
shadow of a glass when light strikes it at a certain angle. These structures arise from
the concentration of light rays along curves that form cusps due to the reflection or re-
fraction of the rays at a curved surface. The mathematical description of these intensity
patterns has been a subject of study since the time of Huygens (1690) and continues
to be relevant today [38].

Inspired by these naturally occurring structures, modern optics enables the labora-
tory generation of structured light beams with intensity patterns that, like the caustics in
a coffee cup, follow the Pearcey integral [39, 40]. These laboratory-generated beams,
known as Pearcey-Gauss beams, exhibit remarkable properties such as auto-focusing,
where the beam naturally concentrates at a high-intensity point without the need for
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external lenses [41]. Additionally, these beams possess the extraordinary property of
self-healing: even if an obstacle partially blocks their propagation, the beam can recon-
struct itself and recover its original shape further along its path [40]. Recently, for the
first time, vectorial Pearcey-Gauss beams were generated [23]. This section describes
the experimental setup and methodologies used to generate and characterize these
beams.

3.1.1 Mathematical framework

The Vortex Pearcey-Gauss (VPeG) beams can be represented at the initial plane z = 0

as [42, 43]

PeGℓ(x, y, 0) = exp

(
− ρ2

w2
0

)
Pe
(

x

x0w0

,
y

y0w0

)
exp(iℓφ), (3.1)

where (x, y) and (ρ, φ) denote Cartesian and polar coordinates, respectively, w0 is the
beam waist of the Gaussian envelope, and ℓ corresponds to the topological charge. The
function Pe(·) represents the Pearcey integral, which determines the beam’s structural
characteristics [40].

A vectorial version of the VPeG beam is generated by modifying its polarization
structure when passing it through a q-plate. As a result, the vectorial Vortex Pearcey-
Gauss (VVPeG) beam is formulated as

E⃗(r⃗⊥, 0) = α PeGℓ=2q(r⃗⊥, 0) êL + β PeGℓ=−2q(r⃗⊥, 0) êR, (3.2)

where α and β are complex coefficients constrained by |α|2 + |β|2 = 1, r⃗⊥ is the trans-
verse position vector, and q is the charge of the q-plate [23].

3.1.2 Experimental setup

The experimental realization of VPeG and VVPeG beams is achieved through an optical
setup that integrates a SLM and a q-plate, as depicted schematically in Fig. 3.1. The
initial beam is horizontally polarized and originates from a Helium-Neon laser (λ =

633 nm). To ensure a well-defined input wavefront, the beam undergoes expansion
and collimation through lenses L1 and L2. A variable aperture (A) selects the beam
section to be utilized, which is then directed through a telescope system formed by
lenses L3 and L4 (focal lengths of 200 mm). This setup precisely images the beam
onto the reflective liquid crystal SLM (Holoeye Pluto 2.1 Phase Only LCOS), which
features a pixel resolution of 1920 × 1080 and a pixel size of 8 µm. The SLM displays
a computer-generated hologram that encodes the phase information required for PeG
beam generation. The intended Pearcey-Gauss beam appears in the first diffraction
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Figure 3.1: Experimental setup for generating Scalar and Vector Vortex Pearcey-Gauss
beams. Here, an expanded and collimated laser beam with horizontal polarization im-
pinges on an SLM, where the hologram to generate a Pearcey-Gauss beam is dis-
played. The plane of the SLM is imaged with a 4f system to coincide with the plane of
a q-plate, which generates the VPeG or VVPeG beam. Another 4f system relays the
plane of the q-plate to our plane z = 0. The intensity distribution of the beam is captured
with a CCD camera mounted on a translation stage.

order. To extract the desired beam while filtering out unwanted diffraction orders, a
spatial filtering stage is employed using a 4f optical system consisting of lenses L5 and
L6 (focal lengths of 300mm). A spatial filter at their Fourier plane removes residual light,
producing a clean PeG beam. This 4f system also serves as an imaging stage, relaying
the beam onto the q-plate. The q-plate subsequently transforms the beam into either a
VPeG or a VVPeG beam, depending on its input polarization. A secondary 4f system,
comprising lenses L7 and L8 (focal lengths of 150 mm), transmits the beam to the focal
plane of L8, establishing the reference plane z = 0. This configuration ensures that
beam properties are analyzed in a well-defined optical plane. To record and analyze
the generated beams, a CCD camera (DCX Thorlabs, with a pixel size of 4.65 µm) is
positioned on a translation stage, enabling precise scanning along the propagation axis.
Additionally, for far-field imaging, a lens with a focal length f9 = 300 mm (not shown in
Fig. 3.1 for clarity) is included. This lens is placed at a distance f8+ f9 from L8, with the
CCD camera positioned f9 beyond it, facilitating the observation of the beam’s far-field
intensity distribution.
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3.1.3 Results

The study of VPeG and VVPeG beams involves examining their intensity distributions
and polarization structures as they propagate. Initially, we analyze scalar VPeG beams
by observing their intensity profiles at various propagation distances. Subsequently, we
investigate the behavior of VVPeG beams by focusing on their polarization distribution,
both in the near-field and at the far-field. We begin by constructing a horizontally po-
larized Pearcey-Gauss beam, which is then decomposed into its right- and left-handed
circularly polarized components. By applying conjugated spiral phase distributions to
these components, we introduce an optical vortex within the beam structure. Unlike
previous works where the vortex was positioned at the primary intensity lobe [44, 45],
here it is deliberately placed in the direction of the beam’s natural propagation shift. As

(a)

(c)

(b)

(d)

Z=0 150 200 300 mm Fourier

l = 1

l = 2

l = -1

l = -2

10050

Figure 3.2: Intensity evolution of a VPeG beam as it propagates along the z-direction.
(a) shows the results for ℓ = 1 (top) and ℓ = −1 (bottom), with the corresponding far-
field (Fourier) distributions shown in (b). Similarly, (c) shows the results for ℓ = 2 and
ℓ = −2, top and bottom, respectively, with the far-field distributions shown in (d).
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the beams propagate, notable changes occur in their intensity patterns, as shown in
Figure 3.2. For a topological charge of ℓ = 1, 2, the initial distribution resembles a stan-
dard Pearcey-Gauss beam. However, as propagation advances, a dark core emerges
at the vortex location, reflecting the phase singularity where intensity must vanish. The
primary intensity lobe appears to orbit around this dark core before redistributing asym-
metrically at longer distances. Additionally, the intensity profiles for opposite charges
are mirror reflections of each other, highlighting the influence of vortex handedness on
the resulting beam structure.

Extending this analysis to VVPeG beams, we generate these fields using a com-
bination of a SLM and a q-plate, ensuring that the generated beams exhibit inhomo-
geneous polarization states. Unlike their scalar counterparts, the intensity patterns of
VVPeG beams remain symmetric along the horizontal axis. This symmetry arises be-

(a) (b) (c)

(d) (e) (f)

Figure 3.3: Reconstructed transverse polarization patterns of two VVPeGs are shown
in (a) and (d). (b,e) Measured intensity distributions in circular (R, L), linear horizontal
(H), and diagonal (D) polarization bases. (c,f) Corresponding normalized Stokes pa-
rameters S0, S1, S2, and S3, providing a complete mapping of the polarization state.
The top row (a–c) and bottom row (d–f) correspond to two different VVPeGs, the first
with topological charge ℓ = 1, and the second with ℓ = 2.
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cause the total intensity results from the sum of the two polarization components, which
are mirror images of one another. The initial polarization distribution is predominantly
linear, but as the beam propagates, additional elliptical and circular polarization states
emerge. By the time the beam reaches longer propagation distances, the polarization
distribution closely resembles that of a full Poincaré beam, where a diverse range of
polarization states coexist within a single transverse profile.

In the far-field regime, the intensity distributions of VVPeG beams feature complete
parabolic structures, rather than the semi-parabolic patterns observed in scalar cases.

(d)

(a)

(c)

(b)

(d)

Z=0 100 200 300 mm Fourier

E

E

S

S

Figure 3.4: Transverse polarisation distributions overlapped with the intensity profiles
of vector vortex Pearcey (VVPeG) beams at various planes along the propagation di-
rection. (a),(b) and (c),(d) correspond to VVPeG beams with left- and right-handed
polarisation components of topological charges ℓ = ±1 and ℓ = ±2, generated using
q-plates with q = 1/2 and q = 1, respectively. Experiments (E) are on top and numerical
simulations (S) are on the bottom. (b),(d) correspond to the results in the far-field. Blue
and green ellipses represent right- and left-handed circular polarisation, respectively,
and white lines represent linear polarisation.
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The polarization evolves from an initial radial-like configuration to more complex distri-
butions, revealing intricate polarization topologies that depend on the beam parameters.

3.2 Experimental implementation of curvilinear polar-
ization vector beams

We implemented the experimental setup shown in Fig. 3.5 to generate spatially varying
polarization structures aligned with curvilinear directions [46]. A diagonally polarized
HeNe laser beam served as the input source. After beam expansion and collimation,
producing a beam with a 2 mm radius, the field uniformly illuminated a phase-only SLM
(Holoeye Pluto VIS, 8 µm pixel pitch, calibrated at 633 nm).

The SLM modulates only the horizontal polarization component. In the linear basis,
its action can be modeled by the Jones matrix:

JSLM =

eiθh(r) 0

0 1

 , (3.3)

where θh(r) is a computer-generated phase pattern applied solely to the horizontal
polarization [47, 48].

A QWP oriented at 45◦ follows the SLM and converts the horizontal component
into right-circular polarization (êR), while the vertical component becomes left-circular
polarization (êL).

To synthesize a polarization field aligned with a desired local direction êu(r), we
express the transverse unit vectors in the circular polarization basis as

êu(r) =
1√
2

(
êL + ei2θu(r)êR

)
,

êv(r) =
1√
2

(
êL − ei2θu(r)êR

)
,

(3.4)

where θu(r) determines the local orientation of the polarization ellipse. These vec-
tors are everywhere orthonormal and allow full control over the polarization distribution
through the phase 2θu(r).

Given that the QWP converts horizontal polarization into êR, we generate the desired
structure by encoding

θh(r) = −2θu(r)

onto the SLM. This induces the appropriate phase shift in the right-circular component,
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Figure 3.5: Experimental setup for the generation and analysis of spatially varying po-
larization structures. A diagonally polarized HeNe laser is expanded and collimated
using a microscope objective (MO), a pinhole (PH), and a lens (L1), before illuminating
a phase-only SLM. The modulated beam passes through a QWP1 that transforms the
linear basis into the circular basis. A 4f system composed of lenses L2 and L3 relays
the beam to the analysis plane (z = 0), where spatially resolved Stokes polarimetry is
performed using a rotatable QWP2, a LP, and a CMOS camera.

resulting in the superposition described by Eq. 3.4.
The modulated beam is then relayed to the detection plane through a 4f imaging

system. To analyze the resulting polarization distribution, we perform spatially resolved
Stokes polarimetry by acquiring six intensity projections (H, V, D, A, R, L). From these
measurements, the Stokes parameters are reconstructed, allowing full characterization
of the polarization state across the beam. We construct polarization bases aligned
with four representative curvilinear geometries: elliptical, parabolic, bipolar, and dipole
coordinate systems. For each case, we specify the coordinate transformation, identify
the corresponding conformal map, and derive the spatially varying phase required in
Eq. 3.4 to express the basis in the circular polarization representation.
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3.2.1 Elliptical Polarization Bases

The elliptical coordinate system is defined through the transformation

x = a coshu cos v,

y = a sinhu sin v,
(3.5)

where a > 0 places the two foci at (x, y) = (±a, 0). The associated conformal map,

z = a coshw, (3.6)

is one-to-one with w = u+ iv and domain u ∈ [0,∞), v ∈ [0, π]. In this geometry, curves
of constant u correspond to confocal ellipses, while curves of constant v correspond to
confocal hyperbolas. A branch cut appears at u = 0, connecting the two foci along the
x-axis, where the metric becomes singular.

The polarization basis defined in Eq. (3.4) can be adapted to this coordinate system
by introducing a spatially varying phase

θu = arctan (cothu tan v) , (3.7)

which aligns the local polarization vectors with the elliptical and hyperbolic coordinate
lines.

Experimentally, the semi-focal distance a plays a crucial role in controlling the po-
larization modulation across the beam profile. For large values of a, the polarization
distribution tends to be nearly uniform, and the influence of the elliptical structure is
suppressed. Conversely, decreasing a enhances the curvilinear features, leading to
polarization patterns that closely follow the underlying coordinate curves.

Figure 3.6 shows the experimental results obtained with the optical setup described
previously. Panels (a)–(d) correspond to the case where the coordinate u was kept
constant, leading to polarization patterns aligned with confocal ellipses. Panels (e)–(h)
correspond to the case where v was kept constant, producing polarization structures
aligned with confocal hyperbolas. In each case, the reconstructed polarization vectors
are overlaid on the intensity profile S0, and the corresponding normalized Stokes pa-
rameters S1, S2, and S3 are presented for one of the polarization patterns according to
the coordinate that was held fixed.

The influence of the foci separation is further constrained by the spatial resolution
of the SLM used in the experiment. Our SLM features 1920 pixels with a pixel pitch
of 8 µm. When the total distance between the foci (2a) matches the width of the SLM,
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Figure 3.6: Experimental polarization distributions obtained with the described optical
setup. (a)–(d) Reconstructed polarization vectors over the intensity profile S0 and the
corresponding normalized Stokes parameters S1, S2, and S3. (e)–(h) Similar measure-
ments for a different semi-focal distance a. The results demonstrate the emergence of
polarization structures aligned with the elliptical and hyperbolic coordinate lines as the
parameter a is varied.

the resulting beam exhibits a scalar polarization profile without singularities, as seen in
previous observations. As a increases, the beam undergoes a gradual transition from
scalar to vectorial, developing structured polarization distributions with either radial or
azimuthal symmetry, depending on the encoded phase pattern.
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3.2.2 Parabolic Coordinate System

The parabolic coordinate system is defined through the transformation

x =
1

2

(
u2 − v2

)
,

y = uv,
(3.8)

where u ∈ [0,∞) and v ∈ (−∞,∞). In this geometry, curves of constant u correspond
to parabolas opening to the left, while curves of constant v correspond to parabolas
opening to the right. The conformal map remains regular throughout the domain ex-
cept at w = 0, corresponding to the Cartesian origin, where the scale factors vanish.
Although the forward map is continuous, its inverse w =

√
2z requires a branch cut.

The local polarization basis can be constructed using the spatially varying phase

θu = arctan
(v
u

)
, (3.9)

which aligns the polarization vectors along the coordinate curves. As a result, the
electric field orientation follows the orthogonal families of parabolas opening in opposite
directions.

The experimental results obtained with the optical setup described previously are

S1S0 S2 S3
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Figure 3.7: Experimental polarization patterns structured according to parabolic coor-
dinates. The first row shows results for a polarization field aligned along curves of con-
stant u (left-opening parabolas), and the second row corresponds to alignment along
curves of constant v (right-opening parabolas). Columns from left to right display the
normalized Stokes parameters S0, S1, S2, and S3, followed by the reconstructed polar-
ization vectors.
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presented in Fig. 3.7. The first row corresponds to the polarization distribution con-
structed by keeping u constant, associated with parabolas opening to the left. The
second row shows the distribution obtained by maintaining v constant, corresponding
to parabolas opening to the right. For each case, the polarization vectors are shown
alongside the spatial distributions of the normalized Stokes parameters S0, S1, S2, and
S3.

3.2.3 Bipolar Coordinate System

The bipolar coordinate system is defined through the transformation

x = a
sinh v

cosh v − cosu
,

y = a
sinu

cosh v − cosu
,

(3.10)

where a > 0 positions the two foci at (x, y) = (±a, 0). In this geometry, curves of con-
stant u form non-concentric circles centered along the y-axis at (0, a cotu) with radius
a/ sinu, while curves of constant v form non-intersecting circles centered at (a coth v, 0)
with radius a/ sinh v. These two families of circles intersect orthogonally at the foci. A
branch cut appears along the segment joining the foci on the x-axis, corresponding to
u = 0, and the metric becomes singular at each focal point.

The local orientation of the polarization can be described by the spatially varying
phase

θu = arctan

(
cosh v cosu− 1

sinh v sinu

)
, (3.11)

which encodes the geometry of the bipolar coordinate system, aligning the polarization
vectors with the orthogonal families of circular arcs.

The semi-focal distance a plays a crucial role in shaping the polarization structure
across the transverse plane. For large values of a, the polarization tends toward a uni-
form distribution, diminishing the influence of the curvilinear structure. As a decreases,
the underlying geometry becomes more prominent, and the polarization vectors in-
creasingly follow the bipolar coordinates.

Figure 3.8 shows the experimental results obtained with the optical setup described
previously. Panels (a)–(d) correspond to the case where the coordinate u was kept con-
stant, resulting in polarization patterns aligned with families of non-intersecting circular
arcs characteristic of the bipolar coordinate system. Panels (e)–(h) correspond to the
case where v was kept constant, generating polarization structures aligned with inter-
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Figure 3.8: Experimental polarization distributions obtained with the described optical
setup. (a)–(d) Reconstructed polarization vectors over the intensity profile S0 and the
corresponding normalized Stokes parameters S1, S2, and S3 for one family of bipolar co-
ordinate curves. (e)–(h) Similar measurements for the orthogonal family of curves. The
results demonstrate the emergence of polarization structures aligned with the intersect-
ing and non-intersecting circular arcs characteristic of the bipolar coordinate system as
the parameter a is varied.

secting circular arcs. In each case, the reconstructed polarization vectors are overlaid
on the intensity profile S0, and the corresponding normalized Stokes parameters S1, S2,
and S3 are shown for one of the polarization patterns, depending on which coordinate
was held fixed.
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3.2.4 Dipole Coordinate System

The dipole coordinate system is defined by the transformation

x =
u

u2 + v2
,

y = − v

u2 + v2
,

(3.12)

where u and v are real variables. The associated conformal map,

z =
1

w
, (3.13)

with w = u + iv, is one-to-one within the domain u ∈ (−∞, 0) ∪ (0,∞) and v ∈
(−∞, 0) ∪ (0,∞). In this geometry, curves of constant u correspond to non-concentric
circles centered at (x, y) = (u/2, 0), while curves of constant v are non-concentric cir-
cles centered at (x, y) = (0,−v/2). Although the conformal map does not introduce
a branch cut, it becomes singular at w = 0, corresponding to the origin in Cartesian
coordinates, where the scale factors diverge.

The polarization basis defined in Eq. (3.4) can be expressed through a spatially
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Figure 3.9: Experimental polarization patterns structured according to dipolar coordi-
nates. The first row shows results for a polarization field aligned along curves of con-
stant u (non-concentric circles centered along the x-axis), and the second row corre-
sponds to alignment along curves of constant v (non-concentric circles centered along
the y-axis). Columns from left to right display the normalized Stokes parameters S0, S1,
S2, and S3, followed by the reconstructed polarization vectors.

28



GENERATION OF NEW VECTOR BEAMS

varying phase,

θu = arctan

(
2uv

v2 − u2

)
, (3.14)

which encodes the local geometry of the dipole coordinate system. This phase deter-
mines linear polarization orientations that follow the orthogonal families of non-concentric
circles. In the dipole coordinate system, the polarization distribution follows the orthog-
onal families of non-concentric circles defined by the conformal map z = 1/w. Due
to the nature of this mapping, angular variations become concentrated near the origin,
resulting in high spatial gradients in the polarization field.

The experimental results obtained with the optical setup described previously are
presented in Fig. 3.9. The first row corresponds to the polarization distribution con-
structed by keeping u constant, resulting in polarization aligned along non-concentric
circles centered along the x-axis. The second row shows the distribution obtained by
maintaining v constant, where the polarization aligns with non-concentric circles cen-
tered along the y-axis. For each case, the reconstructed polarization vectors are dis-
played alongside the spatial distributions of the normalized Stokes parameters S0, S1,
S2, and S3.
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4 | The effect of Dove prism on vec-
tor beams

There are several types of reflective prisms, such as the corner cube [49], the pen-
taprism [50], the Amici prism [51], the rhomboid prism, the Pechan prism [52], and
the DP [53]. These prisms are designed to prevent light dispersion by taking advan-
tage of the phenomenon of total internal reflection, which gives them a wide range of
applications. Among the basic ones are image formation, interferometers, laser cavi-
ties, polarimeters, and others [54]. The DP, in addition to being a reflective prism, is
also the simplest inverting-reversing prism, as it achieves image inversion and rotation
(by twice the angle) with just one reflection, without altering the propagation direction
[55, 56]. This effect is illustrated in Figure 4.1, which shows the projection of points
forming the image of the letter R on the entrance surface of the prism and the resulting

Figure 4.1: The DP rotates an image by twice the angle at which the prism itself is
rotated. If an image enters a DP rotated by an angle ϕ = 22.5◦, the resulting image
exiting the prism will be rotated by 45◦ and inverted.
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image after propagation through the prism, projected onto a hypothetical plane at the
exit. Although the DP is rotated by only ϕ = 22.5◦, the letter R undergoes both inversion
and a 45◦ rotation.

In addition to the characteristics mentioned so far, it has been reported that this
prism affects polarization and OAM [57]. This is of great interest when working with
vector beams, and thus, the remainder of this chapter focuses on describing these ef-
fects. In experimental setups involving vector beams and DPs, it is common to neglect
either the polarization or spatial mode transformations induced by the prism. However,
there is still a lack of clarity regarding the actual impact of DP on beams with coupled
DoFs. Some studies treat the DP as acting solely on the OAM of the beam [58], while
others emphasize its influence on polarization [59]. The aim of this work is to unam-
biguously determine the real effect of the DP on vector beams and to identify under
which conditions its action on both DoFs can be safely neglected.

4.1 The effect of a rotating Dove prism on scalar beams:
Polarization

When a light beam passes through a DP, it interacts with three of its surfaces. The
changes in the electric field, resulting from these interactions, can be represented by
Jones matrices that depend only on the Fresnel coefficients and the prism’s rotation
angle. These matrices allow us to analyze the effect of DPs on the polarization state of
a beam.

For a beam with vertical linear polarization, it is observed that if the prism is not
rotated, the polarization remains unchanged. However, as the prism rotates, the polar-
ization gradually becomes more elliptical, reaching its maximum ellipticity at a rotation
angle of ϕ = π

4
. Beyond this point, the ellipticity decreases, returning to its initial state

at ϕ = π
2
. This behavior repeats as the prism continues to rotate, completing a cycle at

ϕ = 2π. The formalism used to find the Jones matrices representing such an effect will
be briefly discussed below, as illustrated in Figure 4.2.

4.1.1 Jones matrix of a Dove prism for polarization

A beam propagating in the direction ki impinges on one of the surfaces of the reflective
prism and refracts upon passing through it. Inside the prism, the refracted beam strikes
a second surface, where it undergoes internal reflection, as illustrated in Figure 4.1.
The beam then continues its propagation, redirecting toward a third surface. At each
refraction and reflection, the s-p coordinate system shifts relative to the original axis,
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Figure 4.2: Illustration of polarization transformations in the electric field induced by
DP rotation: (a) incident beam, (b) zero rotation, (c) 15◦, (d) 30◦, (e) 45◦, (f) 60◦, (g)
75◦, and (h) 90◦ rotations. As the prism rotates, the field amplitude is modulated during
propagation, accompanied by changes in the polarization state

causing the electric field to modify its associated polarization states. These changes
are analyzed using a transformation matrix system to represent the fields and their
interactions.

The process of determining the transformation matrices begins by expressing the
electric field E of a beam incident on a prism as a linear combination of the orthonormal

Interface

ki

kr

kt

si

sr

st

pi

pr

pt

n

Figure 4.3: A ray with coordinates (si, pi, ki) strikes a prism, generating a transmitted
ray with coordinates (st, pt, kt) and a reflected ray with coordinates (sr, pr, kr).
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basis vectors si, pi, and ki, as shown in Figure 4.3:

E = (E · pi)pi + (E · si)si. (4.1)

In this context, the special condition of electromagnetic propagation is considered
when E · ki = 0, and si and pi are defined as follows:

pi = si × ki, and si =
ki × ni

|ki × ni|
, (4.2)

where ni is the normal vector to the i-th surface, and ki is the propagation vector.
Depending on whether the interaction between the beam and the prism corresponds

to a reflection or a transmission process, the resulting electric field is determined using
one of the following expressions based on the Fresnel coefficients. In the case of
transmission, the electric field is modified according to the following.

E(final)t = tm∥(Em−1 · pm) pm + tm⊥(Em−1 · sm) sm, (4.3)

whereas, for reflection, the electric field is given by:

E(final)r = rn∥(En−1 · pn) pn + rn⊥(En−1 · sn) sn. (4.4)

The subscripts m and n will be assigned values according to the surface being studied.
Specifically, if a reflection on the second surface of a prism is being analyzed, the
equation that describes how the electric field changes when interacting with that surface
will be Eq. (4.4), where the subscript n will take the value of the surface number, n = 2.
The appearance of the letters r, and t in the subscripts simply indicates whether the
vector is associated with the reflected, or transmitted beam, respectively.

For both reflection and transmission, this effect can be represented in matrix form
as shown below:E(final)∥t

E(final)⊥t

 =

 tm∥ (pm−1 · pm) tm∥ (sm−1 · pm)

tm⊥ (pm−1 · sm) tm⊥ (sm−1 · sm)


E(m−1)∥

E(m−1)⊥

 , (4.5)

E(final)∥r

E(final)⊥r

 =

 rn∥ (pn−1 · pn) rn∥ (sn−1 · pn)

rn⊥ (pn−1 · sn) rn⊥ (sn−1 · sn)


E(n−1)∥

E(n−1)⊥

 . (4.6)

In the case of the DP, the incident beam is transmitted through the first surface
(n = 1), reflection on the second surface (n = 2), and transmission once again through
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the third surface (n = 3). Consequently, the initial electric field E0 is sequentially trans-
formed by the corresponding matrices associated with each interaction. These matrices
depend on the prism’s rotation angle ϕ, and the resulting field is expressed as:

E = R t3 r2 t1E0, (4.7)

where t1, r2, and t3 denote the Fresnel transmission and reflection matrices for each
respective surface, and R is the rotation matrix used to return the field to the global
rectangular coordinate basis. These matrices take the following explicit forms:

t1 =

 t1∥ cos ϕ t1∥ sen ϕ

−t1⊥ sen ϕ t1⊥ cos ϕ

 , (4.8)

r2 =

r2∥ 0

0 r2⊥

 , (4.9)

t3 =

−t3∥ 0

0 −t3⊥

 , (4.10)

R =

cos ϕ −sen ϕ

sen ϕ cos ϕ

 . (4.11)

As discussed in the chapter on structured light, it is common for vector beams to be
expressed in a basis defined by two orthogonal polarizations, typically right- and left-
circular polarization. On the other hand, we have just identified four matrices whose
product results in a matrix representing the effect of the DP on an incident electric field.
These matrices are defined in a basis consisting of s- and p-polarizations, making it
necessary to perform the corresponding transformation. To bridge these representa-
tions, we employ the unitary transformation matrix S:

S =
1√
2

1 i

1 −i

 . (4.12)

The relationship between a matrix in the original basis and its representation in the
transformed basis is given by M ′ = SMS−1. So applying this transformation to each
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DP matrix, we obtain the following matrices:

t′1 =
1

2

(t1∥ + t1⊥)e
−iϕ (t1∥ − t1⊥)e

iϕ

(t1∥ − t1⊥)e
−iϕ (t1∥ + t1⊥)e

iϕ

 , (4.13)

r′2 =
1

2

r2∥ + r2⊥ r2∥ − r2⊥

r2∥ − r2⊥ r2∥ + r2⊥

 , (4.14)

t′3 =
1

2

−t3∥ − t3⊥ −t3∥ + t3⊥

−t3∥ + t3⊥ −t3∥ − t3⊥

 , (4.15)

R′ =

eiϕ 0

0 e−iϕ

 . (4.16)

4.2 The effect of a rotating Dove prism on scalar beams:
OAM

When analyzing a beam carrying OAM, additional spatial effects must be taken into
account due to the unique helical structure of its wavefront. The analysis carried out
so far in this chapter employs Fresnel coefficients to describe the interaction between
the electric field and the surface of the prism. These coefficients are derived under the
assumption that the wavefront of the electric field is planar, a condition that does not
hold for beams carrying OAM. In the case of such beams, in order to apply Fresnel co-
efficients, the helical wavefront must be considered as a superposition of plane waves,
each forming a specific angle with respect to the propagation direction of the beam, as
illustrated in Figure4.4 (a) [60]. The inclination angle αi is given by [61]:

αi = arctan

(
l

kρi

)
, (4.17)

where l is the topological charge of the beam, k is the wave number, defined as k =

2π/λ with λ being the wavelength; and ρi is the radial distance from the beam axis
at which the local plane wave approximation is evaluated. The angle αi accounts for
the local tilt of the wave vector due to the helical structure and must be subtracted
from the nominal angle of incidence when computing the Fresnel coefficients for each
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Figure 4.4: (a) Decomposition of an optical beam carrying OAM into plane waves, each
forming an inclination angle αi with respect to the beam’s propagation direction (z).
The wave vectors (k) corresponding to each hypothetical plane wave are shown. (b)
Interaction of the OAM beam with an interface. The local inclination angle αi modifies
the effective incidence angle, requiring a correction when applying Fresnel coefficients.
The angle θin denote the conventional incidence angle, while θi represent the incidence
angle of each plane wave. n represents the surface normal.

component, as depicted in Figure 4.4(b).
In addition, it is well known that when a light beam carrying OAM, described by

Ain = A(ρ) exp(ilφ),

propagates through a DP, the output field acquires a modified spatial structure given
by [57, 62]

Aout = A(ρ) exp(−ilφ) exp(−2ilϕ).

In this expression, φ denotes the azimuthal coordinate in cylindrical coordinates,
which characterizes the transverse phase structure of the beam, while ϕ represents the
rotation angle of the DP with respect to a fixed reference axis. The total effect of the DP
on the OAM-carrying beam can be compactly expressed through the following Jones
matrix:

T =

e−2il(φ+ϕ) 0

0 e2il(φ+ϕ)

 . (4.18)

4.3 Jones matrix representation for vector beams

As it was mentioned in the last sections, the effect of the DP can be represented by
Jones matrices which depend on the Fresnel coefficients and the rotation angle of the
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prism. In addition to these matrices, we propose an extra matrix that represents the
OAM inversion. Since this inversion is due to internal total reflection in the prism, the
reflection matrix defined in eq. 4.14, and the inversion matrix defined in eq. 4.18 must
be merged, resulting in the following matrix

L =
1

2

e−2il(φ+ϕ) (r2∥ + r2⊥) r2∥ − r2⊥

r2∥ − r2⊥ e2il(φ+ϕ) (r2∥ + r2⊥)

 . (4.19)

Therefore, the incoming electric field E0 will be transformed by the prism as follows:

E = R′ t′3 L t
′
1E0. (4.20)

4.4 Numerical Simulation

In this section, we describe the numerical implementation used to analyze the effect
of a DP on vector beams. The simulation considers a beam of wavelength λ = 633

nm and an initial waist proportional to ρ0 = 1.5 mm. The DP is characterized by a
refractive index n = 1.51509 and an inclination angle of its first interface set at 45◦. The
incident beam is generated using a q-plate function, which decomposes it into right-
and left-handed circular polarization components:

ER = cos(Θ)u1, (4.21)

EL = eiδ sin(Θ)u2, (4.22)

where u1 and u2 represent the spatial field distributions for different OAM values, and
like in eq. (2.8) Θ represent the weight of the superposition. The transformation induced
by the prism is described using a Jones matrix formalism, which combines the effects
(OAM and polarization) of the three interfaces within the prism. The total transformation
matrix T is computed at each point (i, j) of the grid using the relation:

T(i,j) = R(i,j)t3(i,j)L(i,j)t1(i,j), (4.23)

The transformed polarization components are computed as:

E ′
R = T11ER + T12EL, (4.24)

E ′
L = T21ER + T22EL. (4.25)

37



THE EFFECT OF DOVE PRISM ON VECTOR BEAMS

From these, the final polarization states (horizontal, vertical, diagonal, and circular) are
reconstructed, and the Stokes parameters are obtained. The simulation results are vi-
sualized through Stokes parameter mappings and intensity distributions, which provide
insights into the beam’s polarization transformation induced by the DP as observed in
Figure 4.5.

4.5 Experiment set up

The experimental arrangement used to study the effect of the DP on vector beams is
shown in Figure 4.6. The system begins with a linearly polarized laser, which serves
as the light source. To control the polarization state, the beam first passes through a
half-wave plate (HWP 1), which adjusts it to either horizontal or vertical polarization.
The beam then impinges on a q-plate, generating a vector beam. A second half-wave
plate (HWP 2) placed after the q-plate converts right-handed circular polarization into
left-handed circular polarization, enabling the generation of hybrid vector modes. The
resulting beam enters the DP, which is rotated at controlled angles to induce transfor-
mations in the beam’s polarization distribution.

IN 0° 15° 30°

45° 60° 75° 90°

Figure 4.5: Polarization distribution of the vector beam after interaction with the DP.
The image labeled as "IN" corresponds to the input beam, while the remaining images
show the resulting beams for prism rotations from 0◦ to 90◦ in 15◦ increments. The OAM
value inversion caused by the reflection inside the DP is observed, along with a smooth
transition from a radially polarized beam to an azimuthally polarized one.
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Camera

Figure 4.6: Experimental setup used to study the effect of the DP on vector beams. A
linearly polarized laser generates the initial beam, which is later modified by a q-plate
to produce a vector beam. A DP is introduced and rotated, and the output beam is
analyzed using Stokes polarimetry.

To analyze the beam after its interaction with the DP, a Stokes polarimetry setup
is placed at the output. Before introducing the prism, Stokes measurements are per-
formed to characterize the input beam, labeled as IN in Figure 4.7. Once the initial
characterization is complete, the DP is introduced and rotated in 15° increments from
0° to 90°. After each rotation, Stokes parameters are measured again to monitor the
evolution of the beam’s polarization and phase structure.

4.6 Experimental results

Figure 4.7 presents the polarization distributions obtained from the experimental setup.
When the DP was set at 0°, the output beam exhibited a clear radial polarization pattern,
consistent with theoretical predictions. This behavior confirms the expected inversion
of the OAM charge induced by the prism. As the DP rotation angle increased, the out-
put beam displayed a continuous transformation in its polarization state. In addition to
inverting the OAM charge, the prism introduced an intermodal phase difference that
led to the formation of spiral polarization patterns. At 45°, the beam showed azimuthal
polarization, and further rotations produced additional spiral configurations. Notably,
at 90°, the radial polarization state reappeared, indicating the completion of a full po-
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larization transformation cycle. Since this behavior is periodic with respect to ϕ, the
experimental and simulation measurements were limited to the interval between 0° and
90°.

The experimental results shown in Figure 4.7 are in excellent agreement with the
simulated results presented in Figure 4.5. Minor discrepancies, such as the presence
of elliptical polarization states in a few cases, are attributed to slight misalignments of
the DP during the experiment.

IN 0° 15° 30°

45° 60° 75° 90°

Figure 4.7: Experimental results showing the polarization distribution of an optical vor-
tex beam passing through a DP. The beam labeled IN corresponds to the incident beam,
while the remaining beams represent the output after propagation through the prism.
Measurements were taken at rotation angles from 0° to 90° in 15° increments. White
lines indicate the polarization orientation, with intensity distribution shown in red. Green
regions highlight variations due to experimental imperfections.
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5 | Conclusions and further work

Vectorial structured light beams are recognized for the coupling of two of their DoFs:
polarization and OAM. These beams have gained popularity in recent years due to their
unique properties, motivating the exploration of novel methods for their generation and
the development of new beam types. The present work discusses two novel forms of
vector beams, the Pearcey-Gauss and the curvilinear, which have been constructed for
the first time.

The primary objective of this thesis is to analyze the effect of the DP on vortex vector
beams. This intention arises from earlier investigations that established that the prism
has a strong impact on polarization and OAM independently; however, no research has
examined the scenario in which one cannot be modified without affecting the other, as
is observed with vector beams. This investigation shows that the effect of the DP on
vector beams differs from what was expected due to the coupling between the beam’s
polarization and OAM. Estimating the effect on vector beams by just considering polar-
ization suggests that a linearly polarized pattern would evolve into a pattern exhibiting
both linear and elliptical polarizations, depending on its orientation with respect to the
prism. In contrast, paying attention just to the OAM effect would suggest that the OAM
value would reverse and the beam would rotate similarly to a picture as the prism ro-
tates. Nevertheless, the results of this study provide a different behavior, established
by calculations, simulations, and validated by experiments. As a result, a Jones ma-
trix representing the prism’s total effect on both OAM and polarization was formulated,
and programs were created to simulate this phenomenon. The empirical results found
agree well with these models, offering solid validation for the theoretical predictions. A
key finding is that when polarization and OAM are coupled as a vector beam, the DP
not only reverses the sign of the OAM but also produces an intermodal phase shift. It
led to a smooth transition between fundamental vector beam types, namely azimuthal
and radial polarizations, in conjunction with their hybrid states.
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