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Abstract 
 

 

Biosensors are analytical devices designed to detect specific target molecules with 

high selectivity and sensitivity. The selectivity of a biosensor is crucial, as it 

determines the system's ability to identify a specific analyte among numerous other 

substances in a sample. Low selectivity in biosensors can lead to false positives, 

reducing their reliability and effectiveness in biomedical applications. This issue 

arises because biological samples often contain various biomolecules that may cause 

an interference in the sensing surface and avoid the detection of the target analyte.  

 

Recent research has demonstrated that computational methods, such as machine 

learning algorithms hold significant potential for enhancing the analytical 

performance of biosensing platforms. By detecting complex patterns within noisy 

signals, computation can provide insights across various domains, including medical 

data, environmental monitoring, and traffic signal analysis. This doctoral research 

aimed to enhance biosensing systems using artificial intelligence, specifically Deep 

Learning, by implementing neural models that improved their analytical performance. 

We studied a nanophotonic immunoassay for diagnosing bacterial vaginosis, 

achieving clinical sensitivity and specificity of approximately 96.29% (n = 162). In 

this context, this thesis demonstrates that an AI-assisted real-time biosensing platform 

eliminates the need for biomarker concentration as well as threshold determination, 

and also enhances clinical sensitivity and specificity, reaching up to 100%. 
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Objectives 
 

General Objective 

 

• Implement a deep learning model to assist and optimize the analytical performance 

of a biosensing system, in particular for bacterial vaginosis diagnosis (using 

sialidase as a biomarker). 

 

Specific Objectives 

 

• Develop and implement a deep neural network model using the “K-fold cross-

validation” method, trained with experimental data. Initially, this will involve data 

from sialidase (SLD) detection. Several neural network models will be assessed. 

 

• Train the developed deep neural network models with experimentally obtained data 

to recognize and/or estimate SLD levels related to positive or negative samples.  

 

• Validate the performance of the neural network using test data to enhance the 

specificity and sensitivity of the biosensing system. 
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Chapter 1. 

Theoretical framework 

 

1.1. Definition of a biosensor 
 

Biosensors are analytical devices designed to detect target molecules with high 

specificity and sensitivity. The basic operation of biosensors involves three main 

stages, which are represented in Figure 1. The first stage is biological recognition (or 

biorecognition), which must be performed with high specificity. The next stage is the 

transduction process, where the biorecognition event is transformed into a 

quantifiable signal, providing information about changes in a specific physical 

parameter1,2 (in this work, the fluorescence intensity). Finally, this signal is amplified 

and processed to produce a measurable result like output signal. 

It is important to note that biosensors with high sensitivity can generate a signal from 

minimal fluctuations in the analyte concentration. The smallest amount of analyte that 

a biosensor can detect is defined as the limit of detection (LOD), which is a key aspect 

of its analytical sensitivity. In addition, a biosensor with high specificity indicates that 

the device can recognize and detect only the target analyte among a mixture of 

different biomolecules, minimizing the possibility of interference from other 

substances present in the sample. This means that the biosensor is very selective and 

precise in its biological recognition, ensuring that the results obtained are reliable and 

accurate for the analyte of interest. Finally, in the third stage, the resultant signal is 

obtained and interpreted.3 
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Figure 1. Schematic representation of  different blocks integrating a biosensor. a) 

Sample: substance to be analyzed in which is possible to detect the presence the target analyte. 
b) Biorecognition: this stage requires elements with high affinity against the target analyte. 

c) Transducers: A device that converts the measured biological activity into an analytical 

signal. d) Output: measurable signal indicating the presence of the analyte in the sample. 

Image taken from 5. Unpublished Master´s Thesis.  

 

1.2. Physical phenomena involved in optical biosensor 

Photoluminescence  

Photoluminescence is the emission of light from a material after it has absorbed 

photons. When the material absorbs light energy, its electrons are excited to a higher 

energy state. 4 The transition of these electrons back to their ground state occurs 

through the emission of photons. In general, the phenomenon of photoluminescence 

is classified into two types: fluorescence and phosphorescence, depending on the 

nature of the excited states. Fluorescence occurs when a transition happens between 

photoexcited species from their first excited singlet state to their ground state. On the 

other hand, phosphorescence involves the emission of light from excited triplet states 

(see Figure 2).5 
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Figure  2. Typical Jablonski diagram to illustrate photoluminescent processes. The labels 
S0, S1 and S2 refer to the baseline singlet state, first singlet excited states and second singlet 

excited states, respectively, similarly T1 represents the first triplet excited state. 

 

Förster resonance energy transfer (FRET) 

 

FRET is an electrodynamic phenomenon that involves the non-radiative transfer of 

energy between two molecules: an excited donor molecule and an acceptor molecule. 

This energy transfer can only happen if the emission spectrum of the donor overlaps 

with the absorption spectrum of the acceptor. Specifically, the vibrational transitions 

in the donor molecule must align in energy with corresponding transitions in the 

acceptor molecule, as depicted in Figure 3. In the biosensing field, FRET is a useful 

phenomenon regarding its sensitivity for nano-scale distances between the molecules 

under study.6 
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Figure 3. FRET A. Overlapping between the emission spectrum of the donor and the 

absorption of the acceptor. B. Energy level scheme of donor and acceptor molecules showing 
the coupled transitions. Donor molecule is illustrated in blue color and acceptor in yellow 

color. D* and A* refer to donor and acceptor in excited state respectively. 

 

When FRET occurs, the electron in the excited donor molecule (D*) , in our case 

Fluorescein isothiocyanate (FITC ) returns to its ground state. Simultaneously, an 

electron in the acceptor molecule (A) in our case, graphene oxide (GO) moves to a 

higher excited-state orbital. If the acceptor molecule is fluorescent, it may emit light. 

However, if the acceptor is non-fluorescent, the energy is dissipated through other 

mechanisms, such as heat. 

In general, the efficiency of FRET depends on the sixth power of the distance 

between the donor and acceptor molecules, as well as their relative orientation. 

Typically, the rate of transfer of excitation energy is described by the following 

expression: 

𝑘𝑇 = (
1

𝜏𝑑
) (

𝑅0

𝑟
)

6

 [1] 

 

Here, 𝜏𝑑 represents the fluorescence lifetime of the donor in the absence of the 

acceptor, 𝑟 denotes the distance between the centers of the donor and acceptor 

molecules, and 𝑅0 denotes the Förster distance, at which 50% of the excitation energy 

is transferred to the acceptor. 



 

18 

 

In FRET, the distance is typically large compared to the size of the molecule, allowing 

energy transfer to occur through space. This means that FRET does not require direct 

molecular contact between the donor and acceptor molecules. 5 

It is important to mention that in the case of graphene, its nature as a 2-dimensional 

dipole modifies the expression (1) to an 𝑟4 dependence. 7 

The overlapping of spectra reflects the efficiency in energy transfer, e.g. if the overlap 

is bigger the donor increases the possibility to transfer energy to the acceptor.  Overlap 

integral 𝐽(𝜆), between the donor and the acceptor is given by: 

 

𝐽(𝜆) = ∫ 𝐹𝐷(𝜆)
∞

0
𝜖𝐴(𝜆)𝜆4𝑑𝜆        [2] 

 

where 𝐹𝐷(𝜆) is the normalized emission spectrum of the donor, 𝜖𝐴(𝜆) corresponds to 

the molar absorption coefficient of the acceptor and λ is the wavelength. 

 

Non-radiative energy transfer affects the fluorescence emission characteristics of the 

donor molecule. When the distance between the donor and acceptor is very small (a 

few Angstroms), the molecules come into contact, and their electron clouds can 

interact. 

 

These orbital interactions are commonly known as electron exchange, as electrons 

can move between the molecules over short distances.8 Electron exchange is just one 

of several mechanisms that cause fluorescence quenching, which is defined as: 

 

𝐈 =
𝐼𝑓(𝑡)

𝐼0(𝑡)⁄         [3] 

 

and represents the attenuation of fluorescence intensity in a specific time frame. Here 

𝐼𝑓 corresponds to the final intensity of fluorescence and 𝐼0 corresponds to the initial 

intensity of fluorescence. 
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1.3. GO and operating mechanism of FRET-GO based biosensor 

Graphene is a carbon material characterized by its atomic thickness, classifying it 

as a two-dimensional material. It can be visualized as a flat sheet composed of 

carbon atoms arranged in a honeycomb lattice. This structure serves as the 

foundational framework for other carbon allotropes (see Figure 4).9,10 

 

Figure  4. Allotropes of Carbon 

Adapted with permission from 9 Copyright © 2015 American Chemical Society 

 

Additionally, the oxidized form of graphene, known as graphene oxide (GO), contains 

functional groups like hydroxyl, epoxy, carbonyl, and carboxyl groups. Specifically, 

GO features carboxyl groups at its edges and other oxygen-containing groups on the 

basal plane (see Figure 5). 11 The Hummer method is the most commonly used 

technique to produce graphene oxide (GO).12 
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Figure  5. Representation of the structure of GO 
Adapted with permission from 13. Copyright © 2019 American Chemical Society 

 

Notably, the surface chemistry of GO  allows for the interaction of GO with proteins 

or DNA. 14 Furthermore, the literature highlights the remarkable optical properties of 

graphene oxide (GO). One notable feature is its broad spectral absorption range, 

making GO an ideal universal acceptor in Förster Resonance Energy Transfer (FRET) 

applications. 14 Our Real-Time biosensing platform consists in a surface coated with 

graphene oxide (GO) and a fluorescent bioprobe as a donor. The GO-coated surface 

has a strong affinity for bioprobes that do not interact with the analyte, resulting in 

quenched fluorescence when the analyte is absent. In contrast, fluorescent bioprobes 

that interact with the analyte do not experience quenching, as the bioprobe-analyte 

complex has no affinity for the GO-coated surface, and the analyte acts as a spacer 

between the GO-coated surface and the bioprobes (see Figure 6). This biosensing 

platform has also been previously employed to detect several analytes, including 
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human immunoglobulin G, prostate specific antigen, COVID-19 antibodies and 

Escherichia coli.15 

 

 

Figure 6. Operational mechanism of the biosensing platform. 

  

 

1.4. Bacterial Vaginosis 
 

 

Bacterial vaginosis (BV) occurs when the natural balance of bacteria in the vagina is 

disrupted. A balanced level of bacteria helps maintain vaginal health. However, when 

bacteria such as Gardnerella vaginalis overgrow, it can lead to bacterial vaginosis (see 

Figure 7). 16 

BV can occur at any age but is most common during the reproductive years. Hormonal 

changes during this period can facilitate the overgrowth of specific types of bacteria. 

One of the enzymes that plays a significant role in the pathophysiology of BV is 

sialidase. 
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Figure  7. Bacterial Vaginosis illustration. 

Adapted with permission from. 17 Shutterstock, Diseño: Bárbara Castrejón, DGDC-UNAM 
 

 

Bacterial vaginosis is a common vaginal condition characterized by an imbalance in 

the vaginal flora, leading to the overgrowth of the aforementioned bacterial strains. 

Sialidase, an enzyme produced by these bacteria, plays a significant role in this 

illness. This enzyme cleaves sialic acids from glycoproteins, glycolipids, and 

polysaccharides on the surface of epithelial cells and mucins. Sialic acids are crucial 

for maintaining the integrity of the mucosal barrier in the vagina, and their removal 

by sialidase can disrupt this protective layer.18 The activity of sialidase has been used 

as a biomarker to assess the severity of BV and its potential to cause adverse 

reproductive outcomes.19 

 

Detecting sialidase activity in vaginal secretions can be an important diagnostic tool 

for BV. It not only helps to confirm the diagnosis but also provides information on 

the severity of the condition and the risk of complications. Sialidase activity can be 

measured through biochemical assays that detect the enzyme's ability to cleave 

specific substrates.20 
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1.5. Artificial intelligence (AI) 
 

Artificial intelligence (AI) refers to the ability of machines and computer systems to 

perform tasks that typically require human intelligence. This includes learning, 

reasoning, problem-solving, visual and auditory perception, and natural language 

understanding, among other capabilities. AI involves the development of algorithms 

and computational models that can analyze data, learn patterns, and make decisions 

based on that data, such as Machine Learning and Deep Learning, see Figure 8. 

Currently, AI is applied across various fields, including medicine, economics, 

industrial automation, autonomous vehicles, virtual assistants, and more.21 

 

Machine learning  

It is a crucial component of AI that enables systems to learn from their environment 

and apply that knowledge to make informed decisions. There are various algorithms 

that machine learning employs to iteratively learn, interpret, and enhance data for 

better predictive outcomes. These algorithms utilize statistical techniques to identify 

patterns and take actions based on these patterns. The most common machine learning 

algorithms include Supervised Learning, Unsupervised Learning, and Reinforcement 

Learning.22  

 

Deep Learning 

Deep learning is a specific subfield of machine learning that emphasizes learning 

representations from data, focusing on successive layers of increasingly meaningful 

representations. The term "deep" in deep learning does not refer to a deeper 

understanding achieved by the approach but rather represents the idea of successive 

layers of representations. The depth of the model refers to the number of layers 

contributing to a data model. Other suitable names for this field could have been 

layered representation learning and hierarchical representation learning. Modern deep 
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learning often involves dozens or even hundreds of successive layers of 

representations, all learned automatically from exposure to training data.22 

In deep learning, these layered representations are usually learned (almost always) 

using models called neural networks, structured in literal layers stacked on top of each 

other. The term neural network refers to neurobiology, but while some core concepts 

of deep learning were partially inspired by our understanding of the brain, deep 

learning models are not models of the brain. 22  

A neural network (ANN) is made up of neurons arranged in layers, with connections 

(weights) and biases that modify the impact of inputs. Activation functions add non-

linearity, allowing the network to recognize complex patterns. Its key components are 

illustrated in Figure 9. 

 

Figure  8. Visual Breakdown of Key Areas in Artificial Intelligence. 

 

 
Figure  9. Main Parts of a Neural Network. A. Nodes. These are basic units that receive 

inputs, apply an activation function, and produce an output. Weights. Each connection between 
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neurons or nodes has a weight that adjusts the influence of one neuron on another. Bias. This 

is an additional parameter in a neuron that allows the activation function to be shifted (e.g. the 
left or right), which helps the model in fitting the data. Activation function. A mathematical 

function applied to the output of each neuron. It introduces non-linearity into the network, 

allowing it to learn complex patterns. B. Neurons are organized into layers, typically three 
types: Input layer: Receives external data and passes it to the network, Hidden layers: Process 

information gradually. Output layer: Generates the final output of the network after processing 

the information. 

 

1.5.1. Basic functioning of an artificial neural network 

 

The process is divided into two main stages: Forward Propagation and Back 

Propagation, both of which are crucial for training neural networks (see Figure 10). 

 

Figure  10. Schematic diagram of the basic functioning of an artificial neural network (perceptron). 

In Forward Propagation, input data passes through the network layer by layer, from 

the input layer to the output layer. In each layer, the data is multiplied by the 

connection weights (weighted sum) and then passed through an activation function. 

The objective is to generate an output or prediction, which is subsequently compared 

to the actual target value to calculate the error. 
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Back Propagation, on the other hand, focuses on adjusting the network’s weights 

based on the error calculated during forward propagation. The error is propagated 

backward from the output layer to the previous layers, where gradients (derivatives) 

are calculated to determine how the weights should be updated to minimize the error. 

This adjustment is carried out using an optimization algorithm, such as gradient 

descent, to minimize the loss function and enhance the network's accuracy. 

These stages work together to enable the neural network to learn patterns from data 

and make accurate predictions or classifications.22 

 

1.6. Artificial Neural Networks (ANNs) types 
 

ANNs come in various forms, each designed for specific tasks and types of data. 

Below, some of the most common types of ANNs are illustrated in Figure 11 and 

described below. 
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Figure  11. Neural Networks types.  

Image adapted with permission of 23. 

 

Feed forward Neural Network (FNN) 

This is simplest type of ANN where the information flows in one direction, from input 

to output, without any cycles or loops. Usually is employed in basic pattern 

recognition, image classification, and simple regression tasks. 

Convolutional Neural Network (CNN) 
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 This is designed to process and analyze visual data. CNNs use convolutional layers 

to automatically and adaptively learn spatial hierarchies of features. Its main 

components are convolutional layers, pooling layers, and fully connected layers. 

Among the main applications are image and video recognition, image classification, 

object detection, and computer vision tasks. 

Recurrent Neural Networks (RNNs)  

RNNs are designed for sequential data processing. They feature connections that form 

directed cycles, enabling them to maintain a state and capture temporal dependencies. 

The key components include neurons with recurrent connections, which allow 

information to persist. RNNs are used in natural language processing, speech 

recognition, time series prediction, and other tasks involving sequential data. 

Long Short-Term Memory (LSTM) 

Networks are a specialized type of RNN that addresses the vanishing gradient 

problem. They use memory cells capable of maintaining their state over extended 

periods. Key components include memory cells, input gates, output gates, and forget 

gates. LSTMs are particularly effective for tasks requiring long-term dependencies, 

such as language modeling, machine translation, and speech recognition. 

Multilayer Perceptrons (MLPs) 

MLPs are a class of feedforward neural networks with multiple layers of neurons. 

MLPs can solve problems that are not linearly separable. They consist of an input 

layer, one or more hidden layers, and an output layer. MLPs are utilized for 

classification, regression, and complex pattern recognition. 

Each type of ANN has its strengths and is suited for specific tasks, making them 

versatile tools in the field of machine learning and artificial intelligence. 24.25 
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1.7. K-fold cross validation 

It is a statistical method used to evaluate the performance of a machine learning 

model. In this technique, the dataset is divided into K equally sized subsets or "folds." 

The model is then trained and evaluated K times, each time using a different fold as 

the validation set and the remaining K-1 folds as the training set. This process ensures 

that every data point is used for both training and validation exactly once. By 

averaging the evaluation results from each fold, K-fold cross-validation provides a 

more accurate and reliable estimate of the model's performance, reducing the risk of 

overfitting and ensuring that the model generalizes well to unseen data. This method 

is particularly useful when dealing with limited datasets, as it maximizes the use of 

available data for both training and testing.26 A schematic diagram of this method is 

shown in the figure below. 

 

Figure  12. K-fold Cross Validation 

 

 

1.8. Principal Component Analysis (PCA) 
 

 

Principal Component Analysis (PCA) is a statistical technique used for 

dimensionality reduction in datasets with many features. It transforms the original 

variables into a new set of uncorrelated variables called principal components (see 

Figure 13), which are ordered by the amount of variance they capture from the data. 
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The first principal component captures the most variance, and each subsequent 

component captures progressively less. By focusing on the first few principal 

components, PCA simplifies the dataset, making it easier to analyze and visualize 

while retaining the most important information. 27 

 

 

 

Figure  13. Dimensionality Reduction. Visualizing PCA's Transformation from 3D to 2D 
Space. 

 

 

 

1.9. Evaluation metrics 
 

These  measures are used to determine or evaluate the performance of a classification 

model. 

 

Confusion Matrix  

 

Confusion matrices are commonly used in binary and multi-class classification 

problems. They allow us to visually and quantitatively evaluate the performance of a 

model. 28  

An example of a binary classification confusion matrix is depicted in the Figure 

below. 
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Figure  14. Confusion Matrix for binary classification. The term, True Positive (TP) refers 
to a sample belonging to the positive class being classified correctly, whereas, True Negative 

(TN) refers to a sample belonging to the negative class being classified correctly. 

Additionally, False Positive (FP) refers to a sample belonging to the negative class but being 
classified wrongly as a positive sample, and  False Negative (FN) refers to a sample belonging 

to the positive class but being classified incorrectly as belonging to the negative class. It is 

important to note that the horizontal axis represents all prediction and the vertical axis 

represents all true values. 

 

Using the number of false positives and false negatives, we can compute the 

sensitivity, specificity, precision, and accuracy of our model based on the 

mathematical expressions: 29 

 

% Recall (Sensitivity) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100   [4] 

 

% Specificity =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
× 100       

[5] 

 

%Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
× 100           

[6] 

 

% Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒 
× 100           

[7] 
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The accuracy can be calculated by taking average of the values lying across the main 

diagonal. 

In order determine the performance of the neural networks. 

F1 score 

Precision and sensitivity (also known as recall) are two crucial metrics, but they often 

conflict with each other. Precision measures the accuracy of positive predictions, 

while sensitivity evaluates the model's ability to capture all positive cases. The F1 

score offers a balance between these two metrics, as it combines precision and 

sensitivity using the harmonic mean, as shown in the mathematical expression below: 

30 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
            

[8] 
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Chapter 2. 

Artificial intelligence in biosensing 

field: State of the art 
 

 

Currently, numerous studies have demonstrated the immense potential of computing 

in enhancing the analytical performance of biosensing platforms. By identifying 

complex patterns within noisy signals, computing enables data inference from diverse 

sources such as medical, environmental, and traffic signals. Herein a brief overview 

of this field is provided. 

 

On June 1, 2019, Aydogan Ozcan and his research team introduced their work 

utilizing Deep Learning to assist point-of-care biosensors. Later, in February 2020, 

they developed a biosensing analysis method based on particle aggregation to 

determine and quantify analytes, employing wide-field, lens-free computational 

microscopy powered by Deep Learning. 31 Additionally, bioinspired instruments that 

mimic olfactory and gustatory senses, such as artificial noses and tongues, have 

proven valuable in monitoring food spoilage, detecting environmental contaminants, 

and identifying viruses. These artificial systems effectively recognize and estimate 

analyte concentrations.32 

In late 2023, Ghumra et al. developed a biosensing system designed to directly detect 

SARS-CoV-2 in atmospheric aerosols. These systems are critical for mitigating 

pandemic impacts, emphasizing the importance of developing highly sensitive, 

specific, and efficient biosensing technologies.  

 

In December 2023, Ammar Armghan published a study titled "Design of Biosensor 

for Synchronized Identification of Diabetes Using Deep Learning," 33 where They 

explored the use of deep learning techniques to enhance the performance of glucose 

biosensors. By training neural networks on large datasets, the author demonstrated 

significant improvements in the accuracy and reliability of these sensors, a crucial 
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advancement for efficient diabetes management that enables more precise monitoring 

of glucose levels in patients. 

 

In May 2024, Lanpeng Guo et al. published "Electrochemical Protein Biosensors for 

Disease Marker Detection: Progress and Opportunities,"34 exploring the development 

of AI-enhanced electrochemical biosensors for real-time health biomarker 

monitoring. The integration of machine learning algorithms allows for the precise 

detection and quantification of biomarkers, with significant potential applications in 

personalized medicine. This approach supports the implementation of medical 

treatments tailored to the patient’s unique biological responses, thereby optimizing 

the effectiveness of therapeutic interventions. 

 

Finally, Ding et al., in their review titled "SERS-Based Biosensors Combined with 

Machine Learning for Medical Applications," 35discussed recent advancements in the 

use of Surface-Enhanced Raman Spectroscopy (SERS) in combination with Machine 

Learning (ML). They highlight the application of these technologies in recognizing 

biological molecules, rapidly diagnosing diseases, developing innovative 

immunoassay techniques, and enhancing the semi-quantitative measurement 

capabilities of SERS. To sum up, several current biosensing systems are summarized 

in Table 1. 36 

 

Table 1. Machine learning for intelligent biosensing. 

Biomarker 
Biosensing 

mechanism 
Platform 

AI 

algorithm 
Reference 

Rabbit IgG 

Paper-based 

colorimetric 

ELISA assays 

 

Smartphone GoogleNet 
Duan  et al (2023) 

37 

Lysozyme and Fluorimetric Nanosheets SVM 
Saberi et al. 

(2020) 38 
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Medical 

chemicals 

Bacteriophage-

based 

colorimetric 

sensing 

Multi array 

sensor system 
HCA Kim et al (2020) 39 

ATP  

Blood glucose 
Electronic-nose 

Portable 

device 
SVM 

Boubin and 

Shrestha (2019) 40 

Biomolecular Tunnel junctions 
Graphene 

nanoelectrodes 
SVM 

Puczkarski et al. 

(2017) 41 

Albumin protein LFA 
Smartphone 

cameras 
SVM 

Foysal et al. 

(2019) 42 

Physiological 

monitoring 

Physical and 

biochemical 

sensing 

Skin-friendly 

electronics 
ANN 

Zhang and Tao 

(2019) 

Blood glucose 

(type 1 diabetics) 
CGM 

Wearable 

biosensors 

SVM 

ARIMA, 

RF 

Rodriguez-

Rodriguez et. Al 

(2019)  43 

Body fluid 

identification 
SPR SPRi device PCA 

Stravers et al. 

(2019) 44 

NT-proBNP Inmunoassay 

Photonic 

crystal-

enhance 

fluorescence 

PCA, 

PLSR, 

SVM 

Squire et al. 

(2019) 45 

Benzene, toluene 

formaldehyde 
Electronic-nose 

Sensor array 

chamber 
SVM 

Wang et al (2016) 

46 

VOCs 
Fluorescent 

sensing 

Cross-

response 

sensor array 

HCA Lei et al (2015) 47 

Nasopharygneal 

cancer detection 
SERS 

Confoncal 

Raman micro-

spectrometer 

PCA, LDA 
Feng et al. (2010) 

48 

 
Acronyms: 
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ELISA (Enzyme-Linked Immunosorbent Assay), LFA (Lateral Flow Assay, CGM (Continuous 

Glucose Monitoring), SPR (Surface plasmon resonance) and SERS (Surface Enhanced Raman 

Spectroscopy). 

 

 

In conclusion, the integration of artificial intelligence into the field of biosensing has 

led to significant advancements in the accuracy, efficiency, and applicability of 

biosensors. The discussed approaches illustrate how AI is revolutionizing the 

biosensing field by enabling the development of smart biosensors and improving 

detection and monitoring capabilities across various biomedical and environmental 

applications. Ongoing interdisciplinary collaboration among data scientists, 

engineers, and biologists will remain crucial in driving these advancements and 

exploring new frontiers in biosensing. 
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Chapter 3.  

Experimental set up 
 

 

3.1. Neural Network Implementation for Sialidase detection. 

 

Artificial neural networks (ANNs) have become a powerful tool for classifying and 

diagnosing medical conditions using complex data. To optimize the analytical 

performance of our biosensing platform, a neural network model was implemented to 

classify vaginal samples as either BV-negative or BV-positive. The implementation 

details are presented in this chapter. 

 

3.1.1. Reagents and equipment 
 

Jupiter Notebook as an integrated development environment (IDE), along with the 

following libraries: 

• Numpy 

• Tensorflow  

• Matplotlib 

• Sklearn 

 

3.1.2. Dataset collection  

A total of 162 clinical samples were classified as BV positive (BV+) or BV negative 

(BV-) based on the Amsel criteria, a standard diagnostic method for BV. Of these, 54 

samples were BV+ and 108 were BV-. The clinical samples were then combined with 

photoluminescent probes in a GO-coated microwell for kinetic analysis of 

fluorescence quenching levels. This process is depicted in Figure 15.20  
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Figure  15. Sample Preparation and Biosensing Platform for SLD Detection Using 

nanoBVA sample is collected from the vaginal sac fundus using a sterile swab and placed in 
a sodium chloride saline solution for storage. The sample is then centrifuged to remove 

cellular debris, and the supernatant is aspirated for analysis. B. Biosensing Platform Targeting 

SLD (nanoBV). The clinical sample is diluted (1:4) and mixed with a nanoconjugate (mAb-

QDs) in a GO-coated microwell. Typically, negative samples (BV−) show quenched 
nanoconjugates due to nonradiative energy transfer caused by the affinity between mAb-QDs 

and the GO-coated microwell. In contrast, positive samples (BV+) exhibit strong 

fluorescence, which can be quantified, as the SLD/mAb-QDs complex lacks affinity for the 
GO-coated microwell. Taken with permission from 20 Copyright © 2021 American Chemical 

Society 

 

3.2. DATASET ARRANGEMENT  

 

The dataset was generated based on fluorescence quenching ratios measured using 

the nanophotonic immunoassay: If/I0. Here, I0 denotes the fluorescence intensity of 

the sample at time 0, and If  represents the intensity at time f.  Data were collected at 

5-minute intervals over 120 minutes,49 resulting in a matrix with 162 rows and 20 

columns, 162 representing the number of samples and 20 corresponding to the 

measurements (features) of the If/I0 values. This data series is available on the GitHub 

repository, as shown in Figure 16 A. 

This series of data is publicly available on GitHub repository. 50  
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To analyze the temporal patterns in the collected data and identify optimal time 

intervals for binary classification (BV+ or BV-), we divided the dataset into four 

groups: G1, G2, G3, and G4. Each group consists of five measurements representing 

25-minute intervals. Thus, G1 covers the first 25 minutes, G2 covers 25 to 50 minutes, 

and so on, covering the entire 120-minute experimental period. A schematic 

illustration of this partitioning is provided in Figure 16 B.  

We also explored the possibility of using 20 and 30-minute time intervals for the 

groups (See Tables 11 -12 in Appendix); however, the groups with 25-minute 

intervals proved to be more suitable. 

 

 

Figure  16. A. Dataset matrix B. Dataset splitting. 

 

3.2.1. Normalization 

Prior to the training of the neural architectures, the data set was normalized according 

to Equation 1, as this contributes to the convergence of the networks and thus to the 

significant improvement of the results. 
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𝑥 =
𝑥 − 𝜇

𝜎
    [9] 

here 𝑥 is the input data, 𝜇 is the mean and 𝜎 the standard deviation of the fluorescence 

quenching levels of a given sample. 

 

3.3. 2-D VISUALIZATION OF THE DATA 

 

Prior to training the neural network architectures, we used principal component 

analysis (PCA) to reduce the dimensionality of the data and create a 2D distribution 

plot. This approach enabled us to observe correlations in the data based on their 

analytical behavior. 

A script for PCA as well as fluorescence level data was shared on GitHub repository. 

50  

 

 

3.4. TRAINING PROCESS  

 

The performance of the neural network architectures was assessed using the K-fold 

cross-validation technique. This method ensures a robust and generalized evaluation 

by employing various combinations of training and validation data at each step. The  

dataset was divided into percentages of 70%, 15%, and 15% for training, validation, 

and testing, respectively.  Figure 12 in Chapter 2 provides a visual representation of 

this technique. Given the volume of our data, K-fold cross-validation was most 

effective with  𝑘 = 10, meaning the data were divided into 10 folds. With 54 positive 

and 108 negative samples, each fold contained 10 negative and 5 positive samples. 

This partitioning was essential for accurately interpreting the confusion matrices later 

in Chapter 4.  

 

3.4.1. ANNs implementation 
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Neural network architectures, including MLPs, LSTMs, and CNNs, were trained as 

supervised learning tasks, 51 with each sample labeled as either BV+ or BV- according 

to the Amsel criteria. 20   In the developed script, positive samples (BV+) were 

represented by a vector of ones (54 x 1) and negative samples (BV-) by a vector of 

zeros (108 x 1). These vectors were combined to form a new vector of dimensions 

162 x 1. 

Model performance was optimized by adjusting various hyperparameters such as the 

number of layers, neurons, activation functions, and regularization rates (see Table 

2).  

 

3.5. Feature selection. 
 

After identifying the optimal architecture for the BV classification task, we utilized 

1D-CNN to emphasize the most relevant features of the data and identify the optimal 

time interval. We used the data groups from the PCA analysis G1, G2, G3, and G4. To 

maximize dataset, use and understand group behavior, we implemented the 1D-CNN 

model and systematically combined the four individual datasets. For example, G1,2 

represents the combination of groups G1 and G2, while G2,3 denotes the merger of G2 

and G3, and so on. 

 

3.6. Determination of clinical sensitivity and specificity.  
 

The sensitivity, specificity, precision, and accuracy of our model were calculated 

based on the counts of false positives, false negatives, true positives, and true 

negatives from the classification results. We used the Python library sklearn.metrics 

in our script, 50 which applies the formulas outlined in Equations [4-7]. Additionally, 

we computed the F1 score, an evaluation metric that combines precision and 

sensitivity (or recall), as specified in Equation [8]. 
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Chapter 4.  

Results and discussion 
 

 

 

As previously discussed, using the Amsel criteria as a reference for BV determination, 

BV was diagnosed with clinical specificity and sensitivity of c.a. 96 %, respectively, by 

means of a conventional analysis of the data offered by our real-time immunoassay.20 

Following the methods detailed in the Experimental Section, we demonstrate that the 

series of data delivered by a real-time immunoassay can be useful to feed artificial neural 

networks and enhance the specificity and sensitivity.  

 

Firstly, PCA allowed for the visualization of the 2D distribution of our data set as a 

function of the principal components over the execution of the nanophotonic 

immunoassay. Figure 17 illustrates how the samples correlate with each other throughout 

time. In particular, we observed that the G4 group composed by the last time interval (95 

- 120 minutes) displays a clear division between the BV+ and BV- samples. The use of 

the nearest centroid classifier 52 allowed us to quantitatively confirm that, over time, the 

dataset shows a marked difference between the BV+ and BV- classes. This was 

evidenced by the fact that the separation between the centroids of each class increased 

over time, reaching a maximum separation at 120 minutes. 

 

This observation was a starting point to determine an optimal interval objectively.  
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Figure  17.  PCA and distances between the classes BV+ and BV- (for the complete data and for 

different times data sets). 

 

Table 2 presents the performance results of the 24 neural networks assessed in this study, as 

detailed in the Experimental Section. The 1D-CNN model, which features two 1D-CNN 

layers with 20 neurons each in the first and second hidden layers, and a third layer with 20 

fully connected neurons, emerged as the most effective for BV diagnosis. This model 

achieved a perfect accuracy rate of 100% in both validation and training stages. Initial 

training results, with 70% of the data allocated for training, 15% for validation, and 15% for 

testing, also showed optimal performance (see Figure 19 and Table 6).  

 

Table 2. Performances of the tested architectures assessed with 10-fold cross-validation.  

 

N° 

Hidden 

layer 1 

Number of 

neurons 

Dropout 

Hidden 

layer 2 

Number of 

neurons 

Dropout 

Hidden 

layer 3 

Number of 

neurons 

Dropout 

Accuracy 

in training 

(%) 

Accuracy in 

validation 

(%) 

Sensitivity 

in all data 

(%) 

Specificity 

in all data 

(%) 

 

 

MLP (Multilayer Perceptron) 
 
 

1 FCL: 10 0 FCL: 50 0 0 0 92,5 87.5 92.6 83.3 

2 FCL: 20 0 0 0 0 0 98.4 96.6 98.1 98.3 

3 FCL: 20 0 FCL: 20 0 0 0 100.0 96.6 99.4 99.8 

4 FCL: 20 0.1 FCL: 20 0.1 0 0 100.0 97.3 99.4 99.8 

5 FCL: 20 0.2 FCL: 20 0.2 0 0 100.0 96.6 99.2 99.8 

6 FCL: 20 0.3 FCL: 20 0.3 0 0 100.0 96.6 99.1 99.8 

7 FCL: 30 0 FCL: 0 0 0 0 99.3 96.6 99.0 99.2 

8 FCL: 30 0 FCL: 30 0 0 0 100.0 96.6 99.2 99.8 

9 FCL: 30 0.1 FCL: 30 0.1 0 0 100.0 97.3 99.4 99.9 

10 FCL: 30 0.2 FCL: 30 0.2 0 0 100.0 98.0 99.6 99.9 

11 FCL: 30 0.3 FCL: 30 0.3 0 0 99.3 98.0 99.2 99.9 

12 FCL: 50 0 FCL: 50 0 0 0 95.5 93.4 96.3 96.3 

 

 

LSTM (Long-Short Term Memory) 
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13 LSTMs: 20 0 FCL: 20 0 0 0 100.0 98.0 99.6 99.9 

14 LSTMs: 20 0 LSTMs: 20 0 FCL: 20 0 100.0 98.0 99.6 99.9 

15 LSTMs: 30 0 FCL: 20 0 0 0 100.0 98.0 99.6 99.9 

16 LSTMs: 30 0 LSTMs: 30 0 FCL: 20 0 100.0 97.3 99.4 99.9 

 

 

BLSTM (Bidirectional Long-Short Term Memory) 

 

 
17 B- LSTM:20 0 FCL: 20 0 0 0 100.0 97.3 99.4 99.9 

18 B- LSTM:20 0 B- LSTM:20 0 FCL: 20 0 100.0 97.3 99.4 99.9 

19 B- LSTM:30 0 0 0 0 0 100.0 97.3 99.4 99.9 

20 B- LSTM:30 0 B- LSTM:30 0 FCL: 20 0 100.0 98.0 99.4 99.9 

 

 

CNN (Convolutional) 

 
 

21 CNN:10 0 FCL:50 0 0 0 88.5 87.3 91.3 92.3 

22 CNN:10 0 FCL: 30 0 0 0 91-4 93.6 93.4 95.6 

23 CNN:20 0 FCL: 20 0 0 0 100.0 99.3 100.0 99.3 

24 CNN:20 0 CNN:20 0 FCL: 20 0 100.0 100.0 100.0 100.0 

 
 

 

Note: Architectures were trained using Adam optimizer 53 with a batch size of 16 and 

200 epochs. It was set and initial learning rate of 0.001.  

 

Moreover, as shown in Table 3, LSTM and 1D-CNN architectures demonstrated the 

highest accuracy in diagnosing BV. The mean F1 score 54 for the LSTM architecture 

was 0.97, while the CNN architecture achieved a mean F1 score of 1.0. Additionally, 

the B-LSTM architecture obtained an F1 score of 0.96, and the MLP architecture 

scored 0.92. These findings align with previous research comparing CNNs, MLPs, 

and LSTMs for time series forecasting, which indicated that CNNs and LSTMs 

generally performed better in classification tasks than MLPs. 55–58 

 

Table 3. F1 score for each fold in the MLP, LSTM, B-LSTM and 1D-CNN 

architectures 

Fold MLP LSTM B-LSTM 1D- CNN 
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F1 score 

1 1.00 1.00 1.00 1.00 

2 1.00 1.00 1.00 1.00 

3 0.91 1.00 0.91 1.00 

4 0.89 0.89 0.89 1.00 

5 0.83 0.91 0.91 1.00 

6 0.91 1.00 1.00 1.00 

7 0.91 0.89 1.00 1.00 

8 0.80 1.00 1.00 1.00 

9 1.00 1.00 0.91 1.00 

10 0.91 1.00 1.0 1.00 

Mean 0.92 0.97 0.96 1.00 

 

 

As discussed above, PCA demonstrated that group G4 generated less overlapping area 

between BV+ and BV- samples. This is reflected in a clear boundary between BV+ 

and BV- groups. This finding is consistent with the validation and training 

percentages (see content highlighted in bold in Table 4), as well as with the 

conclusions drawn in the conventional method for BV diagnosis based on a 

concentration threshold, where the biosensing platform showed superior 

performance, that is, only considering those data collected at the end of the 

immunoassay (120 minutes).  

 

Table 4. Performance of the best architecture, the 1D-CNN, for the time groups G1, 

G2, G3 and G4. The most relevant data are marked in bold. 

 
 

 

Group 

Accuracy 

in training 

(%) 

Accuracy 

in 
validation 

(%) 

Sensitivity 

in all data 

(%) 

Specificity 

in all data 

(%) 

𝐺1 81.7 70.0 76.0 82.5 
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We also explored the performance of our AI-assisted approach by using combinations 

between groups, which showed that group G4,1 offered the highest percentages in 

training and validation accuracy, when compared with the other group combinations, 

see Table 5. Actually, the performance with G4,1 was better than that obtained using 

the G4 group; particularly, in terms of training and validation accuracy, G4 obtained 

values of 98.7% and 97.3% respectively, while G4,1 obtained 99.8% and 99.3%, 

respectively, suggesting that the combination of initial and final measurements 

provided the most relevant information in this AI-assisted approach. A visual 

representation of this experiment can be found in Figure 18.  

 

Table 5. Performance of the 1D-CNN architecture fed with different combinations 

of data groups. The most relevant data are marked in bold.  

 

 

Group 

Accuracy 

in 

training 

(%) 

Accuracy 

in 

validation 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

𝐺1,2 89.96 74.66 72.0 78.9 

𝐺1,3 93.87 87.33 86.0 88.0 
𝐺2,3 93.19 86.66 88.0 90.0 
𝐺2,4 98.97 96.66 96.0 98.0 

𝐺3,4 99.0 97.30 98.0 96.0 
𝐺4,1 99.8 99.3 98.00 97.0 

 

 
 

𝐺2 84.7 77.3 76.8 87.9 

𝐺3 90.8 88.0 83.5 94.5 

𝑮𝟒 98.7 97.3 99.6 98.0 

𝐺1,2,3,4 100 100 100 100 
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Figure  18. Bar chart depicting the performance of the 1D-CNN architecture fed with 

different combinations of data groups. 

 

 

Confusion matrices in Figure 19-23, aside from being an evaluation metric, provided 

a graphical representation of the model’s performance in a classification task, i.e., 

Figure 19 shows that the 1D-CNN architecture achieves 100% accuracy in the 

classification task since it did not obtain false positives or false negatives in any of 

the 10 folds. 
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Figure  19. The resultant confusion matrix of the training, 70% of the data was used for the 

training set, 15% for the validation set, and 15% for the testing set. 

 

Table 6. Results of the training process 
 

Accuracy    

Training Validation Testing Sensitivity Specificity F1 score 

1.00 1.00 1.00 1.00 1.00 1.00 
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Figure  20. Confusion matrices for each fold in MLP architecture. MLP architecture 

made a classification without errors in folds 1 and 2, whereas in folds 3, 6, 7 and 10, it 
classified a negative sample as positive, in fold 4 it classified a positive sample as negative, 

in fold 5 it presented two false positives and finally, in fold 8 it presented a false positive 

and a false negative. 

 

 

Table 7. F1 Score for each fold in MLP architecture. 
 

Fold 1 2 3 4 5 6 7 8 9 10 Mean 

F1 

Score 
1.00 1.00 0.91 0.89 0.83 0.91 0.91 0.80 1.00 0.91 0.92 
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Figure  21. Confusion matrices for each fold in CNN architecture. 1D-CNN architecture 

achieves 100% accuracy in the  classification task since it did not obtain false positives or 

false negatives in any of the 10 folds.  

 

 

Table 8. F1 Score for each fold in CNN architecture. 
 

Fold 1 2 3 4 5 6 7 8 9 10 Mean 

F1 

Score 
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 

 
Figure  22. Confusion matrices for each fold in LSTM architecture. LSTM architecture 

in folds 1, 2, 3, 6, 8, 9 and 10 correctly classifies both the 10 negative samples and the 5 
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positive samples. On the other hand, in fold 4 ,out of 5 positive samples, it classifies 1 as 

negative and in fold 5 out of 10 negative it classifies 1 as positive. 

 

 

Table 9. F1 Score for each fold in LSTM architecture. 

 
 

Fold 1 2 3 4 5 6 7 8 9 10 Mean 

F1 

Score 
1.00 1.00 1.00 0.89 0.91 1.00 0.89 1.00 1.00 1.00 0.97 

 

 
Figure  23. Confusion matrices for each fold in B-LSTM architecture. 

 

Table 10. F1 Score for each fold in B- LSTM architecture. 

 
 

Fold 1 2 3 4 5 6 7 8 9 10 Mean 

F1 

Score 
1.00 1.00 0.91 0.89 0.91 1.00 1.00 1.00 0.91 1.00 0.96 
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Chapter 5  

Conclusions  
 
In this study, we confirmed that the clinical sensitivity and specificity of a real-time 

biosensing system can be enhanced by implementing neural networks, with CNN and 

LSTM architectures outperforming MLPs in classifying time-varying datasets due to 

their ability to capture and retain time-series features. This AI-assisted approach not 

only removed the need to establish biomarker concentration thresholds for diagnosis 

through a real-time immunoassay but also significantly boosted clinical sensitivity 

and specificity, achieving up to 100% in binary classification.  

 

Additionally, we demonstrated that machine learning techniques are valuable for 

identifying optimal testing times in a real-time biosensing platform. Although the 

increase in sensitivity and specificity from 96% to 100% might seem modest, it is 

particularly significant when applied to large populations, where it could lead to 

accurate diagnoses for hundreds or even thousands of patients. Overall, by harnessing 

real-time data on the binding interactions between biorecognition elements and 

analytes, this AI-assisted approach can be adapted for diagnosing other medical 

conditions using real-time immunoassays targeting specific biomarkers.  
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Chapter 6   

Appendix 
 

6.1. Performance of the 1D-CNN architecture fed with groups of 20 and 

30 min intervals.  
 

 

Table 11. Performance of the 1D-CNN architecture fed with groups of 20 min 

intervals.  

 
 

 

 

 

 

 

 

 

 

 

 

 

Table 12. Performance of the 1D-CNN architecture fed with groups of 30 min 

intervals.  

 
 

 

 

 

 

  

 

Group 

Accuracy 

in 

training 

(%) 

Accuracy 

in 

validation 

(%) 

Sensitivity 

in all data 

(%) 

Specificity 

in all data 

(%) 

𝐺1 79.8 68.3 60.0 50.0 

𝐺2 83.4 74.6 81.0 80.0 

𝐺3 90.6 88.0 80.0 92.0 

𝐺4 89.0 84.6 86.9 80.0 

𝐺5 98.7 97.3 98.0 96.0 

 

Group 

Accuracy 

in 

training 

(%) 

Accuracy 

in 

validation 

(%) 

Sensitivity 

in all data 

(%) 

Specificity 

in all data 

(%) 

𝐺1 83.8 71.3 80.0 20.0 

𝐺2 91.4 89.3 84.0 92.0 

𝐺3 92.9 87.3 100 80 

𝐺4 98.0 97.0 99.0 94.0 
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6.2. Image Segmentation Process Using U-NET Architecture 
 

U-NET is a neural network model designed for computer vision tasks, specifically 

for segmentation problems. 

 

Dr. Mariana Ávila developed a microfluidic analytical device (µPAD) that determines 

if a liquid sample contains a specific analyte by measuring the quenching rate (see 

Figure 3a). To achieve this, Mariana measures intensity density in specific regions of 

the device as shown in Figure 3b and calculates the quenching rate according to the 

mathematical expression [10]. The goal of this part of the project is to implement a 

neural network that can identify the areas of interest for calculating the fluorescence 

quenching rate simply by inputting a set of images into the network. 

 

Quenching ratio =  
M2 − M3

M1 − M3
        [10] 

 
 

Figure  24. Paper-Based Microfluidic Analytical Device. A. The operation of this system. 

It involves a liquid sample flowing through the main channel to reach the Control (C) and 

Test (T) zones. The fluid does not completely cover the device; the upper ends of the Control 

and Test zones are mostly left dry. B. Measurements. M1, M
2, and M3 correspond to intensity 

density measurements of the wet areas in the Control and Test zones, respectively, while M3 

refers to the dry area. 
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Figure  25. Segmentation Process. The first step for the network to determine the presence 

of an analyte is to recognize the shape of the microfluidic device. To achieve this, the network 

is trained with images like the one on the left (A). Subsequently, to differentiate between the 
dry areas (painted white) and the areas with the liquid sample, training images like the one 

on the right (B) are used. 

 

 

 
 

Figure  26. First predictions of  the µPAD shape 

 

 

6.3. Kinetic Binding Constants 
 

Kinetic binding constants, known as the association constant (Ka) and the dissociation 

constant (Kd), are fundamental parameters in the process of bio-recognition. 

 

Association Constant (Ka) 

The binding process occurs when a protein and its respective ligand collide with the 

correct orientation. The association constant describes the rate at which the direct 

reaction occurs to form the protein-ligand complex. This rate depends on the 
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concentration of the protein and the ligand and is measured in units of inverse molar 

concentration per second. 

Dissociation Constant (Kd) 

This constant describes the rate at which the protein-ligand complexes dissociate. 

This rate is independent of the concentrations of free proteins and ligands in the 

system and is measured in s⁻¹. 

 

Measuring the kinetic binding constants such as Ka and Kd is crucial in biosensing, 

as the affinity of antibodies for the target analyte is essential for ensuring high 

sensitivity during detection. 

 

The developed network uses preprocessed measurements to fit a function that allows 

associating the parameters with the association and dissociation constants. In this 

case, the function used is known as "One Phase Association” (see Figure ) 

 

 

Figure  27. Graphical interface developed for determining association and dissociation 
constants in H-IgG samples, with association and dissociation constants displayed on the left 

side. 

 


