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Abstract

Biosensors are analytical devices designed to detect specific target molecules with
high selectivity and sensitivity. The selectivity of a biosensor is crucial, as it
determines the system's ability to identify a specific analyte among numerous other
substances in a sample. Low selectivity in biosensors can lead to false positives,
reducing their reliability and effectiveness in biomedical applications. This issue
arises because biological samples often contain various biomolecules that may cause

an interference in the sensing surface and avoid the detection of the target analyte.

Recent research has demonstrated that computational methods, such as machine
learning algorithms hold significant potential for enhancing the analytical
performance of biosensing platforms. By detecting complex patterns within noisy
signals, computation can provide insights across various domains, including medical
data, environmental monitoring, and traffic signal analysis. This doctoral research
aimed to enhance biosensing systems using artificial intelligence, specifically Deep
Learning, by implementing neural models that improved their analytical performance.
We studied a nanophotonic immunoassay for diagnosing bacterial vaginosis,
achieving clinical sensitivity and specificity of approximately 96.29% (n = 162). In
this context, this thesis demonstrates that an Al-assisted real-time biosensing platform
eliminates the need for biomarker concentration as well as threshold determination,

and also enhances clinical sensitivity and specificity, reaching up to 100%.



Objectives

General Objective

Implement a deep learning model to assist and optimize the analytical performance
of a biosensing system, in particular for bacterial vaginosis diagnosis (using

sialidase as a biomarker).

Specific Objectives

Develop and implement a deep neural network model using the “K-fold cross-
validation” method, trained with experimental data. Initially, this will involve data

from sialidase (SLD) detection. Several neural network models will be assessed.

Train the developed deep neural network models with experimentally obtained data

to recognize and/or estimate SLD levels related to positive or negative samples.

Validate the performance of the neural network using test data to enhance the

specificity and sensitivity of the biosensing system.
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Chapter 1.

Theoretical framework

1.1. Definition of a biosensor

Biosensors are analytical devices designed to detect target molecules with high
specificity and sensitivity. The basic operation of biosensors involves three main
stages, which are represented in Figure 1. The first stage is biological recognition (or
biorecognition), which must be performed with high specificity. The next stage is the
transduction process, where the biorecognition event is transformed into a
quantifiable signal, providing information about changes in a specific physical
parameter'-? (in this work, the fluorescence intensity). Finally, this signal is amplified

and processed to produce a measurable result like output signal.

It is important to note that biosensors with high sensitivity can generate a signal from
minimal fluctuations in the analyte concentration. The smallest amount of analyte that
a biosensor can detect is defined as the limit of detection (LOD), which is a key aspect
of its analytical sensitivity. In addition, a biosensor with high specificity indicates that
the device can recognize and detect only the target analyte among a mixture of
different biomolecules, minimizing the possibility of interference from other
substances present in the sample. This means that the biosensor is very selective and
precise in its biological recognition, ensuring that the results obtained are reliable and
accurate for the analyte of interest. Finally, in the third stage, the resultant signal is

obtained and interpreted.’
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Sample Biorecognition Transducers Output

[ *— Enzyme SPR
> ’— Antibody Interferometer
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Figure 1. Schematic representation of different blocks integrating a biosensor. a)
Sample: substance to be analyzed in which is possible to detect the presence the target analyte.
b) Biorecognition: this stage requires elements with high affinity against the target analyte.
c) Transducers: A device that converts the measured biological activity into an analytical
signal. d) Output: measurable signal indicating the presence of the analyte in the sample.
Image taken from °. Unpublished Master’s Thesis.

1.2. Physical phenomena involved in optical biosensor

Photoluminescence

Photoluminescence is the emission of light from a material after it has absorbed
photons. When the material absorbs light energy, its electrons are excited to a higher
energy state. * The transition of these electrons back to their ground state occurs
through the emission of photons. In general, the phenomenon of photoluminescence
is classified into two types: fluorescence and phosphorescence, depending on the
nature of the excited states. Fluorescence occurs when a transition happens between
photoexcited species from their first excited singlet state to their ground state. On the
other hand, phosphorescence involves the emission of light from excited triplet states

(see Figure 2).°
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Figure 2. Typical Jablonski diagram to illustrate photoluminescent processes. The labels
S0, S1 and S2 refer to the baseline singlet state, first singlet excited states and second singlet
excited states, respectively, similarly T1 represents the first triplet excited state.

Forster resonance energy transfer (FRET)

FRET is an electrodynamic phenomenon that involves the non-radiative transfer of
energy between two molecules: an excited donor molecule and an acceptor molecule.
This energy transfer can only happen if the emission spectrum of the donor overlaps
with the absorption spectrum of the acceptor. Specifically, the vibrational transitions
in the donor molecule must align in energy with corresponding transitions in the
acceptor molecule, as depicted in Figure 3. In the biosensing field, FRET is a useful
phenomenon regarding its sensitivity for nano-scale distances between the molecules

under study.®
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Figure 3. FRET A. Overlapping between the emission spectrum of the donor and the
absorption of the acceptor. B. Energy level scheme of donor and acceptor molecules showing
the coupled transitions. Donor molecule is illustrated in blue color and acceptor in yellow
color. D* and A* refer to donor and acceptor in excited state respectively.

When FRET occurs, the electron in the excited donor molecule (D*) , in our case
Fluorescein isothiocyanate (FITC ) returns to its ground state. Simultaneously, an
electron in the acceptor molecule (A) in our case, graphene oxide (GO) moves to a
higher excited-state orbital. If the acceptor molecule is fluorescent, it may emit light.
However, if the acceptor is non-fluorescent, the energy is dissipated through other

mechanisms, such as heat.

In general, the efficiency of FRET depends on the sixth power of the distance
between the donor and acceptor molecules, as well as their relative orientation.
Typically, the rate of transfer of excitation energy is described by the following

expression:

o= (2) ()

Here, tq4 represents the fluorescence lifetime of the donor in the absence of the
acceptor, v denotes the distance between the centers of the donor and acceptor
molecules, and Ro denotes the Forster distance, at which 50% of the excitation energy

is transferred to the acceptor.
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In FRET, the distance is typically large compared to the size of the molecule, allowing
energy transfer to occur through space. This means that FRET does not require direct
molecular contact between the donor and acceptor molecules. °

It is important to mention that in the case of graphene, its nature as a 2-dimensional
dipole modifies the expression (1) to an r* dependence. ’

The overlapping of spectra reflects the efficiency in energy transfer, e.g. if the overlap
is bigger the donor increases the possibility to transfer energy to the acceptor. Overlap

integral / (1), between the donor and the acceptor is given by:
J@) = [§ Fp() e4(A)2*dA (2]

where Fp(A) is the normalized emission spectrum of the donor, €4(4) corresponds to

the molar absorption coefficient of the acceptor and A is the wavelength.

Non-radiative energy transfer affects the fluorescence emission characteristics of the
donor molecule. When the distance between the donor and acceptor is very small (a
few Angstroms), the molecules come into contact, and their electron clouds can

interact.

These orbital interactions are commonly known as electron exchange, as electrons
can move between the molecules over short distances.® Electron exchange is just one

of several mechanisms that cause fluorescence quenching, which is defined as:

1:()
=" Bl

and represents the attenuation of fluorescence intensity in a specific time frame. Here
I corresponds to the final intensity of fluorescence and Iy corresponds to the initial

intensity of fluorescence.
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1.3. GO and operating mechanism of FRET-GO based biosensor

Graphene is a carbon material characterized by its atomic thickness, classifying it
as a two-dimensional material. It can be visualized as a flat sheet composed of
carbon atoms arranged in a honeycomb lattice. This structure serves as the

foundational framework for other carbon allotropes (see Figure 4).%!°

Figure 4. Allotropes of Carbon
Adapted with permission from ° Copyright © 2015 American Chemical Society

Additionally, the oxidized form of graphene, known as graphene oxide (GO), contains
functional groups like hydroxyl, epoxy, carbonyl, and carboxyl groups. Specifically,
GO features carboxyl groups at its edges and other oxygen-containing groups on the
basal plane (see Figure 5). '' The Hummer method is the most commonly used

technique to produce graphene oxide (GO).'?
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Figure 5. Representation of the structure of GO
Adapted with permission from '3. Copyright © 2019 American Chemical Society

Notably, the surface chemistry of GO allows for the interaction of GO with proteins
or DNA. ' Furthermore, the literature highlights the remarkable optical properties of
graphene oxide (GO). One notable feature is its broad spectral absorption range,
making GO an ideal universal acceptor in Forster Resonance Energy Transfer (FRET)
applications. '* Our Real-Time biosensing platform consists in a surface coated with
graphene oxide (GO) and a fluorescent bioprobe as a donor. The GO-coated surface
has a strong affinity for bioprobes that do not interact with the analyte, resulting in
quenched fluorescence when the analyte is absent. In contrast, fluorescent bioprobes
that interact with the analyte do not experience quenching, as the bioprobe-analyte
complex has no affinity for the GO-coated surface, and the analyte acts as a spacer
between the GO-coated surface and the bioprobes (see Figure 6). This biosensing

platform has also been previously employed to detect several analytes, including
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human immunoglobulin G, prostate specific antigen, COVID-19 antibodies and

Escherichia coli."

Excitation
source

Photoluminescent
bioprobe (PLB)

GO-Coated
micoplate

Figure 6. Operational mechanism of the biosensing platform.

1.4. Bacterial Vaginosis

Bacterial vaginosis (BV) occurs when the natural balance of bacteria in the vagina is
disrupted. A balanced level of bacteria helps maintain vaginal health. However, when
bacteria such as Gardnerella vaginalis overgrow, it can lead to bacterial vaginosis (see
Figure 7). '¢

BV can occur at any age but is most common during the reproductive years. Hormonal
changes during this period can facilitate the overgrowth of specific types of bacteria.
One of the enzymes that plays a significant role in the pathophysiology of BV is

sialidase.
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Vagina| |

Bacterial
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Figure 7. Bacterial VVaginosis illustration.

Adapted with permission from. '” Shutterstock, Diseiio: Barbara Castrején, DGDC-UNAM

Bacterial vaginosis is a common vaginal condition characterized by an imbalance in
the vaginal flora, leading to the overgrowth of the aforementioned bacterial strains.
Sialidase, an enzyme produced by these bacteria, plays a significant role in this
illness. This enzyme cleaves sialic acids from glycoproteins, glycolipids, and
polysaccharides on the surface of epithelial cells and mucins. Sialic acids are crucial
for maintaining the integrity of the mucosal barrier in the vagina, and their removal
by sialidase can disrupt this protective layer.'® The activity of sialidase has been used
as a biomarker to assess the severity of BV and its potential to cause adverse

reproductive outcomes. '’

Detecting sialidase activity in vaginal secretions can be an important diagnostic tool
for BV. It not only helps to confirm the diagnosis but also provides information on
the severity of the condition and the risk of complications. Sialidase activity can be
measured through biochemical assays that detect the enzyme's ability to cleave

specific substrates.?”
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1.5. Artificial intelligence (AI)

Artificial intelligence (Al) refers to the ability of machines and computer systems to
perform tasks that typically require human intelligence. This includes learning,
reasoning, problem-solving, visual and auditory perception, and natural language
understanding, among other capabilities. Al involves the development of algorithms
and computational models that can analyze data, learn patterns, and make decisions
based on that data, such as Machine Learning and Deep Learning, see Figure 8.
Currently, Al is applied across various fields, including medicine, economics,

industrial automation, autonomous vehicles, virtual assistants, and more.?'

Machine learning

It is a crucial component of Al that enables systems to learn from their environment
and apply that knowledge to make informed decisions. There are various algorithms
that machine learning employs to iteratively learn, interpret, and enhance data for
better predictive outcomes. These algorithms utilize statistical techniques to identify
patterns and take actions based on these patterns. The most common machine learning
algorithms include Supervised Learning, Unsupervised Learning, and Reinforcement

Learning.?

Deep Learning

Deep learning is a specific subfield of machine learning that emphasizes learning
representations from data, focusing on successive layers of increasingly meaningful
representations. The term "deep™ in deep learning does not refer to a deeper
understanding achieved by the approach but rather represents the idea of successive
layers of representations. The depth of the model refers to the number of layers
contributing to a data model. Other suitable names for this field could have been

layered representation learning and hierarchical representation learning. Modern deep
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learning often involves dozens or even hundreds of successive layers of

representations, all learned automatically from exposure to training data.?

In deep learning, these layered representations are usually learned (almost always)
using models called neural networks, structured in literal layers stacked on top of each
other. The term neural network refers to neurobiology, but while some core concepts
of deep learning were partially inspired by our understanding of the brain, deep

learning models are not models of the brain. 2

A neural network (ANN) is made up of neurons arranged in layers, with connections
(weights) and biases that modify the impact of inputs. Activation functions add non-
linearity, allowing the network to recognize complex patterns. Its key components are

illustrated in Figure 9.

Figure 8. Visual Breakdown of Key Areas in Artificial Intelligence.

Nodes

Weights Activation

Function
(Sigmoid, tanh, Relu, ...)

Inputs

X1 —>

Output
Input layer Output layer
X gy Wh

Hidden layer

Figure 9. Main Parts of a Neural Network. A. Nodes. These are basic units that receive
inputs, apply an activation function, and produce an output. Weights. Each connection between
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neurons or nodes has a weight that adjusts the influence of one neuron on another. Bias. This
is an additional parameter in a neuron that allows the activation function to be shifted (e.g. the
left or right), which helps the model in fitting the data. Activation function. A mathematical
function applied to the output of each neuron. It introduces non-linearity into the network,
allowing it to learn complex patterns. B. Neurons are organized into layers, typically three
types: Input layer: Receives external data and passes it to the network, Hidden layers: Process
information gradually. Output layer: Generates the final output of the network after processing

the information.

1.5.1. Basic functioning of an artificial neural network

The process is divided into two main stages: Forward Propagation and Back

Propagation, both of which are crucial for training neural networks (see Figure 10).
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Figure 10. Schematic diagram of the basic functioning of an artificial neural network (perceptron).

In Forward Propagation, input data passes through the network layer by layer, from

the input layer to the output layer. In each layer, the data is multiplied by the

connection weights (weighted sum) and then passed through an activation function.

The objective is to generate an output or prediction, which is subsequently compared

to the actual target value to calculate the error.
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Back Propagation, on the other hand, focuses on adjusting the network’s weights
based on the error calculated during forward propagation. The error is propagated
backward from the output layer to the previous layers, where gradients (derivatives)
are calculated to determine how the weights should be updated to minimize the error.
This adjustment is carried out using an optimization algorithm, such as gradient

descent, to minimize the loss function and enhance the network's accuracy.

These stages work together to enable the neural network to learn patterns from data

and make accurate predictions or classifications.??

1.6. Artificial Neural Networks (ANNs) types
ANNs come in various forms, each designed for specific tasks and types of data.

Below, some of the most common types of ANNs are illustrated in Figure 11 and

described below.
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Figure 11. Neural Networks types.
Image adapted with permission of %,

Feed forward Neural Network (FNN)

This is simplest type of ANN where the information flows in one direction, from input
to output, without any cycles or loops. Usually is employed in basic pattern

recognition, image classification, and simple regression tasks.

Convolutional Neural Network (CNN)
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This is designed to process and analyze visual data. CNNs use convolutional layers
to automatically and adaptively learn spatial hierarchies of features. Its main
components are convolutional layers, pooling layers, and fully connected layers.
Among the main applications are image and video recognition, image classification,

object detection, and computer vision tasks.
Recurrent Neural Networks (RNNs)

RNNs are designed for sequential data processing. They feature connections that form
directed cycles, enabling them to maintain a state and capture temporal dependencies.
The key components include neurons with recurrent connections, which allow
information to persist. RNNs are used in natural language processing, speech

recognition, time series prediction, and other tasks involving sequential data.
Long Short-Term Memory (LSTM)

Networks are a specialized type of RNN that addresses the vanishing gradient
problem. They use memory cells capable of maintaining their state over extended
periods. Key components include memory cells, input gates, output gates, and forget
gates. LSTMs are particularly effective for tasks requiring long-term dependencies,

such as language modeling, machine translation, and speech recognition.

Multilayer Perceptrons (MLPs)

MLPs are a class of feedforward neural networks with multiple layers of neurons.
MLPs can solve problems that are not linearly separable. They consist of an input
layer, one or more hidden layers, and an output layer. MLPs are utilized for

classification, regression, and complex pattern recognition.

Each type of ANN has its strengths and is suited for specific tasks, making them

versatile tools in the field of machine learning and artificial intelligence. 24.25
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1.7. K-fold cross validation

It is a statistical method used to evaluate the performance of a machine learning
model. In this technique, the dataset is divided into K equally sized subsets or "folds."
The model is then trained and evaluated K times, each time using a different fold as
the validation set and the remaining K-1 folds as the training set. This process ensures
that every data point is used for both training and validation exactly once. By
averaging the evaluation results from each fold, K-fold cross-validation provides a
more accurate and reliable estimate of the model's performance, reducing the risk of
overfitting and ensuring that the model generalizes well to unseen data. This method
is particularly useful when dealing with limited datasets, as it maximizes the use of
available data for both training and testing.?® A schematic diagram of this method is

shown in the figure below.

Validation data

[ ]
Fold 1(k= 1) -
E . -: . h
Foldk  puum -
N J
Y

Mean Result

Figure 12. K-fold Cross Validation

1.8. Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a statistical technique used for
dimensionality reduction in datasets with many features. It transforms the original
variables into a new set of uncorrelated variables called principal components (see

Figure 13), which are ordered by the amount of variance they capture from the data.
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The first principal component captures the most variance, and each subsequent
component captures progressively less. By focusing on the first few principal
components, PCA simplifies the dataset, making it easier to analyze and visualize

while retaining the most important information. ?’

x; PCA 2D-Plot

PC,

X1

Figure 13. Dimensionality Reduction. Visualizing PCA's Transformation from 3D to 2D
Space.

1.9. Evaluation metrics

These measures are used to determine or evaluate the performance of a classification

model.

Confusion Matrix

Confusion matrices are commonly used in binary and multi-class classification
problems. They allow us to visually and quantitatively evaluate the performance of a
model. %

An example of a binary classification confusion matrix is depicted in the Figure

below.
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Figure 14. Confusion Matrix for binary classification. The term, True Positive (TP) refers
to a sample belonging to the positive class being classified correctly, whereas, True Negative
(TN) refers to a sample belonging to the negative class being classified correctly.
Additionally, False Positive (FP) refers to a sample belonging to the negative class but being
classified wrongly as a positive sample, and False Negative (FN) refers to a sample belonging
to the positive class but being classified incorrectly as belonging to the negative class. It is
important to note that the horizontal axis represents all prediction and the vertical axis
represents all true values.

Using the number of false positives and false negatives, we can compute the
sensitivity, specificity, precision, and accuracy of our model based on the

mathematical expressions: 2

TP
% Recall (Sensitivity) = —— x 100 [4]
Y =TPyFN

e TN [5]
% Specificity = TN + FP x 100
. TP [6]
%Precision = TP T FP x 100
TP+TN [7]

% 100

A = X
cedracy Total Sample
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The accuracy can be calculated by taking average of the values lying across the main
diagonal.

In order determine the performance of the neural networks.

F score

Precision and sensitivity (also known as recall) are two crucial metrics, but they often
conflict with each other. Precision measures the accuracy of positive predictions,
while sensitivity evaluates the model's ability to capture all positive cases. The F1
score offers a balance between these two metrics, as it combines precision and

sensitivity using the harmonic mean, as shown in the mathematical expression below:
30

2 X Precision X Recall [8]
Precision + Recall

F, score =
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Chapter 2.

Artificial intelligence in biosensing
field: State of the art

Currently, numerous studies have demonstrated the immense potential of computing
in enhancing the analytical performance of biosensing platforms. By identifying
complex patterns within noisy signals, computing enables data inference from diverse
sources such as medical, environmental, and traffic signals. Herein a brief overview

of this field is provided.

On June 1, 2019, Aydogan Ozcan and his research team introduced their work
utilizing Deep Learning to assist point-of-care biosensors. Later, in February 2020,
they developed a biosensing analysis method based on particle aggregation to
determine and quantify analytes, employing wide-field, lens-free computational
microscopy powered by Deep Learning. ! Additionally, bioinspired instruments that
mimic olfactory and gustatory senses, such as artificial noses and tongues, have
proven valuable in monitoring food spoilage, detecting environmental contaminants,
and identifying viruses. These artificial systems effectively recognize and estimate
analyte concentrations.>?

In late 2023, Ghumra et al. developed a biosensing system designed to directly detect
SARS-CoV-2 in atmospheric aerosols. These systems are critical for mitigating
pandemic impacts, emphasizing the importance of developing highly sensitive,

specific, and efficient biosensing technologies.

In December 2023, Ammar Armghan published a study titled "Design of Biosensor

" 33 where They

for Synchronized Identification of Diabetes Using Deep Learning,
explored the use of deep learning techniques to enhance the performance of glucose
biosensors. By training neural networks on large datasets, the author demonstrated

significant improvements in the accuracy and reliability of these sensors, a crucial
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advancement for efficient diabetes management that enables more precise monitoring

of glucose levels in patients.

In May 2024, Lanpeng Guo et al. published "Electrochemical Protein Biosensors for

"3% exploring the development

Disease Marker Detection: Progress and Opportunities,
of Al-enhanced -electrochemical biosensors for real-time health biomarker
monitoring. The integration of machine learning algorithms allows for the precise
detection and quantification of biomarkers, with significant potential applications in
personalized medicine. This approach supports the implementation of medical
treatments tailored to the patient’s unique biological responses, thereby optimizing

the effectiveness of therapeutic interventions.

Finally, Ding et al., in their review titled "SERS-Based Biosensors Combined with
Machine Learning for Medical Applications," *>discussed recent advancements in the
use of Surface-Enhanced Raman Spectroscopy (SERS) in combination with Machine
Learning (ML). They highlight the application of these technologies in recognizing
biological molecules, rapidly diagnosing diseases, developing innovative
immunoassay techniques, and enhancing the semi-quantitative measurement
capabilities of SERS. To sum up, several current biosensing systems are summarized

in Table 1. 3¢

Table 1. Machine learning for intelligent biosensing.

Biosensing Al
Biomarker Platform Reference
mechanism algorithm

Paper-based
colorimetric Duan et al (2023)

Rabbit IgG Smartphone GoogleNet
s ELISA assays P s 37

Saberi et al.

Lysozyme and Fluorimetric Nanosheets SVM
(2020) 38
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Medical

chemicals

ATP
Blood glucose

Biomolecular

Albumin protein

Physiological

monitoring

Blood glucose

(type 1 diabetics)

Body fluid

identification

NT-proBNP

Benzene, toluene

formaldehyde

VOCs

Nasopharygneal

cancer detection

Acronyms:

Bacteriophage-
based
colorimetric

sensing

Electronic-nose

Tunnel junctions

LFA

Physical and
biochemical

sensing

CGM

SPR

Inmunoassay

Electronic-nose

Fluorescent

sensing

SERS

Multi array

sensor system

Portable
device

Graphene

nanoelectrodes

Smartphone

cameras

Skin-friendly

electronics

Wearable

biosensors

SPRi device

Photonic
crystal-
enhance

fluorescence
Sensor array
chamber
Cross-
response
sensor array

Confoncal

Raman micro-

spectrometer

HCA

SVM

SVM

SVM

ANN

SVM
ARIMA,
RF

PCA
PCA,
PLSR,

SVM

SVM

HCA

PCA, LDA

Kim et al (2020) *°

Boubin and
Shrestha (2019) *°
Puczkarski et al.
(2017) 4
Foysal et al.
(2019) #

Zhang and Tao
(2019)

Rodriguez-
Rodriguez et. Al
(2019) *
Stravers et al.

(2019) #4

Squire et al.

(2019) 4

Wang et al (2016)
46

Lei et al (2015) ¥

Feng et al. (2010)
48
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ELISA (Enzyme-Linked Immunosorbent Assay), LFA (Lateral Flow Assay, CGM (Continuous
Glucose Monitoring), SPR (Surface plasmon resonance) and SERS (Surface Enhanced Raman
Spectroscopy).

In conclusion, the integration of artificial intelligence into the field of biosensing has
led to significant advancements in the accuracy, efficiency, and applicability of
biosensors. The discussed approaches illustrate how Al is revolutionizing the
biosensing field by enabling the development of smart biosensors and improving
detection and monitoring capabilities across various biomedical and environmental
applications. Ongoing interdisciplinary collaboration among data scientists,
engineers, and biologists will remain crucial in driving these advancements and

exploring new frontiers in biosensing.
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Chapter 3.

Experimental set up

3.1. Neural Network Implementation for Sialidase detection.

Artificial neural networks (ANNSs) have become a powerful tool for classifying and
diagnosing medical conditions using complex data. To optimize the analytical
performance of our biosensing platform, a neural network model was implemented to
classify vaginal samples as either BV-negative or BV-positive. The implementation

details are presented in this chapter.

3.1.1. Reagents and equipment

Jupiter Notebook as an integrated development environment (IDE), along with the
following libraries:

. Numpy

o Tensorflow

. Matplotlib

° Sklearn

3.1.2. Dataset collection

A total of 162 clinical samples were classified as BV positive (BV+) or BV negative
(BV-) based on the Amsel criteria, a standard diagnostic method for BV. Of these, 54
samples were BV+ and 108 were BV-. The clinical samples were then combined with
photoluminescent probes in a GO-coated microwell for kinetic analysis of

fluorescence quenching levels. This process is depicted in Figure 15.%°
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Figure 15. Sample Preparation and Biosensing Platform for SLD Detection Using
nanoBVA sample is collected from the vaginal sac fundus using a sterile swab and placed in
a sodium chloride saline solution for storage. The sample is then centrifuged to remove
cellular debris, and the supernatant is aspirated for analysis. B. Biosensing Platform Targeting
SLD (nanoBV). The clinical sample is diluted (1:4) and mixed with a nanoconjugate (mAb-
QDs) in a GO-coated microwell. Typically, negative samples (BV—) show quenched
nanoconjugates due to nonradiative energy transfer caused by the affinity between mAb-QDs
and the GO-coated microwell. In contrast, positive samples (BV+) exhibit strong
fluorescence, which can be quantified, as the SLD/mAb-QDs complex lacks affinity for the
GO-coated microwell. Taken with permission from % Copyright © 2021 American Chemical
Society

3.2. DATASET ARRANGEMENT

The dataset was generated based on fluorescence quenching ratios measured using
the nanophotonic immunoassay: /1/ly. Here, Iy denotes the fluorescence intensity of
the sample at time 0, and Ir represents the intensity at time /. Data were collected at
5-minute intervals over 120 minutes,* resulting in a matrix with 162 rows and 20
columns, 162 representing the number of samples and 20 corresponding to the
measurements (features) of the //Ip values. This data series is available on the GitHub

repository, as shown in Figure 16 A.

This series of data is publicly available on GitHub repository. *°
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To analyze the temporal patterns in the collected data and identify optimal time
intervals for binary classification (BV+ or BV-), we divided the dataset into four
groups: Gi, Gz, G3, and Gs. Each group consists of five measurements representing
25-minute intervals. Thus, G covers the first 25 minutes, G> covers 25 to 50 minutes,
and so on, covering the entire 120-minute experimental period. A schematic

illustration of this partitioning is provided in Figure 16 B.

We also explored the possibility of using 20 and 30-minute time intervals for the
groups (See Tables 11 -12 in Appendix); however, the groups with 25-minute

intervals proved to be more suitable.

Time interval

t1 tp i3 20

Figure 16. A. Dataset matrix B. Dataset splitting.

3.2.1. Normalization
Prior to the training of the neural architectures, the data set was normalized according
to Equation 1, as this contributes to the convergence of the networks and thus to the

significant improvement of the results.
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here x is the input data, u is the mean and o the standard deviation of the fluorescence

quenching levels of a given sample.

3.3. 2-D VISUALIZATION OF THE DATA

Prior to training the neural network architectures, we used principal component
analysis (PCA) to reduce the dimensionality of the data and create a 2D distribution
plot. This approach enabled us to observe correlations in the data based on their

analytical behavior.

A script for PCA as well as fluorescence level data was shared on GitHub repository.
50

3.4. TRAINING PROCESS

The performance of the neural network architectures was assessed using the K-fold
cross-validation technique. This method ensures a robust and generalized evaluation
by employing various combinations of training and validation data at each step. The
dataset was divided into percentages of 70%, 15%, and 15% for training, validation,
and testing, respectively. Figure 12 in Chapter 2 provides a visual representation of
this technique. Given the volume of our data, K-fold cross-validation was most
effective with k = 10, meaning the data were divided into 10 folds. With 54 positive
and 108 negative samples, each fold contained 10 negative and 5 positive samples.
This partitioning was essential for accurately interpreting the confusion matrices later

in Chapter 4.

3.4.1. ANNs implementation
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Neural network architectures, including MLPs, LSTMs, and CNNs, were trained as
supervised learning tasks, °! with each sample labeled as either BV+ or BV- according

to the Amsel criteria. 2°

In the developed script, positive samples (BV+) were
represented by a vector of ones (54 x 1) and negative samples (BV-) by a vector of
zeros (108 x 1). These vectors were combined to form a new vector of dimensions

162 x 1.

Model performance was optimized by adjusting various hyperparameters such as the
number of layers, neurons, activation functions, and regularization rates (see Table

2).

3.5. Feature selection.

After identifying the optimal architecture for the BV classification task, we utilized
1D-CNN to emphasize the most relevant features of the data and identify the optimal
time interval. We used the data groups from the PCA analysis Gi, G2, G3, and Gs. To
maximize dataset, use and understand group behavior, we implemented the 1D-CNN
model and systematically combined the four individual datasets. For example, Gi>
represents the combination of groups G and G, while G2 3 denotes the merger of G»

and Gs, and so on.

3.6. Determination of clinical sensitivity and specificity.

The sensitivity, specificity, precision, and accuracy of our model were calculated
based on the counts of false positives, false negatives, true positives, and true
negatives from the classification results. We used the Python library sklearn.metrics

in our script, >

which applies the formulas outlined in Equations [4-7]. Additionally,
we computed the F1 score, an evaluation metric that combines precision and

sensitivity (or recall), as specified in Equation [8].
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Chapter 4.

Results and discussion

As previously discussed, using the Amsel criteria as a reference for BV determination,
BV was diagnosed with clinical specificity and sensitivity of c.a. 96 %, respectively, by
means of a conventional analysis of the data offered by our real-time immunoassay.?
Following the methods detailed in the Experimental Section, we demonstrate that the
series of data delivered by a real-time immunoassay can be useful to feed artificial neural

networks and enhance the specificity and sensitivity.

Firstly, PCA allowed for the visualization of the 2D distribution of our data set as a
function of the principal components over the execution of the nanophotonic
immunoassay. Figure 17 illustrates how the samples correlate with each other throughout
time. In particular, we observed that the G4 group composed by the last time interval (95
- 120 minutes) displays a clear division between the BV+ and BV- samples. The use of
the nearest centroid classifier > allowed us to quantitatively confirm that, over time, the
dataset shows a marked difference between the BV+ and BV- classes. This was
evidenced by the fact that the separation between the centroids of each class increased

over time, reaching a maximum separation at 120 minutes.

This observation was a starting point to determine an optimal interval objectively.
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Figure 17. PCA and distances between the classes BV+ and BV- (for the complete data and for
different times data sets).

Table 2 presents the performance results of the 24 neural networks assessed in this study, as
detailed in the Experimental Section. The 1D-CNN model, which features two 1D-CNN
layers with 20 neurons each in the first and second hidden layers, and a third layer with 20
fully connected neurons, emerged as the most effective for BV diagnosis. This model
achieved a perfect accuracy rate of 100% in both validation and training stages. Initial
training results, with 70% of the data allocated for training, 15% for validation, and 15% for

testing, also showed optimal performance (see Figure 19 and Table 6).

Table 2. Performances of the tested architectures assessed with 10-fold cross-validation.

Hidden Hidden Hidden

e il layer 2 ey Accuracy Accuracy in Sensitivity Specificity
N° Dropout Dropout Dropout  in training validation in all data in all data
Number of Number of Number of
(%) (%) (%) (%)
neurons neurons neurons
ég MLP (Multilayer Perceptron)

1 FCL: 10 0 FCL: 50 0 0 0 92,5 87.5 92.6 83.3
2 FCL: 20 0 0 0 0 0 98.4 96.6 98.1 98.3
3 FCL: 20 0 FCL: 20 0 0 0 100.0 96.6 99.4 99.8
4 FCL: 20 0.1 FCL: 20 0.1 0 0 100.0 97.3 99.4 99.8
5 FCL: 20 0.2 FCL: 20 0.2 0 0 100.0 96.6 99.2 99.8
6 FCL: 20 0.3 FCL: 20 0.3 0 0 100.0 96.6 99.1 99.8
7 FCL: 30 0 FCL: 0 0 0 0 99.3 96.6 99.0 99.2
8 FCL: 30 0 FCL: 30 0 0 0 100.0 96.6 99.2 99.8
9 FCL: 30 0.1 FCL: 30 0.1 0 0 100.0 97.3 99.4 99.9
10 FCL: 30 0.2 FCL: 30 0.2 0 0 100.0 98.0 99.6 99.9
11 FCL: 30 0.3 FCL: 30 0.3 0 0 99.3 98.0 99.2 99.9
0 FCL: 50 0 0 0 95.5 93.4 96.3 96.3

LSTM (Long-Short Term Memory)
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13
14
15
16

XX

21
22
23
24

LSTMs: 20 0 FCL: 20 0 0 0 100.0 98.0 99.6 99.9
LSTMs: 20 0 LSTMs: 20 0 FCL: 20 0 100.0 98.0 99.6 99.9
LSTMs: 30 0 FCL: 20 0 0 0 100.0 98.0 99.6 99.9
LSTMs: 30 0 LSTMs: 30 0 FCL: 20 0 100.0 97.3 99.4 99.9
BLSTM (Bidirectional Long-Short Term Memory)
B- LSTM:20 0 FCL: 20 0 0 0 100.0 97.3 99.4 99.9
B- LSTM:20 0 B- LSTM:20 0 FCL: 20 0 100.0 97.3 99.4 99.9
B- LSTM:30 0 0 0 0 0 100.0 97.3 99.4 99.9
B- LSTM:30 0 B- LSTM:30 0 FCL: 20 0 100.0 98.0 99.4 99.9
=0
> CNN (Convolutional)
s
=0
CNN:10 0 FCL:50 0 0 0 88.5 87.3 91.3 923
CNN:10 0 FCL: 30 0 0 0 91-4 93.6 93.4 95.6
CNN:20 0 FCL: 20 0 0 0 100.0 99.3 100.0 99.3
CNN:20 0 CNN:20 0 FCL: 20 0 100.0 100.0 100.0 100.0

Input Cell . Output Cell . Hidden Cell () Memory Cell Q) Convolution or Pool . Bidirectional Cell

Note: Architectures were trained using Adam optimizer > with a batch size of 16 and

200 epochs. It was set and initial learning rate of 0.001.

Moreover, as shown in Table 3, LSTM and 1D-CNN architectures demonstrated the
highest accuracy in diagnosing BV. The mean F; score >* for the LSTM architecture
was 0.97, while the CNN architecture achieved a mean F; score of 1.0. Additionally,
the B-LSTM architecture obtained an F; score of 0.96, and the MLP architecture
scored 0.92. These findings align with previous research comparing CNNs, MLPs,
and LSTMs for time series forecasting, which indicated that CNNs and LSTMs

generally performed better in classification tasks than MLPs. 3-8

Table 3. F1 score for each fold in the MLP, LSTM, B-LSTM and 1D-CNN
architectures

Fold = MLP | LSTM B-LSTM 1D-CNN
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F1 score

1 1.00 | 1.00 1.00 1.00
2 1.00 | 1.00 1.00 1.00
3 091 | 1.00 0.91 1.00
4 0.89 | 0.89 0.89 1.00
5 0.83 | 0.91 0.91 1.00
6 091 | 1.00 1.00 1.00
7 091 | 0.89 1.00 1.00
8 0.80 | 1.00 1.00 1.00
9 1.00 | 1.00 0.91 1.00
10 091 | 1.00 1.0 1.00
Mean @ 0.92 | 0.97 0.96 1.00

As discussed above, PCA demonstrated that group G4 generated less overlapping area
between BV+ and BV- samples. This is reflected in a clear boundary between BV+
and BV- groups. This finding is consistent with the validation and training
percentages (see content highlighted in bold in Table 4), as well as with the
conclusions drawn in the conventional method for BV diagnosis based on a
concentration threshold, where the biosensing platform showed superior
performance, that is, only considering those data collected at the end of the

immunoassay (120 minutes).

Table 4. Performance of the best architecture, the 1D-CNN, for the time groups Gi,
G2, G3 and G4. The most relevant data are marked in bold.

Accuracy Acciunracy Sensitivity | Specificity
in training validation in all data in all data
arowp 1 (%) %) (%) (%)
0
G, 81.7 70.0 76.0 82.5
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G, 84.7 77.3 76.8 87.9
Gs 90.8 88.0 83.5 94.5
Gy 98.7 97.3 99.6 98.0
Grosa 100 100 100 100

We also explored the performance of our Al-assisted approach by using combinations

between groups, which showed that group Ga, offered the highest percentages in

training and validation accuracy, when compared with the other group combinations,

see Table 5. Actually, the performance with G4,1 was better than that obtained using

the G4 group; particularly, in terms of training and validation accuracy, G4 obtained

values of 98.7% and 97.3% respectively, while Ga,; obtained 99.8% and 99.3%,

respectively, suggesting that the combination of initial and final measurements

provided the most relevant information in this Al-assisted approach. A visual

representation of this experiment can be found in Figure 18.

Table 5. Performance of the 1D-CNN architecture fed with different combinations
of data groups. The most relevant data are marked in bold.

Accuracy | Accuracy
in in Sensitivity | Specificit
Sl training | validation (%) i (%) g
(%) (%)
Gy, 89.96 74.66 72.0 78.9
Gy 3 93.87 87.33 86.0 88.0
Ga3 93.19 86.66 88.0 90.0
Ga,a 98.97 96.66 96.0 98.0
Gsa 99.0 97.30 98.0 96.0
Gya 99.8 99.3 98.00 97.0
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Figure 18. Bar chart depicting the performance of the 1D-CNN architecture fed with
different combinations of data groups.

Confusion matrices in Figure 19-23, aside from being an evaluation metric, provided
a graphical representation of the model’s performance in a classification task, i.e.,
Figure 19 shows that the 1D-CNN architecture achieves 100% accuracy in the
classification task since it did not obtain false positives or false negatives in any of
the 10 folds.
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Figure 19. The resultant confusion matrix of the training, 70% of the data was used for the
training set, 15% for the validation set, and 15% for the testing set.

Table 6. Results of the training process

Accuracy
Training | Validation | Testing | Sensitivity | Specificity | Fi score
1.00 1.00 1.00 1.00 1.00 1.00

52



Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 10

Negative
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Fold 6 Fold 7 Fold 8 Fold 9 Fold 10
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Predicted label Predicted label Predicted label Predicted label Predicted label

Negative Positive  Negative Positive Negative Positive  Negative Positive Negative Positive

Figure 20. Confusion matrices for each fold in MLP architecture. MLP architecture
made a classification without errors in folds 1 and 2, whereas in folds 3, 6, 7 and 10, it
classified a negative sample as positive, in fold 4 it classified a positive sample as negative,
in fold 5 it presented two false positives and finally, in fold 8 it presented a false positive
and a false negative.

Table 7. F, Score for each fold in MLP architecture.

Fold 1 2 3 4 5 6 7 8 9 10 Mean
F1

1.00 1.00 091 0.89 083 091 091 0.80 1.00 @ 0.91 0.92
Score
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Figure 21. Confusion matrices for each fold in CNN architecture. 1D-CNN architecture
achieves 100% accuracy in the classification task since it did not obtain false positives or
false negatives in any of the 10 folds.
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Table 8. F; Score for each fold in CNN architecture.

Fold 1 2 3 4 5 6 7 8 9 10 Mean
F1

Score

1.00  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Negative

True label

Positive

10
Negative 8
2 6

=
3 4

=
Positive 2
0

Predicted label Predicted label Predicted label Predicted label Predicted label

Negative Positive  Negative Positive Negative Positive  Negative Positive Negative Positive

Figure 22. Confusion matrices for each fold in LSTM architecture. LSTM architecture
in folds 1, 2, 3, 6, 8, 9 and 10 correctly classifies both the 10 negative samples and the 5
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positive samples. On the other hand, in fold 4 ,out of 5 positive samples, it classifies 1 as
negative and in fold 5 out of 10 negative it classifies 1 as positive.

Table 9. F; Score for each fold in LSTM architecture.

Fold 1 2 3 4 5 6 7 8 9 10  Mean
1.00  1.00 1.00 089 091 1.00 0.89 1.00 1.00 1.00 0.97

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 10
Negative
]
Ke)
©
@
=
=
Positive
Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 10
Negative 8
3 6
©
@ 4
=
Positive 2
Q

| |
Predicted label Predicted label Predicted label Predicted label Predicted label

Negative Positive  Negative Positive Negative Positive Negative Positive Negative Positive

Figure 23. Confusion matrices for each fold in B-LSTM architecture.

Table 10. F; Score for each fold in B- LSTM architecture.

Fold 1 2 3 4 5 6 7 8 9 10 Mean
F1

1.00  1.00 0.91 0.89 091 1.00 1.00 1.00 @ 0091 1.00 0.96
Score
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Chapter 5

Conclusions

In this study, we confirmed that the clinical sensitivity and specificity of a real-time
biosensing system can be enhanced by implementing neural networks, with CNN and
LSTM architectures outperforming MLPs in classifying time-varying datasets due to
their ability to capture and retain time-series features. This Al-assisted approach not
only removed the need to establish biomarker concentration thresholds for diagnosis
through a real-time immunoassay but also significantly boosted clinical sensitivity

and specificity, achieving up to 100% in binary classification.

Additionally, we demonstrated that machine learning techniques are valuable for
identifying optimal testing times in a real-time biosensing platform. Although the
increase in sensitivity and specificity from 96% to 100% might seem modest, it is
particularly significant when applied to large populations, where it could lead to
accurate diagnoses for hundreds or even thousands of patients. Overall, by harnessing
real-time data on the binding interactions between biorecognition elements and
analytes, this Al-assisted approach can be adapted for diagnosing other medical

conditions using real-time immunoassays targeting specific biomarkers.
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Chapter 6

Appendix

6.1. Performance of the 1D-CNN architecture fed with groups of 20 and
30 min intervals.

Table 11. Performance of the 1D-CNN architecture fed with groups of 20 min

intervals.
AugsuinGy | SEENESY | g | Spesist
in in . .
. Sy in all data | in all data
Group | training | validation (%) (%)
(%) (%)
G, 79.8 68.3 60.0 50.0
G, 83.4 74.6 81.0 80.0
G, 90.6 88.0 80.0 92.0
G, 89.0 84.6 86.9 80.0
Gs 98.7 97.3 98.0 96.0
Table 12. Performance of the 1D-CNN architecture fed with groups of 30 min
intervals.
Acguracy Acguracy Sensitivity | Specificity
in in . )
Group | (raining | validation | ™ 8.101 Lo 8.101 S
| o | W o
G, 83.8 71.3 80.0 20.0
G, 91.4 89.3 84.0 92.0
Gs 92.9 87.3 100 80
Gy 98.0 97.0 99.0 94.0
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6.2. Image Segmentation Process Using U-NET Architecture

U-NET is a neural network model designed for computer vision tasks, specifically
for segmentation problems.

Dr. Mariana Avila developed a microfluidic analytical device (uPAD) that determines
if a liquid sample contains a specific analyte by measuring the quenching rate (see
Figure 3a). To achieve this, Mariana measures intensity density in specific regions of
the device as shown in Figure 3b and calculates the quenching rate according to the
mathematical expression [10]. The goal of this part of the project is to implement a
neural network that can identify the areas of interest for calculating the fluorescence

quenching rate simply by inputting a set of images into the network.

M; — M;

Quenching ratio = m

[10]

A

Figure 24. Paper-Based Microfluidic Analytical Device. A. The operation of this system.
It involves a liquid sample flowing through the main channel to reach the Control (C) and
Test (T) zones. The fluid does not completely cover the device; the upper ends of the Control
and Test zones are mostly left dry. B. Measurements. M, M?, and M3 correspond to intensity
density measurements of the wet areas in the Control and Test zones, respectively, while M3
refers to the dry area.
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Figure 25. Segmentation Process. The first step for the network to determine the presence
of an analyte is to recognize the shape of the microfluidic device. To achieve this, the network
is trained with images like the one on the left (A). Subsequently, to differentiate between the
dry areas (painted white) and the areas with the liquid sample, training images like the one
on the right (B) are used.

|

AAAAV YA

Figure 26. First predictions of the uPAD shape

6.3. Kinetic Binding Constants

Kinetic binding constants, known as the association constant (Ka) and the dissociation

constant (Kd), are fundamental parameters in the process of bio-recognition.

Association Constant (Ka)
The binding process occurs when a protein and its respective ligand collide with the
correct orientation. The association constant describes the rate at which the direct

reaction occurs to form the protein-ligand complex. This rate depends on the
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concentration of the protein and the ligand and is measured in units of inverse molar

concentration per second.

Dissociation Constant (Kd)
This constant describes the rate at which the protein-ligand complexes dissociate.
This rate is independent of the concentrations of free proteins and ligands in the

system and is measured in s.

Measuring the kinetic binding constants such as Ka and Kd is crucial in biosensing,
as the affinity of antibodies for the target analyte is essential for ensuring high

sensitivity during detection.

The developed network uses preprocessed measurements to fit a function that allows
associating the parameters with the association and dissociation constants. In this

case, the function used is known as "One Phase Association” (see Figure )

B ! Binding constants —

mean 4.682804e-01 4.127477e-01 4.095676e-01 3.598106e-01 3.262865e-01 3.266664e-01 2.884207e-01 &
std 1.656373e-01 1.3499372-01 1.426480e-01 1.268351e-01 1.208701e-01 1.2374622-01 1.238556e-01 Data adjustment
min 3.120000e-11 6.250000e-11 1.250000e-10 2.500000e-10 5.000000e-10 1.000000e-09 2.000000e-09

CONACYT

Figure 27. Graphical interface developed for determining association and dissociation
constants in H-IgG samples, with association and dissociation constants displayed on the left
side.
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25% 4.017445e-01 3.722670e-01 3.665704e-01 2.890543e-01 2.57409%-01 2.91898%-01 2.189117e-01 0.7
50% 5.327525¢-01 4.467202¢-01 4.447432e-01 3.887658¢-01 3.578175e-01 3.518707e-01 3.004980e-01
75% 5.846858e-01 5.065205e-01 5.010275e-01 4.465781e-01 4.180188e-01 4.185185e-01 3.832071e-01 0.6 4
max 6.581875e-01 5.632300e-01 5.687745e-01 5.272163e-01 4.686680e-01 4.648505¢-01 4.565075e-01
5 054
Binding constants: 5 sirgecs
Measurements  Ka (M~-1 §~-1) Kd (S*-1) KD (M) R2 score 2 04l
1 8.266E+08 (£5.672E-02) 5.439E-03 (£2.6906-01) 1.316E-11 (24.221E-01) 0.859E-01 z 0
2 4.331E+08 (+5.018E-02) 1.012E-02 (+1.3426-01) 3.369E-11 (£2.911E-01) 9.6156-01 S . Cl=3.12e-11
3 1.810E+08 (£5.541E-02) 8.742E-03 (£1.4416-01) 7.447E-11 (£2.978E-01) 0.780E-01 € 034 C2= 6.25¢-11
4 5.813E+07 (+5.642E-02) 8.369E-03 (£0.797E-02) 1.967E-10 (£2.234E-01) 9.740E-01 3 :
5 2.383E+07 (£6.075E-02) 8.790E-03 (8.234E-02) 5.107E-10 (£2.165E-01) 9.774E-01 £ -+ €3=1.25e-10
5 1.368E+07 (+6.265E-02) 1.007E-02 (+8.514E-02) 1.105E-09 (£2.616E-01) 9.519E-01 2 024 - C4=12.5e-10
7 4.010E+06 (£7.413E-02) 7.746E-03 (£7.675E-02) 3.080E-09 (+2.422E-01) 9.840E-01 C5= 5e-10
Average 1.191E+08 (+5.285E-01) 8.973E-03 (£7.098E-02) 8.335E-10 (£5.860E-01) 0.732E-01
0.1 - C6=1e-09
C7=2e-09
Required t\mﬁ: t 0.0 L . . . . . .
0.347 seconds 0 20 2 60 80 100 120
1 ‘ ‘ 4 T Time (minutes)

& Load data Calculate Biophotonic




