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Resumen

Este trabajo integra técnicas de visión por computadora y control no lin-
eal para el desarrollo de sistemas robóticos autónomos, con aplicaciones
en la creación de trayectorias en diferentes ambientes, como en un cul-
tivo de fresas. Se explora el Image-Based Visual Servoing (IBVS) para
guiar el movimiento del robot utilizando información visual de imágenes,
ajustando su trayectoria de manera dinámica. También se aborda la es-
timación de la homografía entre imágenes para reconstruir movimientos
relativos, destacando la importancia de una correcta selección de pun-
tos clave. Finalmente, se analiza el uso de Nonlinear Model Predictive
Control (NMPC) para optimizar el comportamiento del robot en tiempo
real, ajustando las velocidades lineales y angulares según el modelo y las
predicciones de su movimiento futuro.

Palabras clave: Homografía, Tiempo Real, Control Robótico Autónomo,
Visión por Computadora, NMPC.
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Abstract

This work integrates computer vision and nonlinear control techniques for
the development of autonomous robotic systems, with applications in tra-
jectory creation in different environments, such as in a strawberry field.
Image-Based Visual Servoing (IBVS) is explored to guide the robot’s
movement using visual information from images, dynamically adjusting
its trajectory. The estimation of homography between images is also
addressed to reconstruct relative motion, highlighting the importance of
proper keypoint selection. Finally, the use of Nonlinear Model Predictive
Control (NMPC) is analyzed to optimize the robot’s behavior in real time,
adjusting linear and angular velocities based on the model and predictions
of its future movement.

Keywords: Homography, Real-Time Optimization, Autonomous Robotic
Control, Computer Vision, NMPC.
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Chapter 1

Introduction

This chapter addresses the application of visual control in robotics, empha-
sizing robot autonomy and precision in dynamic and unstructured environments.
Within this context, applications in the field of agricultural robots are also ex-
plored, where challenges include interaction with natural and changing environ-
ments, as well as the need to operate efficiently and accurately. The field of
robotics is advancing rapidly, driven by the integration of engineering, artificial
intelligence, and automation technologies. Finally, the fundamental approaches of
this thesis are presented, including the main objectives and the hypothesis guiding
the research.

1.1 Background

The development of this work finds its origin in the interest to deepen the
knowledge of the field of robotics, to specialize in this area of growing technolog-
ical relevance. Robotics represents a multidisciplinary discipline that combines
concepts from engineering, artificial intelligence, and automation, and whose im-
pact is reflected in various sectors, including industry, healthcare, agriculture, and
transportation. Within this field, one aspect that aroused the most interest was
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Introduction

vision due to its fundamental role in the interaction between robotic systems and
their environment.

Vision is an essential tool in everyday human life, allowing us to perceive and
analyze our surroundings, identify obstacles, and make decisions based on what
we observe. For example, in seemingly simple tasks like writing, we use our vision
to locate a pencil, pick it up, and direct it towards a sheet of paper to act. This
process, though intuitive for humans, involves a complex system of perception
and coordination that operates precisely and in real-time. This reasoning raised a
central question in the development of this work: How can this visual capability
be translated to the realm of robotics?

As part of machine vision systems, visual control allows robots to analyze
visual data to make real-time adjustments during task execution. Implementing
this approach contributes to greater precision and flexibility in interactions with
the environment, representing a significant advance in areas such as industrial
automation, autonomous systems, and service robotics.

Currently, numerous studies focus on visual control for different types of en-
vironments. Cameras can be used to create detailed maps, allowing the robot to
localize itself based on these maps, as is the case of Simultaneous Localization and
Mapping (SLAM) technology. In the paper Deng et al. (2020), it is demonstrated
how SLAM is used specifically in rescue robots, enabling them to navigate and
operate effectively in complex and unfamiliar environments, thus improving their
ability to perform tasks autonomously in emergencies. Another work that focuses
on point cloud mapping and applies control in conjunction with vision can be
found in Ramírez et al. (2024). In this case, control is used to mitigate problems
such as information loss and data transmission delays.

Visual control has also found prominent applications in industrial robotics.
The work of Sun and Lin (2020) presents an eye-in-hand robotic arm for object
recognition and grasping tasks. In this approach, RGB-D cameras are used to
obtain 2D images and depth data, which are then processed by convolutional
neural networks (CNNs) to perform instance segmentation. Visual control has
also shown great potential in medical robotics. In the paper Lai et al. (2023), a
novel approach is presented to guide a wired soft robot in a static environment
using the Simulation Open Framework Architecture (SOFA). Figure 1.1 shows

2
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the two robots, whose designs differ from each other because they are aimed at
achieving different goals. However, both share the need to use a camera for proper
operation, using different vision techniques.

(a) (b)

Figure 1.1: (a) CAD schematic of the soft robotic system. The soft robot has a total
of six cable joints. Notation of frames: B: base; M : middle; T : tip; and C: camera.
The camera is located in the reference frame C, which corresponds to a small camera
mounted on the robot. (Lai et al., 2023). (b) The experiment environment. A Hiwin RA
605 robotic arm and several objects placed on the workbench are shown for detection
(Sun & Lin, 2020).

1.1.1 Agricultural Robotics

In order to define the possible applications of the robot developed in this
work more precisely, it was decided to align it with one of the Strategic National
Programs (PRONACES) focused on food sovereignty (SECIHTI, 2025). In this
context, an agricultural robot was proposed, oriented toward autonomous naviga-
tion within a strawberry crop, to support tasks such as monitoring, data collection,
and potentially, precision agriculture operations.

Agricultural robotics has emerged as a key tool to address the challenges of
food production, such as increasing demand, labor shortages, and the need for
more sustainable practices. Such robots are designed to perform specific tasks,
such as planting, crop monitoring, harvesting fruits and vegetables, or even the
precise application of fertilizers and pesticides. For example, Pire et al. (2019)
describes a robot designed to weed soybeans. On the other hand, Xiong et al.
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(2020) and Feng et al. (2012) discuss the development of robots focused on straw-
berry harvesting. The former operates in an unstructured environment within
tabletop strawberry crops, while the latter is implemented in a more structured
environment, using a white background to facilitate the detection of strawberries.

The purpose and design of this work will be defined according to the oper-
ating environment, which can be an open field (Figure 1.2 (a)), a raised table
cultivation system (Figure 1.2 (b)), or a controlled laboratory (Figure 1.2 (c)).
Furthermore, not only the environment must be considered but also the type of
crop to be monitored and harvested. In the present work, one of the objectives
is the monitoring of strawberry crops, a fruit characterized by its small size, deli-
cate biometric property, and color changes associated with its degree of ripeness.
Therefore, it is essential to accurately estimate the maturity of the fruit, as de-
tailed in the paper Zheng et al. (2021).

(a) (b) (c)

Figure 1.2: Examples of agricultural robots: a) robot designed for weeding soybean
crops (Pire et al., 2019); b) robot operating in a strawberry growing tunnel (Xiong et al.,
2020); c) modular robot specializing in strawberry harvesting (Feng et al., 2012)

1.1.2 Laboratory background

Previously, the Perception and Robotics Laboratory (LAPYR) worked on an
autonomous mobile robot to detect strawberries and estimate their maturity in a
planting environment. In Mejía et al. (2023) and Jiménez et al. (2023), an ideal
strawberry inspection system was proposed for planting in ridge-row plantations.
A rover (mobile robot) equipped with a vision system, developed in the laboratory,
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is used. The rover navigates through rows between the strawberry ridges while
detecting ripe fruits and constructing a map with their locations (see Figure 1.3).

The strawberry detection system consisted of two tasks: a prediction through
image processing and a deep learning detection approach. In the image processing,
the estimation of strawberry ripening was proposed, differentiating between green
color (immature strawberries) and red color (ripe strawberries), subsequently,
the MobileNetV2 neural network was employed to attain improved performance
results.

Figure 1.3: The rover built in LAPYR navigates through a strawberry crop. It detects
the strawberries, determines their ripeness, locates them along the ridges, and obtains
a map of the distribution of strawberries in space (Mejía et al., 2023).

Based on the above, the aim is to develop an autonomous vehicle capable
of navigating using visual memory, integrating this technique with the advances
previously achieved in the prior work.

1.2 Problem definition

In the development of autonomous vehicles, accurate navigation in unstruc-
tured environments is a crucial challenge, as seen in Bai et al. (2023). This process
relies on the system’s ability to interpret its environment through sensors or cam-
eras, allowing real-time decisions to be made. In this context, the use of computer
vision techniques, such as homography-based navigation (Delfin et al., 2016), of-
fers an approach to estimating vehicle motion and relative position, using only
image-to-image comparison.
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Despite recent advances, current methods for autonomous navigation face
significant limitations in terms of accuracy and robustness. In particular, in sce-
narios where traditional sensors such as LiDAR or GPS are not feasible or reliable
(e.g. indoors or in environments with interference), alternatives based solely on
visual information are required (Zhong et al., 2022). However, motion estimation
using homographs presents challenges related to variations in lighting conditions,
changes in terrain texture, and errors in the correspondence of key points between
images.

1.3 Justification

Mexico, as a megadiverse country, has a highly relevant agricultural sector, not
only in economic terms but also in social and environmental terms. Agriculture
supplies the local population with essential foodstuffs for food security and plays
a crucial role as a source of raw materials for multiple industries worldwide. This
sector is fundamental for the economic development of rural communities, as it
encourages families to stay rooted in their localities, promotes employment, and
contributes to preserving natural resources.

Agricultural production in Mexico depends on various industrial inputs that
optimize the cultivation and harvesting processes. Among these inputs are fer-
tilizers, herbicides, pesticides, and specialized machinery, which have been key to
increasing crop efficiency and sustainability. However, this technological depen-
dence also poses significant challenges, as it is associated with high costs and the
environmental impact generated by the excessive or inappropriate use of these
products (SADER, 2023).

In addition, the sector faces a number of challenges that affect its efficiency
and sustainability. Problems such as soil erosion, which reduces the productive
capacity of land; the negative impact of pests that can devastate entire crops; the
contamination of soils and water bodies due to the intensive use of agrochemicals;
and, increasingly alarmingly, labour shortages in agricultural activities, represent
critical barriers to the growth of the sector. The lack of agricultural workers limits
the ability to perform key tasks such as timely harvesting of produce, which in
turn can lead to increased food waste and significant economic losses (Economista,
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2023).

In response to these challenges, this project proposes the development of an
autonomous robotic vehicle designed to assist in the navigation task within a
strawberry crop. Its implementation aims to reduce the physical workload of
employees for repetitive and demanding tasks, and the tasks could also include
preventive disease monitoring and harvest tracking for short- and medium-term
predictions.

1.4 Objectives

1.4.1 General Objective

Developing a navigation planning algorithm for unmanned autonomous ve-
hicles to optimize and facilitate primary food production, specifically strawberry
cultivation.

1.4.2 Specific Objectives

Extracting of information from a vision sensor

• Feature detection: Use of computational methods to identify key points in
images, such as corners, edges, or textures.

• Image processing: Development of algorithms to transform and analyze the
captured images, allowing them to be compared with the current camera
view. This will enable the identification of point correspondences between
both images, facilitating more accurate analysis and decision-making.

• Visual Feedback: Implementation of control systems based on the informa-
tion provided by vision sensors, where the data obtained is used in real-time
to adjust the behavior of the autonomous vehicle.

Design of Visual Control Strategies

• Path planning: Route planning based on visual and other sensor data, con-
sidering physical constraints, vehicle dynamics, and possible obstacles in the
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environment.
• Homography-based control: Application of homography theory to estimate

the relative motion between the vehicle and a plane in the environment,
using consecutive images to guide robot navigation.

Simulation Implementation

• Use of Gazebo with ROS Noetic: Integration of the Gazebo simulator with
the ROS Noetic framework to model the environment and simulate sensors
and actuators.

• Control implementation: Image-Based Visual Servoing (IBVS) and Nonlin-
ear Model Predictive Control (NMPC) were implemented within the simu-
lation to evaluate and compare their performance.

• Testing and adjustment: Initial testing to assess system performance, identi-
fying faults or areas for improvement, and adjusting parameters as necessary.

Testing in relevant environment

• Initial laboratory testing: Execution of controlled tests in a laboratory en-
vironment to verify basic functionality and resolve initial problems before
moving on to more complex testing.

1.5 Hypothesis

It is expected that the use of visual control strategies will improve the motion
accuracy of the autonomous vehicle for navigation between crop rows, enabling
trajectory generation. This hypothesis will be evaluated through simulations and
preliminary laboratory testing.

8



Chapter 2

State of the Art and Theoretical Frame-
work

This chapter discusses visual servoing, a technique that combines image pro-
cessing and control algorithms to generate motion in a robot using visual infor-
mation. A detailed analysis of the main approaches in the field of visual servo-
ing is presented, with an emphasis on Image-Based Visual Servoing (IBVS) and
Position-Based Visual Servoing (PBVS). Both paradigms represent the fundamen-
tal foundations of visual control and are essential for understanding the hybrid
methods that have emerged as an alternative in more complex applications. In
the context of hybrid methods, the study of the estimation matrix, the funda-
mental matrix, and the homography matrix is introduced. These matrices are
essential mathematical tools in visual processing as they allow key information
about geometric transformations between consecutive views to be extracted. In
particular, these matrices are essential for decomposing and estimating rotation
and translation parameters. In the end, it is analysed how these geometric trans-
formations are integrated into the construction of the homogeneous matrix, which
fully describes the spatial relationship between the robot and its environment.
This approach provides a solid basis for applications in navigation, robotic ma-
nipulation, and other tasks that require accurate interaction with the environment
based on visual information.

9



State of the Art and Theoretical Framework

2.1 Visual Control

Visual control is a branch of robotics that combines image processing and
automatic control techniques to guide robot movement. This approach allows
a robotic system to interpret visual data in real-time, making it suitable for
autonomous navigation, object tracking, and interaction with dynamic environ-
ments. This can be further analyzed in Robinson et al. (2023).

An example of object tracking can be the implementation of visual control
with image moments, where an observer is applied to track a vehicle with a drone,
Kumar et al. (2023), and Shi et al. (2024); the application of image moments can
also be seen in Tahri and Chaumette (2005). Another example is the method of
navigation based on pre-registered keyframes, where known landmarks are used
for localization (see George and Mazel (2013)). One of the things that you want to
control with visual control is velocity (see Haviland et al. (2020)) or acceleration
(see Mohebbi et al. (2014)).

All vision-based control schemes aim to minimize an error e(t), which is typ-
ically defined by

e(t) = s(m(t), a)− s∗. (2.1)

The vector m(t) represents a set of image features extracted from the visual
data at time t (e.g., the image coordinates of points of interest or the centroid
of an object). These image measurements are used to compute a vector of k

visual features, s(m(t), a), where a is a set of parameters that may encapsulate
additional system knowledge (e.g., approximate intrinsic camera parameters or
3D models of objects). The vector s∗ denotes the desired values of the visual
features, serving as a reference for the control system.

In robotics, camera control systems vary depending on their location and how
they are integrated into a visual servo system. There are two main configurations:

Eye-in-Hand camera: In this configuration, the camera is mounted directly
on the end of the robotic manipulator or mobile vehicle. As a result, the cam-
era moves along with the robot, allowing it to observe the environment from a
mobile perspective, as can be seen in Saviolo et al. (2024), where the camera is
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implemented on a drone, or in Sarabandi et al. (2022), where the camera is on a
robotic arm.

Eye-to-Hand camera: In this case, the camera is fixed in a static position,
usually on a table or in a space external to the robot. From this location, the
camera has a wide view that allows it to observe both the workspace and the
robot itself and the target; for example, in Li, Lai, and Pan (2024) and in Ghrairi
et al. (2024), the use of a camera in a fixed position that visualizes the robot’s
workspace can be seen.

This thesis focuses solely on the use of the eye-in-hand camera, as it offers
unique advantages for tasks requiring precise interaction with the environment,
such as path following, due to its dynamic perspective.

The most straightforward approach to control is to design a velocity controller,
eye-in-hand. To do this, we require the relationship between the time variation
of s and the camera velocity. Let the spatial velocity of the camera be denoted
by vc = (vc,ωc), in which Ls ∈ Rk×6 is named the interaction matrix related
to s. The term *feature Jacobian* is also used somewhat interchangeably in the
visual-servo literature.

ṡ = Lsvc, (2.2)

where vc is the instantaneous linear velocity of the origin of the camera frame
and ωc is the instantaneous angular velocity of the camera frame. In this context,
ṡ represents the time derivative of s, i.e., the rate of change of the visual features
over time.

Using (2.1) and (2.2), we immediately obtain the relationship between the
camera velocity and the time variation of the error:

ė = Levc, (2.3)

where Le = Ls. Taking vc as input to the robot controller, this relationship
forms the foundation of visual servo based on velocity. Finally, to compute the
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velocities, the Moore-Penrose pseudo-inverse is applied to the interaction matrix,
resulting in an approximation or estimate denoted L̂+

e . Here, λ represents a gain.
All of this can be seen in more detail in Chaumette et al. (2016), Chaumette and
Hutchinson (2006), and Chaumette (2020).

Using the notation, the control law is as follows:

vc = −λL̂+
e e. (2.4)

Traditionally, visual control is classified into two main approaches, as de-
scribed in the following.

2.1.1 Image-Based Visual Servo Control (IBVS)

The IBVS is a visual control approach that uses visual features extracted
directly from the image, such as points, lines, or edges, to compute robot control
commands by projecting them onto the camera plane. This method eliminates
the need to reconstruct 3D models or estimate the robot’s pose.

IBVS has been applied in a variety of contexts, such as the control of UAVs,
where it guides their movement solely from visual features (He et al., 2023). It
has also been used in conjunction with Reinforcement Learning to minimize the
error between current and desired visual features (Dani & Bhasin, 2023). In
cases of underactuated systems, such as quadcopters, it is combined with Model
Predictive Control (MPC) to translate visual commands into actions that respect
their physical and dynamic constraints (Roque et al., 2020) or an adaptive control
can be used as in the case of (Asl et al., 2014).

The core of IBVS is the interaction matrix, which relates the variation of image
features to camera motion. For a single point feature, the interaction matrix is
given by:

Ls =

[
− 1

Z
0 x

Z
xy −(1 + x2) y

0 − 1
Z

y
Z

1 + y2 −xy −x

]
(2.5)

where x and y represent the image coordinates of the point (in pixels or nor-

12



State of the Art and Theoretical Framework

malized coordinates, depending on the camera model), and Z denotes the depth of
the point in space, which corresponds to the distance between the camera and the
object. This matrix plays a fundamental role in computing the camera velocity
required to regulate the visual features towards their desired configuration.

2.1.2 Position-Based Visual Servo Control (PBVS)

In Position-Based Visual Servoing (PBVS), the controller uses the estimated
3D position and orientation (pose) of the target and the camera to generate control
commands. The error is computed in Cartesian space, typically as the difference
between the desired and actual 3D poses. This approach requires reconstructing
the position and orientation from visual features using geometric models.

PBVS has been applied in various scenarios, such as controlling cable-driven
parallel robots (Dallej et al., 2019) and robots using adaptive sliding mode control
(Zhu et al., 2024).

A fundamental component of PBVS is the position-based interaction ma-
trix, which describes the relationship between the camera velocity and the vari-
ation of the pose in Cartesian space. In general, for a system with six degrees of
freedom (6-DoF), the interaction matrix is given by:

Le =

[
−I3 [to]×

0 Lθu

]
, (2.6)

where I3 is the 3×3 identity matrix, and Lθu defines the rotational component
of the interaction matrix:

Lθu = I3 −
θ

2
[u]× +

(
1− sin θ

sinc θ
2

)
[u]2×. (2.7)

In this formulation, u is a unit vector representing the axis of rotation, and θ

is the angle of rotation around that axis, which together correspond to the axis-
angle representation of the relative orientation between the current and desired
poses.
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It is important to note that the structure of the interaction matrix Le varies
depending on the visual servoing approach—position-based or image-based—as
each framework relies on different reference quantities (pose vs. image features)
to describe the system’s dynamics.

2.1.3 Differences between IBVS and PBSV

Both approaches have specific applications depending on the system require-
ments and environmental constraints. For example, IBVS is preferred when work-
ing in unfamiliar or poorly structured environments, while PBVS is useful for tasks
that require high accuracy in the final pose.

IBVS PBVS
Domain Image space Cartesian space

Involved variables Visual feature coordinates
(x, y, Z)

Relative pose between
camera and target

Depth dependency (Z) High Low (but requires pose
reconstruction)

Complexity of Ls
Lower (directly computed

from features)

Higher (requires
transformations between

frames)

Robot trajectory Complex in 3D More predictable and
intuitive

Table 2.1: Comparison between IBVS and PBVS

2.2 Homography Matrix

The homography matrix is a fundamental concept in computer vision and
visual control, as it describes the geometric relationship between two planar views
of a three-dimensional scene. Mathematically, it is a projective transformation
that maps points on one image plane to another, which is especially useful when
working with cameras and flat surfaces. Roughly speaking, if two images capture
the same flat surface from different positions or angles, their corresponding points
are related through the equation:

x′ = Hx (2.8)
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Figure 2.1: Relationship between two cameras (C0 and Ci)through a homography (H).
This process is key in motion estimation and scene reconstruction.

where: x and x′ are the homogeneous coordinates of points in the 2D images.
H is the 3× 3 homography matrix. This matrix encapsulates information on the
rotation, translation, and scaling between the two camera views.

2.2.1 Relevance in Visual Servoing

In the context of visual servoing, the homography matrix plays a critical role,
particularly in applications such as autonomous navigation, pose estimation, and
object tracking. Key uses include:

1. Motion Estimation: The homography matrix enables the calculation of
camera motion relative to a fixed reference plane, which is essential for
adjusting the robot’s pose.

2. Image-Based Control: In image-based visual servoing (IBVS), the ho-
mography matrix facilitates the computation of visual errors directly from
image data, eliminating the need for 3D reconstruction.

3. Hybrid Control: In hybrid visual servoing approaches, the homography
matrix combines information from the image space and the Cartesian space,
improving accuracy and robustness.
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The homography matrix provides a robust framework for mapping 2D image
features to their counterparts in another view, making it a powerful tool for visual
servoing systems.

All this can be seen in works such as Wang et al. (2025) where a UAV-
based approach is proposed to measure bridge displacement, using four static laser
points as a reference and a homography transformation to correct the image. An
approach for homography estimation in robotic applications with known periodic
motions is proposed in de Marco et al. (2021), using the internal model principle
to model complex motions and design observers in the non-compact SL(3) group.

Recently, methods based on deep neural networks have revolutionised homog-
raphy estimation by automating the process of feature extraction and matching.
Unlike traditional approaches, which rely on manual detectors and descriptors
such as SIFT or ORB, neural networks can directly learn the relationships be-
tween images from the data, eliminating the need for extensive pre-processing;
this can be seen in Liu et al. (2023) and Li, Fang, et al. (2024).

2.2.2 Methods for estimating homography

There are several methods for estimating homography, depending on the data
and the problem conditions. Common steps include collecting point correspon-
dences and calculating the matrix H:

1. Point correspondences

First, at least 4 points are needed in correspondence between the two images.
These points can be:

• Manually marked.

• Automatically detected with methods such as SIFT, SURF, or FAST.

• Matched using feature descriptors.

ORB points are used in the detection, which extracts key features from an
image using the ORB algorithm (Oriented FAST and Rotated BRIEF), a widely
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used method in computer vision. ORB points are specific locations in an image
that contains distinctive information (such as corners, edges, or local textures),
making them useful for identifying and comparing parts of one image with another.

2. Estimation Algorithms

a. Direct Linear Transformation (DLT): The DLT method is the most
commonly used for estimating H. It requires a minimum of 4 correspon-
dences (non-coplanar points) and works by solving a system of linear equa-
tions that arises when expanding the homography equation. This method
is straightforward, but it can be sensitive to noise.

b. Robust Methods (RANSAC): In situations with noisy correspondences
or outliers, RANSAC (Random Sample Consensus) is used along with DLT
to identify a consistent subset of matching points. This ensures a robust
estimation of H.

3. Data Normalization

Before applying DLT, it is common to normalize the input points to improve
the numerical stability:

• Center the points at the origin (0,0).

• Scale the points so that their average magnitude is close to 1.

2.3 NMPC - Nonlinear Model Predictive Control

Nonlinear Model Predictive Control (NMPC) is a model-based control ap-
proach that optimizes control actions for a system based on its nonlinear dynamic
model. In NMPC, a mathematical model of the system is used to predict its
future behavior, and an optimization problem is solved in real-time to determine
the best control actions that either drive the system to a desired trajectory or
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minimize a cost function (e.g., deviation from the target, energy consumption,
etc.).

Unlike other predictive control approaches that assume linear dynamics, NMPC
can handle systems with nonlinear dynamics, making it suitable for a wide va-
riety of complex applications such as mobile robots, autonomous vehicles, and
nonlinear industrial processes.

The basic process in NMPC involves the following steps:

1. Dynamic modeling: A nonlinear model is used to describe the system’s
behavior.

2. Predictive optimization: A future optimization problem is solved (typ-
ically with a prediction horizon) to find the control actions that minimize
the cost or prediction error.

3. Real-time recalculation: Upon receiving new system measurements, the
controller recalculates the control actions.

This approach is powerful but computationally demanding, as it requires solv-
ing an optimization problem in real-time.

Currently, several studies apply NMPC for trajectory planning. For example,
in Wu et al. (2023), an NMPC-based approach is proposed for hybrid terrestrial
and aerial quadrotors (HyTAQs), which enables safe and efficient hybrid locomo-
tion in unknown environments. Similarly, in Boggio et al. (2023), a "fast" NMPC
method is presented that utilizes data-derived information for trajectory plan-
ning and control of autonomous vehicles, significantly improving computational
efficiency.

2.4 ROS (Robot Operating System)

Currently, the Robot Operating System (ROS) has become one of the most
widely used platforms for the development of autonomous systems in robotics and
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mechatronics due to its flexibility and ability to integrate multiple hardware and
software components. Its applicability can be observed in various works, such
as the development and testing of a prototype unmanned aerial vehicle (UAV)
with tilt control position control (Flores et al., 2023), the control of an aerial
manipulator through teleoperation and virtual reality (Verdín et al., 2021), and
simulations for testing mobile robots (Takaya et al., 2016).

These applications highlight the versatility of ROS in different robotics do-
mains, enabling the implementation of complex systems that require efficient mod-
ule communication, interoperability, and advanced simulation tools.

ROS (Robot Operating System) is an open-source framework for develop-
ing robotic systems, offering tools for node communication, topic management,
services, actions, and simulation using Gazebo and RViz. Its middleware archi-
tecture allows for the integration of devices and algorithms, making it ideal for
autonomous systems.

/camera/image_raw

Robot Sensors

/scan (LiDAR)
/odom (encoders)

Data Interpretation

Node scans /camera/image_raw 
and says, "I see a wall!"

Obstacle detection node 
(subscribes to /scan)

The other uses /odom to 
determine the robot's current 

location.

Planning: Decide where to go 
and how to get there

- One node receives a goal (like 
reaching the end of the hallway).

-It calculates a path through the map 
(global planner).

-Then another local planner says: “To 
follow that path, turn right, move 
forward, stop…”

The control node turns that into 
real movement

The control node receives those 
commands and translates them into 

motor instructions /cmd_vel

ROS keeps everything connected and synchronized

Figure 2.2: This simplified explanation is meant to help understand how ROS
connects sensors, processing nodes, and actuators in a robotic system.

An example of how ROS works can be seen in Figure 2.2. Through the
robot’s sensors, information is received in the form of topics. These topics can
contain different types of data, such as images from a camera, measurements
from a LiDAR, or readings from encoders. This information is then interpreted to
understand the robot’s surroundings: for instance, the camera can identify objects
or walls; the LiDAR detects obstacles through waves; and the encoders provide
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the robot’s velocity and help estimate its position on a map.

Based on this sensory interpretation, decisions can be made about the robot’s
behavior, such as stopping, turning right or left, or continuing its movement. This
type of planning is translated into a control signal sent to the /cmd_veltopic,
which carries the desired velocity information that is then executed by the robot’s
motors.

Robotic systems often rely on ROS for image processing tasks, particularly
in visual servoing applications. Through integration with libraries like OpenCV
and image_transport, ROS enables real-time image handling, camera calibra-
tion, and feature extraction—key components for object detection, tracking, au-
tonomous navigation, and localization.

Many leading robotics companies, including Clearpath Robotics, Fetch Robotics,
and Boston Dynamics, have incorporated ROS into their platforms. They apply
it in areas such as autonomous vehicles, warehouse automation, and the develop-
ment of advanced robots such as Spot and Atlas. Its open-source nature, combined
with strong community support, positions ROS as a powerful and cost-effective
tool in the robotics industry.
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Chapter 3

Methodology

This chapter details the methodology used for the development and analysis
of the autonomous navigation and control system of the mobile robot. It describes
the procedures followed, the tools used, and the simulation and experimentation
techniques that allowed the technical challenges identified in the previous stages
of the research to be addressed.

3.1 Simulation

3.1.1 First visual control test

In a first visual control test, a proportional control based on feature detection
was implemented using the KLT (Kanade–Lucas–Tomasi) method, which tracks
distinctive image features across frames. During this process, four key points
were identified and a desired location was set for them within a blue square.
The control was implemented in the Rover model within PX4, where the vehicle
advanced based on the error between the locations of the detected points and their
desired positions. For this purpose, a proportional control was used that adjusted
the forward speed as a function of the magnitude of the error. As the Rover

21



Methodology

moved, the system continuously recalculated the difference between the current
position of the points and their target location, gradually reducing the distance
until the desired alignment was reached. Once the error was reduced to zero, the
Rover stopped its movement, successfully completing the visual positioning task.

Figure 3.1: Rover trajectory in response to KLT-based visual control. The vehicle
stops when the error between the detected and desired points disappears.

When using the Rover model, it was observed that the vehicle did not move
correctly when attempting to reverse. This issue arises because, in PX4, motor
control is designed primarily for drones rather than ground vehicles, which lim-
its its functionality. To analyze this behavior, different values were sent to the
/mavros/setpoint_velocity/cmd_vel topic, and the system’s responses were
recorded. However, the vehicle never moved in reverse, as shown in Table 3.1
which details the executed movements. Due to this limitation, a different model
was chosen to enable reverse movement.

Given the difficulty with the rover, the decision was made to use the TurtleBot
for future visual control testing. This choice was based on the advantages offered
by the TurtleBot, particularly in the simulation field. Being fully integrated with
ROS, it facilitates the performance of accurate simulations on Gazebo, allowing
the testing of control and perception algorithms without the need to resort to
physical hardware. In addition, TurtleBot is a flexible and accessible platform,
making it an ideal choice to simulate complex scenarios and evaluate algorithms’
performance under controlled conditions. Its compatibility with sensors such as
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/mavros/setpoint_velocity/cmd_vel Movement

vel.twist.linear.x = +a Turns right

vel.twist.linear.x = -a Turns left

vel.twist.linear.y = +a Moves forward

vel.twist.linear.y = -a Turns left

vel.twist.linear.z = +a Moves forward

vel.twist.linear.z = -a Moves forward

Table 3.1: Rover Logic

cameras and LIDAR, together with the ease of integrating navigation and visual
control tools, positions it as a robust and reliable solution for the development
and validation of visual control systems.

3.1.2 Creation of the Strawberry Growing Environment

In order to validate the robot’s navigation and autonomous control techniques,
a simulated environment was designed to replicate the conditions of a strawberry
crop. This environment allowed testing in a controlled manner, eliminating the
risks associated with real-world experimentation. The 3D terrain models were
created using Blender modeling software, known for its ability to generate detailed
and accurate representations in three-dimensional environments.

Figure 3.2: Initial design of the 3D models for the strawberry world.

In this process, it was necessary to adjust the scale of the strawberries and
bushes, considering factors such as the number of strawberries that each bush
would have and the appropriate size in relation to the robot to be used, the Turtle-
Bot. In addition, the quality of the models was evaluated, as a higher resolution
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would require more computational resources and would affect the performance of
the simulation. Therefore, a middle ground was established in terms of quality to
ensure a good balance between detail and efficiency, applying the same criteria to
the ground model and other elements of the environment.

Other important models were the signs, which were designed entirely in
Gazebo. These signs contain various images and have the function of guiding
the vehicle through the strawberry crop.

Figure 3.3: Final view of the strawberry world with all elements integrated.

Once completed, the models were exported and optimized for integration
into the Gazebo simulator, allowing simulations to be performed within the ROS
ecosystem. This simulated environment not only facilitated the evaluation of the
system’s performance in terms of navigation and control, but also provided a
platform to test the robot’s behavior in various scenarios without the need for
immediate physical adjustments.

3.1.3 Image-Based Control Using Homography

Vision

Once the environment was finalized, a test was carried out both in the simu-
lation environment and on the vehicle, evaluating an image-based control system.
The homography used in this system was computed from ORB (Oriented FAST
and Rotated BRIEF) feature points. For this purpose, a monocular camera was
used together with a visual memory mechanism, allowing the estimation of the
homography matrix.

First, ORB (Oriented FAST and Rotated BRIEF) points are detected, which
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appear at corners and edges within an image. These key points allow distinctive
features to be extracted from each image, facilitating comparison between the
current image and images stored in visual memory.

The visual memory system operates as follows: first, a pre-mapping is per-
formed in which images are captured of the desired trajectory that the robot, in
this case, the TurtleBot, will follow. These images are stored sequentially, fol-
lowing the order in which they were acquired, named as image0.png, image1.png,
image2.png, and so on. The visual memory can contain n images.

The reference images used for visual memory were captured at intervals of
approximately 1.5 meters along the robot’s path. This distance was chosen as a
compromise between coverage and reliability, since capturing images at greater
distances led to a decrease in the accuracy of visual feature matching. Larger
intervals resulted in significant variations between consecutive images, making it
more difficult to establish robust point correspondences, which are essential for
tasks such as homography estimation and visual localization.

Special consideration was given to the sections where the robot had to turn.
In these cases, image acquisition was based on the angular orientation of the robot.
This is because large changes in viewpoint can significantly alter the appearance
of the scene, reducing the number of reliable feature correspondences between the
current view and the stored reference images. Therefore, during turns, reference
images were taken more frequently and with smaller angular differences, ensuring
that the visual information remained sufficiently similar to facilitate consistent
and accurate feature matching.

During navigation, the images stored in the visual memory are compared with
the real-time images captured by the camera. To perform this comparison, key
points in both images are extracted and described using the ORB detector. Then,
the obtained descriptors are converted to a format suitable for FLANN (Fast
Library for Approximate Nearest Neighbors) matching using an LSH (Locality-
Sensitive Hashing) based matcher. (Guzmán et al., 2024)

Once the descriptors have been matched, Lowe’s ratio test is applied to fil-
ter out ambiguous correspondences by comparing the distance between the two
closest matches, and obtain a set of reliable matches between the reference image
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(stored in visual memory) and the current image. From these correspondences,
the coordinates of the matched points are extracted and used to estimate the
transformation between the two images.

Figure 3.4: The image shows the result of key point matching between two views of a
scene, using feature detection and description. The red lines indicate the correspondences
between the detected points in both images.

To estimate the homography matrix H, first it is verified that there are at least
four matching points between the images. Then, the cv::findHomography func-
tion from OpenCV is used with the RANSAC method to compute the homography
matrix, which helps mitigate the impact of potential incorrect correspondences.
The homography matrix is adjusted using the camera calibration matrix K, as
shown in the following equation:

Hcalibrated = K−1HK (3.1)

This step is crucial for converting the homography to the camera coordinate
system, taking into account the intrinsic parameters of the camera. Finally, to
normalize the homography and simplify its use in further calculations, it is often
scaled such that the top-left element is 1, as shown by the following operation:

Hnorm =
H

H1,1

(3.2)

This normalization ensures that the homography matrix is stable and easier
to apply, especially when working with image transformations. All of this can be
better visualized in Table 3.2.
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Algorithm 1
1: Input: Reference image refImg, Current image currImg, Camera cali-

bration matrix K
2: Output: Homography matrix H
3:
4: // Step 1: Detect keypoints and compute descriptors using ORB
5: (keypointsRef, descriptorsRef)← ORB_Detector(refImg)
6: (keypointsCurr, descriptorsCurr)← ORB_Detector(currImg)
7:
8: // Step 2: Match descriptors using Hamming distance
9: matches← BruteForce_Hamming(descriptorsRef, descriptorsCurr)

10: goodMatches← Filter_Matches(matches, threshold = 0.7)
11:
12: // Step 3: Extract matched keypoints
13: refPoints2f ← Get_Points(keypointsRef, goodMatches.queryIdx)
14: currentPoints2f ← Get_Points(keypointsCurr, goodMatches.trainIdx)
15:
16: // Step 4: Compute homography using RANSAC
17: if size(refPoints2f) ≥ 4 then
18: H ← findHomography(refPoints2f, currentPoints2f,RANSAC)
19: end if
20:
21: // Step 5: Normalize using calibration matrix
22: H ← K−1HK
23: H ← H/H1,1

Table 3.2: Homography Estimation Algorithm

This approach allows TurtleBot to follow the desired trajectory based on vi-
sual information, without relying exclusively on traditional position sensors. In
addition, detected key points and pairings can be visualized in real time, facili-
tating process validation.

Parameter Recovery from Homography

As described in Chapter 2, the homography matrix is a 3 × 3 matrix that
provides the information necessary to implement it in control, specifically rotation
and translation in this case. However, the homography matrix also gives us more
information, such as the normal and the distance from this plane to the camera,
as described below.
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Recall that, in this case, only rotation and translation will be used. The
process of recovering the camera parameters (rotation R, translation t, normal n,
and distance to the plane distancePlane) from the homography matrix H involves
several steps, based on the singular value decomposition (SVD) of the homography
matrix. The details of this process are as follows:

1. SVD Decomposition of the Homography:

The homography matrix H is decomposed into three matrices U , Σ, and V

using singular value decomposition (SVD):

H = UΣV T (3.3)

U : The columns of the matrix U are the eigenvectors of the matrix HHT .
This matrix will be of size m×m, where m is the number of rows of H.

Σ : The diagonal matrix Σ contains the singular values of H, which are the
square roots of the eigenvalues of HTH or HHT . The singular values are
always non-negative and are ordered in descending order along the diagonal
of Σ.

V : The columns of the matrix V are the eigenvectors of the matrix HTH.
This matrix will be of size n× n, where n is the number of columns of H.

2. Calculation of Normalized Singular Values:

The singular values s1, s2, and s3 of the matrix Σ provide key information
about the geometric structure of the homography. The relationship between s1

and s3 is calculated as follows:

s1 =
Σ(0)

Σ(1)
, s3 =

Σ(2)

Σ(1)
(3.4)

and the difference between these values, denoted as ζ, is calculated as:

ζ = s1 − s3 (3.5)

If ζ is small, it means the images are nearly in the same plane.
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3. Calculation of Geometric Parameters

The geometric parameters a1 and b1 are calculated using the singular values
s1 and s3, which describe the distortion introduced by the homography:

a1 =
√

1− s23, b1 =
√

s21 − 1 (3.6)

These parameters must be normalized to ensure proper scaling and numerical
stability in the subsequent computations. Normalization is performed by dividing
each parameter by its corresponding magnitude.

First, the values a1 and b1 are normalized as follows:

a =
a1√

a21 + b21
, b =

b1√
a21 + b21

(3.7)

Next, the terms related to the singular values are normalized:

c =
1 + s1s3√

(1 + s1s3)2 + (a1b1)2
, d =

a1b1√
(1 + s1s3)2 + (a1b1)2

(3.8)

The terms used in the translation vector calculations are also normalized:

e =
−b/s1√

(b/s1)2 + (a/s3)2
, f =

−a/s3√
(b/s1)2 + (a/s3)2

(3.9)

These normalized values ensure that all computed vectors maintain unit mag-
nitude, making geometric calculations stable and independent of scale.

4. Recovery of Normals and Rotation Solutions

Using the vectors v1 and v3, extracted from the matrix V , the two possible
normal vectors to the plane, n1 and n2, are computed:

n1 = bv1 − av3, n2 = bv1 + av3 (3.10)

These normals define two possible solutions for the orientation of the plane in 3D
space.
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Next, two possible rotation matrices, R1 and R2, are derived. These represent
two possible orientations of the camera, and they are constructed using the sin-
gular vector matrices U and V along with an intermediate transformation matrix
tmp:

R1 = U(G · V ), R2 = U(GT · V ) (3.11)

where the matrix G is defined as:

G =

 c 0 d

0 1 0

−d 0 c

 (3.12)

This matrix accounts for the necessary transformation between the estimated
frame and the original coordinate system.

The corresponding translation vectors for each solution are given by:

t1 = ev1 + fv3, t2 = ev1 − fv3 (3.13)

5. Selection of the Best Solution

Since homography provides two possible solutions for camera pose, the correct
one must be determined based on the orientation of the normal vectors n1 and n2.
This is done by evaluating the Z-component of the normals. If Z(n1) is greater
than Z(n2), then the first solution is chosen:

R = R1, t = t1, n = n1 (3.14)

Otherwise, the second solution is selected:

R = R2, t = t2, n = n2 (3.15)

If the normal vector points in the opposite direction of what is expected, it is
inverted along with its corresponding translation:

If Z(n1) < 0, n1 = −n1, t1 = −t1 (3.16)
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If Z(n2) < 0, n2 = −n2, t2 = −t2 (3.17)

These adjustments ensure that the camera orientation is physically meaningful.

6. Calculation of Distance to the Plane

The distance of the camera to the estimated plane is computed using the
singular value ratio ζ, which measures the deviation from a pure planar transfor-
mation:

ζ = s1 − s3 (3.18)

Since a smaller ζ indicates that the homography represents a nearly planar trans-
formation, the estimated distance is given by:

distancePlane =
1

ζ
(3.19)

This provides an approximation of the relative depth of the scene.

Algorithm 2
1: Input: Homography matrix H
2: Output: Rotation R, Translation t, Normal vector n, Plane distance d
3: Compute SVD: H = USV T

4: Transpose V
5: if det(V ) < 0 then
6: V ← −V , S ← −S
7: end if
8: if det(U) < 0 then
9: U ← −U , S ← −S

10: end if
11: Compute scale ratios: s1 = S(0)/S(1), s3 = S(2)/S(1)
12: zeta = s1 − s3
13: if |zeta| < ϵ then
14: Set identity transformation and return
15: end if
16: Compute normal vectors n1 and n2

17: Define matrices M+ and M−
18: Compute possible rotations: R1 ← UMT

+V
T , R2 ← UMT

−V
T

19: Compute possible translations: t1 ← vex(UM+SU
T ), t2 ← vex(UM−SU

T )
20: Compute plane distance: d = 1/zeta

Table 3.3: Decomposition and Motion Recovery from Homography Algorithm
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Control

With the information of rotation and translation, a homogeneous matrix cMo

was constructed, which contains the position and orientation of the camera relative
to a reference frame. This matrix provided the necessary information to calculate
the coordinates x and y, which are used in the interaction matrix Ls (see equation
2.3). In particular, the coordinates x and y are obtained as follows:

x =
tx
tz
, y =

ty
tz
, Z = tz (3.20)

where tx, ty, and tz are the translation terms of the homogeneous matrix cMo,
and Z represents the depth, i.e., the distance from the camera to the object.

Also, the visual error was calculated, which is defined as the difference be-
tween the current features of the camera and the desired ideal values. The ideal
translation and rotation features were set as:

s∗t = (0, 0), s∗R = (0, 0) (3.21)

The error in translation and rotation is obtained by subtracting the current
values st and sR, which depend on the homogeneous matrix, from the ideal values
s∗t and s∗R:

et = st − s∗t , eR = sR − s∗R (3.22)

This error is used to compute the necessary camera movements that minimize
the difference between the current and desired state, through the control law
described in equation (2.4).

The implemented control law generates six velocities, but since the TurtleBot
has only two degrees of freedom, only two are needed: one linear and one angular.
The linear velocity is applied along the X-axis, enabling forward and backward
movement, while the angular velocity acts on the Z-axis to perform turns.
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Algorithm 3
Input: Translation vector t, Rotation matrix R
Output: Control velocities v

// Initialize homogeneous transformation matrix
cMo← BuildFrom(t, R)

// Construct current visual features
st ← vpFeatureTranslation(cMo)
sR ← vpFeatureThetaU(cMo)

// Construct desired visual features (zero initialization)
s∗t ← vpFeatureTranslation(0, 0, 0)
s∗R ← vpFeatureThetaU(0, 0, 0)

// Configure visual servoing task
task.setServo(EY EINHAND_CAMERA)
task.setInteractionMatrixType(CURRENT )
task.setLambda(0.165)
task.addFeature(st, s

∗
t )

task.addFeature(sR, s
∗
R)

// Control loop
repeat

if received_trn then
cMo← BuildFrom(t, R)
st.buildFrom(cMo)
sR.buildFrom(cMo)
// Compute control law
v ← task.computeControlLaw()
error ← sumSquare(task.getError())
// Publish error
errorMsg.data← error
errorPub.publish(errorMsg)
// Assign control velocities
velMsg.linear.x← −v2
velMsg.angular.z ← v4 × 2.1
velPub.publish(velMsg)

else
print("Waiting for information...")

end if
until indexV alue ≥ 16.0

Table 3.4: VISP-based Visual Servoing Algorithm
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The control law error determines the robot’s speed: the greater the error, the
higher the supplied speed. If the error is zero, the robot stops.

The system uses visual memory to guide movement. Initially, a reference
image is captured and compared to the current image from the TurtleBot’s camera.
The robot moves forward until both images are sufficiently similar. At that point,
a new reference image is selected on the basis of the homography.

Homography provides information on the transformation between the two
images. When the homography matrix closely resembles an identity matrix, it
indicates that the images are nearly identical. An error threshold is set to deter-
mine when to switch the reference image. This process repeats sequentially until
the last stored image in visual memory is reached, at which point the robot stops.

The following figure illustrates the system’s operation.
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Figure 3.5: Vision and Control System Schematic
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3.1.4 Predictive Visual Path Following Using Homography
in Autonomous Robots

As observed in Chapter 2, a Nonlinear Model Predictive Control (NMPC)
relies on a system model to predict its behavior and optimize control at each
time step. In the case of a ground vehicle, the control is typically based on its
kinematic model, which considers only velocities and positions, excluding forces
and accelerations.

Kinematic Model of a Differential Drive Vehicle

For a differential drive vehicle, the kinematic model outputs are:

• Linear velocity in x (vx), which defines the forward or backward motion.
• Angular velocity in z (ωz), which defines the turning rate around the

vertical axis.

The differential kinematic model at coordinates (x, y, θ), where θ represents
vehicle orientation, is expressed as follows:


ẋ = vx cos(θ)

ẏ = vx sin(θ)

θ̇ = ωz

(3.23)

Where:
• x, y are the vehicle’s position in the plane.
• θ is the vehicle’s orientation relative to a fixed reference frame.
• vx and ωz are the control inputs optimized by the NMPC.

The NMPC uses this prediction model to compute the optimal control inputs
(vx, ωz), ensuring that the vehicle follows the desired trajectory while satisfying
constraints such as speed and turning limits.
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Relation with the Homography Matrix

The homography equation:

H t
k = (ctRc)

(
I −

cttcn
T

d

)
(3.24)

describes the transformation between two camera views, modeling how the
image perspective changes due to the vehicle’s motion. This transformation de-
pends on the rotation c

tRc and translation cttc, which can be predicted using the
vehicle’s kinematic model within the NMPC framework. Here, n is the normal
vector of the observed planar surface in the scene, and d is the distance from the
camera to that plane along the normal direction.

• The translation cttc is influenced by the linear velocity vx.

• The rotation c
tRc is governed by the angular velocity ωz.

By leveraging these dependencies, the NMPC predicts the future homography
based on control inputs (vx, ωz), enabling:

1. Modeling image deformation at each prediction step.

2. Adjusting controls to minimize the difference between predicted and desired
homography.

3. Optimizing vehicle motion for alignment with the image horizon or a visual
target.

In this work, a subset of the homography matrix Hi∗

k is selected, focusing on
elements that capture key transformations affecting the image. Specifically, the
selected components correspond to the indices:

h = {11, 12, 13, 31, 32, 33} (3.25)
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The indices in (3.25) are used to reference the calculation of the predicted
homography matrix, which will be presented in the following equation:

The equation (3.26) is explained in more detail in (Murillo, 2021), which
outlines how the homography prediction equation is derived.

Control System for Target Image Transition

In order to achieve smoother control during image-based visual servoing, espe-
cially when changing the target image, two control mechanisms were incorporated.
The first mechanism ensures a constant linear velocity along the x-axis, allowing
the robot to perform its operations more efficiently and accurately. On the other
hand, the second mechanism enables the robot to gradually reduce its speed as
it approaches the target image. The choice between these mechanisms depends
on whether the current image is compared with the last reference image. If this
is the case, the deceleration mechanism is applied; otherwise, the mechanism
that maintains a constant linear velocity is used. This method ensures that the
control signal remains within the specified limits, preventing sudden fluctuations
and facilitating a smooth transition between tasks (number of images) within the
system.

This can also be observed in the following pseudocode, where it is specified
when adjustments are made to the linear velocity in x and the angular velocity in
z. These changes are determined on the basis of the values of the homography.
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Algorithm 4
Input: Homogeneous transformation matrix H, control parameters
Output: Linear and angular velocities vx, ωz

while not rospy.is_shutdown() do
if ShutDown == FALSE then

if Number image < (Total number of images - 1) then
Vector linear velocities ← smooth_function_exp(V_k[0], 0.19, 0.20)

else
if homography conditions are TRUE then

ShutDown ← TRUE
else

Vector linear velocities ← smooth_function_phi(V_k[0] * 2, 0.19,
0.20)

end if
end if
if homo_matrix.data[6] > 0.08 AND .homo_matrix.data[2] < -0.08
then

angular_velocity[0] ← smooth_function_exp(angular_velocity[0],
0.18, 0.20) * -1

else if homo_matrix.data[6] < -0.08 AND homo_matrix.data[2] > 0.08
then

angular_velocity[0] ← smooth_function_exp(angular_velocity[0],
0.18, 0.20)

end if
end if

end while

Table 3.5: Control with smooth transition Algorithm

3.2 Implementation of Control in the Mobile Jet-
Bot Robot

In order to maintain a constant speed in the image changes and reduce the
trajectory time, a controller based on Non Linear Predictive Control (NMPC)
was implemented. For its development and validation, it was used in a JetBot
equipped with a Jetson Nano (see Appendix A), running Ubuntu 18.04 as operat-
ing system using ROS Melodic. This platform allowed real-time calculations for
trajectory prediction and optimization, ensuring efficient performance in naviga-
tion and image processing.
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To establish communication between the JetBot and the laptop, a Wi-Fi con-
nection was initially configured. This connection was achieved using ROSBridge,
which is a fundamental tool in the Robot Operating System (ROS) ecosystem.
Once the connection is established, it is crucial to configure the appropriate en-
vironment variables in the .bashrc file of the laptop. At the end of this file,
the following lines should be added, ensuring to replace <IP_OF_MASTER> and
<YOUR_LOCAL_IP> with the corresponding IP addresses for the network setup:

export ROS_MASTER_URI=http://<IP_OF_MASTER>:11311
export ROS_IP=<YOUR_LOCAL_IP>
export ROS_HOSTNAME=<YOUR_LOCAL_IP>

In the case of the JetBot, the same lines should be included in the .bashrc
file, where the master IP will be that of the laptop, while the local IP should be
that of the JetBot. This configuration is essential for both devices to communi-
cate correctly and coordinate their actions. To execute the necessary roslaunch
commands to use the camera and control the JetBot’s motors without having to
run these commands directly from the Jetson Nano, the command ssh user@ip
is used. In this command, "user" represents the username of the Jetson Nano,
and "ip" is the IP address of the Jetson or JetBot. By running this command
from the laptop, communication with the remote device is initiated, allowing for
joint execution with roscore and enabling the necessary programs to be launched
via roslaunch. It is important to highlight that, to ensure stable connectivity
and avoid potential communication issues, it is fundamental for both devices to
be configured with the same time zone.
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Chapter 4

Results

This chapter focuses on the presentation of the results obtained from the
simulations carried out in the Gazebo environment, as well as the practical im-
plementation carried out in an environment relevant to the study. Each of the
results is discussed, providing a clear context for understanding their significance
and implications.

The graphs included are fundamental to visualize and compare the data ob-
tained from the approaches, seen in the previous chapter. A detailed description
of each graph is provided, explaining the variables represented and the trends
observed. In addition, the similarities and differences between the results of the
simulations and those obtained in the actual implementation are discussed, high-
lighting how these differences may influence the interpretation of the data and the
validation of the model.

4.1 Simulation results

The data presented in this chapter have been obtained from the two main
simulations described in the previous chapter: image-based visual control and
Nonlinear Model Prediction Control (NMPC). The results are shown below:
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4.1.1 Image-Based Visual Control Results

The Figure 4.1 shows a simulated environment in Gazebo, where the image-
based control system has been implemented for the navigation of a TurtleBot in
a strawberry crop. The control strategy is based on homography, allowing the
robot to estimate its movement and adjust its trajectory based on the captured
visual information. This approach seeks to improve the autonomy of the robot in
agricultural environments, facilitating monitoring and exploration tasks.

Figure 4.1: The TurtleBot navigates between rows of strawberries, scanning
the environment. The code developed for this project is available on GitHub:
github.com/erandivg/strawberry_field_ws

In image-based visual control, a test was conducted using 16 reference images
for visual memory. These images were captured during a pre-trajectory and then
stored. Once this process was completed, the program was executed within the
virtual strawberry environment, thus initiating the visual trajectory. The trajec-
tory followed by the TurtleBot can be seen in Figure 4.2. During the trajectory,
the TurtleBot experienced variations in its speed due to the nature of its control.
It dynamically adjusts its speed, increasing or decreasing it based on the detected
error relative to the reference image used at each moment. As the vehicle ap-
proaches the end of a task, it tends to slow down or even move in reverse to
achieve a better alignment between the reference and the current image.
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Figure 4.2: 3D trajectory of the robot, illustrating its movement across the environ-
ment.

This behavior can be observed in Figure 4.3, where the vehicle’s linear velocity
vx and angular velocity ωz are plotted alongside the obtained homography matrix
throughout the navigation process. The homography serves as an indicator of the
vehicle’s relative position concerning the reference image, providing insight into
how the system adapts to minimize the difference between the current and target
views.

As the vehicle moves forward, the homography progressively approaches the
identity matrix, signifying that the visual information captured by the onboard
camera is becoming increasingly similar to the reference image. This gradual
convergence reflects the control strategy to guide the vehicle toward the desired
trajectory. Additionally, the graph reveals abrupt variations in the homography
values, which correspond to transitions between different reference images. These
discontinuities indicate moments when the system updates its target visual refer-
ence, prompting the control algorithm to adjust the vehicle’s motion accordingly.

Despite these sudden changes, it is evident that the control system consis-
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Figure 4.3: Linear velocity along the x-axis, angular velocity around the z-axis, and
homography graphs. The Real label in the legend refers to the robot’s response within
the simulated ROS environment, as measured by odometry when the desired velocity
commands are applied. As observed, this response tends to exhibit slight disturbances
due to simulated friction between the robot and the ground.

tently works to steer the homography values toward the characteristic elements
of an identity matrix, namely 0s and 1s, ensuring that the vehicle maintains a
stable and accurate trajectory throughout its operation. This behavior highlights
the implemented approach’s robustness and capacity to adapt to dynamic envi-
ronmental conditions while preserving control stability.
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4.1.2 NMPC Results

The NMPC simulation was applied to different mobile robots, such as the
TurtleBot, to demonstrate its capability of being implemented on various plat-
forms. Although this control provides only two degrees of freedom, its versatility
allows it to be adapted to different robots for navigation and control tasks.

Experiments with TurtleBot

The TurtleBot was implemented similarly in the strawberry crop, using NMPC
control. This time, a different trajectory was designed based on eight reference
images, allowing a more precise navigation adapted to the environment. This
strategy optimizes the robot’s displacement within the crop, improving trajectory
tracking and movement stability.

Figure 4.4: 3D trajectory of the robot, depicting its movement through the environ-
ment. The path was reconstructed using eight images, capturing key points along its
motion.

When analyzing Figure 4.5 and comparing it with the graphs in Figure 4.3,
where the basic image-based visual servoing control was applied, significant dif-
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ferences in linear velocities can be observed. In Figure 4.3, the linear velocity
along the x-axis presents a discontinuity, as the robot tends to decelerate when ap-
proaching the desired image. To better adjust its position relative to the reference
image, the robot even reverses its direction. In contrast, with the NMPC-based
approach, the robot maintains a more consistent velocity during the initial images
and only begins to decelerate when reaching the final image. This behavior allows
for smoother movement and a more uniform trajectory.
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Figure 4.5: Graphs of linear velocity in the x-axis, angular velocity around the z-
axis, and homography.The entry Real in the figure legend corresponds to the simulated
robot’s odometric trajectory, reflecting small perturbations caused by environmental
friction modeling. These graphs were obtained from the NMPC.

When comparing the angular velocity in Figure 4.5 with that in Figure 4.3, it
is observed that the variations in velocity take on a more stepwise pattern in the
former. This behavior results from maintaining a constant linear velocity along the
x-axis, making it more efficient to apply significant increments in angular velocity,
thereby reducing the need for continuous adjustments in the robot’s orientation.

Furthermore, regarding homography, it can be seen that in Figure 4.5, it

46



Results

does not exhibit the same smoothness as in Figure 4.3. This difference is due to
the NMPC controller requiring a greater number of computations to predict the
future homography, which impacts processing frequency and, consequently, the
continuity of the estimation.

Although the trajectory consisted of eight images, the results presented in
Figure 4.5 include only four reference images. This selection was made to improve
the clarity and readability of the graphs.

Experiments with TIAGo

Figure 4.6: Simulated image of the TIAGo robot in Gazebo, showing its mobile struc-
ture with a wheeled base, a robotic arm and an integrated camera. The simulation
includes a virtual environment with realistic lighting and shadows.

To validate the functionality of NMPC for mobile robots, its implementation
was extended to a different platform, the TIAGo robot. In addition, the control
was tested in a different environment to demonstrate that its applicability is not
limited to the strawberry field setting. Instead, it can also be effectively deployed
in various scenarios, such as a room or a living space with multiple objects, while
maintaining consistent performance.

The TIAGo robot followed a trajectory of four reference images. In this tra-
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jectory, the reference images were captured at greater distances than in previous
cases, with a maximum distance of 2 meters between them.
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Figure 4.7: Graphs showing the variation of linear velocity along the x-axis, angular
velocity around the z-axis, and homography over time. The legend entry Real denotes
the robot’s response in the Gazebo simulation, based on odometry measurements after
receiving the desired velocity commands. As no friction model was included in the Tiago
simulation environment, the trajectory exhibits near-perfect behavior with minimal de-
viations.

Figure 4.7 illustrates that the graphs exhibit less noise, indicating a more
stable system response. Additionally, the homography appears smoother and less
stepwise. This improvement can be attributed to the fact that the environment in
which the control was implemented is computationally less demanding, reducing
the processing load on the system and enhancing overall efficiency. Furthermore,
in this simulation environment, friction between the wheels and the ground was
not modeled, allowing the TIAGo robot to move more smoothly. The absence
of frictional forces eliminates irregular velocity variations, contributing to a more
continuous and predictable trajectory.

48



Results

4.2 Implementation of the NMPC in a Real Robot

For the implementation, the data transfer and communication between the
mobile robot and the computer were initially evaluated to determine the trans-
mission frequency in Hertz (Hz). An image transmission test was conducted in
which the JetBot camera operated at 30 Hz; however, upon reception on the com-
puter, the frequency dropped to 6 Hz. Image compression was implemented to
improve transmission efficiency, which helped mitigate the frequency drop. Nev-
ertheless, network instability occasionally affected the transmission speed since
communication relied on Wi-Fi.

Camera

Left Wheel

Right Wheel

Jetson Nano

Power Distributor

Figure 4.8: JetBot in different positions with labeled main components.

The implementation of the control system was carried out in a semi-controlled
environment within a laboratory, where certain conditions, such as lighting and
the robot’s movement space, could be regulated. Although some external variables
were not fully controlled, this environment provided a suitable setting for initial
testing, allowing the evaluation of the system’s behavior under relatively stable
conditions.

The JetBot camera was used to transmit the point correspondence between
the current image and the reference image to determine the reference image in
which the robot was located.

Additionally, this process enabled the evaluation of the quality of the point
correspondence (see Figure 4.9), as errors in the matching process could lead
to an inaccurate homography, introducing noise into the system, and affecting
the accuracy of the vehicle’s velocity calculations, potentially causing it to follow
incorrect trajectories. The results obtained in the implementation were consistent

49



Results

Reference Image Current Image

Figure 4.9: Point correspondence between the reference image and the current image.
The detected key points in both images are used to compute the homography and de-
termine the robot’s position.

with those from the simulations. Specifically, a trajectory composed of three
images was completed, yielding graphs similar to those obtained in the simulated
experiments, which validates the system’s behavior. These results are presented
in Figure 4.10.
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Figure 4.10: Graphs showing the variation of linear velocity, angular velocity, and
homography over time, obtained from the JetBot during its operation. The desired
speed is the one commanded by the control, and the actual speed is the result shown by
the friction of the real world.
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The difference observed between the implementation and simulation graphs
is that, in the implementation, both linear and angular velocities exhibit higher
noise levels. This is primarily due to physical factors in the real environment, such
as variations in ground friction, minor surface irregularities, and potential wheel
slippage or loss of traction. Unlike in simulation, where terrain conditions are
ideal and homogeneous, these variations in the real-world implementation affect
the robot’s response, causing fluctuations in the estimated velocities and reducing
stability during movement.
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Chapter 5

Conclusions

This chapter presents the conclusions derived from the experiments performed,
highlighting the achievements and challenges identified in implementing the sys-
tem. In addition, the aspects that influenced the robot’s performance are dis-
cussed, and future lines of work are suggested to improve its performance.

5.1 Analysis of Control Strategies: IBVS and NMPC

Both control approaches, IBVS and NMPC, successfully followed the proposed
trajectory using the pre-mapped images.

In the case of IBVS, the results in terms of velocity were satisfactory, consid-
ering that the robot could not move at high speed due to the planned integration
of an additional camera for strawberry detection in future work. Consequently,
the TurtleBot velocity dynamically adjusted as the reference image changed, ul-
timately reaching the final image of the trajectory.

Similarly, the NMPC approach achieved the desired trajectory tracking. How-
ever, it was observed that the computation of homographies required significantly
higher processing power, particularly in the strawberry environment. In contrast,
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Figure 5.1: Representation of the robots used in the study, including two simulated
models and one hardware test.

in the indoor setting where the Tiago robot operated, the computational demand
was lower. As a result, NMPC functioned more efficiently in this scenario, pro-
ducing smoother and more continuous signals.

The primary distinction between both approaches lies in velocity control.
NMPC maintained a more consistent speed, allowing it to complete the trajecto-
ries faster than IBVS. However, in terms of angular velocity, IBVS proved to be
more suitable for executing turns, as NMPC struggled with sharp turns due to its
constant velocity, which prevented it from decelerating during rotations.

Despite these differences, NMPC was ultimately the more feasible option due
to its smoother and more fluid trajectory execution.

5.2 Comparison between Simulations and Real-World
Implementation

The difference between simulation and real-world implementation is evident
in the graphs obtained. In simulations, the results tend to be cleaner and exhibit
less noise. This is because the controlled environment in which the control is
executed is free from external disturbances, leading to more ideal and predictable
outcomes.

54



Conclusions

In contrast, in the actual implementation, the plots show a higher presence of
noise due to various physical and environmental factors. Among these factors are
ground irregularities, variability in the friction between the tires and the surface,
and noise present in the images used for point matching. The latter can be
affected by variations in lighting, changes in environmental textures, and possible
inaccuracies in image capture and processing.

5.3 Limitations and Challenges Encountered

5.3.1 Vision

Reference Image Current Image

Figure 5.2: Incorrect point correspondences leading to a distorted homography.

One of the main limitations encountered when implementing the work on the
JetBot was related to vision. In some images, the presence of certain objects
caused noise in the point correspondence. This noise interfered with the robot’s
expected behavior, making it difficult for it to correctly complete the established
trajectory. Accuracy in point correspondence is crucial for trajectory tracking.

5.3.2 Wi-Fi Communication

Another significant challenge was the communication between the laptop and
the JetBot, especially in situations where the Wi-Fi connection was affected by
interference or signal loss. These fluctuations reduced the transmission speed,
preventing the received data from being processed correctly in real time. Addi-
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tionally, data loss occurred on some occasions, which impacted the performance
and accuracy of the tasks the robot had to perform. Reliable wireless commu-
nication is essential for the efficient control of the robot, and fluctuations in the
connection quality led to complications during testing.

5.4 Future Research Directions

Based on the results obtained in this study, several areas for improvement and
expansion have been identified that could be addressed in future research. These
improvements would enhance the robustness and efficiency of the system, optimize
navigation based on visual memory, and mitigate the limitations encountered
during implementation.

5.4.1 Enhancing the Robustness of Vision-Based Navigation

One of the main challenges encountered in this work was the presence of noise
in the point correspondence between the reference images and the images captured
by the robot. To improve the robustness of the system, several strategies can be
explored:

• Implement advanced image processing techniques, such as adaptive fil-
tering, more precise edge detection algorithms, or geometric transformations
that optimize key point detection.

• Incorporate convolutional neural networks (CNNs) trained to detect
and reinforce the most relevant features in images, reducing the impact of
irrelevant objects or changes in lighting.

• Apply more robust point correspondence algorithms, such as deep
learning-based techniques or probabilistic methods that reduce uncertainty
in key point identification.

• Develop sensor fusion methods, combining image-based vision with ad-
ditional sensors, such as LiDAR or depth sensors, to improve the accuracy
of the robot’s position estimation.
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5.4.2 Optimization of Wireless Communication

During the JetBot implementation, issues related to Wi-Fi connection sta-
bility were observed, affecting data transmission and real-time processing. To
mitigate these difficulties, the following improvements can be implemented:

• Explore alternative communication protocols, such as ROS 2 with
DDS, which offer greater robustness in data transmission and lower latency
compared to ROS 1.

• Optimize data compression to reduce the required bandwidth for im-
age transmission, minimizing the effects of latency in environments with an
unstable connection.

• Incorporate higher-quality communication hardware, such as Wi-Fi
modules with lower interference or even the use of 5G networks to improve
transmission stability and speed.

5.4.3 Implementation in More Complex and Dynamic Envi-
ronments

The current system was tested in a semi-controlled environment, allowing
for an evaluation of its performance under predictable conditions. However, to
validate its applicability in more complex real-world scenarios, additional testing
is necessary:

• Evaluate system performance in environments with variations in
lighting, textures, and moving obstacles, where visual memory may
be affected.

• Implement real-time adaptation methods, where the system can learn
and adjust its control parameters based on environmental changes. This
could be achieved through online learning or continuous optimization algo-
rithms.
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5.4.4 Evaluation of New Control and Navigation Strategies

Although visual memory has proven to be a viable strategy for JetBot navi-
gation, other techniques can be explored to improve system performance:

• Compare visual memory with SLAM-based approaches (Simulta-
neous Localization and Mapping), utilizing additional sensors to im-
prove the estimation of the robot’s trajectory.

• Investigate the integration of reinforcement learning algorithms,
allowing the robot to autonomously improve its behavior based on experi-
ence acquired in the environment.

These future research directions aim to address the limitations identified in
this study and expand the system’s capabilities for more complex and demanding
applications. By integrating improvements in vision, communication, computing,
and control, a more robust and adaptable system can be developed, suitable for
navigation in dynamic and challenging environments.
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Appendix A: Jetson Nano Specifications

Appendix A: Jetson Nano Specifica-
tions

Figure A.1: Jetson Nano Parts (Developer, 2025)

1. microSD card slot for main storage
2. 40-pin expansion header
3. Micro-USB port for 5V power input, or for Device Mode
4. Gigabit Ethernet port
5. USB 3.0 ports (x4)
6. HDMI output port
7. DisplayPort connector
8. DC Barrel jack for 5V power input
9. MIPI CSI-2 camera connectors
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A.1 Features of the Jetson Nano
The following table shows the characteristics of the Jetson:

Feature Specification

Processor Quad-core ARM Cortex-A57 @ 1.43 GHz

GPU NVIDIA Maxwell with 128 CUDA cores

RAM 4 GB LPDDR4

Storage microSD (minimum recommended: 32 GB)

Interfaces 4x USB 3.0, HDMI, DisplayPort, GPIO, I2C, I2S, SPI

Connectivity Gigabit Ethernet (WiFi adapter optional)

Power Supply 5V/4A (high-performance mode) or 5V/2A (basic mode)

Operating System Ubuntu 18.04 with NVIDIA JetPack (includes CUDA, cuDNN,
TensorRT, OpenCV, ROS, etc.)

Dimensions 100 mm × 80 mm

Approximate Price $99 USD (without additional accessories)

Table A.1: Jetson Nano Technical Specifications

A.2 Advantages of Jetson Nano

• High AI Performance: Its GPU with 128 CUDA cores allows real-time
execution of deep learning and AI models.

• Energy Efficiency: Low power consumption (5-10 W), ideal for embedded
applications.

• ROS Compatibility: Works with ROS Melodic and Noetic, facilitating
robotics applications.

• Support for Multiple Frameworks: Compatible with TensorFlow, Py-
Torch, OpenCV, cuDNN, and TensorRT.

• Good Connectivity: Features multiple USB 3.0 ports, GPIOs, and Giga-
bit Ethernet.

• Strong Development Ecosystem: NVIDIA provides JetPack, an opti-
mized suite for AI and computer vision applications.
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A.3 Disadvantages of Jetson Nano

• Limited Computing Power: Although powerful for its size, it does not
match high-end GPUs like Jetson Xavier or dedicated desktop GPUs.

• No Built-in WiFi: Requires an additional USB WiFi adapter.

• Limited Storage: Uses microSD, which may slow down performance for
intensive applications.

• CUDA Dependency: Applications not optimized for CUDA may not fully
utilize its potential.

• Software Compatibility Issues: Some software packages may not sup-
port the latest versions due to OS limitations.
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