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Abstract

Photon sources based on parametric processes play an important role for the implementation of

quantum protocols that use single photons as carriers of quantum information. These type of

photon sources rely on heralding schemes, where the detection of one photon announces the

presence of its twin. For these sources to function effectively, the photon pairs produced must

be in a spectrally pure state. Otherwise, detecting one photon collapses its twin into a mixed

state rather than a pure one, negatively impacting the performance. While spectral filtering

after generation can purify the states, this approach significantly reduces the photon count rate.

An alternative strategy is to tailor the spectral properties of the photon pairs through group

velocity dispersion (GVD) engineering, a complex process that involves carefully tuning the

waveguide’s geometrical parameters to ensure the generated states are not spectrally entangled.

In this work, we present a novel design of a visible-telecom photon pair source based on

Counter-Propagating Spontaneous Four Wave Mixing (CP-SFWM) within a silicon nitride

microring resonator. We detail the design process, including the determination of geometrical

parameters, and provide simulations of the source’s emission rate and spectral properties. Our

results demonstrate that utilizing a high-quality resonant cavity enables the generation of photon

pairs in a spectrally pure state. Unlike conventional designs based on co-propagating SFWM,

the proposed integrated source achieves automatic phase matching, eliminating the need for

dispersion engineering and significantly simplifying the design process. Furthermore, we

compare our approach to the original proposal of a photon source based on CP-SFWM in an

optical fiber, showing that our design offers superior spectral characteristics, higher emission

rate, and scalability. Finally, we present the spectral characterization of a ring resonator



x

fabricated in the University of Technology of Troyes, achieving quality factors sufficient to

generate photon pairs in pure state. These results underscore the potential of the CP-SFWM

approach as a promising alternative for integrated on-chip photon pair generation.
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Chapter 1

Introduction

1.1 Preamble

Since its inception, quantum mechanics has disconcerted the scientific community with its seem-

ingly counterintuitive predictions, particularly its probabilistic nature, which contrasted with

the deterministic outcomes predicted by well-established theories, such as classical mechanics

and electrodynamics. From the beginning, there was a group of scientists who argued that the

probabilistic character and the "strange" predictions of the theory were due to its incompleteness

[1, 2]. To date, numerous experiments have confirmed predictions of quantum mechanics [3–7],

particularly following the invention of laser technology in 1960 [8]. This innovation, a coherent

and high-intensity light source, opened the door to rapid advancements not only in nonlinear

optics [9, 10] but also in quantum optics, as it enabled the generation of nonclassical states

of light. Experiments using optical quantum states have demonstrated foundational effects in

quantum theory [11–17], while also enabling the implementation of protocols based on quantum

information encoded in photons, such as quantum key distribution [18, 19], quantum computing

[20, 21], and quantum metrology [22, 23].



2 Introduction

The implementation of these emerging quantum technologies relies on the production,

detection, and manipulation of photonic quantum states. In this work, we focus on the problem

of generating photon pairs in pure state, as many of the applications mentioned rely on single

photons that are indistinguishable in all degrees of freedom.

1.2 Types of Single Photon Sources

An ideal single photon source, a so called photon gun, is one that emits a single photon at a

specific time with tailored spectral properties suited to the application for which it was designed.

Implementations of these sources fall into two categories: deterministic and probabilistic.

Deterministic sources use two-level quantum systems, initially in the ground state, which are

excited through electrical [24] or optical [25] methods to a higher energy level; they emit a

photon as the system returns to the ground state. Examples include quantum dots [25, 26] and

single atoms [27]. These approaches have certain drawbacks, such as requiring challenging

operating conditions, such as high-vacuum environments and cryogenic temperatures, and

emitting photons in random directions, which necessitates additional design to direct the

emission [28]. The second alternative, known as probabilistic sources, involves generating

photon pairs through nonlinear parametric processes such as spontaneous parametric down-

conversion (SPDC) and spontaneous four-wave mixing (SFWM). SPDC is a process in which a

single pump photon is converted into two lower-energy photons through a nonlinear interaction

in a material with second-order nonlinear susceptibility (χ(2)). For the generation via SFWM

two pump photons are involved, which do not necessarily have the same energy. This interaction

occurs in a third-order nonlinear medium (χ(3)). An important difference of photon-pair

generation using these processes is that SPDC is typically implemented on materials in bulk,

whereas SFWM can be implemented in optical fibers or waveguides. In Figure 1.1, we show

the energy level diagrams of these two processes.
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Fig. 1.1 Energy diagrams represent graphically the energy conservation in nonlinear parametric
processes, which is satisfied along with phase matching. These conditions are expressed
respectively for SPDC and SFWM as a) ω1 = ωs +ωi, k1 = ks +ki and b) ω1 +ω2 = ωs +ωi,
k1 +k2 = ks +ki. Subscripts denote pumps one and two, signal and idler.

Probabilistic photon sources are effectively used in quantum protocols using a so-called

heralding scheme. This consists on detecting one photon of the pair, which signals the existence

of its twin created during the parametric process. This scheme is illustrated in Figure 1.2.

Material

Detector

Heralded 
TwinPump Laser

𝜒(2), 𝜒(3)

Fig. 1.2 Basic concept of a single photon source based on a parametric nonlinear process.

An important requirement for these photons to be useful in the implementation of quantum

protocols is that the quantum state describing the pair must be unentangled in all degrees of

freedom. In a single-photon heralding scheme, any entanglement would cause the detection of

the herald photon to project its twin into a mixed state rather than a pure one. This loss of purity

makes the photons distinguishable, which can degrade the performance of the applications

relying on them, as the photonic states are not consistently prepared under identical conditions.

When the pair is in an unentangled state, detecting the herald photon only provides information

about the existence of its twin, preserving its indistinguishable nature.
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Photon sources based on SFWM in various types of optical fibers [29–33] have gained

attention in recent years due to interesting properties, such as an emission rate that scales

quadratically with pump power [34], and the flexibility to adjust the interaction length as needed.

However, photon pairs generated through parametric nonlinear processes are inherently subject

to spectral entanglement due to energy and momentum conservation. The primary approach

to address this issue is to filter spectrally the photons [35], but this leads to a reduction of the

photon-pair production rate, an important feature for the efficient implementation of quantum

protocols. An alternative solution, known as group velocity matching (GVM) engineering

[36–39], involves tuning the parameters of the photon source so that the Joint Spectral Intensity

(JSI) function of the generated photons is separable, a requirement for achieving heralded single

photon states.

1.3 Chip Integrated Single Photon Sources

Similar to advancements in electronic technology, progress in optical applications follows the

trend of transitioning from laboratory-based implementations to compact, integrated devices

suited for use outside of laboratory environments. In recent years, integrated photon sources

on quantum photonic chips have gained significant attention [40–46] since this platform offers

promising features, including room-temperature operation, low decoherence, flexible geometric

designs that can be tailored for specific applications, and compatibility with production using

CMOS manufacturing technology [47]. To mention some reported fully integrated applications

on chip, examples include boson sampling [48] and quantum teleportation [49].

Some implementations of integrated photon sources are based on waveguides in straight

[50, 51] or spiral [52, 53] geometries, but they have the drawback that waveguides must be

of several centimeters to produce considerable amount of photon pairs and this would affect

its scalability in applications on chip. An interesting scheme are sources based on resonant

cavities which solve this problem as the enhanced cavity lifetime makes possible to produce a



1.4 Motivation 5

high photon rate with low pump power in a micrometric device. Another interesting property of

photon pairs produced in resonant cavities is that bandwidth of photons can be significantly

reduced using a high quality cavity [54]. This makes this kind of sources viable for applications

in which atom-light interactions are needed, such as optical quantum memories. In these

protocols, photons with a precise wavelength and narrow bandwidth are essential to excite

specific atomic transitions, a key factor for efficient performance [55–57]. Photon sources

based on microring resonators have been successfully used in quantum applications, including

quantum teleportation [58], boson sampling [59], quantum key distribution (QKD) [60, 61],

frequency comb generation [62, 63], quantum computing gates [64], and Franson interferometry

[46, 65].

1.4 Motivation

In [66], the authors proposed the Counter-Propagating SFWM (CP-SFWM) scheme, in which

two pump lasers are injected from opposite ends of an optical fiber. This scheme exhibits

interesting properties; for example, the energy and phase-matching conditions are directly

satisfied for photon emissions at the same wavelengths as the pump lasers but in opposite

directions, simplifying the design by eliminating the need to fine tune the fiber parameters to

position a zero-dispersion point near the pump wavelength. Additionally, they showed that this

setup enables the generation of photons in a pure state using an optical fiber sufficiently long.

In recent years, several studies have theoretically investigated [67–69] and experimen-

tally demonstrated [70–72] the generation of photon pairs via SPDC and SFWM in counter-

propagating configurations. Experimental implementations have confirmed the advantages of

these schemes, including easy tunability, narrow bandwidths, and spectral separability. The

latter is particularly crucial for Hong-Ou-Mandel interference with photons from different

sources, which is fundamental to scalable photonic quantum computing [21].
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These properties of counter-propagating schemes, demonstrated in bulk and optical fibers,

motivated this thesis, in which we investigate the features of a cavity-enhanced integrated

photon source based on CP-SFWM. We demonstrate that a photon source implemented with

this scheme, even with a relatively low quality factor (Q ∼ 104), can easily overcome the

complex group velocity engineering process [36–39] required to ensure spectral separability in

the co-propagating scheme.

Additionally, compared to cavity-enhanced photon sources based on co-propagating SFWM,

our CP-SFWM source offers significant advantages due to its automatic phase-matching mecha-

nism. Specifically, it eliminates the need for precise tuning of the waveguide cross-section to

satisfy phase-matching conditions at the target wavelengths. Furthermore, it does not require

dispersion engineering to position the zero-dispersion point near the pump wavelength in the

anomalous dispersion region. Simultaneously satisfying both conditions is challenging, as they

are highly sensitive to geometric variations and require precise control over the waveguide

dimensions [73, 74]. Another advantage of our photon source is its operation with only two

wavelengths, whereas the co-propagating scheme requires three. The latter necessitates tun-

ing the ring radius to achieve three resonant wavelengths, complicating both the design and

operation.

This enhanced simplicity and flexibility make our scheme highly adaptable to a wide range

of applications, requiring only lasers operating at the desired wavelengths and compatible

detectors. Such versatility establishes our approach as a robust framework for designing

tailored integrated photon-pair sources. Notably, it presents an especially attractive solution for

applications such as integrated solid-state quantum memories based on rare-earth ions, where

generating photons with precise wavelengths and narrow bandwidths is crucial for efficient

light-matter interaction. This further underscores the significance of our approach.
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1.5 Thesis Outline

The content of this thesis is divided in five chapters, the first one being this introduction. In

chapter two we present the design considerations of the integrated photon source, a review

on the materials, and a brief discussion on the theory of guided modes and the quantization

of electromagnetic field. In chapter three we make the explicit full derivation of the quantum

state of photon pairs using the CP-SFWM scheme in a resonant ring cavity. We include a

section dedicated to the Schmidt decomposition, a technique used to quantify the degree of

entanglement in a bipartite system, and we compute the expression for the emission rate of

photon pairs by our source. In chapter four we present the results obtained in the simulations

using parameters of materials and equipment we have in our facilities, with which we selected

the appropriate parameters of the photon source, and then we analyze the spectral properties

and emission rate, and make a comparison with the original proposal using an optical fiber

[66]. Additionally, we present the spectral characterization of a ring resonator fabricated in the

University of Technology of Troyes. Finally, in chapter five we present the conclusions.





Chapter 2

Design Considerations of the Photon

Source and Fundamentals

2.1 Spontaneous Four-Wave Mixing Processes

Spontaneous Four-Wave Mixing is a nonlinear process that occurs in materials with a third-order

nonlinear susceptibility (χ(3)). It is typically implemented in optical fibers or waveguides. The

term spontaneous distinguishes this process from its stimulated counterpart, where, in addition

to the pump lasers, an extra laser is injected into the fiber or waveguide. This additional laser

seeds the FWM process, enhancing its efficiency. However, the generated photons cannot be

used in quantum technology applications, as they mix with the stimulating laser photons. In

the spontaneous case, only the pump laser is injected into the fiber or waveguide, leading to

the generation of signal-idler photon pairs through a quantum interaction. Figure 2.1 illustrates

a diagram of a photon-pair source implemented in an optical fiber using the co-propagating

method, so named because the generated photons propagate in the same direction as the pump

field. We focus on the pump-degenerate case, where a single pump laser is used, meaning both

pump photons have the same frequency.
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χ(3)ω1

ω𝑖

ω𝑠

𝑁𝐹 𝐷𝑀

Fig. 2.1 Diagram of co-propagating SFWM. In this configuration, the signal and idler photons
are generated in the same direction as the pump field. At the output of the fiber, the remaining
pump laser can be removed using a Notch filter (NF), while the signal and idler photons can be
separated using a dichroic mirror (DM).

In the relevant work [66], J. Monroy-Ruz and colleagues proposed the Counter-Propagating

Spontaneous Four-Wave Mixing (CP-SFWM) scheme, an alternative approach to the typical

co-propagating single pump SFWM scheme to generating heralded photon pairs that are tunable,

bright, factorable, and exhibit narrow bandwidths. This method, illustrated in Figure 2.2 a),

involves coupling two laser beams into opposite ends of a χ(3) nonlinear waveguide or optical

fiber.

a) ω1 ω2

χ(3)

x
z

ωiωs

ω1

ω2
ωs

ωi

b)

Fig. 2.2 a) Schematic of the CP-SFWM process in a χ(3) waveguide, pumps 1 and 2 are
depicted by Gaussian shapes while the photons generated in the process are represented by the
bottom spheres. The arrows indicate the direction of propagation. b) Energy level diagram for
CP-SFWM, the energy conservation is trivially satisfied for ωs = ω1 and ωi = ω2.

For the counter-propagating setup, the phase-matching condition is automatically satisfied

for ωs = ω1, and ωi = ω2, while energy conservation dictates ω1 +ω2 = ωs +ωi as depicted

in Figure 2.2 b). During the process, pump photons at frequencies ω1 and ω2 interact in the
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nonlinear material creating a new photon pair that matches the pump wavelengths but propagate

in opposite directions. This bidirectional setup not only simplifies the tuning of the output

photon wavelengths but also enhances experimental flexibility. An important concept in the

design of waveguides is the dispersion [75], defined as

D(λ ) =−λ

c
d2ne f f (λ )

dλ 2 , (2.1)

where c is the speed of light in vacuum, ne f f (λ ) is the effective refractive index of the guided

mode, and λ is the wavelength. In photon sources based on the co-propagating SFWM scheme,

dispersion must be carefully evaluated, as the pump wavelengths must be confined to the anoma-

lous dispersion regime near a zero-dispersion point [73, 74]. The CP-SFWM has the advantage

of its inherent phase-matching, eliminating the need for dispersion engineering. This relaxed

constraint simplifies the design process, requiring only that the waveguide supports guided

modes at the pump frequencies. Additionally, this configuration broadens the applicability

of CP-SFWM to a wider range of materials and wavelength regimes, further emphasizing its

versatility and potential for practical implementations.

In their work, Monroy-Ruz and colleagues explored two configurations of CP-SFWM in an

optical fiber. They demonstrated that using a combination of a continuous wave (CW) laser

and a pulsed laser as pumps, referred as the mixed case, offers several advantages. Specifically,

this approach allows for a simultaneous increase in photon emission rate, the generation of

factorable quantum states, and a reduction in photon bandwidth as the interaction length

grows. While their findings showed that optical fibers only a few millimeters long could

generate spectrally separable photon pairs, achieving photon bandwidths in the MHz range

required optical fibers or waveguides several meters long. Such dimensions suppose significant

challenges for scalability, particularly in the context of photonic integrated circuits (PICs)

and key applications in quantum networks, such as integrated quantum memory devices. To

overcome this limitation, we propose a novel approach that implements CP-SFWM within a

high-quality integrated microring resonator fabricated on the silicon nitride (Si3N4) platform.
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We will explain in Chapter 4 that the radius of the ring cavity must be carefully chosen

through an optimization method aimed at ensuring that the signal–pump 1 and idler–pump 2

beams are resonant. In other words, the challenge is to optimize two resonances. This represents

a simplification compared to the co-propagating SFWM scheme, where the optimization process

involves three resonances, one for each field: pump, signal, and idler.

2.2 Configuration of the Photon Source

The photon pair source proposed in this work features a silicon nitride-on-insulator microring

resonator in an add-drop configuration, as illustrated in Figure 2.3 a). The design is based on

ridge type waveguides, shown in Figure 2.3 b).

Waveguide 1

b)

𝒑𝟏 𝒑𝟐 𝒔 𝒊

Waveguide 2

a)

𝒛

𝒙

Fig. 2.3 a) Schematic of the proposed photon pair source. Waveguide 1 works as input port
for pump 1 and at the same time as drop port for signal photons, waveguide 2 has the same
function but for pump 2 and idler photons. b) Schematic of a ridge type waveguide.

Four key parameters must be considered in the design: the height and width of the waveg-

uides, the radius of the ring resonator cavity, and the gaps between the ring and the bus

waveguides. In Chapter 3, we present a comprehensive analysis of the microring-based photon

source, detailing its design and performance characteristics. In Chapter 4, we provide a detailed
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explanation of the criteria and methods used to select these parameters with the objective to

optimize the performance of the photon source.

2.3 Properties of Silicon Nitride

Silicon-on-Insulator (SOI) is a versatile material that has been widely utilized in integrated

photonics research [76] due to its availability and properties. Its high refractive index [77] allows

for the dense integration of components on a single chip, while its compatibility with CMOS

technology [78] enables efficient large-scale fabrication. However, SOI has certain drawbacks.

For instance, it is not transparent at visible wavelengths [79], limiting its applications in this

spectral range. Moreover, its low bandgap negatively impacts photon-pair generation via

spontaneous four-wave mixing due to undesired effects such as two-photon absorption (TPA)

and free-carrier absorption (FCA) [80, 81].

In recent years, alternative materials have been explored. One prominent example is silicon

nitride (Si3N4), which we use in our design. While its refractive index, as well as linear and

nonlinear properties, are slightly lower than those of SOI [82], it offers significant advantages.

Its higher bandgap eliminates TPA and FCA [83], and its wide transparency window includes

visible wavelengths [84, 79] expanding its range of applications. Furthermore, silicon nitride

exhibits an exceptionally low loss coefficient [85, 86], which is critical for developing high-

quality resonant cavities that enhance photon-pair production [87]. Silicon nitride has been

successfully employed in various on-chip applications, including photon-pair sources operating

across visible and telecom wavelength ranges [46, 88–90], phase modulators [91, 92], chip-

integrated lasers [93, 94], sensors [95, 96], and optical filters [97]. In table 2.1, we summarize

the properties of both materials.
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SOI Si3N4
Transparency window (µm) 1.1-8 0.4-7
Refractive index 3.5 2
Nonlinear refractive index (m2/W ) 4×10−18 3.1×10−19

Bandgap (eV ) 1.12 5.3
loss coefficient (dB/cm) ∼ 2 [98, 99] 0.001

Table 2.1 Relevant properties of SOI and Si3N4 for the development of photon pair sources.

2.4 Theory of Guided Modes

A common misconception about guiding of light in optical fibers and waveguides is the

assumption that this phenomenon is entirely explained by total internal reflection. Total internal

reflection plays a role, but this explanation is overly simplified. If it were the complete

explanation, we would observe a continuum of guided modes, all satisfying the critical angle

condition, which is not observed in experimental results [100]. A good understanding of the

guiding effect can be obtained by solving the step-index optical fiber using a wave optics

approach [101]. The profile of a step-index optical fiber is depicted in Figure 2.4.

𝑛1

𝑛2

Fig. 2.4 Graphical representation of a step-index optical fiber. It exhibits radial symmetry. n1
and n2 are the refractive index of core and cladding, respectively.

This type of optical fiber consists of a core with refractive index n1, and a cladding with n2,

for which the condition n1 > n2 is satisfied. The analysis begins with the wave equation of the

electric field in a dielectric media, expressed as
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∇∇∇
2EEE(rrr, t)− n(r)2

c2
∂EEE(rrr, t)

∂ t
= 0. (2.2)

where n(r) is the refractive index function, and c is the speed of light. The first step is

to separate the temporal dependence from the spatial one, then a trial solution of the form

EEE(rrr, t) = EEE(rrr)e−iωt is used. Substituting this into the wave equation and expressing the

Laplacian operator in cylindrical coordinates, equation (2.2) rewrites as

(
∂ 2

∂ r2 +
1
r

∂

∂ r
+

1
r2

∂

∂φ
+

∂ 2

∂ z2 +β
2
)

EEE(rrr) = 0 (2.3)

where β = nω

c is the wave number in the medium and ω is the angular frequency. To solve the

spatial part, a trial solution is proposed: EEE(rrr) = E(r)ei(lφ+β z), where β is the effective wave

number of the wave traveling along z. Substituting this into equation (2.3) reduces it to an

ordinary differential equation in r.

d2E(r)
dr2 +

1
r

dE(r)
dr

+

(
n2(r)k2 −β

2 − l2

r2

)
= 0 (2.4)

This is a well-known Bessel differential equation. To ensure physically meaningful solutions,

this is, no singularities in the core, convergence to zero in the cladding, and continuity and

smoothness at the core-cladding interface, the azimuthal dependence must be periodic. This

condition requires the parameter l to be an integer. All these requirements define the guided

modes in the optical fiber, which are given by Bessel functions of first kind (J(r)) in the core

and of second kind (Y (r)) in the cladding.

Figure 2.5 a) shows the transverse field distribution for a step-index optical fiber, simulated

using Metric software [102] with typical values for the core-radius and refractive indices. In

Figure 2.5 b), it is appreciated that the field distribution extends outside the core, an effect not

accounted for in the simplified geometrical optics description. This phenomenon, known as the

evanescent field, plays a crucial role in the development of integrated photonic circuits.
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|𝑬|

𝑥 (𝜇𝑚)

y
(𝜇
𝑚
)

|𝑬|

r (𝜇𝑚)

𝒂)
𝒃)

𝒏𝟏 𝒏𝟐

Fig. 2.5 Field distribution of the fundamental mode in a step-index optical fiber. The parameters
used in the simulation are n1 = 1.5, n2 = 1.49, λ = 1550 nm, Rcore = 3 µm. a) Normalized
transverse field distribution. b) Normalized profile as function of r.

For optical fibers with more complex refractive index profiles or waveguides with structures

such as rectangular profiles and several cladding materials, like the one considered in this work,

it is not possible to solve the transverse field distribution analytically. Instead, it is necessary to

use numerical methods or specialized software [103].

2.5 Quantization of the Electromagnetic Field

In this section, we provide a concise overview of the quantization of the electromagnetic field

and Fock states. The description of spontaneous four wave mixing cannot be fully explained

within the framework of classical electrodynamics, therefore a quantum mechanical treatment

is necessary. In classical reference textbooks we can find the quantization procedure for a set of

standing waves in 3D free space [104, 105]. Here we focus on the analysis for the case of a 1D

cavity of length LQ (which ultimately in the analysis of the photon source will be considered

LQ → ∞) with perfect reflective walls, assuming there are nor currents nor charges.

The electric and magnetic fields can be expressed in terms of the vector potential AAA(rrr, t), as

follows
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EEE(rrr, t) =−∂AAA(rrr, t)
∂ t

, (2.5)

BBB(rrr, t) = ∇∇∇×AAA(rrr, t), (2.6)

The Coulomb gauge is imposed, ∇∇∇ ·AAA= 0, to ensure the electrical and magnetic field components

of the radiation are both transversal to the propagation vector. With this consideration, a wave

equation for the vector potential can be derived from the Maxwell equations

∇∇∇
2AAA(rrr, t)− 1

c2
∂AAA(rrr, t)

∂ t
= 0. (2.7)

The solution is a superposition of harmonic waves linearly polarized along x̂xx, all satisfying

the standing wave condition, λ = LQ/m, k = 2πm/LQ, with m = 1,2,3, ...

AAA(rrr, t) = x̂xx∑
k

[
Akei(kz−ωt)+A∗

ke−i(kz−ωt)
]
, (2.8)

where Ak denotes the complex amplitude of the field. The quantized electric and magnetic

fields, written in terms of annihilation and creation operators are given by [105]

ÊEE(rrr, t) = ix̂xx∑
k

(
ℏωk

2ε0V

)1/2 [
âkei(kz−ωkt)− â†

ke−i(kz−ωkt)
]

(2.9)

B̂BB(rrr, t) =
i
c

ŷyy∑
k

(
ℏωk

2ε0V

)1/2 [
âkei(kz−ωkt)− â†

ke−i(kz−ωkt)
]

(2.10)

Where ε0 is the electric permittivity of vacuum, and V is the volume of interaction. At this

point we introduce some modifications to adapt the equation of the quantized electromagnetic

field to describe the guided field within a waveguide. The vacuum wave number is replaced

by the propagation constant associated with the guided mode, β . Since the electromagnetic

radiation propagates in a dielectric medium, we also made the substitution ε0 → ε0n2
e f f (β ),

where ne f f (β ) is the effective refractive index of the guided mode. Furthermore, as the radiation
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travels only along the z-axis, the spatial volume is defined by the cavity length, LQ, and the

spatial density of the guided mode, f (x,y), which is normalized
∫ ∫

f 2
β
(x,y)dxdy = 1 m−1.

From now on, we focus on the electric field as the SFWM treatment is conducted using this

field. With these adjustments, equation (2.9) becomes

ÊEE(rrr, t) = ix̂xx∑
β

(
ℏωβ

2ε0n2
e f f (β )L

)1/2

fβ (x,y)
[
âβ ei(β z−ωkt)− â†

β
e−i(β z−ωkt)

]
(2.11)

Finally, we define the mode spacing in terms of the quantization length, LQ, as

δk = 2π/LQ, (2.12)

and define the common factor of the sum as

ℓ(β ) =

√
ℏωβ

ε0n2
e f f (β )

(2.13)

Incorporating definitions (2.12,2.13), the quantized electric field can be expressed as

ÊEE(z, t) = i

√
δk
2

x̂xx∑
β

ℓ(β ) fβ (x,y)
[
âβ ei(β z−ωkt)− â†

β
e−i(β z−ωkt)

]
(2.14)

Now we present the Fock states. The annihilation and creation operators appearing in (2.14)

satisfy the following commutation relations

[
âβ , âβ ′

]
= 0

[â†
β
, â†

β ′] = 0

[âβ , â
†
β ′] = δββ ′

(2.15)

The Hamiltonian of the electromagnetic modes inside the cavity can be expressed in terms of

these operators as [105]
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Ĥ = ∑
β

ℏωβ

(
â†

β
âβ − 1

2

)
= ∑

β

ℏωβ

(
n̂β − 1

2

)
(2.16)

where n̂β ≡ â†
β

âβ is the number operator associated with mode β . The Fock states, repre-

sent states with a well defined number of photons in each mode, are eigenstates of both the

Hamiltonian and the number operator. These states are denoted as

|{n j}⟩= |n1,n2,n3, ...⟩ (2.17)

where we used an enumerated representation for simplicity. In this expression, n j denotes

the number of photons in the j-th mode. The eigenvalues of the number operator and the

Hamiltonian are given by:

(
∑

j
n̂ j

)
|{n j}⟩=

(
∑

j
n j

)
|{n j}⟩ (2.18)

Ĥ |{n j}⟩=

(
∑

j
ℏω j

(
n j +

1
2

))
|{n j}⟩ (2.19)

Throughout this work we will use the notation |n⟩
β

to represent a state with n photons in

the mode β and zero in all the others. Then, the creation and annihilation operators acting on a

photon in mode β are respectively:

â†
β
|n⟩

β
=
√

n+1 |n+1⟩
β

(2.20)

âβ |n⟩β
=
√

n |n−1⟩
β

(2.21)





Chapter 3

CP-SFWM in a Resonant Ring Cavity

In this chapter, we derive the photon state generated by CP-SFWM in a ring resonator from first

principles. We follow the procedure presented in [34, 87], where the authors derived the photon

state for the case of co-propagating SFWM. As we explain in equation (3.8), in this work, we

analyze the term E(+)
1+ E(+)

2− E(−)
s− E(−)

i+ from the general case of a third-order nonlinear interaction,

corresponding to CP-SFWM, whereas they work with the term E(+)
1+ E(+)

1+ E(−)
s+ E(−)

i+ . In the

final expressions, we include all laser parameters rather than making approximations based on

bandwidths. We begin by writing the Hamiltonian of the process, followed by the derivation

of the photon state in a straight waveguide. Next, we present the interaction of radiation at

the ring-bus waveguide interface, which gives rise to Airy functions. These functions are

then incorporated into the Joint Spectral Intensity (JSI) of the process. Finally, we provide

a brief overview of the Schmidt decomposition, a technique used to quantify the degree of

entanglement in a bipartite system, and conclude by calculating the photon emission rate.

3.1 Hamiltonian of CP-SFWM in a Straight Waveguide

The derivation of the Hamiltonian for the CP-SFWM process begins with the expression for the

energy of a classical pump field in a waveguide [106]
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H =
1
2

∫
V

EEE ·DDD dV, (3.1)

where EEE and DDD represent the electric and displacement fields, respectively, and V is the

interaction volume. The electric displacement field is given by [106]

DDD = ε0EEE +PPP, (3.2)

where ε0 is the permittivity of free space, and PPP is the polarization (the dipole moment per unit

volume). This quantity models the interaction between electromagnetic fields and matter, and it

can be written as a power series of the electric field amplitudes [107]

PPP(t) = ε0

[
χχχ
(1)EEE(t)+χχχ

(2)EEE2(t)+χχχ
(3)EEE3(t)+ · · ·

]
, (3.3)

where χχχ(1), χχχ(2), χχχ(3), . . . , are the susceptibility tensors that determine the material’s response

to the electric field. The first term corresponds to linear effects, which are independent of the

field intensity, while the higher-order terms represent nonlinear interactions of second, third,

and higher orders. The second-order term is ignored because it vanishes in centrosymmetric

media such as silicon nitride. The third-order term is the lowest-order nonlinear contribution in

this material and is responsible for the spontaneous four wave mixing effect [107].

In the analysis, we consider that all involved fields are co-polarized along x̂. Thus, EEE ·DDD

can be expressed as:

EEE ·DDD = ε0

(
1+χ

(1)
)

EE + ε0χ
(3)EEEE (3.4)

The first term corresponds to linear effects, which we ignore since our interest lies in the

dynamics of the third-order nonlinear terms responsible for the SFWM effect. Note that we use

scalar expressions because all fields are assumed to be co-polarized. In this expression, χ(3)

represents the element χ
(3)
xxxx of the third-order nonlinear susceptibility tensor.
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Another consideration is that the guided modes propagate along the z-axis. Modes traveling

in the positive and negative directions can be written in complex form as follows [107]

E+ =
1
2

[
Eei(β z−ωt)+Ee−i(β z−ωt)

]
=

1
2

[
E(+)
+ +E(−)

+

]
(3.5)

E− =
1
2

[
Eei(−β z−ωt)+Ee−i(−β z−ωt)

]
=

1
2

[
E(+)
− +E(−)

−

]
(3.6)

Here, E is the field amplitude, and β denotes the wave number of the mode. The second term in

each equation can be interpreted as waves of "negative" frequency propagating in the opposite

direction. The total field of four components can be expressed as:

E = E1 +E2 +Ei +Es, (3.7)

where the subscripts 1, 2, s, and i refer to pump 1, pump 2, signal, and idler, respectively.

Substituting (3.7) into the nonlinear term of (3.4) using (3.5) and (3.6) for each field, we obtain

all the third-order nonlinear interactions between the four fields. The interaction of our interest

is the non-degenerate CP-SFWM process, specifically the term of the form

E(+)
1+ E(+)

2− E(−)
s− E(−)

i+ (3.8)

In this interaction, positive frequency terms are used for the pump fields, and negative frequency

terms are used for the signal and idler fields, as this choice ensures energy conservation. Then,

negative frequencies can be interpreted as fields created during the interaction.

Performing the algebra, and considering that the factors commute, we find there are 24

terms of the form (3.8). This corresponds to the number of permutations of four distinguishable

elements. The Hamiltonian for this interaction is then written as

H =
24
25 ε0χ

(3)
∫

V
E(+)

1+ E(+)
2− E(−)

s− E(−)
i+ dV =

3
4

ε0χ
(3)
∫

V
E(+)

1+ E(+)
2− E(−)

s− E(−)
i+ dV (3.9)
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We assume that pump 1 and idler photons propagate in the positive z-direction, while pump 2

and signal photons propagate in the negative z-direction.

Since we are dealing with a spontaneous process, where there are no stimulating signal or

idler fields and they arise from vacuum fluctuations, it is necessary to work within the framework

of quantum optics. Then, we consider the pump fields as classical functions, while the signal

and idler fields are treated as quantum operators. The Hamiltonian is therefore expressed as

Ĥ =
3
4

ε0χ
(3)
∫

V
E(+)

1+ E(+)
2− Ê(−)

s− Ê(−)
i+ dV (3.10)

The pump laser fields in a waveguide can be expressed as [34]

E(+)
1+ = E1 f1(x,y)

∫
α1(ω)ei(β1(ω)z−ωt)dω

E(+)
2− = E2 f2(x,y)

∫
α2(ω)ei(−β2(ω)z−ωt)dω

(3.11)

where α(ω) represents the spectral envelope of the laser pump, and f (x,y) is the transverse

field distribution of the guided mode, satisfying the normalization condition
∫

f 2(x,y)dxdy = 1.

For the signal and idler fields, their corresponding operators are obtained from equation (2.14)

Ê(−)
s− (rrr, t) =−i

√
δk fs(x,y)∑

βs

exp [i(−βsz+ωt)]ℓ(ω)â†(βs)

Ê(−)
i+ (rrr, t) =−i

√
δk fi(x,y)∑

βi

exp [i(βiz+ωt)]ℓ(ω)â†(βi)
(3.12)

Substituting (3.11) and (3.12) into (3.10), we obtain

Ĥ(t) =−3
4

ε0χ
(3)E1E2δk

[∫ ∫
f1 f2 fi fs dxdy

]
×∑

βs

∑
βi

∫ ∫
dω1dω2ℓ(ωs)ℓ(ωi)α1(ω1)α2(ω2)

×e−i[ω1+ω2−ωi−ωs]t
∫ L

0
dzei(β1−β2+βi−βs)zâ†

s â†
i

(3.13)
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The overlap integral [34], phase mismatch, and frequency mismatch are given by the following

expressions:

fe f f =
∫ ∫

f1 f2 fi fs dxdy (3.14)

∆β = β1 −β2 +βi −βs (3.15)

∆ω = ω1 +ω2 −ωi −ωs (3.16)

The z-integral has a simple closed form:

∫ L

0
dzei∆β z = Lei ∆βL

2 sinc
(

∆βL
2

)
(3.17)

Using (3.14)-(3.17) in (3.13), the Hamiltonian for the CP-SFWM process becomes

Ĥ(t) =−3
4

ε0χ
(3)E1E2Lδk fe f f ∑

βs

∑
βi

ℓ(ωs)ℓ(ωi)

×
∫ ∫

dω1dω2α1(ω1)α2(ω2)e−i∆ωtei ∆βL
2 sinc

(
∆βL

2

)
â†

s â†
i

(3.18)

This is the general Hamiltonian of the CP-SFWM process.

3.2 Hamiltonian of the CP-SFWM Process in a Ring Res-

onator

When considering the CP-SFWM process occurring in a ring cavity, the treatment is analogous to

that presented in Section 3.1, considering the interaction length in this configuration corresponds

to the cavity circumference, L = 2πR. However, it is necessary to formulate the problem in
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cylindrical coordinates (r,h,θ). In this case, the transverse field distributions and the overlap

integral are expressed in terms of (r,h) as follows

fe f f =
∫ ∫

f1(r,h) f2(r,h) fs(r,h) fi(r,h)drdh (3.19)

Assuming the radius of the ring resonator is not too small, on the order of hundreds of microme-

ters or larger, the guided mode in the ring can be considered approximately identical to that in a

straight waveguide. Thus, we can make the following approximation:

∫ ∫
f1(r,h) f2(r,h) fs(r,h) fi(r,h)drdh ≈

∫ ∫
f1(x,y) f2(x,y) fs(x,y) fi(x,y)dxdy (3.20)

To use the photon pairs in an experiment, they need to be extracted from the ring cavity.

This is achieved via evanescent field coupling between the guided modes of the ring and a

straight waveguide placed in close proximity to the cavity. Figure 3.1 illustrates a 2D schematic

of this process.

𝐴1

𝐴2

𝐵1

𝐵2

Fig. 3.1 A system comprising a ring cavity placed near a straight waveguide. The ring waveguide
is shown on the left, while the straight waveguide is on the right. Blue lines represent the
transverse field distributions of the guided modes, which extend beyond the waveguides,
enabling interaction. Pairs (A1,B1) and (A2,B2) denote field amplitudes before and after the
interaction region, respectively. Fields propagate from bottom to top.

In this configuration, the interaction region [108], red rectangle, allows guided modes

propagating along one waveguide to excite modes in the other. Thus, photons can transfer
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between the waveguides. The field amplitudes in this region are related through the scattering

matrix [109]

A2

B2

=

r t

t r

A1

B1

 (3.21)

Here, t and r are the transmission and reflection coefficients, respectively. In a general treatment

these coefficients are complex, but we assume no phase shift occurs in the interaction, then

we treat them as real values. Additionally, assuming energy conservation in the interactions,

the coefficients satisfy t2 + r2 = 1. The squares of these coefficients can be interpreted as the

probabilities of a photon remaining in the same waveguide (reflectivity) or transferring to the

other (transmissivity).

To establish the relationship between the total field at the output of the bus waveguide and

the field inside the cavity, we consider an infinitesimal region ∆ of the bus waveguide, see

Figure 3.2.

Δ

Fig. 3.2 Infinitesimal region, depicted in red, for the analysis of the field

At a given moment, the field amplitude in this region corresponds to the field just transferred

from the ring to the bus waveguide, tE, as given by (3.21). If the system has reached a steady

state, the field also includes contributions from previous rounds in the ring, with the respective

phase accumulated during each round trip.
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B = tA+ trAeiβL + tr2Aei2βL + tr3Aei3βL + · · · (3.22)

Here, the coefficients of r account for the field remaining in the ring after each interaction. This

expression can be rewritten as

B = tA
∞

∑
n=0

(
reiβL

)n
(3.23)

Since r < 1, this is a geometric series that converges to

B =
t

1− reiβL
A (3.24)

This function is known as the Airy function [87] of the cavity-bus waveguide system

A (β ) =
t

1− reiβL
(3.25)

and it plays a significant role in determining the spectral properties and emission rate of the

photon-pair source.

We explained the relation of classical fields in the system ring-bus waveguide, but the same

applies for Fock states. Let b̂† represent the photon creation operator for the fundamental mode

of the bus straight waveguide. It relates to the creation operator of the ring cavity, â†, by

â†(β )→ A (β )b̂†(β ) (3.26)

Thus, using (3.26) in (3.18) for signal and idler photons, the Hamiltonian of the entire system is

given by

Ĥ(t) =−3
4

ε0χ
(3)E1E2Lδk fe f f ∑

βs

∑
βi

ℓ(ωs)ℓ(ωi)As(ωs)Ai(ωi)

×
∫ ∫

dω1dω2α1(ω1)α2(ω2)e−i∆ωtei ∆βL
2 sinc

(
∆βL

2

)
b̂†

s b̂†
i

(3.27)
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3.3 Quantum State of Photons Generated by CP-SFWM in a

Resonant Ring Cavity

To obtain the quantum state produced by the CP-SFWM process, we use a first order ap-

proximation derived from a perturbation scheme, where the state after a time t is given by

[110]

|ψ⟩=
[

1− i
ℏ

∫ t

0
Ĥ(t ′)dt ′

]
|0⟩ |0⟩ (3.28)

where |0⟩ |0⟩ represents the vacuum for signal and idler modes corresponding to state at

time t = 0. Notice in equation (3.27) the frequency mismatch (3.16) corresponds to energy

conservation since CP-SFWM is a parametric process. If we consider the time τ , in which

signal and idler photons are created via SFWM, is small compared to the integration window,

τ << t, we can consider the time integral defines a Dirac delta,

∫ t

0
e−∆ωtdt = 2πδ (∆ω), (3.29)

and using the property
∫

f (x)δ (x−a)dx = f (a) of the Dirac delta, we obtain the state of photon

pairs generated by CP-SFWM

|ψ ′⟩= ξ δk∑
βs

∑
βi

ℓ(ωs)ℓ(ωi)As(ωs)Ai(ωi)

×
∫

dω2α1(ωs +ωi −ω2)α2(ω2)ei ∆βL
2 sinc

(
∆βL

2

)
b̂†

s b̂†
i |0⟩ |0⟩

(3.30)

where we defined the factor

ξ =
6
4

πε0χ
(3)E1E2L fe f f (3.31)

This is the general form of the state of photon pairs generated by CP-SFWM in a resonant

ring cavity.
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3.4 Spectral Properties

As mentioned earlier, we are working within the mixed scheme of CP-SFWM, this is, pump 2

is considered a continuous-wave laser with narrow bandwidth. Thus, its spectral envelope can

be approximated as a Dirac delta. Equation (3.30) is rewritten as:

|ψ ′⟩= ξ δk∑
βs

∑
βi

ℓ(ωs)ℓ(ωi)As(ωs)Ai(ωi)

×α1(ωs +ωi −ω
0
2 )e

i ∆βL
2 sinc

(
∆βL

2

)
b̂†

s b̂†
i |0⟩ |0⟩

(3.32)

where ω0
2 denotes the central frequency of pump 2. In this expression, we differ in the argument

of the exponential function from the one obtained in [66], where they analyze the CP-SFWM

process in an optical fiber. We find that the exponential term depends on the phase mismatch

∆k, with the same argument as the sinc() function, which is commonly reported in studies

on SPDC and SFWM photon sources [34, 36, 87, 111]. In contrast, their equation defines

the exponential in terms of a different parameter, κ , which corresponds to the sum of the

propagation constants rather than the phase mismatch. This difference does not ultimately affect

the spectral characterization of photon pairs, as it merely introduces a phase factor that does

not appear in the squared norm of the summand in Equation (3.32), which dictates the spectral

properties of the photons. Since the functions ℓ(ω) vary slowly, their influence is considered

negligible. Therefore, the spectral properties are determined by

|G(ωs,ωi)|2 =
∣∣∣∣As(ωs)Ai(ωi)α1(ωs +ωi −ω

0
2 )sinc

(
∆βL

2

)∣∣∣∣2 . (3.33)

This is the so-called Joint Spectral Intensity (JSI) function of the process. This function plays

a crucial role for the characterization of the photon source as it provides information of the

spectral entanglement of the photon pairs, and it serves as a basis for estimating the photon

emission rate.
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3.4.1 The Schmidt Decomposition

The Schmidt decomposition is a mathematical tool useful for analyzing bipartite quantum

systems. It provides a way to quantify the degree of entanglement between the two subsystems

[112, 113]. In a quantum system composed of two subsystems, denoted by AAA and BBB, with

respective Hilbert spaces HA and HB, the total Hilbert space of the composite system is

H = HA ⊗HB. A pure state of the composite system |ψ⟩ ∈ H , is expressed as

|ψ⟩= ∑
i, j

ci, j |ai⟩⊗ |b j⟩ (3.34)

The Schmidt theorem states that the state can be re-expressed as a sum of the form

|ψ⟩= ∑
i

√
λi |ui⟩⊗ |vi⟩ , (3.35)

where the coefficients satisfy ∑i λi = 1, and |ui⟩ and |vi⟩ are orthonormal bases of the subsystems

AAA and BBB, respectively. This is known as the Schmidt decomposition [112].

To quantify the degree of entanglement, two parameters are commonly used: K, the effective

Schmidt number, and P, the purity. These parameters are related by P = 1/K. In this work, we

use the purity P, defined as [114]

P = ∑
i

λ
2
i (3.36)

since it is a normalized parameter and provides an intuitive measure of how "pure" each

subsystem is, depending on its value P ∈ [0,1]. The physical interpretation of this parameter is

as follows:

• P = 1, the decomposition contains only one term, λ1 = 1 and all other λi = 0, correspond-

ing to a separable non-entangled state.

• P < 1, the decomposition includes more than one term, indicating entanglement.
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Then, for a pure global state |ψ⟩ ∈ H , entanglement implies a loss of purity in the subsys-

tems. For photon pair sources based on parametric processes, the generated photon-pair states

are often entangled in frequency. To quantify the degree of frequency correlation, the Schmidt

decomposition is applied to the Joint Spectral Intensity [114]. In the case of non-entangled

photon pairs, the JSI satisfies

|G(ωs,ωi)|2 = |Gs(ωs)|2|Gi(ωi)|2 (3.37)

3.5 Photon Pair Emission Rate

The emission rate of the photon source is determined by the expectation of the photon number

for all the modes, given by [87]

Np = R∑
βs′′

⟨ψ ′| â†
s′′ âs′′ |ψ ′⟩ (3.38)

As shown in (3.31), the state is expressed in terms of the pump field amplitude for a single

pulse. Therefore, in equation (3.38), we multiply the summation by R, the pulse rate per second

of the pulsed laser. We rewrite equation (3.38) substituting (3.32).

Np =R|ξ |2(δk)2
∑
βs′

∑
βi′

∑
βs′′

∑
βs

∑
βi

⟨0| ⟨0| âs′ âi′ â
†
s′′ âs′′ â

†
s â†

i |0⟩ |0⟩

× ℓ(ωs′)ℓ(ωi′)G(ωs′,ωi′)ℓ(ωs)ℓ(ωi)G∗(ωs,ωi)

(3.39)

In equation (3.39), G(ωs,ωi) represents the Joint Spectral Amplitude (JSA), and the notation

G∗() denotes its complex conjugate. We simplify equation (3.39) using the algebra of creation

and annihilation operators.
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Np =R|ξ |2(δk)2
∑
βi′

∑
βi

∑
βs′

∑
βs′′

∑
βs

⟨0| âi′ â
†
i |0⟩⟨0| âs′ â

†
s′′ âs′′ â

†
s |0⟩

× ℓ(ωs′)ℓ(ωi′)G(ωs′,ωi′)ℓ(ωs)ℓ(ωi)G∗(ωs,ωi)

(3.40)

We perform the operations on the vacuum state, with which the expression can be rewritten as

Np =R|ξ |2(δk)2
∑
βi′

∑
βi

∑
βs′

∑
βs′′

∑
βs

⟨1|i′ |1⟩i ⟨1|s′ â
†
s′′ âs′′ |1⟩s

× ℓ(ωs′)ℓ(ωi′)G(ωs′,ωi′)ℓ(ωs)ℓ(ωi)G∗(ωs,ωi)

(3.41)

In equation (3.41), the term ⟨1|i′ |1⟩i corresponds to a Kronecker delta δi,i′ , the remaining

operators correspond to the number operator n̂s′′ for which we have the relation n̂s′′ |1⟩s =

δs,s′′ |1⟩s. We can drop summations on i′ and s′′, then, equation (3.41) rewrites as

Np = R|ξ |2(δk)2
∑
βi

∑
βs′

∑
βs

⟨1|s′ |1⟩s ℓ(ωs′)ℓ(ωi)G(ωs′,ωi)ℓ(ωs)ℓ(ωi)G∗(ωs,ωi) (3.42)

The operation ⟨1|s′ |1⟩s corresponds to another Kronecker delta, δs,s′ , with which we drop the

summation on s′.

Np = R|ξ |2(δk)2
∑
βi

∑
βs

ℓ(ωs)ℓ(ωi)G(ωs,ωi)ℓ(ωs)ℓ(ωi)G∗(ωs,ωi) (3.43)

The expression of the emission rate is written in terms of the JSI as:

Np = R|ξ |2(δk)2
∑
βs

∑
βi

ℓ2(ωs)ℓ
2(ωi)|G(ωs,ωi)|2 (3.44)



34 CP-SFWM in a Resonant Ring Cavity

Lastly, we substitute in (3.44) the formulae for third-order nonlinearity in terms of the nonlinear

refractive index [107], the nonlinear coefficient definition [115], and the power of continuous-

wave and pulsed lasers in terms of their field amplitudes [116]

χ
(3) =

4
3

cε0ne f f (ω1)ne f f (ω2)n(2) (3.45)

γ =
n(2) fe f f

√
ω1ω2

c
(3.46)

P2 =
1
2

ne f f (ω2)ε0c|E2|2 (3.47)

P1 =
ne f f (ω1)ε0c|E1|2

2Rδ
(3.48)

where n(2) denotes the nonlinear refractive index of Si3N4, δ and R are the pulse time-width and

repetition rate of pump 1, respectively, and ne f f (ω1) and ne f f (ω2) are the effective refractive

index of the guided modes for pumps 1 and 2, respectively. With this, we obtain an expression

for the emission rate in terms of material and experimental parameters:

Np =
25c2n1n2L2γ2P1P2

ω1ω2δ
(δk)2

∑
βs

∑
βi

ωsωi

n2
e f f (ωs)n2

e f f (ωi)
|G(ωs,ωi)|2 (3.49)

Finally, by considering the quantization length LQ → ∞, the summations are converted into

integrals using δk ∑ →
∫

dk [34], and since the calculations are performed in terms of angu-

lar frequencies, we substitute
∫

dk →
∫

β (1)(ω)dω , where the superscript denotes the first

derivative. Thus, the emission rate is expressed as:

Np =
25c2n1n2L2γ2P1P2

ω1ω2δ

∫ ∫
ωsωiβ

(1)(ωs)β
(1)(ωi)

n2
e f f (ωs)n2

e f f (ωi)
|G(ωs,ωi)|2dωsdωi (3.50)



Chapter 4

Optimization of the Source’s Parameters

and Characterization

In this chapter, we present a detailed description of the complete design process of our photon

source, along with the simulation results for the emission rate and spectral properties. We set

the wavelengths for our photon source as follows: 800 nm for pump 1-signal and 1550 nm for

pump 2-idler. These specific wavelengths were chosen because our facilities are equipped with

lasers that operate at these values. The process of defining the geometric parameters consists of

three key steps:

1. Identify the ideal transverse dimensions of the waveguides to maximize the photon-pair

generation rate.

2. Select a ring-resonator radius that satisfies the resonance conditions for the signal and

idler wavelengths.

3. Determine the optimal coupling gaps between the bus waveguides and the ring to achieve

the desired quality factor.
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4.1 Sample Features and Waveguide Width Optimization

The proposed photon source comprises a silicon nitride-on-insulator microring resonator in

an add-drop configuration (see Figure 2.3). The sample considered for the design consists of

a silicon (Si) wafer, with a layer of silicon dioxide (SiO2), and a top layer of silicon nitride

(Si3N4) with a height of h = 430 nm, see Figure 4.1. This specific material and height can be

etched using our reactive ion etching equipment.

𝒘

𝒉 𝑺𝒊𝟑𝑵𝟒

𝑺𝒊𝑶𝟐

𝑺𝒊

𝒙

𝒚

Fig. 4.1 Schematic of the cross section of the sample.

Then, since the height of the waveguides is set to a fixed parameter, we need to determine

the width (w) of the waveguide and the radius (R) of the ring resonator. Although the phase

matching condition in the CP-SFWM scheme is satisfied for any waveguide geometry that

supports guided modes at the signal (pump 1) and idler (pump 2) wavelengths, we will select

the waveguide width that maximizes the photon-pair emission rate, as explained below. To

achieve this, we used the WGMODES solver [117] to calculate for several waveguide widths

the eigenmodes, their transverse field distributions and wave vectors,

β (λ ) = neff(λ )
2π

λ
, (4.1)

at the signal (pump 1) and idler (pump 2) frequencies. In equation (4.1), ne f f (λ ) is the effective

refractive index of the guided mode.
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In Figure 4.2, we present the effective refractive indices for waveguide widths ranging from

634 nm to 1100 nm. Additionally, the bulk refractive indices of Si3N4 (navy-blue line) and SiO2

(red line) are also shown, calculated using their respective Sellmeier equations [118, 119].

nSi3N4(λ ) =

√
1+

3.0249λ 2

λ 2 −0.13534062 +
40314λ 2

λ 2 −1239.8422 (4.2)

nSiO2(λ ) =

√
1+

0.6961663λ 2

λ 2 −0.06840432 +
0.4079426λ 2

λ 2 −0.11624142 +
0.8974794λ 2

λ 2 −9.8961612 (4.3)

Fig. 4.2 Effective refractive index of the T E00 mode as a function of wavelength for different
waveguide widths (h = 430 nm). The vertical line is set at λ = 1.55 µm. The refractive indices
of SiO2 (navy-blue line) and Si3N4 (red line) are also plotted.

It is well known that a guided mode is supported when the effective refractive index lies

between the refractive indices of the core and cladding materials [120], that is, when the

condition nSi3N4 > ne f f > nSiO2 is satisfied. Our simulations indicate that for waveguides with

widths smaller than 634 nm, the condition ne f f > nSiO2 is not satisfied. As shown in Figure 4.2,

the purple line (w = 634 nm) lies slightly above the red line (cladding refractive index) at 1550
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nm. Consequently, waveguides with widths below 634 nm cannot support a guided mode at

λ = 1550 nm, establishing this value as a lower boundary. The full set of simulations included

waveguides with widths ranging from less than 634 nm to more than 1100 nm, using a step size

of 1 nm. However, the graph does not display all simulations, as the selected data points are

sufficient to reveal the relevant trends while preventing the graph from being saturated.

Fig. 4.3 Effective interaction area Ae f f as a function of the waveguide width. The lines are used
to join the calculated points for discrete values of the waveguide width. The minimal value of
Ae f f was obtained for a waveguide width of w = 794 nm.

Afterwards, we simulated the transverse electric field distributions for the T E00 mode at the

signal and idler wavelengths for various waveguide widths, ranging from 634 nm to 1100 nm.

These field distributions were used to compute the overlap integral, given by equation (3.14).

At this point it is convenient to mention that the overlap integral is inversely related to the

effective area of the SFWM interaction, Ae f f = f−1
e f f . Therefore, the objective was to determine

the waveguide width that minimizes the effective area, as the photon emission rate is related

to this parameter as Np ∼ 1/A2
e f f (see equations (3.50) and (3.46)). This relationship arises

because a smaller overlap area between the transverse field distributions of the modes, indicating
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more confined energy, leads to a greater interaction of pump photons, thereby increasing the

pair production rate. In Figure 4.3, we show the calculated values of Ae f f . We observe that

the effective area decreases as the waveguide width is reduced until it reaches a minimum at

w = 794 nm. Beyond this point, however, the trend reverses, and the effective area begins to

increase again. To explain this behavior, in Figure 4.4 a), b), and c) we show the transverse field

distribution for three different waveguide widths: 1100 nm, 794 nm, and 634 nm, respectively

for λ = 800 nm in the left column and λ = 1550 nm in the right column.

𝝀 = 𝟖𝟎𝟎 𝒏𝒎 𝝀 = 𝟏𝟓𝟓𝟎 𝒏𝒎

𝒘 = 𝟕𝟗𝟒 𝒏𝒎

𝒘 = 𝟔𝟑𝟒 𝒏𝒎

𝒂)

b)

c)

𝒘 = 𝟏𝟏𝟎𝟎 𝒏𝒎

Fig. 4.4 Transverse electric field distributions for the T E00 modes at λ = 800 nm and λ =
1550 nm (left, right columns) for waveguides with width (a) 1100 nm, (b) 794 nm, (c) 634 nm,
with a fixed height of 430 nm. We highlighted the field distribution for a waveguide of width w
= 794 nm, which we identified as a preliminary optimal width for our device.

For the mode at λ = 800 nm, the area of its field distribution exhibits a monotonic decrease as

the waveguide width decreases in the range of simulated values. For the mode at λ = 1550 nm,

we observe that its area at w = 794 nm is smaller than the one at w = 1100 nm, similar to
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the behavior observed for the mode at λ = 800 nm. However, for w = 634 nm, the field

distribution area does not follow this tendency; it is larger than the area at w = 794 nm, even

though the waveguide’s cross-sectional size is smaller. In Figure 4.2, we observed that as the

waveguide width approaches 634 nm, the condition to support a guided mode is compromised

for λ = 1550 nm. Simulations of the transverse field distributions reveal that this occurs because

the guided mode becomes less confined near this width.

Based on this analysis, we set w = 794 nm as a preliminary optimal waveguide width, as

this value yields the minimum effective area. We conclude that the optimal waveguide width is

not necessarily the smallest width for which guided modes are supported; instead, it requires a

systematic exploration to identify the optimal value.

4.2 Optimization of Microring Radius and Photon Emission

Rate

The next step is to determine a suitable radius for each waveguide width simulated in the

previous section and computing the photon emission rate using equation (3.50). The optimal

pair radius-waveguide width corresponds to the one for which the emission rate is maximized.

For a waveguide of a given width, a suitable radius, R, is defined as one for which both the

signal and idler photons are resonant within the cavity. Mathematically, this implies that the

following condition must be satisfied for both wavelengths:

ne f f (λ )
2πR

λ
= l (4.4)

where l ∈ Z represents the azimuthal mode number of the cavity. For each radius under consid-

eration, this resonance condition was validated by identifying the closest resonant frequencies

(ω̄s, ω̄i) and ensuring that the absolute differences for both the signal and idler frequencies

satisfied the threshold condition:
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|ω̄s,i −ωs,i|< 2π(100 MHz) (4.5)

where ω̄ is the frequency of a resonance of the cavity.

The process is not straightforward due to the nonlinear variation of the effective refractive

index of the guided modes (see Figure 4.2). Optimizing the radius to satisfy resonance for one

wavelength does not guarantee resonance for the other. Therefore, a search range for the radii

was defined between 140 µm and 160 µm, and the optimization process involved systematically

varying the ring radii within this range in steps of ∆R= 0.0001 µm. At each step, condition (4.5)

was evaluated for both wavelengths, and the radius for which both conditions were minimized

was selected as optimal. The narrow search range was chosen to ensure consistent conditions

when comparing photon-pair emission rates. Consistency is crucial because Np depends on

the radius of the cavity (see equation (3.50)). Specifically, a larger radius directly leads to a

longer cavity length, L, which ultimately results in a higher emission rate. Therefore, significant

variations in radius across different waveguide widths would lead to biased comparisons.

In order to compute photon emission rates, it is necessary to evaluate the Airy functions of

resonances, equation (3.25), at signal and idler wavelengths to evaluate the integral (3.50). We

considered a quality factor of Q = 1.4×106, which is the highest value reported in literature

for a silicon nitride microring resonator [121], and computed the respective reflection and

transmission coefficients for the Airy functions using the relation [103]

r = 1− πl
Q

(4.6)

where l is the azimuthal mode number for the respective resonances found for each waveguide.

Using the optimized radius obtained for each waveguide width and the Airy functions,

we then calculated the photon-pair emission rate using equation (3.50), see Figure 4.5. The

calculations were performed assuming pump lasers with Gaussian spectral envelope, α(ω),

centered at the signal and idler wavelength, respectively. Pump powers were set at P1 = P2 =
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1 mW, and the spectral properties of two lasers available in our facilities: the Chameleon Vision

II (δ = 140 f s, repetition rate R = 80 MHz, σ1 = 1.874 T Hz) [122], and the TLB-6730 laser

(σ2 = 200 kHz) [123].

Fig. 4.5 Photon emission rate, Np, as a function of the waveguide width. The maximal value
corresponded for the waveguide of width of w = 794 nm.

The photon emission rate has an expected tendency opposite to the effective area (see Figure

4.3), since they are related as Np ∼ 1/A2
e f f . However, we did not select w = 794 nm as the

optimal value only based on the simulations of Ae f f . As mentioned earlier, we predefined a

reduced search space for the resonator radius to ensure consistency. Nevertheless, even within

this constraint, the waveguide width that maximizes the photon emission rate may differ slightly

from the one that minimizes the effective area. In Figures 4.3 and 4.5, the fine variations

in waveguide width simulations around 800 nm can be observed. This refined search was

conducted to capture potential small variations. The simulations revealed that the maximum

photon-pair emission rate was Np = 118.70 pairs/s, corresponding to a waveguide width of

w = 794 nm and a ring resonator radius of R = 156.34 µm.
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4.3 Ring-Bus Waveguides Gaps Optimization
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b)

Fig. 4.6 a) Diagram in MODE illustrating a segment of the bus-ring waveguides that constitute
a directional coupler. b) Schematic of the full microring resonator simulated in INTERCON-
NECT.
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To finalize the design of the photon pair source, we used the MODE and INTERCONNECT

modules from Ansys Lumerical software [124, 125] to determine the optimal gaps between the

ring cavity and the bus waveguides. In these simulations, the ring resonator was modeled by

decomposing it into multiple waveguide segments, including two directional couplers, straight

waveguides, and bend waveguides. These individual components were then integrated into a

circuit within the INTERCONNECT module to simulate the complete behavior of the resonator.

Figure 4.6 illustrates the simulation setups in both MODE and INTERCONNECT.

The simulations began by identifying the guided modes using the eigenmode expansion

(EME) solver. Next, the propagation characteristics of the straight and bend waveguides were

analyzed using the finite difference method (FDM) in Mode Solution. Finally, the quality

factors at the signal and idler wavelengths were characterized over a range of gap values through

full simulations performed in INTERCONNECT. Figure 4.7 illustrates the simulation of pump

field coupling from the bus waveguide to the ring cavity via the evanescent field, along with the

transmission spectrum around 800 nm in which we can appreciate a resonance.

a)

b)

Fig. 4.7 a) Diagram showing the simulation of pump laser coupling from the bus waveguide to
the microring. b) Transmission spectrum showing a resonance at 800 nm.
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Then, we proceed to simulate the quality factor (Q) for resonances at signal and idler

wavelengths, obtained with our proposed source by varying the gap between the bus waveguides

and the microring cavity. For a given resonance, its corresponding quality factor is computed

using the equation [109]:

Q =
ν

∆ν
, (4.7)

where ν is the central frequency of the resonance, and ∆ν is the full width at half maximum

(FWHM). Figure 4.8 shows the characterization of the quality factors at signal and idler wave-

lengths across a gap range of 100 nm to 600 nm.
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Fig. 4.8 Q-factor of the resonances at 800 nm and 1550 nm as a function of ring-bus waveguide
gap.

The increasing tendency of the quality factor as the gap increases, followed by its subsequent

decrease, can be explained using equations (3.21) and (4.6). The quality factor increases as r

approaches one (Q = πl
1−r ), meaning that radiation remains confined within the ring resonator
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for a longer time, increasing the photon lifetime inside the cavity and enhancing amplification.

However, if the ring and bus waveguide are too far apart, their evanescent fields no longer

interact, which affects the coupling and causes the quality factor to decrease after a certain

threshold [126]. The maximum achievable quality factors for the signal and idler were found to

be Q = 8.92×106 and Q = 2.28×106, respectively. The corresponding gap values to achieve

these maxima are 590 nm and 580 nm.

The Q-factor values obtained in the simulations exceed the highest reported value for a

Si3N4 ring resonator, Q = 1.4×106 [121]. For subsequent simulations of the photon emission

rate and the spectral characteristics of the photons, we used the value Q = 1.4×106 for both

resonances. These ring-bus waveguide gaps complete the optimal geometric parameters for the

proposed device.

4.4 Spectral Properties Characterization

In this section, we analyze the spectral properties of the photon pairs generated by the photon

source, using the optimal parameters determined in the previous sections and considering

the spectral characteristics of the lasers described in Section 4.2. Figure 4.9 a) shows the

normalized JSI (Equation (3.33)) of the photon pairs produced by our photon source based

on CP-SFWM. The color scale on the right represents the values of the JSI function, which

correspond to the joint probability density of detecting photon pairs. The graph is centered at the

frequencies νs = 374.74 T Hz (λs = 800 nm) and νi = 193.41 T Hz (λi = 1550 nm) within a

500 MHz square window. The optimization of the ring resonator’s radius is evident in this graph.

Photon pairs are effectively generated at the desired wavelengths, as we carefully selected the

radius through an optimization process to ensure resonances located at these wavelengths. The

precise tunability of the photon pair wavelengths is one of the key advantages of our scheme.
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Fig. 4.9 a) JSI of CP-SFWM photon pairs generated in our proposed microring resonator source.
b) Representation of a discrete JSI function using square sections.

To analyze the purity of the photon-pair state we computed a Schmidt decomposition of the

JSI. Numerically, this was done by taking a discrete representation of the JSI, corresponding to

a matrix, and applying a singular value decomposition (SVD) [114]. This numerical method

involves representing a matrix A of dimensions m×n as a sum of min(m,n) vector products,

expressed as [127]:

A =
min(m,n)

∑
i

ρiuuuivvvT
i (4.8)

where uuui are vectors of dimension m that span the column space, and vvvT
i are vectors of dimension

n that span the row space. The ρi are the singular values, which assign weights to each term

in the matrix reconstruction. This description highlights the connection between SVD and

the Schmidt decomposition. In Figure 4.9 b), we show a representation of the discretized JSI

in square regions. The computation was carried out in MATLAB using a discretization of

m = 1200 and n = 1200, corresponding to squares of 0.5 MHz×0.5 MHz. The purity obtained
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was P = 1, indicating a separable state. The inset in Figure 4.9 b) shows the first four Schmidt

values; since the JSI is separable, the first element is 1, and the remaining 0.

Figures 4.10 a) and b) show the marginal distributions for the signal and idler photons,

respectively, obtained by integrating the JSI over the other variable. That is, to obtain the

marginal distribution of signal photons, we integrated the JSI over the idler variable, and vice

versa. We obtained full-width at half-maximum (FWHM) bandwidths of ∆νs = 157.9 MHz and

∆νi = 79.7 MHz for the signal and idler photons. The idler photon bandwidth, ∆νi = 79.7 MHz,

achieved with a Q-factor of Q = 1.4× 106, is narrower than the bandwidth required for an

efficient interaction with erbium-ion-based solid-state quantum memories (≈ 185 MHz) [128].

This demonstrates that photon sources based on the CP-SFWM scheme in microring resonators

are suitable for such applications, provided that a sufficiently high quality factor is achieved, as

has been demonstrated with Si3N4 ring cavities [121].
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Fig. 4.10 Marginal distributions for a) signal photons (800 nm) with 157.9 MHz bandwidth and
b) idler photons (1550 nm) with 79.7 MHz bandwidth.

For comparison, we replicated simulations of the CP-SFWM source based on optical

fibers in the mixed case as reported in [66]. Using a Q-factor of Q = 1.4× 106 and pump

powers P1 = P2 = 1 mW , our source (R = 156.34 µm, L = 982.31 µm) is predicted to generate

Np = 118.70 pairs/s with a signal photon bandwidth of ∆νs = 157.9 MHz and an idler photon

bandwidth of ∆νi = 79.7 MHz. In comparison, adjusting the parameters from Monroy et



4.5 Analysis of the Photon Emission Rate and Spectral Properties as Function of the Q-Factor49

al. to match our pump powers, an optical fiber length of approximately 21.949 m would be

required to achieve the same emission rate as our source, representing an enhancement factor

of 2.23× 104 in our design. Similarly, achieving the same signal photon bandwidth would

require a fiber length of about 6.894 m, corresponding to an improvement factor of 7.02×103.

These significant advancements in both emission rate and bandwidth reduction underscore the

scalability and efficiency of our photon source design. In Table 4.1, we summarize the results

of the comparison.

Fiber length Enhancement factor
Np = 118.70 pairs/s 21.949 m 2.23×104

∆νs = 157.9 MHz 6.894 m 7.02×103

Table 4.1 Fiber lengths needed to achieve the performance of our integrated photon source.

4.5 Analysis of the Photon Emission Rate and Spectral Prop-

erties as Function of the Q-Factor

In the original CP-SFWM proposal using an optical fiber [66], the fiber length was the primary

parameter controlling the photon-pair properties. In contrast, for our microresonator based

photon source, the Airy functions play a significant role in the computation of the JSI (see

Equations 3.33, 3.50), making the Q-factor the key parameter that determines the emission

rate, bandwidth, and purity for a fixed cavity length. Figure 4.11 presents the results of an

exploratory study we conducted to characterize how the photon source properties vary with

different Q-factor values. In the simulations we used some reported values for silicon nitride

ring-resonators: Q = 1.3×104 [129], Q = 4×104, Q = 4.6×105 [130], Q = 1.04×106 [46]

and Q = 1.4×106 [121]. Figure 4.11 a) shows that the photon emission rate increases with the

Q-factor, whereas Figure 4.11 b) reveals a significant reduction in bandwidth, reaching the MHz

scale. Both parameters asymptotically converge to values primarily dictated by the resonator

length. Additionally, the purity was calculated for each Q-factor, consistently yielding a value
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of P = 1, even at the lowest Q-factor. This outcome can be attributed to the broad bandwidth of

the pulsed laser, which exceeds the cavity resonance width.

Fig. 4.11 Q-factor dependence of the characteristics of the photon-pairs produced with our
source based on CP-SFWM in a ring resonator. (a) Photon emission rate. (b) Bandwidth of
the signal and idler photons. The vertical lines corresponds to reported values in literature for
silicon nitride ring resonators. In graph b) we use a logarithmic scale in the y-axis.
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4.6 Fabrication and Characterization of a Chip-Integrated

Microring Resonator

In this section, we present the characterization results of the quality factors of a chip developed

in collaboration with Mauricio Robles and Dr. Rafael Salas from the University of Technology

of Troyes (UTT), France, and Dr. Samuel Durán from Leibniz University, Hannover, Germany.

The sample of the chip consists of a 500 nm thick stoichiometric Si3N4 layer deposited on

a 2 µm of SiO2 thick layer, which is placed on top of a Si substrate. The device was quickly

designed without an optimization process to take advantage of the opportunity to fabricate

it alongside other devices in a fabrication round within this sample and to characterize it,

obtaining preliminary results on its performance at the wavelengths of interest. We designed

the microring resonator structures using Python library GDS Helpers [131], an open-source

software tool for creating photonic circuit layouts. Figure 4.12 a) shows the final design of the

device. We provided the files of the designed chip to Mauricio Robles and Dr. Rafael Salas.

They fabricated it using electron beam lithography and reactive ion etching techniques at UTT.

A detailed description of the complete fabrication process can be found in [132]. Figure 4.12

b) shows a microscope image of the resonator during operation, its geometric parameters are

h = 500 nm, w = 800 nm, R = 154 µm, gs,i = 400 nm.

𝑎) b)

Fig. 4.12 a) GDS of the final device. b) Microscope image in which it is shown the ring
resonator during characterization measurements. The red beam is a visible laser used to couple
the optical fibers to the chip.
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The characterization was carried out by Dr. Samuel Durán at Leibniz University. During

the characterization process, the chip was placed on a temperature-controlled platform to

maintain a stable temperature of 26.5◦C. An Erbium Doped Fiber Amplifier (EDFA) was used

as an Amplified Spontaneous Emission (ASE) source of broadband spectrum. Coupling and

decoupling of the laser were performed using fiber lenses, and the beams were analyzed with an

Optical Spectrum Analyzer. Dr. Samuel provided us with the raw transmission and drop spectra

data, which we subsequently analyzed. In Figure 4.13, we present the transmission and drop

spectra around 1550 nm. The transmission is measured at the output of the pump waveguide,

while the drop is measured at the output of the other waveguide, where no pump is injected.

Fig. 4.13 Measured spectra of a) the transmission channel and b) the drop channel.
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We identified the resonance closest to 1550 nm in both the transmission and drop spectra

and fitted a Lorentzian function to the data to extract the bandwidths. Figure 4.14 shows the

normalized resonances. We obtained bandwidths of 23.74 GHz and 21.40 GHz for the trans-

mission and drop resonances, respectively. Their corresponding quality factors, computed using

equation (4.7), are 8.15×103 and 9.04×103. As we mentioned in Section 4.5, characterization

results indicate that even with a quality factor of this order, a pure state is achieved. However, a

higher value is necessary to improve the emission rate and the bandwidths of photons.

23.74 𝐺𝐻𝑧 21.40 𝐺𝐻𝑧

Fig. 4.14 Normalized resonances at 1550 nm of the a) transmission and b) drop spectrum.

We simulated this ring resonator using its geometrical parameters. The quality factors

obtained using ANSYS Lumerical were Qi = 1.36×106, Qs = 3.48×106, approximately half

of those of the optimized device (Qi = 2.28×106, Qs = 8.92×106). This outcome was expected

because the geometrical parameters of this resonator were not optimized. Experimentally, the

measured quality factor Qi is approximately two orders of magnitude lower than the simulated

value, likely due to intrinsic cavity losses caused by fabrication defects, which further degrade

performance. However, with the measured quality factors, a purity of one is achievable

according to the simulations, and a good photon emission rate of Np = 99.89 pairs/s is expected.

Future work will focus on improving the fabrication process to achieve higher quality factors.





Chapter 5

Conclusions

We presented the design of an integrated photon-pair source based on cavity-enhanced CP-

SFWM, utilizing a mixed-pump scheme in a Si3N4 microring resonator with an add-drop

configuration to generate photon pairs at 800 nm and 1550 nm. In this scheme, phase matching

is inherently satisfied for photons at the same wavelengths as the pumps, eliminating the need

for dispersion engineering. For the simulations, pump 1 was modeled as a pulsed laser centered

at λs = 800 nm, while pump 2 was a CW laser centered at λi = 1550 nm.

The design of the device required an extensive optimization of the geometrical parameters,

focusing on three key objectives:

• Maximizing the photon-pair emission rate by carefully selecting the waveguide’s trans-

verse dimensions.

• Identifying a resonator radius that satifies the resonance conditions for the signal and

idler photon wavelengths, thereby ensuring the cavity-enhanced effect.

• Optimizing the coupling gaps between the bus waveguides for pumps 1 and 2 and the

ring resonator to achieve the highest possible Q-factor.

The optimized design parameters for the photon source include a waveguide cross-section

with a height of h = 430 nm and a width of w = 794 nm, a ring radius of R = 156.34 µm , and
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coupling gaps of 590 nm and 580 nm for the bus waveguides of pumps 1 and 2, respectively.

These parameters align with reported values for Si3N4 chip-integrated ring resonators, making

the proposed device feasible for implementation. Some of these values in the format (h,w,R,g)

are: (450 nm, 1000 nm, 60 µm, 600 nm) [129], (500 nm, 1200 nm, 25 µm, 200 nm) [46], (500

nm, 200 nm, 300 µm, —) [121].

We analyzed the performance of the photon source through simulations, obtaining band-

widths for the signal and idler photons of ∆νs = 157.9 MHz and ∆νi = 79.7 MHz, respectively,

assuming the highest reported Q-factor of Q = 1.4×106 for a silicon nitride microring resonator.

The source achieved an emission rate of Np = 118.70 pairs/s. Additionally, we performed a

numerical Schmidt decomposition of the JSI using SVD and demonstrated that the generated

photon pairs exhibit a purity of P = 1, corresponding to a spectrally separable quantum state, a

very important feature for implementation of quantum protocols.

We conducted an exploratory study by varying the Q-factor, underscoring its critical role as

a control parameter that directly influences the emission rate of the integrated photon source and

its spectral properties, including bandwidth and purity. Additionally, we compared our results

with the original proposal and demonstrated that a chip-integrated source using a microring

resonator overcomes the major limitation of requiring long interaction lengths in fiber-based

implementations.

With the results we obtained, we demonstrated the advantages of CP-SFWM for implement-

ing chip-integrated photon sources, highlighting three key benefits:

• It eliminates the need for dispersion engineering, as the phase-matching condition is

inherently satisfied.

• Selecting a suitable ring resonator radius requires optimizing only two resonances instead

of three, as in the co-propagating scheme, simplifying the design process.

• Spectrally pure photon pairs can be easily achieved by using a ring resonator with a

reasonable quality factor (Q ∼ 104).
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These advantages make the scheme highly adaptable, requiring only lasers emitting at the

desired wavelengths and compatible detectors. Such flexibility establishes our approach as a

robust framework for designing tailored integrated photon-pair sources.

As mentioned at the beginning of Chapter 4, the choice of wavelengths λs = 800 nm,

λ = 1550 nm was based on the availability of lasers at these wavelengths in our facilities. These

wavelengths were not selected for a specific application, but rather to demonstrate the feasibility

of implementing an integrated photon source based on CP-SFWM, with a view toward a future

fabrication of the source. Despite this, our photon source could be adapted to make it suitable

for applications in quantum memories based on erbium ions, since the wavelength for this

application is 1536.48 nm [128], a very close value to the 1550 nm used in our simulations.

We can confidently assert that the bandwidth of photons produced at this wavelength would

be approximately the bandwidth we obtained (79.7 MHz) using a microring resonator of

Q = 1.4×106, which satisfies the requirement of being narrower than the maximum acceptable

value (≈ 185 MHz)) for the efficient implementation of the protocol.

We reported the characterization of a ring resonator at λ = 1550 nm, developed in collab-

oration with colleagues from UTT and Leibniz University, and its corresponding simulation.

The measured Q-factor values, Qi = 8.15×103, 9.04×103, were lower than those expected

from the simulations (Qi = 1.36×106), likely due to intrinsic losses in the cavity caused by

fabrication defects. Nevertheless, these values are sufficient to generate photons in a pure

state. Addressing the fabrication issues will be critical for improving performance in future

implementations.

Future work will involve fabricating the designed photon source using electron beam lithog-

raphy at UTT, with a focus on improving the fabrication process of the photonic circuits to

minimize losses caused by nonuniformity of the waveguides and surface roughness. Subse-

quently, the spectral properties and emission rates of both photon sources will be characterized

at the Center for Research in Optics in León, Mexico. Additionally, in future implementations,

we could expand the design of photon sources using this scheme by incorporating materials
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such as SiC and AlGaAs, two alternatives with interesting optical properties, including high

linear and nonlinear refractive indices, which enable better integration and enhance the photon

emission rate.
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