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ABSTRACT 
 
Attaching sensitive materials to the tip of an optical fiber has proven to be a practical 
approach for creating selective and highly sensitive sensors. In this thesis, I report the 
fundamentals to design, fabricate and characterize displacement and temperature sensors, 
based on a modified extrinsic Fabry Pérot interferometer, by adding a semi-spherical polymer 
cap to the end face of an SMF FC/PC connector. The displacement sensor presents a dynamic 
range 9 times larger than that obtained with an extrinsic fiber Fabry-Perot interferometer 
(EFFPI), besides a subnanometer resolution was demonstrated, taking advantage of the 
optical Vernier effect. The temperature sensor shows a 69 times temperature sensitivity 
improvement with respect to a conventional EFFPI with a polymer cap by implementing the 
Vernier effect in a double-cavity Fabry-Perot interferometer (DCFPI) configuration.  I also 
propose a sensor package consisting of a machined movable mount. These sensors possess 
characteristics that could be attractive for some applications, such as the robustness provided 
by the connector, the simple fabrication process, or the detection of minimal changes in 
position or temperature measures. I designed, developed, and implemented an automated 
mechatronic platform to fabricate the polymer-caped fiber Fabry-Pérot interferometer 
(PCFPI) tips. 
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The Handbook of modern sensors [1] presents a brief but accurate definition of a 
sensor: 
 
"A sensor is a device that receives a stimulus and responds with an electrical signal." 
 
The stimulus, also known as measurand, is the input variable of any sensing system. It is the 
physical property received and converted into an electrical signal, which can be channeled, 
amplified, and modified. After such a transition, we can call it an output signal.  
 
There is a wide variety of sensor classifications. This work first considers direct and complex 
sensors. A direct sensor transforms a stimulus into an electrical signal by employing a 
specific physical effect. In contrast, a complex sensor uses one or more energy transducers 
before a direct sensor generates an electrical output. The difference between a sensor and a 
transducer is that the former converts any energy into electrical energy, and the latter converts 
any energy into another. 
 
A modern sensor is an extensive system of components, including detectors, signal 
conditioners, processors, memory devices, data recorders, and actuators. An actuator is the 
opposite of a sensor; it converts electric energy into generally nonelectrical energy. 
 
It is challenging to accurately pinpoint the first modern sensor in history due to the evolution 
of the concept of sensors and their applications. However, if we consider a system able to 
detect, measure, and convert physical magnitudes from any domain to an electrical domain, 
the thermocouple by Thomas Seebeck was the first device to approach this definition. In 
August 1821, Seebeck published his discovery that two different metals forming a closed 
circuit will display magnetic properties when there is a temperature difference between the 
two points of contact. Thus, the Seebeck effect is the basis of thermoelectricity and has led 
to the development of thermocouples for contact temperature measurement [2]. 
 
Light is a very efficient form of energy for sensing various stimuli, such as distance, motion, 
temperature, chemical composition, and many others. Optical sensors offer advantages over 
typical sensors, including their insensitivity to stray magnetic fields or electrostatic 
interferences, non-contact operation, the absence of loading effect, and more. The first 
electro-optical sensing system in history was the photophone by Alexander Graham Bell and 
his assistant, Sumner Tainter, in 1880. The photophone uses a selenium photodetector, which 
converts luminous energy into voltage to be transformed into acoustic signals by a telephone 
[3]. It was a stunning advance in optical communication technology; the photophone could 
transmit a human voice hundreds of meters on a light beam. This invention was the basis for 
developing communications using fiber optics and lasers years later. First, the laser was 
invented in 1960 by Theodore Maiman at Hughes Research Labs, where he developed the 
ruby laser for the first time [4]. On the other hand, fiber optics were first demonstrated in 
1970 when Robert Maurer, Donald Keck, and Peter Schultz, researchers at Corning Glass, 
developed the first single-mode glass fiber with attenuation below 20 dB/km [5]. 
 
Beyond the communication technology revolution caused by the laser and fiber optic 
inventions, both devices formed the basis of many optical systems, including multiple 
sensors, specifically Optical Fiber Sensors (OFS). The first history sensor based on fiber 
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optics was the optical fiber hydrophone. This sensitive acoustic detector uses the phase 
modulation of an optical beam in a submerged optical fiber by soundwaves propagating in a 
fluid [1977]. Fiber optic sensors are classified into five basic categories [1]:  
 
• Intensity-modulated sensors. 
• Phase-modulated sensors. 
• Wavelength-modulated sensors. 
• Scattering-based sensors. 
• Polarization-based sensors. 

Intensity-modulated sensors use the fiber or a mechanical transducer attached to another fiber 
to interact with physical perturbations. This perturbation produces a change in the received 
light intensity, being a function of the measured phenomenon.  
 
Phase-modulated sensors compare the phase of light in a sensing signal to a reference signal 
in a device known as an interferometer. The interferometers measure the phase difference 
between both signals with extreme sensitivity. These are much more accurate than intensity-
modulated sensors and present a more extensive dynamic range. 
 
Wavelength-modulated sensors work from a change of the transmission or reflection 
spectrum associated with displacement, temperature, or the presence of chemical species.  
 
Scattering-based sensors are related to three types of light scattering: Rayleigh, Raman, and 
Brillouin. These sensors detect anomalies along the fiber by changes in the scattered light 
back-reflected to a detector. The scattered light perturbation may cause an intensity change 
or wavelength shift caused by the sensed parameter.  
 
Polarization-based sensors modify the polarization state through phenomena such as Faraday 
rotation or birefringence, which alters the transmitted light intensity [6]. 
 
This work will focus on a specific phase-modulated sensor, the Fiber Fabry-Pérot Sensor 
(FFPI). Due to their extreme sensitivity, phase-modulated sensors are the most publicized 
fiber sensors [7]. Typically, they involve optical interferometers to measure the phase change 
of a single light signal or, more often, the relative phase change between two light waves. 
Interferometer-based fiber optic sensors have been implemented in various applications since 
1983 [8]. However, the first published fiber-optic Fabry-Pérot sensing system was registered 
in 1988 as a high-resolution relative point temperature system [9]. However, the Fabry-Pérot 
interferometer (FPI) was invented by the physcicist Charles Fabry and Alfred Pérot who 
published their most significant article in 1897 [10].  
 
The configuration of a conventional FFPI involves single or multiple cavities to generate 
interference from successive reflections of an initial beam. The Fabry-Pérot fiber cavities can 
be made using fiber Bragg gratings (FBG) [11], coreless fibers (CF) [12], external mirrors 
[13], polymers [14], and more. We obtained all the outstanding experimental results 
presented in this work by interferometers based on a double cavity configuration formed with 
a polymer cavity and an air cavity using an external mirror. The use of polymers for cavity 
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formation began in 1996 with an ultrasound FFPI sensor using a thin transparent polymer 
PET film [15]. A brief timeline diagram of the fiber Fabry-Pérot interferometers is presented 
in Fig. 1.  

 
Fig 1. Brief optical sensors history timeline. 

 
This work will study the phenomenon of optical interference in optical fiber sensors, 
particularly the Fabry-Perot interferometer. The structure of this interferometer is interesting 
because it is compact, easy to manufacture, and highly sensitive. To improve the sensitivity 
of these interferometers to the influence of external disturbances, we propose to use a 
polymer layer adhered to the tip of the optical fiber. The main objective is to demonstrate 
that the sensitivity and resolution of the reported schemes for measuring distance and 
temperature can be improved. 
 
In the following chapters, I will present the basis of displacement and temperature sensors, 
based on a modified extrinsic Fabry Perot interferometer, by adding a semi-spherical polymer 
cap to the end face of an SMF FC/PC connector, considering its configuration, operation, 
fabrication, mathematical theory, experimental results, and a mechatronic platform that 
automates its fabrication process to obtain reproducible devices. 
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The characteristics of the light propagating in an SMF can be determined after solving 
the Helmholtz equation in a cylindrical coordinate system. The solution is a family of Bessel 
functions (Bessel functions for the core and modified Bessel functions for the cladding). It is 
helpful to compare the Bessel beam with the Gaussian beam. Whereas the complex amplitude 
of the Bessel beam is an exact solution of the Helmholtz equation, the complex amplitude of 
the Gaussian beam is only an approximate solution. The development of the theory presented 
in this chapter is based on the presented in reference [16]. 
 
A single component of 𝐸"⃗  or 𝐻""⃗  of an electromagnetic wave, represented as 𝜓, propagating in 
a uniform medium satisfies the Helmholtz wave equation: 
 

(∇! + 𝑘!)	𝜓 = 0     (1) 
 

where 𝑘 = 2π/λ is the wave number, which can also be expressed in terms of the angular 
frequency ω, the vacuum speed of light 𝑐, the relative permittivity 𝜖" , and permeability 𝜇" of 
the medium: 
 

𝑘 =
ω√𝜖"𝜇"

𝑐 																																																																	(2) 
 
Considering the positive 𝑧 direction as the direction of propagation, the distribution for any 
component of the electric field is 𝐸(𝑥, 𝑦, 𝑧) = 𝑢(𝑥, 𝑦, 𝑧)𝑒#$%&, where 𝑢 is a complex scalar 
function that defines the non-plane wave part of the beam. Thus, substituting the electric field 
in the Helmholtz equation, we obtain the reduced wave equation: 
 
																																																														'

!(
')!

+ '!(
'*!

+ '!(
'&!

+ 𝑘!𝐸 = 0	    
   

'!+
')!

+ '!+
'*!

+ '!+
'&!

− 2𝑗𝑘 '+
'&
= 0                                          (3) 

 
Since the variation of the amplitude 𝑢 along 𝑧 is small over a distance comparable to a 

wavelength due to diffraction, this implies ?
∆-"#"$.

∆&
@ 𝜆 << '+

'&
. In addition, the axial variation is 

small compared to the perpendicular variation, which means that the third term in (3) is 
negligible compared to the first two terms. This statements constitute the paraxial wave 
equation, which is presented in the following expression in rectangular coordinates: 
 

'!+
')!

+ '!+
'*!

− 2𝑗𝑘 '+
'&
= 0                                               (4) 

 
The solutions to the paraxial wave equation are the Gaussian beam modes. The limit 
condition for the application of considering the paraxial approximation is that the angular 
divergence of the beam must be confined to within 0.5 radian or about 30 degrees.  
 
The axial symmetry existent in optical fibers makes cylindrical coordinates the natural choice 
for the solution of the paraxial wave equation, which is in this coordinate system: 
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𝜕!𝑢
𝜕𝑟! +

1
𝑟
𝜕𝑢
𝜕𝑟 +

1
𝑟
𝜕!𝑢
𝜕𝜑! − 2𝑗𝑘

𝜕𝑢
𝜕𝑧 = 0																																									(5) 

 
where 𝑢 ≡ 𝑢(𝑟, 𝜑, 𝑧). The axial symmetry implies that 𝑢 is independent of 𝜑, which makes 
the third term in equation (5) equal to zero, thus we obtain the axial symmetric paraxial 
wave equation: 
 

𝜕!𝑢
𝜕𝑟! +

1
𝑟
𝜕𝑢
𝜕𝑟 − 2𝑗𝑘

𝜕𝑢
𝜕𝑧 = 0																																																			(6) 

 
The simplest solution of the axial symmetric paraxial equation can be written in the form: 
 

𝑢(𝑟, 𝑧) = 𝐴(𝑧)𝑒#
$%"!
!/(&)																																																							(7) 

  
where 𝐴 and 𝑞 are two complex functions, only dependent on 𝑧. In order to obtain both terms, 
we substitute (7) into (6) obtaining: 
 

−2𝑗𝑘 M
𝐴
𝑞 +

𝜕𝐴
𝜕𝑧N +

𝐴𝑘!𝑟!

𝑞! M
𝜕𝑞
𝜕𝑧 − 1N = 0																																		(8) 

 
Solving Equation (6) 

From (6): 
𝜕!𝑢
𝜕𝑟! +

1
𝑟
𝜕𝑢
𝜕𝑟 − 2𝑗𝑘

𝜕𝑢
𝜕𝑧 = 0 

 
We substitute (7) and develop: 
 

𝜕!

𝜕𝑟! ?𝐴
(𝑧)𝑒#

$%"!
!/(&)@ +

1
𝑟
𝜕
𝜕𝑟 ?𝐴

(𝑧)𝑒#
$%"!
!/(&)@ − 2𝑗𝑘

𝜕
𝜕𝑧 ?𝐴

(𝑧)𝑒#
$%"!
!/(&)@ = 0 

 

−
𝐴𝑗𝑘
𝑞 𝑒#

$%"!
!/ −

𝐴𝑘!𝑟!

𝑞! 𝑒#
$%"!
!/ −

𝐴𝑗𝑘
𝑞 𝑒#

$%"!
!/ − 2𝑗𝑘

𝜕𝐴
𝜕𝑧 𝑒

#$%"
!

!/ +
𝐴𝑘!𝑟!

𝑞!
𝜕𝑞
𝜕𝑧 𝑒

#$%"
!

!/ = 0 

 

−
2𝐴𝑗𝑘
𝑞 − 2𝑗𝑘

𝜕𝐴
𝜕𝑧 −

𝐴𝑘!𝑟!

𝑞! +
𝐴𝑘!𝑟!

𝑞!
𝜕𝑞
𝜕𝑧 = 0 

 

−2𝑗𝑘 M
𝐴
𝑞 +

𝜕𝐴
𝜕𝑧N +

𝐴𝑘!𝑟!

𝑞! M
𝜕𝑞
𝜕𝑧 − 1N = 0 
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Equation (8) must be satisfied for all 𝑟 and 𝑧 values. The two parts of the equation must be 
equal to zero individually to obtain the following two relations that must be simultaneously 
satisfied: 
 

∂𝑞
∂𝑧 = 1																																																																							(9) 

 
∂𝐴
∂𝑧 = −

𝐴
𝑞 																																																																(10) 

  
Where the solution for (9) is  
 

𝑞(𝑧) = 𝑞(𝑧2) + (𝑧 − 𝑧2)																																																	(11) 
 
Considering 𝑧2 = 0 as the reference position along the 𝑧 axis, (11) reduces to 
 

𝑞(𝑧) = 𝑞(0) + 𝑧																																																							(12) 
 
The function 𝑞 is known as complex beam parameter, beam parameter or Gaussian beam 
parameter. Since it appears in (7) as 1/𝑞 and it is a complex function, can also be 
represented as 

1
𝑞 = M

1
𝑞N"

− 𝑗 M
1
𝑞N3

																																																(13) 

 
where 𝑟 and 𝑖 reference the real and imaginary parts of 1/𝑞, respectively. Substituting into 
(7), the exponential term becomes 
 

𝑒#
$%"!
!/(&) = 𝑒

45#$%"
!

! 6-7/.%
#5%"

!

! 6-7/.&
8
																																				(14) 

 
The imaginary term of (14) has the form of 𝜙(𝑟) the phase variation relative to a plane for a 
fixed value of 𝑧 as function of 𝑟, produced by a spherical wavefront in the paraxial limit. In 
the limit 𝑟 ≪ 𝑅, and considering 𝑘 = 2π/λ, the phase delay is approximately: 
 

𝜙(𝑟) ≅
π𝑟!

λ𝑅 =
𝑘𝑟!

2𝑅 																																																(15) 
 
Then, from (14) the real part of 1/𝑞 is the radius of curvature 𝑅 in the form: 
 

M
1
𝑞N"

=
1
𝑅																																																									(16) 

 
The real term of (14) has a Gaussian variation as a function of the distance from the 
propagation axis. The standard form for a Gaussian distribution is: 
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M
1
𝑞N3

=
2

𝑘𝑤!(𝑧) =
λ

π𝑤! 																																															(17) 

 
where 𝑤 is the beam radius, which is the value of the radius at which the field falls to 1/𝑒 
relative to its on-axis value. Thus, the function 𝑞 is given by  
 

𝑓(𝑟) = 𝑓(0)𝑒-
"
"'
.
!

																																																	(18) 
 
where 𝑟2 represents the distance to the 1/𝑒 point relative to the on-axis value. Thus, the 
mathematical expression for 1/𝑞 is: 
 

1
𝑞 =

1
𝑅 −

𝑗λ
π𝑤! 																																																						(19) 

 

where both 𝑅 and 𝑤 are functions of 𝑧. At 𝑧 = 0 we have from (7), 𝑢(𝑟, 0) = 𝐴(0)𝑒#
()%!

!*('), 

and we define 𝑤2 = [9/(2)
$:

\
7/!

 as the beam radius at 𝑧 = 0, named as the beam waist radius. 
From (12) we obtain a second important expression for 𝑞: 
 

𝑞 =
𝑗π𝑤2!

λ + 𝑧																																																						(20) 
 
From (19) and (20) we obtain the radius of curvature and the beam radius as a function of 
position along the axis of propagation: 
 

𝑅 = 𝑧 +
1
𝑧 ]
π𝑤2!

λ ^
!

																																																(21) 

 

𝑤 = 𝑤2 _1 + ]
λ𝑧
π𝑤2!

^
!

`
7/!

																																								(22) 

 
The quantity π𝑤2!/λ is called the confocal distance. 
 

Solving Equation (19) 

 
Dividing 1 by (20)  

1
𝑞 =

1

𝑧 + 𝑗 π𝑤2
!

λ
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Now multiplying right side of the previous equation by a
&#$-.'

!

/

&#$
-.'

!

/

b: 

 
 

1
𝑞 =

𝑧

𝑧! + Mπ𝑤2
!

λ N
! − 𝑗

π𝑤2!
λ

𝑧! + Mπ𝑤2
!

λ N
!  

 
Equalizing its real term with the real term of (19) we obtain: 
 

𝑅 = 𝑧 +
1
𝑧 ]
π𝑤2!

λ ^
!

 

 
Equalizing its imaginary term with the imaginary term of (19) we obtain: 
 

π𝑤!

λ =
𝑧! + Mπ𝑤2

!

λ N
!

π𝑤2!
λ

 

 

𝑤! =
𝜆!𝑧!

𝜋!𝑤2!
+𝑤2! 

																			= 𝑤2! _1 + ]
λ𝑧
π𝑤2!

^
!

` 

 

																		𝑤 = 𝑤2 _1 + ]
λ𝑧
π𝑤2!

^
!

`
7/!

 

 
 
From  Equation (10), we find 𝑑𝐴/𝐴 = −𝑑𝑧/𝑞, and from (9) 𝑑𝑧 = 𝑑𝑞, so that we can write 
𝑑𝐴/𝐴 = −𝑑𝑞/𝑞. Hence, 𝐴(𝑧)/𝐴(0) = 𝑞(0)/𝑞(𝑧), and substituting 𝑞 from (20), we find: 
 

𝐴(𝑧)
𝐴(0) =

1 + 𝑗λ𝑧
π𝑤2!

1 + M λ𝑧π𝑤2!
N
! 																																																(23) 

 
Solving Equation (9) and (10) 
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e
𝑑𝐴
𝐴 = −e

𝑑𝑞
𝑞  

𝐿𝑛𝐴(𝑧) − 𝐿𝑛𝐴(0) = −[𝐿𝑛𝑞(𝑧) − 𝐿𝑛𝑞(0)] 
𝐴(𝑧)
𝐴(0) =

𝑞(0)
𝑞(𝑧) 

Substituting (20): 
 

𝐴(𝑧)
𝐴(0) =

𝑗π𝑤2!
λ

𝑗π𝑤2!
λ + 𝑧

 

Multiplying by 
&#(-.'

!

/

&#
(-.'

!

/

 and then by 

0

1
-.'

!

/ 2
!

0

1
-.'

!

/ 2
!
 we obtain: 

 

𝐴(𝑧)
𝐴(0) =

1 + 𝑗λ𝑧
π𝑤2!

1 + M λ𝑧π𝑤2!
N
! 

 
 
It is convenient to express the quantity 9&

:<'!
 in terms of a phasor, so we define: 

 

𝑡𝑎𝑛ϕ2 =
𝑗λ𝑧
π𝑤2!

																																																											(24) 

Equation (23) becomes: 
 

𝐴(𝑧)
𝐴(0) =

𝑤2
𝑤 𝑒$=' 																																																						(25) 

 
Solving Equation (23) 

 
From (24)  

𝑠𝑖𝑛 ϕ2
𝑐𝑜𝑠 ϕ2

=
λ𝑧
π𝑤2!

 

1 − 𝑐𝑜𝑠! ϕ2
𝑐𝑜𝑠! ϕ2

= ]
λ𝑧
π𝑤2!

^
!

 

𝑐𝑜𝑠! ϕ2 _]
λ𝑧
π𝑤2!

^
!

+ 1` = 1 
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𝑐𝑜𝑠 ϕ2 = _]
λ𝑧
π𝑤2!

^
!

+ 1`
#7/!

 

𝑐𝑜𝑠 ϕ2 =
𝑤2
𝑤  

Substituting into (23) and using (22): 
𝐴(𝑧)
𝐴(0) =

1 + j 𝑡𝑎𝑛ϕ2
1 + 𝑡𝑎𝑛! ϕ2

 

=
1 + j 𝑡𝑎𝑛ϕ2
𝑠𝑒𝑐! ϕ2

 

= M1 + 𝑗
𝑠𝑖𝑛 ϕ2
𝑐𝑜𝑠 ϕ2

N 𝑐𝑜𝑠! ϕ2 

= 𝑐𝑜𝑠 ϕ2 (𝑐𝑜𝑠 ϕ2 + 𝑗 𝑠𝑖𝑛 ϕ2) 
= 𝑐𝑜𝑠 ϕ2 𝑒$=' 
=
𝑤2
𝑤 𝑒$=' 

 
 
The term ϕ2 is known as the Gaussian beam phase shift. If we take the amplitude on-axis at 
the beam waist to be unity, we obtain the complete expression for the fundamental Gaussian 
beam mode:  
 

𝑢(𝑟, 𝑧) = 𝐴(0)
𝑤2
𝑤 𝑒#

"!
<!#

$:"!
9> ?$=' 																																						(26) 

 
Solving Equation (7) 

From (7) we know 

𝑢(𝑟, 𝑧) = 𝐴(𝑧)𝑒#
$%"!
!/(&) 

Substituting (19): 

𝑢(𝑟, 𝑧) = 𝐴(𝑧)𝑒#
#$%"!
!> ##%9"

!

!:<!  
Substituting (25): 

𝑢(𝑟, 𝑧) = 𝐴(0)
𝑤2
𝑤 𝑒#

"!
<!#

$:"!
9> ?$=' 

 
 
Since 𝐸(𝑥, 𝑦, 𝑧) = 𝑢(𝑥, 𝑦, 𝑧)𝑒#$%&, we find the expression for the electric field: 
 

𝐸(𝑟, 𝑧) = 𝐴(0)
𝑤2
𝑤 𝑒#

"!
<!#$%&#

$:"!
9> ?$=' 																												(27) 

 
We assume that the electric and magnetic field components are related to each other like 
those in a plane wave. Thus, the total power is proportional to the square of the electric field 
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integrated over the area of the beam. The normalized electric field distribution at any distance 
along the axis of propagation of the fundamental Gaussian beam mode is given by: 
 

𝐸(𝑟, 𝑧) = p 2
π𝑤! 𝑒

#"
!

<!#$%&#
$:"!
9> ?$=' 																											(28) 

 
Solving Equation (27) 

Starting from the normalization expression: 
 

e |𝐸|!
@

2
2π𝑟𝑑𝑟 = 1 

e 𝐸 ∙ 𝐸 ∗
@

2
2π𝑟𝑑𝑟 = 1 

𝐴!(0)
𝑤2!

𝑤! 2πe 𝑒#
!"!
<!

@

2
𝑟𝑑𝑟 = 1 

−𝐴!(0)
π𝑤2!

2 𝑒#
!"!
<! |2@ = 1 

𝐴(0) = p
2
π𝑤2!

 

 
Substituting 𝐴(0) in (27): 

p
2
π𝑤2!

𝑤2
𝑤 = p 2

π𝑤! 

 
 
The field coupling coefficient between two Gaussian beams, 𝑎 and 𝑏, is defined as the 
integral of the complex conjugate of the electric field distribution of the first beam multiplied 
by the field distribution of the second beam: 
 

𝑐AB = ee𝐸A∗ 𝐸B𝑑𝑆																																																		(29) 

 
Since we are not going to consider the overall phase shift, we can omit the plane wave shifts: 
 

𝑐AB = ee𝑢A∗ 𝑢B𝑑𝑆																																																								(30) 

 
If we consider a coupling coefficient in one dimension, we denote (30) as: 
 

𝑐AB7) = e𝑢A∗ (𝑥)𝑢B(𝑥)𝑑𝑥																																																			(31) 
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The two-dimensional field coupling coefficient is the product of the field coupling coefficient 
for two orthogonal coordinates: 
 

𝑐AB! = 𝑐AB7) ∙ 𝑐AB
7*																																																												(32) 

 
The power coupling coefficient between the two beams represents the factor of the incident 
power flowing in the first beam that ends up in the second. It is the square magnitude of the 
two-dimensional field coupling coefficient: 
 

𝐾AB = |𝑐AB! |! = |𝑐AB7)|! ∙ w𝑐AB
7*w

!
																																											(33) 

 
In the case of a fundamental mode in one dimension, neglecting the overall phase term for 
the fundamental Gaussian beam mode, (26) becomes: 
 

𝑢(𝑥) = M
2
π𝑤)!

N
7/D

𝑒#$
%)!
!/3 																																																		(34) 

 
where 𝑞) is the complex beam parameter in one dimension. We obtain for the coupling 
integral: 
 

𝑐A)7 = M
2

π𝑤)A𝑤)B
N
7/!

e 𝑒
5$%)

!

! 65 7
/34∗

# 7
/36

6?@

#@
𝑑𝑥																												(35) 

	 
Where 𝑎𝑥 denotes an axially aligned beam and the superscript 1 indicates a one-dimensional 

coupling coefficient. Using ∫ 𝑒#A)!?B)@
#@ 𝑑𝑥 = [:

A
\
7/!

𝑒
6!

74 with 𝑎 > 0, (35) can be evaluated 
giving us: 
 

𝑐A)7 = z
2𝑗λ

π𝑤)A𝑤)B [
1
𝑞)A∗

− 1
𝑞)B

\
{

7/!

																																						(36) 

 
Considering a symmetric beam, (36) is just squared giving: 
 

𝑐A)! =
2𝑗λ

π𝑤A𝑤B [
1
𝑞A∗
− 1
𝑞B
\
																																																			(37) 

 
We consider a reference plane as shown in Fig. 2, where two beams have beam radius 𝑤A 
and 𝑤B, and radius of curvature 𝑅A and 𝑅B, respectively. The plane is defined by its distance 
𝑧A from the plane in which the waist of the first beam has radius 𝑤2A, and distance 𝑧B from 
the waist of the second beam with waist radius 𝑤2B. We define Δϕ as the phase difference of 
each beam relative to its waist: 
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Δϕ = ϕ2B − ϕ2A																																																								(38) 

 
And Δ𝑧 as the distance difference of the two beam waists: 
 

Δ𝑧 = 𝑧B − 𝑧A																																																										(39) 
 

 
Figure 2. Coupling of two axially aligned Gaussian beams. 

 
Considering phase shifts in (37), we can write: 
 

𝑐A)! =
2𝑗λeE(F=#GFH)

π𝑤A𝑤B [
1
𝑞A∗
− 1
𝑞B
\
																																																			(40) 

 
We can express (40) in terms of the beam radius and radius of curvature: 
 

𝑐A)! =
2𝑒$(F=#%F&)

[𝑤B𝑤A
+ 𝑤A𝑤B

\ + 𝑗 [π𝑤A𝑤Bλ \ [ 1𝑅A
− 1
𝑅B
\
																													(41) 

 
Solving Equation (40) 

From (19) we know: 
 

1
𝑞 =

1
𝑅 −

𝑗λ
π𝑤! 

							=
π𝑤! − 𝑗λ𝑅
𝑅π𝑤!  

Substituting in (40)  
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𝑐A)! =
2𝑗λeE(F=#GFH)

π𝑤A𝑤B M
π𝑤A! + 𝑗λ𝑅A
𝑅Aπ𝑤A!

− π𝑤B
! − 𝑗λ𝑅B
𝑅Bπ𝑤B!

N
 

=
2𝑗λeE(F=#GFH)

π𝑤A𝑤B [
1
𝑅A

− 1
𝑅B
\ + 𝑗λ [𝑤B𝑤A

+ 𝑤A𝑤B
\
 

Multiplying by 
0
(/
0
(/

 

=
2𝑗λeE(F=#GFH)

[𝑤B𝑤A
+ 𝑤A𝑤B

\ + 𝑗 [π𝑤A𝑤Bλ \ [ 1𝑅A
− 1
𝑅B
\
 

 
 
Equation (41) can be expressed in terms of the parameters of the beam waists from (20): 
 

𝑐A)! =
2𝑒$%F&

[𝑤2A𝑤2B
+ 𝑤2B𝑤2A

\ − 𝑗λΔ𝑧
π𝑤2A𝑤2B

																																												(42) 

 
Solving Equation (40) 

From (40) we have: 

𝑐A)! =
2𝑗λeE(F=#GFH)𝑞A∗𝑞B
π𝑤A𝑤B(𝑞B − 𝑞A∗)

 

Using Eq. (20) and Eq. (24) we obtain: 
 

𝑞
𝑧 = 𝑗

1
𝑡𝑎𝑛ϕ2

+ 1 

𝑞 =
𝑧

𝑠𝑖𝑛 ϕ2
(𝑠𝑖𝑛 ϕ2 + 𝑗 𝑐𝑜𝑠 ϕ2) 

 
Substituting in the term 𝑞A∗𝑞B: 
 

𝑞A∗𝑞B 	=
𝑧A𝑧B

𝑠𝑖𝑛 ϕ2A 𝑠𝑖𝑛 ϕ2B
(𝑠𝑖𝑛 ϕ2A − 𝑗 𝑐𝑜𝑠 ϕ2A)(𝑠𝑖𝑛 ϕ2B + 𝑗 𝑐𝑜𝑠 ϕ2B) 

=
𝑧A𝑧B

𝑠𝑖𝑛 ϕ2A 𝑠𝑖𝑛 ϕ2B
[𝑐𝑜𝑠(ϕ2A − ϕ2B) + 𝑗 𝑠𝑖𝑛(ϕ2A − ϕ2B)] 

=
𝑧A𝑧B

𝑠𝑖𝑛 ϕ2A 𝑠𝑖𝑛 ϕ2B
𝑒#$F= 

 
Since 𝑠𝑖𝑛 ϕ2 = 𝑐𝑜𝑠 ϕ2 𝑡𝑎𝑛ϕ2 and considering 𝑐𝑜𝑠 ϕ2 =

<'
<

 and Eq. (24): 

𝑠𝑖𝑛 ϕ2 =
λ𝑧

π𝑤𝑤2
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Substituting: 

𝑞A∗𝑞B =
𝜋!𝑤A𝑤2A𝑤B𝑤2B

𝜆! 𝑒#$F= 
 
Now the coupling coefficient is: 

𝑐A)! =
𝑗2π𝑤2A𝑤2B
λ(𝑞B − 𝑞A∗)

𝑒#$%F& 

=
𝑗2π𝑤2A𝑤2B

λ ~𝑗 π𝑤2B
!

λ + 𝑧B − M−𝑗
π𝑤2A!
λ + 𝑧AN�

𝑒#$%F& 

=
𝑗2π𝑤2A𝑤2B

λΔ𝑧 + 𝑗π(𝑤2B! +𝑤2A! )
𝑒#$%F& 

Multiplying by 
(

-.'4.'6
(

-.'4.'6

 we obtain: 

𝑐A)! =
2𝑒$%F&

[𝑤2A𝑤2B
+ 𝑤2B𝑤2A

\ − 𝑗λΔ𝑧
π𝑤2A𝑤2B

 

 
 
The power coupling coefficient is obtained by taking the squared magnitude of the two-
dimensional field coupling coefficient: 
 

𝐾A) = |𝑐A)! |! =
4

[𝑤2A𝑤2B
+ 𝑤2B𝑤2A

\
!
+ [ λΔ𝑧

π𝑤2A𝑤2B
\
! 																																		(43) 

 
On the other hand, in the paraxial ray-optics approximation, an optical system can be 
described by a 2x2 ray-transfer matrix M whose elements, 𝐴 = 𝑀(1,1), 𝐵 = 𝑀(1,2), 𝐶 =
𝑀(2,1) and 𝐷 = 𝑀(2,2), are relating to the position and inclination of both the transmitted 
and the incident ray. This is based on the complex beam parameter method, also known as 
the ABCD Ray Matrix method, developed by Kogelnik et al. [17].  
 
The similarity between the complex beam parameter 𝑞 describing a Gaussian beam and the 
radius of curvature of a geometrical optics beam representation suggests that quasi-optical 
systems can be analyzed in terms of their effect on q in a manner analogous to the treatment 
of rays in a linear geometrical optics system. In this approach, the location and slope of a ray 
at the output plane of a paraxial system are defined to be linear functions of the parameters 
of the input ray. Denoting the position as 𝑟 and the slope as 𝑟I, the linear relation between 
input and output ray position and slope are: 
 

𝑟J+K = 𝐴𝑟3L + 𝐵𝑟3LI 																																																								(44) 
𝑟′J+K = 𝐶𝑟3L + 𝐷𝑟3LI 																																																								(45) 
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If we consider (44) and (45) as a column matrix, the effect of the system element can be 
expressed as: 
 

�
𝑟J+K
𝑟′J+K

� = �𝐴 𝐵
𝐶 𝐷� ~

𝑟3L
𝑟3LI
�																																																					(46) 

 
Since the radius of curvature is defined by 𝑅 = 𝑟/𝑟I, we use (44) and (45) to obtain the 
expression: 
 

𝑅J+K =
𝐴𝑅3L + 𝐵
𝐶𝑅3L + 𝐷

																																																								(47) 

 
Solving Equation (46) 

Dividing (44) by (45): 
 

𝑟J+K
𝑟IJ+K

=
𝐴𝑟3L + 𝐵𝑟3LI

𝐶𝑟3L + 𝐷𝑟3LI
 

Multiplying by 
0
%&8
9

0
%&8
9

 and considering 𝑅 = 𝑟/𝑟I: 

𝑅J+K =
𝐴𝑅3L + 𝐵
𝐶𝑅3L + 𝐷

. 

 
 
We can relate the complex beam parameter with the radius of curvature by (16), obtaining: 
 

𝑞J+K =
M/&8?N
O/&8?P

.     (48) 
 
With the complex beam parameter, we can obtain the beam radius w and the radius of 
curvature 𝑅: 
 

𝑤 = � Q
R	TU(#7//)

�
7/!

,    𝑅 = �𝑅𝑒 [7
/
\�
#7

.   (49) 
 

Since 𝐸 depends on 𝑤 and 𝑅, as seen in (28), the electric field is also modified, which directly 
affects the coupling of the incident Gaussian beam to the reflected one. For a quasi-optical 
system, using the transfer matrix, we can calculate the power coupling coefficient: 
 

𝐾A) = ηVWLW"AX =
D&:!

N!?&:!(M!?P!?!)?&:7O!
    (50) 

 
where 𝑧Y =

R<'!

Q
 is the confocal distance. (50) applies for any optical system through its 

general transfer matrix M obtained by multiplying the corresponding ABCD matrices of each 
one of the n number of optical elements in the form: 𝑀 = 𝑀L𝑀L#7𝑀L#!⋯𝑀Z𝑀!𝑀7.  
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Solving Equation (50) 

Considering the first beam is located at the position of zero axial distance (𝑧 = 0 and 𝑤 =
𝑤2). From (20), the complex beam parameter of the first beam is: 
 

𝑞7 = 𝑗
𝜋𝑤2!

𝜆 = 𝑗𝑧Y 
 
Using (48) we can obtain the complex beam parameter of the second beam: 
 

1
𝑞!
=
𝑗𝑧Y𝐶 + 𝐷
𝑗𝑧Y𝐴 + 𝐵

 

 
Multiplying by the complex conjugate of the denominator and considering that the ABCD 
matrix parameters satisfy 𝐴𝐷 − 𝐵𝐶 = 1: 
 

1
𝑞!
=
𝑧Y!𝐴𝐶 + 𝐵𝐷 − 𝑗𝑧Y

𝑧Y!𝐴! + 𝐵!
 

 
 
Now we calculate: 

1
𝑞7∗
−
1
𝑞!
= −

1
𝑗𝑧Y

−
𝑗𝑧Y𝐶 + 𝐷
𝑗𝑧Y𝐴 + 𝐵

 

= −
𝑗𝑧Y(𝐴 + 𝐷) + 𝐵 − 𝑧Y!𝐶

𝑗𝑧Y𝐵 − 𝑧Y!𝐴
 

 
From (49), the beam radius of the second beam is: 
 

𝑤! = z
𝜆

𝜋	𝐼𝑚 [− 1
𝑞!
\
{

7/!

 

= p
λ(𝐴!𝑧Y! + 𝐵!)

π𝑧Y
 

 
The two-dimensional field coupling coefficient from Eq. (40) is: 
 

𝑐A)! =
2𝑗λ

π𝑤A𝑤B [
1
𝑞A∗
− 1
𝑞B
\
 

=
2𝑗

�𝐴!𝑧Y! + 𝐵!
?

𝑧Y!𝐴 − 𝑗𝑧Y𝐵
𝑗𝑧Y(𝐴 + 𝐷) + 𝐵 − 𝑧Y!𝐶

@ 
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The power coupling coefficient is then: 
 

𝐾A) = |𝑐A)! |! = 𝑐A)! ∙ (𝑐A)! )∗ 

=
4𝑧Y!

𝐵! + 𝑧Y!(𝐴! + 𝐷! + 2) + 𝑧YD𝐶!
 

 
 
In this approach tilted beams or offset beams, i.e., misaligned axes beams either in angular 
or position, are not considered. This analysis applies to any Gaussian beam mode in the 
paraxial limit. Nevertheless, we are limited to the fundamental mode since the approximation 
of the Gaussian beam to the Bessel beam only works for the fundamental mode. Furthermore, 
the equations are valid to any quasi-optical system by just obtaining its overall ABCD matrix 
from a cascaded representation of its constituent elements [18]. A list of optical components 
and their matrix transfer values is presented in Table 1. 
 
Finally, the coupling coefficients for a polymer capped optical fiber Fabry-Pérot 
interferometers (PC-FFPI) can be calculated from the coupling matrices: 
 

𝑀[0 = 𝑀\𝑀D𝑀Z𝑀!𝑀7.     (51) 
 

𝑀[! = 𝑀′]𝑀′^𝑀′_𝑀′`𝑀′\𝑀′D𝑀′Z𝑀′!𝑀′7.    (52) 
 

where M1= ?
1 0
0 nfcore

npol
@, M2= ~

1 Lpol
0 1

�, M3=?
1 0
- 2
R

1@, M4=M2, M5=?
1 0
0 npol

nfcore
@, 𝑀′7 =

?
1 0
0 LB:C%D

LECF
@, 𝑀′! = 𝑀!, 𝑀′Z = ?

1 0
L4&%#LECF
L4&%>

LECF
L4&%

@, 𝑀′D = �1 𝐿A3"
0 1 �, 𝑀′\ = �1 0

0 1�, 𝑀′` =

𝑀!, 𝑀′_ = ?
1 0

L4&%#LECF
LECF>

L4&%
LECF

@, 𝑀′^ = 𝑀′D, and 𝑀′] = ?
1 0
0 LECF

LB:C%D
@. 

 
With 𝑛kYJ"W as the refractive index of the fiber optic core, 𝑛lJX is the polymer refractive 
index, 𝑛A3" is the air refractive index, 𝐿A3" is the physical air cavity length, and 𝐿lJX is the 
physical polymer length. (51) presents five matrices due to the round trip of light across five 
optical elements: refraction at a planar boundary (nfcore	 to npol), free space propagation 
(polymer), reflection from a spherical mirror, free space propagation (polymer), and 
refraction at a planar boundary (npol to nfcore). (52) presents nine matrices due to the round 
trip of light across nine optical elements: refraction at a planar boundary (nfcore	 to npol), free 
space propagation (polymer), refraction at a spherical boundary, free space propagation (air), 
reflection from a spherical mirror, free space propagation (air), refraction at a spherical 
boundary, free space propagation (polymer), and refraction at a planar boundary (npol to 
nfcore). In this interferometer, due to the large length of the dual cavity and the spherical shape 
of the polymer cavity that affects the intensity of the light recoupled in the core of the SMF 
after traveling through the polymer and air cavities, the calculus of the coupling coefficient 
𝜂! is very relevant to evaluate the intensity of the interference pattern more accurately. 
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 A B C D 
Free-space propagation. 1 𝐿 0 1 

Reflection at a planar boundary. 1 0 0 𝑛7
𝑛!

 

Refraction at a spherical 
boundary (Convex: R>0; 

concave: R<0). 

1 0 −
𝑛! − 𝑛7
𝑛!𝑅

 
𝑛7
𝑛!

 

Transmission through a thin lens 
(Convex: f>0; concave: f<0). 

1 0 −
1
𝑓 

 

1 

A thin lens of material with index 
𝑛!, embedded in material of index 
𝑛7. With radius of curvature of 
the first surface 𝑅!  and second 

surface 𝑅7. 

1 0 𝑛! − 𝑛7
𝑛7

M
1
𝑅7
−
1
𝑅!
N 

 

1 

Reflection from a spherical mirror 
(Convex: R>0; concave: R<0). 

1 0 −
2
𝑅 
 

1 

Reflection from an ellipsoidal 
mirror with 𝑑7 and 𝑑! the 

distances from the center to the 
respective foci. 

1 0 −M
1
𝑑7
+
1
𝑑!
N 1 

Reflection from a planar mirror. 1 0 0 1 

Table 1. Ray transformation matrices. 
 
 
The general equation that describes the intensity 𝐼qqrT of a single-cavity FFPI [19] is given 
by  
 

𝐼qqrT = 𝐼7 + 𝐼! + 2�𝐼7𝐼! 𝑐𝑜𝑠 ϕ																																								(53) 
where 

ϕ =
2π
λ 2𝑂𝑃𝐿																																																								(54) 

 
OPL is the optical path length. Equation (53) is usually represented in terms of the reflectance 
R and the transmittance T, which both can be obtained by the Fresnel reflection r and 
transmission t coefficients for an interface with two different refractive indexes 𝑛7 and 𝑛!:  
 

𝑟 =
𝑛! − 𝑛7
𝑛7 + 𝑛!

																																																								(55) 

𝑡 =
2𝑛7

𝑛7 + 𝑛!
																																																								(56) 
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On the other hand, both coefficients are also defined in terms of the incident 𝐸2, the reflected 
𝐸", and the transmitted field 𝐸K: 
 

𝑟 =
𝐸"
𝐸2
																																																												(57) 

𝑡 =
𝐸K
𝐸2
																																																												(58) 

 
Considering the conditions 𝑟 = −𝑟I and 𝑟𝑟I = 𝑟!, we can represent them in terms of the 
incident 𝐼2, the reflected 𝐼", and the transmitted irradiance 𝐼K: 
 

𝑟! =
𝐼"
𝐼2
																																																												(59) 

𝑡𝑡I =
𝐼K
𝐼2
																																																												(60) 

Since we know that 𝑟! = 𝑅, 𝑡𝑡I = 𝑇, and 𝑇 = 1 − 𝑅, we can obtain the relations: 
 

𝐼"
𝐼2
= 𝑅																																																												(61) 

 
𝐼K
𝐼2
= 1 − 𝑅																																																												(62) 

Finally, considering the coupling coefficient η = TF
T'

, we can write the intensity 𝐼qqrT of a 
single-cavity FFPI: 
 
 

𝐼qqrT = ~𝑅7 + (1 − 𝑅7)!𝑅! + 2�(𝑅7𝑅!)η(1 − 𝑅7) 𝑐𝑜𝑠 ~
2π
λ
(2nL)�� 𝐼2						(63) 
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Figure 3. Structure of a double cavity sensor based on a PC-FFPI. 

The general equation that describes the intensity 𝐼PqqrT of a dual-cavity FFPI is given by  
 

𝐼PqqrT = 𝐼7 + 𝐼! + 𝐼Z + 2�𝐼7𝐼! 𝑐𝑜𝑠 ϕ7! + 2�𝐼7𝐼Z 𝑐𝑜𝑠 ϕ7Z + 2�𝐼!𝐼Z 𝑐𝑜𝑠 ϕ!Z 					(64) 
 
The principle of three-beam interference is based on the interference of three reflective 
surfaces, as presented in Figure 3. 
 

𝐼rO#qqr = �𝑅7 + 𝑅!(1 − 𝑅7)!η7! + 𝑅Z(1 − 𝑅7)!(1 − 𝑅!)!η!! + 2�𝑅7𝑅!𝜂7(1 −

𝑅7) cos �
!R
Q
�2𝑂𝑃𝐿lJX�� + 2�𝑅7𝑅Z𝜂!(1 − 𝑅7)(1 − 𝑅!) cos �

!R
Q
�2𝑂𝑃𝐿lJX + 2𝑂𝑃𝐿A3"�� +

2�𝑅!𝑅Z𝜂7𝜂!(1 − 𝑅7)!(1 − 𝑅!) cos �
!R
Q
(2𝑂𝑃𝐿A3")��	𝐼2																																																	(65)  

 
Where R1, R2, and R3 represent the reflectance at the surface interfaces S1, S2, and S3, 
respectively.   
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CHAPTER 3:  
TIPS FABRICATION 
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 Any fabrication process requires a systematic method in order to obtain a reproducible 
final result. In this Chapter, I present the detailed procedure for the PC-FFPI’s fabrication, 
using SMF connectors. In the Chapter 6, I will present the definitive fabrication process by 
the implementation of an automatic mechatronic platform. 
 
Besides the SMF FC/PC connectors, I used several bare SMF to fabricate the PC-FFPI. In 
the first stage of the research, it was necessary to use special equipment, such as the Vytran 
fusion splicer. In one of the holders I placed an optical fiber whose tip was covered with the 
polymer (container fiber SMF2), in the other one I placed a cleaned and cleaved optical fiber 
(receptor fiber SMF1). The Vytran equipment allows to move the fiber holders precisely, so 
the fiber covered with polymer was moved until the polymer touches the end of the receptor 
fiber. In order to transfer the most possible quantity of polymer, we move the container fiber 
transversally around 50µ𝑚 and then separate the fiber until it breaks the polymer surface 
tension. At the fiber tip end, the polymer adopts a semi-spherical or dome shape. The general 
procedure is represented in Fig. 4 (a)-(f). 
 

 
Figure 4. Polymer transferring process to fabricate a SMF tip with a polymer dome shape. 

 
Fig. 5 (a) shows a real picture of the receptor and container fiber before the polymer transfer, 
taken with the Vytran camera. Then, in Fig. 5 (b), we can observe the final fiber tip with the 
dome-shaped polymer. This procedure was also used to fabricate tips with tapered fibers to 
compare the performance of these tips for different cavity lengths according to the fiber type 
used. Fig. 6 shows a taper with diameter of ~70µ𝑚 after the transferring process. 
 

       
Figure 5. Real picture of the polymer transferring process of a SMF tip (a) before and (b) 

after the polymer transfer. 
 
 

a) b) 
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Fig. 6. Real picture of the polymer transferring process of a taper tip after the polymer 

transfer. 
 

The PC-FFPIs were the most used devices in this study. I also fabricated some PC-FFPI 
using SMF FC/PC connectors using two different types of polymers: polydimethylsiloxane 
(PDMS) and Norland Optical Adhesive 81 (NOA81), whose refractive index are 𝑛rPst =
1.39 [20] and 𝑛uvM^7 = 1.54 [21] at 1550 nm, respectively. We prepared PDMS by mixing 
10 portions of elastomer and 1 portion of curing agent [22].  

 
The process of attaching the polymer over the end face of the ferrule of the SMF connector 

was made with an experimental set-up represented in Fig. 7. Due to the large area of the 
ferrule cross-section, sophisticated cameras or highly precise translation stages are not 
needed to move the connector. First, I fixed one end of the SMF connector to a translation 
stage (NRT150/M, Thorlabs), while the other end was connected to the Micronoptics sm125 
interrogator. We moved the translation stage until the surface of the ferrule touched the 
surface of the polymer deposited in a container. After this, I moved the connector slowly 
away by micrometric displacements, and a portion of the polymer kept adhered to the surface 
of the ferrule; a step-by-step picture motion of this process is represented in Fig. 8. To know 
the thickness of the polymer cap during the different stages of the fabrication process, I 
analyzed the optical spectrum measured with the sm125 interrogator and then calculated the 
Fourier transform. The peak position in the Fourier spectrum provides the optical path length 
of the polymer cavity. I did this procedure in real time using an automated program in 
LabView. 
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Figure 7. Experimental set-up for ferrule connectors tips fabrication: 1. Optical table. 2. 
The sm125 interrogator. 3. Motorized translation stage (1-axis). 4. ferrule connector and 

polymer container. 5. Stepper motor controller. 
 
 
 

 
Figure 8. Real pictures of the polymer transferring process of a ferrule connector tip. 

 
It is possible to reduce the amount of polymer adhered to the surface of the ferrule by 
touching the polymer surface with the tip of a pin. With this procedure, the original thickness 
of the polymer cavity decreases by approximately 0.02 mm. Fig. 9 shows this cavity length 
reduction, which is barely noticeable. Due to the surface tension of the polymer on the face 
of the connector, each time a polymer portion is removed, it re-forms the shape of the concave 
surface but with a different radius of curvature.  
 

 
Figure 9. Real pictures of the tip cavity length reduction. 
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After the polymer transferring process, the polymer, whether NOA or PDMS, must be cured. 
In the case of PDMS, we use an experimental set-up like the one presented in Fig. 10; since 
PDMS solidifies with heat exposure, we heated up the polymer-capped connector at 60°C 
for 1.5 h using a Peltier plate (Orbital mixing chilling/heating dry bath, Ecotherm). When 
PDMS is cured, I proceeded to characterize the PC-FFPI fabricated to temperature response. 
 

 
Figure 10. Experimental set-up for the PDMS curing process: 1. Optical table. 2. The 

sm125 interrogator. 3. Digital thermometer with thermocouple. 4. ferrule connector with a 
polymer cap. 5. Dry bath with block. 

 
In the case of the PC-FFPI's polymer is NOA81, I cured it with a Norland Opticure LED 
200 Light Gun for 15 minutes to solidify the tip and avoid contact deformations. Fig. 11 
shows a representation of the experimental set-up used. 
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Figure 11. Experimental set-up for the NOA curing process: 1. Optical table. 2. The sm125 

interrogator. 3. ferrule connector with a polymer cap. 4. Norland UV light gun. 
 

In the picture of Fig. 12 taken with the Navitar microscope Resolv4K, we can observe the 
polymer's semi-spherical or dome shape. According to the mathematical theory described in 
the previous chapter, the radius of curvature plays an essential role in the tip’s performance. 
 

 
Figure 12. Real picture of the ferrule connector tip with the polymer cap. 

 
The radius of curvature 𝑅 (Fig. 13) of the polymer cap can be easily calculated in terms of 
the polymer cavity length 𝐿lJX and the diameter of the ferrule connector 𝑑Y: 
 

𝑅 = wECF
!
+ x:!

^wECF
.     (66) 
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Solving equation (66) 

Starting from the relations 

𝑠𝑖𝑛
θ
2 =

𝑑Y/2
𝑅  

 𝑑Y = 2𝑅 𝑠𝑖𝑛 y
!
       

𝑑Y! = 4𝑅! 𝑠𝑖𝑛!
θ
2 

= 4𝑅! M1 − 𝑐𝑜𝑠!
θ
2N 

𝑐𝑜𝑠
θ
2 =

p1 −
𝑑Y!

4𝑅! 

 
Now it can also be demonstrated that: 

𝑐𝑜𝑠 y
!
= >#w

>
  

𝐿 = 𝑅 − 𝑅 𝑐𝑜𝑠 y
!
  

																																												= 𝑅 [1 − 𝑐𝑜𝑠 y
!
\               

      
Substituting in the relation of 𝑐𝑜𝑠 y

!
 in the previous equation: 

 

𝐿 = 𝑅 ]1 − �1 − x:!

D>!
^     

�p1 −
𝑑Y!

4𝑅! = 1 −
𝐿
𝑅�

!

 

?1 −
𝑑Y!

4𝑅! = 1 −
2𝐿
𝑅 +

𝐿!

𝑅!@ 𝑅
! 

𝑅! −
𝑑Y!

4 = 𝑅! − 2𝐿𝑅 + 𝐿! 

𝑅 =
𝐿! + 𝑑Y

!

4
2𝐿  

At the end we obtain: 
𝑅 = wECF

!
+ x:!

^wECF
.      
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Figure 13. Curvature radius of the polymer cap adhered to the ferrule connector. 

 
Fig. 14(a) and (b) show the image of a pair of devices fabricated with the previously 

described method. The curvature diameter obtained with processing image software 
RisingView are 𝐷1=2.59 mm and 𝐷2=2.58 mm. The optical and Fourier spectra are shown 
in Fig. 15 (a) allowing us to determine that 𝑂𝑃𝐿1 = 0.7217 mm and	𝑂𝑃𝐿2= 0.7272 mm, 
respectively. Using (66) and assuming that 𝑛uvM^7=1.54 a 𝐷1=2.602 mm and	𝐷2= 2.588 mm 
were obtained. A maximum difference of 6 µm between the measured and calculated radius 
is observed.  

 

 
Figure 14. Real pictures of two PC-FFPI fabricated with a similar diameter of curvature (a) 

2.59 mm, (b) 2.58 mm. 

pol 
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Figure 15. (a) Optical and (b) Fourier domain spectra of the two PC-FFPI fabricated with a 

similar diameter of curvature, with OPL 0.7272 mm and 0.7217 mm. 
 
We tested one of the PC-FFPIs and compared its Fourier spectra over a time interval of ~1 
month in the same initial position. Both spectra are presented in Fig. 16, where we can 
observe a bare difference in the amplitude of the three Fourier peaks. However, its optical 
path lengths remain without modification, which means the cavity length did not suffer any 
deformation. External factors, such as connection or dirty material issues, could have caused 
the PC-FFPI's amplitude reduction. 
 

 
Figure 16. Fourier domain spectra calculated from two optical spectra of a PC-FFPI 

measured with ~1 month difference since it was fabricated. 

a) b) 
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Displacement sensors are a collection of techniques or instruments capable of 
detecting how much an object has moved and its minimal change in position with high 
precision, avoiding failures or misreading [23]. Nevertheless, displacement measurement has 
also been successfully used as an indirect method to detect the occurrence of physical 
phenomena [24]. Although displacement sensors with good performance based on 
mechanical or electrical transduction have been developed, optical displacement sensors 
have gained attention since they have demonstrated the capability to carry out non-contact 
measurements with ultrahigh sensitivity [25], or due to its capability to monitor 
displacements in a confined or difficult-to-reach space, for example, inside the body of living 
beings, through the use of an optical fiber [26].  
  
The extrinsic fiber Fabry-Pérot interferometer (EFPI) is the most popular optical fiber 
displacement sensor [27], basically due to the simplicity of its structure consisting of a single-
mode optical fiber (SMF) tip pointing out to the surface of the object under monitoring. The 
object's displacement changes the optical path length of the beam propagating along the air 
gap or cavity. Accordingly, a change in the spectrum of the reflected intensity is produced. 
Due to the divergence of the light beam when it exits the SMF core, the maximum distance 
that can be measured with an EFPI is around a centimeter [28]. Over the years, several 
strategies to reduce or eliminate the divergence of the testing light beam have been 
successfully demonstrated, for instance, by splicing an SMF tip to a micrometric segment of 
graded-index multimode fiber [29] or a segment of strongly coupled seven-core fiber [30], 
attaching an external lens to the SMF tip  [28], or using a tapered SMF tip [31]. All these 
strategies involve using specialized equipment and tools operated by trained personnel. 
 

 
Figure. 17. Experimental set-up for distance characterization: 1. Optical table. 2. The 
sm125 interrogator. 3. Motorized translation stage (1-axis). 4. ferrule connector with 

polymer tip and mirror. 5. Stepper motor controller. 
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The dynamic range of a conventional EFPI displacement sensor is defined as the maximal 
magnitude that can be measured without significant distortion in the interference pattern. In 
this case, it is determined by the allowed maximal cavity length.  
 
I implemented a displacement characterization for four different configurations of EFPI 
using the set-up shown in Fig. 17. First, I used a bare SMF placed in front of a high-reflective 
mirror, forming an EFPI with a single air cavity. We increased the air cavity from a distance 
close to zero to a maximum distance where the interference spectrum obtained was readable, 
i.e., the peak amplitude in the Fourier domain is at least twice higher than the average level 
of the signal noise amplitude. The optical and Fourier spectra obtained with the bare SMF at 
different air-cavity lengths are presented in Fig. 18(a) and 18(b), respectively. The peak 
position in the Fourier domain allowed us to determine the OPL of the air cavity. By tracking 
the position of the peak of the Fourier spectra at every air cavity length measured, we can 
plot a displacement characterization curve, as shown in Fig. 18(c). The dynamic range 
experimentally measured was 10 mm. 
 

 

 
Figure 18. (a) Reflection spectra of single cavity EFPI using a bare SMF, with 𝑂𝑃𝐿A3" =
0.5, 1, 5, 10	mm; (b) Fourier spectra for every 𝑂𝑃𝐿A3" measured; (c) corresponding 

displacement characterization.  
 

Through the same experimental set-up, I characterized a second single cavity EFPI 
configuration using a ~55	µ𝑚 diameter tapered fiber previously presented in Chapter 3. At 
this diameter the light is not guided by the core but by the cladding [25]. This device showed 
a dynamic range of 40 mm, four times larger than that obtained with an untapered bare SMF. 
The optical and Fourier spectra obtained with the taper at different air-cavity lengths are 

a) 

b) c) 
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presented in Fig. 19(a) and 19(b), respectively. The displacement characterization curve is 
shown in Fig. 19(c).  

 

 

 
Figure 19. (a) Reflection spectra of single cavity EFPI using a taper, with 𝑂𝑃𝐿A3" =

0.05, 1, 5, 10, 40	mm; (b) Fourier spectra for every 𝑂𝑃𝐿A3" measured; (c) corresponding 
displacement characterization.  

 
From here, I decided to measure a double cavity EFPI by adding a polymer tip to the fiber, 
as described in Chapter 3. The third device we present is a SMF with a NOA81 polymer cap 
at the fiber end whose distance performance is shown in the next figures. In Fig. 20(a), the 
optical spectra showed a double modulation interference pattern due to the double cavity 
configuration (in fact, there are three interference terms, as it was discussed in Chapter 2; the 
third term is associated to the sum of the first and the second cavity optical path length). 
These three interference terms should be seen in the Fourier domain (Fig. 20(b)), but since 
the polymer cavity is too short (𝑂𝑃𝐿lJX = 118µm), only one peak is observed, the air optical 
path length. This peak presents a noisy signal due to the shape and size of the tip added to 
the optical fiber; for this reason, we did not continue exploring this type of device. By 
tracking the position of this peak, we can plot a displacement characterization curve, as 
shown in Fig. 20(c). The dynamic range was 67 mm, almost seven times larger than that of 
a conventional EFPI. 
 

a) 

b) c) 
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Figure 20. (a) Reflection spectra of double cavity EFPI using a bare SMF with NOA81, 

with 𝑂𝑃𝐿A3" = 0.05, 1, 5, 10, 67	mm. (b) Fourier spectra for every 𝑂𝑃𝐿A3" measured; (c) 
corresponding displacement characterization.  

 
 
I present every device used to characterize the displacement performance corresponding to 
its dynamic range, from lower to higher. The next device is a SMF FC/PC connector with a 
polymer cap attached to the ferrule connector. This configuration obtained the best 
performance [14], which is why I used two different polymers (NOA81 and PDMS) with two 
different cavity lengths in order to compare each other and conclude which parameters are 
more convenient to use.  
 

 
Figure 21. (a) Simulated and (b) experimental reflection spectra of a PC-FFPI using 

NOA81. 

a) 

b) c) 

a) b) 
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Figure 22. Simulated and experimental Fourier spectra of a PC-FFPI using NOA81. 

 
Considering the theoretical model presented in Section 2, I simulated the reflection intensity 

of the cascaded PC-FFPI sensor; the parameters used in the simulations are for NOA81: 
𝐿lJX=0.86mm, 𝐿A3"=1mm, 𝑛lJX=1.54, 𝑅=1.023mm, 𝑅7=0.0009, 𝑅!=0.045, 𝑅Z=0.95; and for 
PDMS: 𝐿lJX=0.53mm, 𝐿A3"=1mm, 𝑛lJX=1.39, 𝑅=1.194mm, 𝑅7=0.0003, 𝑅!=0.025, 𝑅Z=0.95; 
in both cases	𝑛A3"=1.00. The simulated spectrum for NOA81 is shown in Fig. 21(a) and the 
corresponding Fourier transform is shown in the light pink spectrum shown in Fig. 22. Using 
the experimental set-up shown in Fig. 17, I proceed to replicate the conditions of the 
simulations; as can be seen, the optical spectrum (Fig. 21 (b)) and Fourier spectrum (dark 
pink in Fig. 22) are in good agreement with the simulated spectra.  

 
 

 
Figure 23. (a) Simulated and (b) experimental reflection spectra of a PC-FFPI using PDMS. 

 
Figure 24. Simulated and experimental Fourier spectra of a PC-FFPI using PDMS. 

a) b) 
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In the same way, the simulated spectrum for PC-FFPI using PDMS is shown in Fig. 23(a), 
and the corresponding Fourier transform is shown in the light yellow spectrum shown in Fig. 
24. The experimental spectrum shown in Fig. 23(b) and the Fourier spectrum (dark yellow 
in Fig. 24) are in good agreement with the simulated spectra, so it is possible to assume that 
the theoretical model proposed here to determine the coupling coefficient is a good 
approximation to describe the principle of operation of the EFPI proposed in this work. The 
complete process of the displacement characterization of the modified EFPI is shown in the 
following section. 
 
First, I present a PC-FFPI with a NOA81 tip of 𝑂𝑃𝐿lJX = 1.24𝑚𝑚. Fig. 25(a) shows the 
optical domain spectra at different air-cavity lengths. The Fourier spectrum when the air-
cavity length was 5 mm is shown in Fig. 25(c). Now, we can observe three peaks 
corresponding to the air cavity, the polymer cavity, and the air + polymer cavity. Fig. 25(d) 
shows the Fourier spectrum for an air cavity of 94 mm length, which corresponds to the upper 
limit of the dynamic range, around 9 times larger than that obtained with a conventional EFPI 
using a SMF tip. By tracking the position of the third peak of the Fourier spectrum (the higher 
amplitude peak), we can obtain the displacement characterization curve, as shown in Fig. 
25(b). 

 
Figure 25. (a) Reflection spectra of a PC-FFPI using NOA81, with 𝑂𝑃𝐿lJX = 1.24mm and 

𝑂𝑃𝐿A3" = 0.05, 0.5, 5, 50, 94	mm, (b) corresponding displacement characterization. 
Fourier spectra for (c) 𝑂𝑃𝐿A3" = 5	mm and (d) 𝑂𝑃𝐿A3" = 94	mm. 

a) 

b) 

c) d) 
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Then, I present a PC-FFPI with a PDMS tip of 𝑂𝑃𝐿lJX = 0.7473	𝑚𝑚. In Fig. 26(a), we show 
the optical domain spectra at five different air-cavity lengths. In Fig. 26(c), we show the 
Fourier spectrum when the air-cavity length was 5 mm. In this spectrum, the third peak is the 
one with the smallest amplitude; the curvature of the polymer surface also increases the 
intensity of the beam reflected, but this seems to increase the difference in the intensity of 
the two interfering beams. Fig. 26(d) shows the Fourier spectrum for an air cavity of 87 mm 
length, corresponding to the dynamic range's upper limit. By tracking the position of the 
second peak of the Fourier spectrum, we can obtain the displacement characterization curve 
presented in Fig. 26(b). 

 
Figure 26. (a) Reflection spectra of a PC-FFPI using PDMS, with 𝑂𝑃𝐿lJX = 0.7473	mm 
and 𝑂𝑃𝐿A3" = 0.05, 0.5, 5, 50, 89	mm, (b) corresponding displacement characterization.. 

Fourier spectra for (c) 𝑂𝑃𝐿A3" = 5	mm and (d) 𝑂𝑃𝐿A3" = 87	mm. 
 

I made three independent tests to study the accuracy of the displacement measurement of the 
PC-FFPI with NOA81 cap, starting at the same initial value; the results are presented in Fig. 
27. It is possible to assume that the same displacement measurement was obtained. I made 
all measurements in the laboratory without temperature control. Temperature affects the 
refractive index and length of the polymers. In a PC-FFPI, temperature changes produce a 
displacement of the interference pattern, but not in the OPL of the PDMS cavity since no 
displacement has been observed in the peak in the Fourier domain in a temperature range 
from −10 to 45 °C [20]. Therefore, it is possible to state that distance measurements are not 
affected by temperature changes in that range. 

a) 

b) 

c) d) 

87mm 
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Figure 27. Displacement characterization curve of three tests made with the PC-FFPI 

with a NOA81 cap. 
 

Using a secondary scale in measuring equipment and instruments, such as calipers, increases 
the resolution and reduces the uncertainty of measurements. The optical version of the 
Vernier effect relies on the combination of two interferometers, where the interferometric 
signals can be seen as the Vernier scales.  
 
Employing the experimental set-up presented in Fig. 17 (double cavity PC-FFPI), we can 
measure nano-displacements using the Vernier effect, which is the combination of two 
interference spectra with free spectral range (FSR) slightly different to produce a secondary 
scale envelope with larger FSR in the resulted spectrum, as shown in Fig. 3. I followed a 
methodology reported in [32] to generate an envelope associated with the Vernier effect. The 
main condition of the Vernier effect is to set the OPL of both cavities equal, i.e., 𝑂𝑃𝐿lJX =
𝑂𝑃𝐿A3". When this condition is fulfilled, I measured the reflected intensity, which is used as 
a reference signal labeled as 𝐼"Wk = 𝐼rO#qqrT. I considered the polymer cavity the reference 
cavity with a constant OPL. Meanwhile, the air cavity is the sensing cavity. Then, I applied 
a small change in the air cavity length 𝑂𝑃𝐿A3" = 𝑂𝑃𝐿lJX + 𝜌, where 𝜌 ≪ 𝑂𝑃𝐿lJX, and the 
spectrum obtained is labeled as 𝐼z = 𝐼rO#qqr. To highlight the envelope changes produced 
in the reflected intensity by the increment 𝜌 in the OPL of the air cavity, it is necessary to 
compare the spectrum of 𝐼"Wk with 𝐼z through the subtraction operation 𝐼{WL{3LV = 𝐼z − 𝐼"Wk. 
I followed this procedure to analyze the response of the PC-FFPI for three different initial 
values of 𝜌, and at each position, I applied several nano-displacements (𝛿) of the mirror 
surface with respect to the SMF connector. Fig. 28(a), 29(a), and 30(a) show the spectra of 
𝐼{WL{3LV when 𝜌7 = 30𝜇𝑚, 𝜌! = 40𝜇𝑚, and 𝜌Z = 60𝜇𝑚, respectively, for a NOA81 tip and 
an 𝑂𝑃𝐿lJX = 1.24𝑚𝑚. The spectra unfold a dense fringe pattern modulated by two 
envelopes (upper and lower). Here, the upper envelope is highlighted in each spectrum; I 
tracked the wavelength position of one node of the spectrum every 𝛿 displacement to 
construct the characterization curves shown in Figs. 28(b), 29(b), and 30(b), respectively. 
The displacement sensitivity was 30.22, 26.04, and 22.23 pm/nm for an initial r of 30, 40, 
and 60 µm, respectively. It is possible to calculate a resolution of 0.66, 0.77, and 0.90 nm, 
respectively, considering that the resolution of the sm125 interrogator is 20 pm. In this way, 
the lower the value of 𝜌, the higher the calculated resolution and its sensitivity since both are 
related.  
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Fig. 28. (a) Spectra of 𝐼{WL{3LV and (b) the characterization curve of the node wavelength 

shift for a PC-FFPI with NOA81 cavity of 𝑂𝑃𝐿lJX = 1.24𝑚𝑚 for different displacements δ 
when 𝜌7 = 30𝜇𝑚. 

 

  
Fig. 29. (a) Spectra of 𝐼{WL{3LV and (b) the characterization curve of the node wavelength 

shift for a PC-FFPI with NOA81 cavity of 𝑂𝑃𝐿lJX = 1.24𝑚𝑚 for different displacements δ 
when 𝜌! = 40𝜇𝑚. 

 

 
Fig. 30. (a) Spectra of 𝐼{WL{3LV and (b) the characterization curve of the node wavelength 

shift for a PC-FFPI with NOA81 cavity of 𝑂𝑃𝐿lJX = 1.24𝑚𝑚 for different displacements δ 
when 𝜌Z = 60𝜇𝑚. 

 
Figs. 31(a), 32(a), and 33(a) show the measured spectra when 𝜌7 = 20𝜇𝑚, 𝜌! = 30𝜇𝑚, and 
𝜌Z = 40𝜇𝑚 respectively for a PDMS tip with an 𝑂𝑃𝐿lJX = 0.7473𝑚𝑚; and for 
displacements of 𝛿 = 0, 100, 200, 300, and 400 nm. The characterization curves are shown 
in Figs. 31(b), 32(b), and 33(b). The sensitivities obtained with this connector were 88.47, 

a) b) 

a) b) 

a) b) 
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49.82, 40.35 pm/nm, and a corresponding resolution estimated of 0.23, 0.40, and 0.5 nm for 
initial 𝜌 of 20, 30, and 40 µm, respectively. 

 
Fig. 31. (a) Spectra of 𝐼{WL{3LV and (b) the characterization curve of the node wavelength 

shift for a PC-FFPI with PDMS cavity of 𝑂𝑃𝐿lJX = 0.7473	𝑚𝑚 for different 
displacements δ when 𝜌7 = 20𝜇𝑚. 

 

 
Fig. 32. (a) Spectra of 𝐼{WL{3LV and (b) the characterization curve of the node wavelength 

shift for a PC-FFPI with PDMS cavity of 𝑂𝑃𝐿lJX = 0.7473	𝑚𝑚 for different 
displacements δ when 𝜌! = 30𝜇𝑚. 

 

 
Fig. 33. (a) Spectra of 𝐼{WL{3LV and (b) the characterization curve of the node wavelength 

shift for a PC-FFPI with PDMS cavity of 𝑂𝑃𝐿lJX = 0.7473	𝑚𝑚 for different 
displacements δ when 𝜌Z = 40𝜇𝑚. 

 
Comparing the response of the two devices, the connector with NOA81 (smaller curvature 
radius) presents a wider dynamic range (94mm), while that with the PDMS (bigger curvature 

a) b) 

a) b) 

a) b) 
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radius) tip has a higher resolution (0.23nm). Moreover, in both cases the dynamic range and 
the resolution are improved compared with a conventional EFPI using a SMF tip. 
 
It is possible to increase the sensitivity and resolution of this displacement sensor using a 
light source with a broader span because we can track the nodes in a wider space. In this 
sense, the interferometer proposed here is reconfigurable and can be adapted to the 
requirements of the measurement conditions. Nano-displacement measurements must 
consider the temperature cross-sensitivity since temperature changes produce the envelope 
shift. For this application, the ambient temperature must be controlled during the 
measurement, or the polymer must be replaced with another material with lower temperature 
sensitivity. 
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CHAPTER 5:  
TEMPERATURE 
MEASUREMENT 
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Fiber optic-based temperature sensors (FOTS) have gained attention since it has been 
demonstrated that they can reach the competitive levels of sensitivity, response time, 
dynamic range, or resolution demanded. They are also attractive due to their size and 
lightweight, the immunity against electromagnetic external noise, the low chemical 
reactivity, and the biocompatibility of the glass used to fabricate the fiber optics [33], [34]. 
FOTS, like most sensing technologies, must deal with the compromise between sensitivity 
and dynamic range. Some strategies have been applied to improve the temperature sensitivity 
of FOTS as: the fabrication of fiber optic devices where highly sensitive optical phenomena, 
such as interference or plasmonic resonance, can be generated steadily using specialty fibers 
(hollow core fiber, photonic crystal fiber, or polarization maintaining fiber) [35], [36], [37]; 
the inclusion of materials with a high thermo-optic coefficient [38], [39], [40]; the 
implementation of fiber optic structures or schemes to generate the optical Vernier effect 
[41], [42], [43]; or more recently, a very successful method is using fiber optic 
interferometers coated with a polymer to enhance the optical phase difference of the beams 
involved [38], [39], [40], [44], [45], [46], [47]. 
 
The PC-FFPI is one of the simplest FOTS proposed so far; it is very easy to fabricate, 
especially when transparent photocuring or thermal curing polymers, such as the NOA or 
PDMS, are used. The polymer attached to the fiber optic tip acts as a Fabry-Pérot cavity; the 
thickness and refractive index of the polymer cavity are affected by temperature changes. 
Increments or decrements in temperature modify the phase difference of the interference 
beams. The polymer response to temperature changes determines the temperature sensitivity 
of the PC-FFPI; therefore, the only way to enhance the sensitivity of the PC-FFPI is by 
choosing one with a high thermo-optic coefficient (TOC) or a high thermal expansion 
coefficient (TEC). 
 
Highly sensitive temperature sensors, despite their small dynamic range, are very appreciated 
in biomedical applications [48], structural health monitoring [49], and marine environment 
monitoring [50], to mention a few. It is evident that for some of these applications, the head 
of the FOTS must be packaged to make them more robust to resist hostile environments or 
the manipulation of untrained final users in order to extend the use lifetime. Packaging 
considerably increases the size of a fiber optic thermometer. 
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Figure 34. Experimental set-up for temperature characterization: 1. Optical table. 2. The 
sm125 interrogator. 3. Digital thermometer with thermocouple. 4. Motorized translation 
stage (1-axis). 5. Ferrule connector with polymer tip. 6. Mirror 7. Dry bath with block. 8. 

Stepper motor controller. 
 
In this chapter, I report the implementation of a PC-FFPI and the response of the device 
subjected to several characterizations in order to obtain a reproducible method to measure 
temperature changes. Using a set-up presented in Fig. 34, I exposed each of the PC-FFPI 
made with two different polymers, PDMS and NOA81, to temperature variations. Since the 
thermal transfer from the heated block to the polymer tip is contactless, I put a thermometer 
close to the PC-FFPI to obtain an accurate PDMS and NOA81 cap temperature reading. First, 
since NOA81 has an extensive temperature range (-15 ºC to 80 ºC after being cured), I 
measured this tip by increasing and decreasing temperature variations between 20 ºC and 70 
ºC. When the temperature rises, the optical spectra of the PC-FFPI intensity reflection shift 
to larger wavelengths, as seen in Fig. 35(a). I tracked the wavelength position of one 
maximum of the interference pattern near 1550 nm and these values were used to construct 
the light pink plot in Fig. 35(b). I followed the same maximum when the temperature went 
down and plotted the dark pink points in Fig. 35(b). The experimental points are fitted by 
linear regression, with slopes of 0.29 nm/ºC for the rising temperature and 0.42 nm/ºC for the 
falling temperature. Both slopes should be very similar, but they are not for this case because 
of the high response to humidity of the optical adhesive NOA81. To avoid hysteresis in this 
analysis, we heated the tip to 60 ºC for 30 minutes before increasing and decreasing the 
temperature. After that dry process, we made the corresponding measurements again and 
obtained two closed slopes, as desired, with values of 0.45 nm/ºC (increasing T) and 0.47 
nm/ºC (decreasing T), as shown in Fig. 35(c). 
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Figure 35. (a) Spectra of the measured 𝐼rOqrT and the characteristic curve of the wavelength 

shift for a PCFPI with a NOA81 cavity (b) before and (c) after the dry process. 
 
In the same way, I tested a second PCFPI tip using PDMS, which has a shorter temperature 
range (-10ºC to 60 ºC after being cured). I measured this tip by increasing and decreasing 
temperature variations between 30 ºC and 36 ºC. The optical spectra of the PCFPI intensity 
reflection shift to larger wavelengths as the temperature increases, as seen in Fig. 36(a). 
Tracking one maximum of the interference pattern, I obtained the characteristic curve of the 
plotted points at different increasing and decreasing temperature values, as shown in Fig. 
36(b). The slope when the temperature rises is 0.54 nm/ºC (light yellow), and the slope when 
the temperature falls is 0.58 nm/ºC (dark yellow). The device temperature sensitivity is very 
similar when the temperature increases or decreases. I didn’t need to dry the tip to avoid 
hysteresis. That is the reason we chose the PDMS as the polymer tip for the PCFPI for the 
following analysis. 

 
Figure 36. (a) Spectra of the measured 𝐼rOqrT and (b) the characteristic curve of the 

wavelength shift for a PCFPI with a PDMS cavity. 

a) b) 

c) 

a) b) 
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Figure 37. Components of the DCFPI sensor head: 1. Ferrule connector with a polymer cap. 

2. Aluminum mount. 3. Plane mirror with a circular shape. 4. Fine thread screw.  
 
 
It has been demonstrated that the PC-FFPI has a good temperature sensitivity (0.58 nm/ºC). 

I propose constructing a highly sensitive fiber optic temperature sensor based on a double-
cavity Fabry-Pérot interferometer (DCFPI) to generate the Vernier effect and enhance PCFPI 
sensitivity. The DCFPI is formed when the PCFPI is placed in front of a reflective surface, 
as shown in Fig. 37. To generate the Vernier effect, it is necessary to set the OPL of both 
cavities nearly equal, i.e., 𝑂𝑃𝐿lJX ≈ 𝑂𝑃𝐿A3". The slight difference in the length of the cavities 
can be expressed as 𝑂𝑃𝐿A3" = 𝑂𝑃𝐿lJX + 𝜌, where 𝜌 ≪ 𝑂𝑃𝐿lJX. 

 
The optical path lengths of the polymer and air cavity are described by 𝑂𝑃𝐿lJX = 𝑛lJX𝐿lJX 

and 𝑂𝑃𝐿A3" = 𝑛A3"𝐿A3", respectively, and 𝑂𝑃𝐿lJX + 𝑂𝑃𝐿A3" = 𝑛lJX𝐿lJX + 𝑛A3"𝐿A3" are the 
OPL of the dual cavity. However, the refractive index of the polymer 𝑛lJX and the length of 
the polymer cap 𝐿lJX are modified by the temperature (T) effect as follows [51]: 

 

𝑛lJX(𝑇) = 𝑛2(𝑇2) + ]
𝜕𝑛lJX
𝜕𝑇 ^

|}|'

(𝑇 − 𝑇2),																																										(67) 

𝐿lJX(𝑇) = 𝐿2(𝑇2)[1 + 𝛼|(𝑇 − 𝑇2)],																																																		(68) 
 
Where 𝑇2 is the initial temperature, 𝜕𝑛lJX/𝜕𝑇 is the thermo-optic coefficient (TOC) and 𝛼| 

the thermal expansion coefficient (TEC). For PDMS, 𝑇𝑂𝐶 = −4.5 × 10#D	~C#7 and 𝑇𝐸𝐶 =
9.6 × 10#D	~C#7 [52]. 
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Using (67), (68), and the theoretical model presented in Section 2, we simulated the 

reflection intensity of the cascaded PC-FFPI sensor; the parameters used in the simulations 
are for PDMS: 𝐿lJX=0.58mm, 𝐿A3"=0.84mm, 𝑛lJX=1.39, 𝑅=1.127mm, 𝑅7=0.0006, 
𝑅!=0.025, 𝑅Z=0.95, and	𝑛A3"=1.00. The coupling coefficients at a wavelength 𝜆 = 1550	𝑛𝑚 
are 𝜂7 = 0.1027 and 𝜂! = 0.0544. The slight difference in the OPL of air and polymer 
cavities ρ was set equal to 30 μm since this value assures the observation of two nodes in the 
wavelength span from 1510 to 1590 nm, the emission band of the interrogator used in this 
work. The simulated spectrum of the DCFPI, assuming a temperature of 26.7 ºC, is shown in 
Fig. 38(a), and its corresponding experimental spectrum is shown in Fig. 38(c). When we 
consider an increment of 0.1 °C in the ambient temperature, the OPL of the polymer cavity 
is changed, and the simulated and experimental spectra (shown in Fig. 38(b) and Figure 
38(d), respectively) are red-shifted concerning the spectra of Fig. 38(a) and Fig. 38(c). 

 

 
Figure 38. (a,b) Simulated and (c,d) experimental reflection spectra of a DCFPI using 

PDMS for temperature values of 26.7 ºC and 26.8 ºC, respectively. 
 

 
The procedure to construct the DCFPI is illustrated in detail in Figure 37. First, we inserted 
the ferrule with the polymer cap (1) through the hole machined and fixed it to threaded fiber 
adapted in the aluminum case (2). I approached a circular mirror (3) glued to the tip of a 
screw (4) to the polymer cap by driving the screw through the nut machined on the other side 
of the case. These elements constitute the head of the DCFPI. I adjusted the length of the air 
cavity between the polymer cap and the mirror by moving the screw. 
 

a) b) 

c) d) 
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In the same way as the PCFPI fabrication process, we used the sm125 interrogator and its 
automated program to calculate the OPL of the air cavity to adjust the small difference 𝜌 
between the OPL of the air and polymer cavities and generate the Vernier effect. Since the 
thread of the screw is fine, it is possible to set the mirror in front of the polymer cap 
accurately. The 𝜌 value is directly related to the temperature sensitivity of the DCFPI sensor. 
In our case, we set 𝜌 around 30 𝜇𝑚 measured through the FFT; this is the most appropriate 
value to obtain the maximum sensitivity without losing the chance to track two nodes in each 
spectrum in the wavelength span from 1510 to 1590 nm. Using a light source with a broader 
span, it is possible to increase the sensitivity and dynamic range of this temperature sensor 
by reducing the value of 𝜌. 
 
We placed the DCFPI sensor head above a metal block in the Benchmark dry bath to set the 
temperature changes and perform its characterization. We used a digital thermometer near 
our DCFPI to monitor the temperature of the surroundings. The SMF was connected to an 
ENLIGHT MicronOptics interrogator sm125 to collect the reflection spectra.  
 
I first set the temperature of the dry bath to 35 ºC, then I turned off the equipment. As the 
temperature decreased, I recorded the spectrum of the DCFPI, and the temperature assigned 
to each spectrum according to the digital thermometer placed on the side of the DCFPI. The 
optical spectrum shows a dense fringe pattern where two nodes can be identified (see Figures 
39(a), 40(a), 41(a), and 42(a)). The nodes shift toward shorter wavelengths as the temperature 
decreases. Tracking the wavelength position of the nodes through the frame, it is possible to 
plot the temperature characterization curve of nodes, as shown in Figures 39(b), 40(b), 41(b), 
and 42(b). It is complicated to track the displacement of a single node in a wide range of 
temperatures due to the high sensitivity of the Vernier effect. However, since two nodes are 
present in the optical spectra, we can track both by considering the overlap between the two 
characteristic curves. It was possible to follow four different nodes by their overlap (Figures 
39–42). Tracking the nodes’ displacement in the spectra could allow us to estimate the 
temperature variations but not to identify which node is related to a particular temperature 
range. For instance, the position of the nodes at 30.3 ºC (Figure 39(a)) is very similar to that 
obtained at 29.2 ºC (Figure 40(a)), 28.1 ºC (Figure 41(a)), and 27.1 ºC (Figure 42(a)), but the 
FSR is 40.3 nm, 41.5 nm, 42.4 nm, 43.4 nm, respectively. The FSR could help us distinguish 
whether we are following Node 1 or Node 3. The nodes' position and the FSR can be used to 
avoid the apparent ambiguity in identifying the node and, consequently, the temperature. 
Thus, a high resolution FOTS with a temperature dynamic range of 26.8 ºC to 31.7 ºC, as 
seen in Figure 43, was demonstrated. 

 

a) b) 
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Figure 39. (a) DCFPI measured optical spectra and (b) the characteristic curve of the node 
wavelength shift in the temperature range of 29.6 ºC to 31.7 ºC. 

 

 
Figure 40. (a) DCFPI measured optical spectra and (b) the characteristic curve of the node 

wavelength shift in the temperature range of 28.5 ºC to 30.6 ºC. 
 

 
Figure 41. (a) DCFPI measured optical spectra and (b) the characteristic curve of the node 

wavelength shift in the temperature range of 27.5 ºC to 29.5 ºC. 
 

 
Figure 42. (a) DCFPI measured optical spectra and (b) the characteristic curve of the node 

wavelength shift in the temperature range of 26.7 ºC to 28.4 ºC. 

a) b) 

a) b) 

a) b) 
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Figure 43. Characteristic curves of the wavelength shifts of 4 nodes for the DCFPI in the 

temperature range of 26.7 ºC to 31.7 ºC with its respective sensitivity values. 
 

As the temperature decreases, the sensitivity of the device increases since the length of the 
PCFPI is closer to the air cavity length, and the FSR increases. This is more evident in the 
temperature range of 26.7 ºC to 28.4 ºC (Figure 42) when sensitivity increases to 39.8 nm/ºC, 
69.2 times the sensitivity of a conventional PC-FFPI temperature sensor. 
 
Compared with other FOTS based on the Vernier effect (see Table 2), this device exhibited 
a competitive sensitivity. Furthermore, the DCFPI possesses other fascinating characteristics 
that could be attractive for some applications, for example, the simple fabrication process, 
the robustness provided by the connector, and the possibility to adjust the length of the air 
cavity by the movement of the mirror to select the sensitivity and dynamic range of the FOTS. 

 

Type Sensitivity (𝐧𝐦/ 𝐂	𝐨 ) Dynamic Range ( 𝐂	𝐨 ) Reference 
Fiber-optic sensor based on cascaded 

FPIs 
0.18 38–100 [53] 

PDMS-filled air microbubble FPI 2.70 51.2–70.5 [54] 
Parallel FPIs based on dual Vernier effect 7.61 34–39 [55] 
Cascaded FPI and a fixed reflective Lyot 

filter based on the Vernier effect 
−14.63 30–32 [56] 

Hybrid interferometers with harmonic 
Vernier effect 

−19.22 41–44 [41] 

Cascaded polymer-infiltrated fiber Mach-
Zehnder interferometers 

−24.86 22–29 [57] 

Polymer-capped FFPI by Vernier effect 
(our work) 

39.84 26.7–31.7 [58] 

Table 2. Temperature sensing performance of recently reported temperature optical fiber 
sensors. 
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CHAPTER 6:  
MECHATRONIC PLATFORM 
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Once we proved that the theoretical model presented in Chapter 2 is in good 
agreement with the experimental results, we searched for a systemized and efficient way to 
perform all the necessary procedures to minimize errors and improve the experimental 
process. A critical part of this work is the fabrication process of our tips. However, the good 
results motivated us to construct an automatic mechatronic platform to fabricate these devices 
more accurately and with control. Fig. 44 presents an image of the 3D design of the actual 
platform. 
 

 
Figure 44. Components of the fabrication mechatronic platform: 1. Interactive control menu 
operated by Arduino. 2. Limit switches. 3. Digital microscope. 4. Polymer deposit stage. 5. 
The sm125 interrogator. 6. Bipolar stepper motors. 7. Ferrule connector with polymer tip. 

8. UV curing stage. 9. Temperature curing stage. 10. Induction heating module.   
 
 
 
As we saw in the last chapter, implementing a self-designed device helps tremendously in a 
specific task. We build the fabrication tips platform to be able to transfer polymer at the end 
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of the tip as well as cure the polymer, whether photocurable (as NOA81) or thermocurable 
(as PDMS); all of this in an automatic way. In Fig. 45 and Table 3, we present every 
electronic component of the platform labeled with a corresponding letter.  
 
The main element used in this platform is the open-source microcontroller Arduino, which 
operates all the other elements in a synchronized way. The brain of Arduino is the integrated 
circuit ATmega328, a microcontroller you can program, erase, and reprogram multiple 
instructions by the free-access Arduino software. It is very simple to program because it is a 
simplified version of C++. Besides, it offers a wide range of sensors for many applications. 
Depending on the number of devices to connect to Arduino, you can choose different boards; 
in this case, we used the Arduino MEGA version (M) because it offers the highest number 
of available pins to connect various sensors and actuators. An actuator is a device that 
transforms hydraulic, pneumatic, or electric energy into physical movement, just as the pair 
of bipolar stepper motors Nema 17 (D) used in this scheme, one for the horizontal movement 
of the platform and the other for the vertical motion, both with an angle of step of 1.8J per 
step (200 steps per revolution). Each motor needs a driver to control aspects such as the 
rotation direction and to make the motor programming easier. We decided to use the A4988 
driver (K) because it allows us to split up to 16 times the steps of the motors. This means that 
we can obtain more resolution in the longitudinal movement. We also need two 100	𝜇𝐹 
capacitors, one per motor, to avoid sudden electricity shocks. Once the platform was moving, 
we needed to set limits for each sense, so we strategically placed three limit switches (O) that 
also allowed us to set every motion to an initial position, which was very useful when we 
wanted to set both motors to whatever coordinates. For instance, it is mandatory to place the 
tip of the bare connector in front of the polymer deposit stage and make contact slowly to 
transfer the polymer accurately.  
 
After the polymer deposit process comes the curing phase. For the photocuring, we 
implemented three 3 W UV LEDs (N) with a transistor TIP122 (H) to control its intensity. 
For the thermal-curing, we conditioned an induction heating coil module (G), also with a 
TIP122 to control now the temperature. We can measure the temperature of the heating 
process with a digital thermometer (Q). We displayed the temperature value in a 16x2 LCD 
that works with an I2C module that reduces the number of connections of the LCD. The 
display is also used as an interface between the platform and an operator by three rotary 
encoders (P) to select options as a menu.  
 
Finally, all the components are energized by a 12V/10A AC power source (A) turned on and 
off with a switch (B). The Arduino MEGA is also fed with the power source by an outlet 
plug (C). Resistors with different values (J) were used for some components, too. 
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Figure 45. Electronic components of the fabrication mechatronic platform. 

 
Label Component Description 

A Power source 12V/10A/120WAC power source. 
B Switch Switch to turn the source on or off. 
C Outlet plug Plug to power up the Arduino. 
D Stepper motors Nema 17 Two stepper motors for the vertical and horizontal 

displacement.  
E I2C module Display module to reduce the number of cables. 
F 16x2 LCD Display to control the mechatronic platform menu. 
G Induction heating coil Induction heating coil for the PDMS curing process. 
H Transistors TIP122 Two transistors TIP122 to regulate the LEDs 

intensity and coil temperature. 
I Capacitors Two 100µ𝐹 capacitors for each stepper motor. 
J Resistors One 4.7𝑘Ω resistor, two ceramic resistors (1Ω and 

1.5Ω) and nine 1𝑘Ω resistors. 
K A4988 driver Two stepper motor drivers to control polarity and 

microstepping. 
L Arduino MEGA 2560 Arduino microcontroller for the general mechatronic 

platform operation. 
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M 12V DC plug DC plug to energize the Arduino. 
N UV LEDs Three 3W UV LEDs for the NOA curing process. 
O Limit switch Three limit switches to set the stepper motors to 

home position. 
P Rotary encoder Three rotary encoders to manually control the 

platform menu. 
Q Temperature sensor DS18B20 digital thermometer to measure and control 

the coil temperature. 
Table. 3. Electronic components of the fabrication mechatronic platform with their 

corresponding operation function. 
 
The first step of the polymer capped tips fabrication process is to place the fiber connector in 
its spot, as seen in label 7 of Fig. 44. The general performance of the mechatronic platform 
is divided into three principal stages: polymer transfer, UV curing, and temperature curing. 
The polymer transfer stage involves manually placing a polymer drop in a 3D-designed PLA 
(polylactic acid) container (Fig. 46(a)). We are ready to start the fabrication process once we 
put the polymer on top of the container. The next step is the UV or temperature curing 
process, depending on whether we are using NOA81 or PDMS, respectively. If we want to 
cure a polymer sensible to UV radiation like the NOA81, the automatized operation of the 
platform carries the fiber connector to the UV curing stage, where three 3W UV LEDs 
connected in series are inside of an aluminum box, which also works as a heatsink (Fig. 
46(b)). Otherwise, if we want to solidify a polymer sensible to heat radiation like the PDMS, 
we program the platform to carry the fiber connector to the temperature curing stage formed 
of an aluminum nozzle inside a coil, which will carry out the induction heating (Fig. 46(c)).  
 

  
Figure 46. a) Polymer deposit stage, b) UV curing stage, c) temperature curing stage. 

 
The outer diameter of the ferrule connector tip is 2mm; we designed the PLA container with 
the same top diameter to facilitate the polymer transfer. It is mandatory to accurately place 
the connector tip in front of the polymer container. Since we used a driver that splits 16 times 
the steps of the motors, we achieved a displacement resolution of 11	𝜇𝑚 per step for each 
motor. With this configuration, we were allowed to apply microsteps and obtain smooth and 
precise motion. The polymer transfer process is shown in Fig. 47.  

a) c) b) 
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Figure 47. Polymer transfer process on the tip of the connector ferrule. 

 
The entire process of fabricating a tip with NOA81 polymer is shown in Fig. 48. First, the 
mechanism sets both motors to their origin (Fig. 48(a)), which is an important step. It is 
difficult to save the position at any point of the fabrication every time the mechanism restarts. 
Setting the motors to their origin allowed us to place the connector tip in whatever position 
we wanted by a system of coordinates. Using this system, we can position the connector in 
the same place we want it to be, no matter how many times the process repeats. Once we 
knew where the connector was placed, we programmed the path to the PLA container to 
transfer the polymer (Fig. 48(b)). After that, we placed the connector, now with polymer on 
the tip, in front of the digital microscope to picture the shape of the polymer tip. The last step 
was to locate the connector inside the UV curing container for 10 minutes at maximum 
irradiance to finalize the curing process (Fig. 48(c)). 

 
Figure 48. Tip fabrication process using the UV curing stage: a) Setting both motors to the 

origin, b) polymer transfer process, c) curing process. 
 
The temperature curing process is very similar; every step is shown in Fig. 49. The first and 
second steps are the origin position of the motors and the polymer transfer, respectively (Figs. 
49(a) and 49(b)). The polymer-capped tip must be inside a metal cavity to induct the heating 
process by the coil. The next step is to screw in an aluminum nozzle that will be at the heating 

a) c) b) 

3 
4 8 

7 
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stage; Fig. 49(c) shows the insertion of the nozzle, and Fig. 49(d) shows an image of the 
nozzle already placed. The final step is putting the polymer-capped tip with the nozzle inside 
the coil to start heating (Fig. 49(e)). A thermocouple is attached to the nozzle to measure the 
increasing temperature; this value is displayed in the LCD, as shown in Fig. 49(f). The curing 
process lasts up to 1 hour; that is when it reaches 60JC. 

 
Figure 49. Tip fabrication process using the temperature curing stage: a) Setting both 

motors to the origin, b) polymer transfer process, c) nozzle insertion, d) nozzle already 
inserted, e) curing process, f) measured temperature value in the menu display. 

 
 
Operating any machine needs an interface for the operator. We designed a menu control to 
order the platform to perform one of the described processes. Fig. 50 shows the flowchart 
according to the selection between the UV curing process (NOA) and the temperature process 
(PDMS). We used a rotary encoder to select every option by rotating and pushing it. On the 

a) c) b) 

d) f) e) 

3 

6 

8 9 7 
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other hand, the platform can also be operated manually with two more rotary encoders, one 
for each motor motion; the motor runs a step for each rotation, and the sense of the rotation 
of the encoder also defines the sense of the step.  
 

 
 

Figure 50. Menu display flowchart with every message displayed depending on the 
selection made. 

 
We fabricated five tips for each polymer to prove the reproducibility of our machine. First, 
we present the optical and Fourier spectra for NOA81 in Figs. 51(a) and 51(b), respectively. 
We obtained five similar spectra with slight differences in the amplitude of their peaks in the 
Fourier domain. The range of the OPL of the five tips is between 0.4909 mm and 0.5935 mm; 
having a difference of 0.1026 mm between the shortest and the largest tip. Then, the 
corresponding optical and Fourier spectra for PDMS are shown in Figs. 52(a) and 52(b). The 
range of the OPL of the five tips is between 0.3261 mm and 0.4689 mm. This range presents 
a difference of 0.1428 mm, wider than the NOA81 tips range. In both cases, we achieve a 
good correlation for every fabricated tip, i.e. a reproducible fabrication method. The next step 
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for this platform is to implement a method to control the cavity tips dimensions, just as we 
presented in Chapter 3, but now in an automated way. 
 
 

 
Figure 51. (a) Optical and (b) Fourier spectra of the NOA81 fabricated tips using the 

mechatronic platform. 
 

 
Figure 52. (a) Optical and (b) Fourier spectra of the PDMS fabricated tips using the 

mechatronic platform. 
 
 
 
  

a) b) 

a) b) 
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CHAPTER 7:  
CONCLUSIONS 
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All the research, experimental, and technological development presented in this work 
was limited by the time. I decided to change my thesis project and advisor halfway through 
the doctorate, with only 2 years and 2 months left. For this reason, there are many aspects to 
improve about the mechatronic platform and future research lines to follow to continue from 
this work.  
 
I designed, developed, and implemented a displacement and temperature sensor using a 
modified extrinsic Fabry Pérot interferometer with a polymer-capped SMF FC/PC. The 
displacement sensor is simple to fabricate, exhibits a dynamic range 9 times more extensive 
than a conventional EFPI, and can detect nanometer displacements using the optical Vernier 
effect. The temperature sensor increased to 69 times the temperature sensitivity of a 
traditional EFPI with a polymer cap. I proved the improvement of the dynamic range, 
sensitivity, and resolution of the reported schemes for measuring distance and temperature 
by a robust, simple, and easy-to-fabricate alternative FFPI sensor configuration. These results 
were published in two prestigious scientific journals with a high impact factor. 
 
An automated prototype requires adjustments before, during, and after the manufacturing 
process and the testing stage. We set up the platform operation according to the three general 
desired tasks: polymer transfer, UV curing, and temperature curing, all using SMF FC/PC 
connectors. The future adjustment will be to do the same process but now using bare SMF. 
Since a stripped fiber has a diameter of 125 𝜇𝑚, we need a different holding piece for the 
fiber and to program the correct coordinates to place the fiber tip correctly in front of the 
polymer container and at each stage. The main advantage of creating a specific machine from 
the beginning is that you can modify its configuration according to the requirements.  
 
The platform reaches a maximum temperature of 60J𝐶 in one hour. The current of the power 
source limits this aspect. By changing the power source, we can increase the maximum 
temperature value. On the other hand, if we want to improve the UV curing stage, we must 
add more UV LEDs to the container.  
 
Before the implementation of our machine, we used four principal instruments to fabricate 
the polymer-capped tips; we present them with their corresponding cost at the time they were 
acquired: 
 
• Digital dry bath myBlock: $12,558 USD 
• Norland Opticure LED 200 Light Gun: $37,915 USD 
• Motorized Linear Translation Stage: $51,250 USD 
• Two-Channel Benchtop Stepper Motor Controller: $50,820 USD 
 
One objective of the fabrication of our platform was to implement these four instruments in 
a single machine. Considering every acquired component to fabricate this platform, the 
estimated general cost is $4500 MXN or $220 USD. We can conclude that this is a low-cost 
prototype with displacements in two ways with a resolution of 11 𝜇𝑚, with a UV irradiator 
and a heater nozzle, both in a controlled way.  
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I have a second version of the cavity for the temperature sensor where the PCFPI is inside. 
The cavity screw has a bipolar motor coupled, which allows us to have a more accurate 
longitudinal displacement of the mirror instead of doing it manually. This prototype is in the 
testing stage.  
 
Scientific production is becoming increasingly important in Mexico, but the situation is 
different concerning technological contributions from the scientific community. 
Postgraduate students in science, as future researchers, are in the position to change this 
situation gradually. As with this work, implementing technology in scientific applications is 
fundamental to my academic training. In this way, scientific research of current interest and 
high impact in optics that I can generate takes on greater weight using technology developed 
by my authorship. In this way, the incursion into the development of prototypes for 
automation applications in the multiple experimental processes developed in optics 
laboratories represents a line of research that I wish to continue, leading me to the 
construction of the prototype presented in this work. 
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