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Abstract 

This thesis explores the optical diffractometry of Fresnel diffraction from transmission 

phase steps when illuminated by sources with varying spatial profiles. The study aims to 

deepen the understanding of how different spatial light distributions interact with abrupt 

phase changes in an optical medium, resulting in distinctive diffraction patterns. 

Fresnel diffraction from phase steps has been extensively studied, but this research 

investigates the effects of different illuminating source profiles on the resulting diffraction 

patterns in transmission mode. The goal is to extend this method’s applicability to clinical 

purposes, where precision is crucial. 

The experimental setup involves creating phase steps in a transparent medium and 

illuminating them with sources of distinct spatial profiles. The resulting diffraction 

patterns are measured to understand how variations in the spatial distribution of light 

influence interference and diffraction. The Fresnel Gaussian Shape Invariant (FGSI) 

method is employed to precisely calculate coherent light propagation through optical 

setups containing phase steps. This method uses a superposition of Gaussian wavelets, 

capturing essential field characteristics, and simplifies programming while yielding 

accurate results for short propagation distances and various illumination sources, 

including non-diffracting beams. 

The research includes calculations with different spatial profiles, such as Gaussian beams, 

Bessel beams, and non-diffracting Airy beams. Analyzing these profiles aims to establish 

general sensitivity formulas in the paraxial region, which are vital for optical applications. 

The non-diffracting Airy beam, in particular, is highlighted for its potential in clinical and 

metrological applications due to its ability to maintain its shape over long distances. 

The study not only provides theoretical and numerical analysis but also validates these 

findings through rigorous experiments, ensuring the reliability and accuracy of the results. 

This comprehensive analysis contributes to a deeper understanding of optical 

diffractometry, enhancing precision in metrology and opening new possibilities in clinical 

applications. 
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 F z  Complex distribution. 

CL  Container width. 
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1. Introduction 

 

The phenomenon of Fresnel diffraction from phase steps in both transmission and 

reflection modes, initially introduced in [1] and further analyzed in [2-5], is a 

relatively recent area of research. Investigations into this phenomenon have found 

numerous applications in metrology. This phenomenon occurs when a light wave 

encounters a sudden transition or an abrupt alteration in an optical medium, 

causing a sudden phase shift in the wave. This change can arise from variations in 

the refractive index of the material or the presence of a thin film within the medium. 

When light encounters such an alteration, interference patterns are generated due 

to the phase discrepancies of the waves propagating through and around the phase 

step. This phenomenon has been studied in both transmission and reflection modes. 

The Fresnel-Kirchhoff integral is employed to calculate the diffraction associated 

with this phenomenon, whose fundamental equation involves several reflection 

amplitudes and parameters describing the interaction of light with the phase step, 

enabling accurate modeling and understanding of this optical behavior. 

In reflection mode, the phenomenon is represented through the normalized 

intensity of a one-dimensional phase step. In transmission mode, it is crucial to 

consider the change in direction due to the refractive indices through which the 

beam passes. A transparent element with an abrupt change in thickness or refractive 

index creates a phase step in transmission. Examples of this include a transparent 

plate suspended in air or a transparent liquid, as well as a transparent film deposited 

on a part of a transparent substrate. When a wave passes through such a medium, 

its phase undergoes a sudden shift proportional to the optical path difference 

between two parallel rays passing through different sides of the step. 

Practical applications of this phenomenon include the precise measurement of the 

refractive index in transparent liquids using the phase step technique, which 

leverages the known refractive index of a transparent plate to detect even small 
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changes in the surrounding medium's refractive index with an accuracy of up to five 

digits [6-9]. Additionally, nanometric displacement measurements with a resolution 

of 2 nm [10], thin film thickness measurements in nanometric and micrometric 

ranges [11-13], focal length measurements with 0.01% accuracy [14], and curvature 

radius calculations for cylindrical and spherical wavefronts [15] are possible. Other 

applications include real-time control of etching rates of transparent materials [16-

17], determination of the central wavelength and linewidth of a light source [18], 

characterization of faint starlight [19], calibration of phase shifters [20], hologram 

reconstruction for obtaining quantitative 3D images of cells [21-22], and the study 

of linear and nonlinear temporal intensity patterns in single-mode optical fibers 

[23]. 

In this study, we conducted experiments on diffraction from a phase step in 

transmission. To analytically support our findings, it is necessary to calculate, in a 

closed-form expression, the complex amplitude distribution that occurs when a 

phase step diffracts an illuminating source. Generally, it is not possible to 

analytically calculate the integrals involved in propagating an illuminating source to 

an observation plane through an optical setup containing one or more phase steps. 

Therefore, an appropriate numerical method is required to provide accurate 

calculations within the Fresnel range. Among the numerical methods available for 

this task are sampling expansions [24], fractional Fourier transform [25], angular 

spectrum expansion [26], and ray tracing combined with Monte Carlo, based on 

Heisenberg's Uncertainty Principle [27]. 

In this report, we employed a numerical method called Fresnel Invariant Gaussian 

Beam (FGSI) [28-30]. This method represents the initial illuminating field by a 

superposition of Gaussian wavelets. Each wavelet begins at the initial plane and 

gathers three key characteristics of the local field as it travels to the observation 

plane: complex amplitude and linear and quadratic phases. One of the advantages of 

the FGSI method is its ability to iteratively propagate these wavelets through the 

optical setup, simplifying the programming process. Ultimately, the superposition 

of wavelets provides the overall propagation of the illuminating field. This method 
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has proven to be accurate in various types of optical setups, even for short 

propagation distances and, in principle, for all kinds of illumination, including non-

diffracting beams [30]. Here, we benefit from these attributes to provide analytical 

support to our experimental results. 

The numerical results obtained from studying the phase step must be validated 

through rigorous experimental procedures to ensure their accuracy and reliability. 

This validation is essential to confirm the theoretical predictions and numerical 

simulations presented in the studies. Recent approaches suggest that the diffracted 

wave generated at the discontinuity can be described using a modulated probability 

function, similar to methods used in quantum mechanics, to enrich the 

understanding of the physical interaction between the light beam and the phase 

step. 

2. Background research 

The work will begin with background research to learn about some of the 

applications that can be obtained by using Fresnel diffraction through a phase step. 

The theoretical approaches are presented in the thesis’s annex. 

 

 2.1 Phase Step 
 

The phase step phenomenon has gained attention as a focus of study due to its 

potential applications in metrology, as demonstrated by initial studies [1]. This 

phenomenon occurs when a light wave encounters a sudden transition or an abrupt 

alteration in an optical medium, causing a sudden change in the wave’s phase. This 

change can arise from variations in the refractive index of the material or the 

presence of a thin film within the medium [2-5]. 
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When light encounters this alteration, interference patterns are generated due to 

discrepancies in the phases of the waves propagating through and around the phase 

step; this phenomenon has been studied in both transmission and reflection modes. 

The Fresnel-Kirchhoff integral is used to calculate the diffraction associated with 

this phenomenon. Equation (2.1) is fundamental for these calculations, where A  

represents the disturbance amplitude, 1r  is the distance of the reflected light 

amplitude from the left-reflecting surface 1M  , and 2r  is the distance of the reflected 

amplitude from the reflecting right surface 2M , R is the distance from the light 

source to the step plane, 'R  is the distance from the step plane to a point on the 

screen.  Figure 2.1 illustrates the parameters involved in this equation. 

 

Figure 2. 1.  Representation of the phase step in reflection mode. M1 and M2 are the 
reflecting surfaces, h is the height of the step, S represents the source of the cylindrical wave, 

S’ is the virtual image of the source, and P is an arbitrary point on the screen.  1 1r R x   

1 1''r R x  , 2 2r R x h    ,  2 2''r R x h    . 
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In summary, the phase step phenomenon occurs when light interacts with an optical 

discontinuity, resulting in interference patterns that can be analyzed and utilized in 

various metrological applications. The Fresnel-Kirchhoff integral and the 

corresponding equation enable precise modeling and understanding of this optical 

behavior. 

 
   0

1 1 2 2

0

' '

1 1 1 2 2
1 1 2 2' '

x
ik r r ik r r

x

i e e
U P A r dx r dx

r r r r


 



 
  

  
  
  . 

(2.1) 

From Equation (2.1), by performing variable changes to define the, 1r , 1 'r , 2r and 2 'r  

in terms of R ,  'R   and  the coordinates 1x , 2x , considering the Fresnel 

approximation, and taking into account that the integral is even, Amiri et al. obtain 

the Equation (2.2) [1] 

       1 0 1 2 0 0 1 2

1
1

2 2

i ii
U P U i r r e C i S r r e

 
     

 
  

         (2.2) 

where 0U  is the amplitude of the incident wave, 4 cosh    , and 0C , 0S  are 

the Fresnel integrals representing the cosine and sine components, respectively. To 

obtain the intensity, Amiri et al. multiplied the wave amplitude  1U P  by its 

complex conjugate  *
1U P , resulting in Equation (2.3). 

   

    

2 2
1 0 1 2 0 0 0 0

2 2 2 2 2 20
0 0 1 2 0 0 1 2

1
cos sin cos

2

1

2 2

I I r r C S C S

I
C S r r C S r r

      

      

 
  

  
    

                (2.3) 
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Figure 2.2 presents the normalized intensity result (Equation (2.3)) for a one-

dimensional phase step in reflection mode. This represents a region where the 

phase of the incident wave undergoes an abrupt change. Such a phase change can 

occur, for example, when the wave encounters a surface with a discontinuity in 

refraction or geometry. 

 

 
Figure 2. 2. Normalized intensity for a phase step in one-dimensional reflection mode based 

on Figure 2.1, h = / 5  for a red beam,   = 29.15°, 1x = - 10.7 cm, 2x =15 cm. 

 

On the other hand, for the transmission mode, the beam's direction changes as it 

passes through materials with different refractive indices. A transparent element 

with an abrupt change in its thickness or refractive index creates a phase step in 

transmission. Examples include a transparent plate held in air or a transparent 

liquid, as well as a transparent film deposited on part of a transparent substrate. 

When a wave passes through such a medium, its phase undergoes a sudden change. 

The magnitude of this phase change is proportional to the optical path difference 

between two parallel rays traversing different sides of the step,    'IMH IM  

as shown in Figure 2.3 [6]. Equation (2.4) can be used to determine the optical path 

difference by considering the refractive indices and the angle of incidence. In this 
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equation, N represents the refractive index of the plate with thickness h immersed 

in a medium with a refractive index n . 

 2 2 2sin cosi ih N n n  
  

                                     (2.4) 

 

 

Figure 2. 3. Geometrical representation of the phase step in transmission mode, N is the step 
refractive index, h is the thickness of the step, n is the refractive index of the medium, and RT 

is the optical path of the ray. 

 

In the reported studies, the visibility of the phenomenon is utilized and calculated 

as shown in the following Equation (2.5).  

 

 

.max .max .min

.max .max .min

1

2 .
1

2

L R C

L R C

I I I
V

I I I

 


 

                                         (2.5) 

Based on Figure 2.2, .maxLI is the intensity of the maximum peak on the left side, 

.maxRI is the intensity of the maximum peak on the right side, and .minCI  is the 

intensity minimum value of the central peak, which is better illustrated in Figure 2.5. 
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2.2 Measuring the Refractive Index in Transparent 

Liquids 
 

The refractive index of liquids can be measured with high accuracy using the phase 

step technique. This method utilizes the known refractive index of a transparent 

plate. Even a small change in the refractive index of the surrounding medium where 

the plate is immersed can be detected at the observation plane through changes in 

intensity, or as discussed in the literature, through visibility as given by Equation 

(2.5). 

In [7], the phase change in diffraction due to the phase step is utilized. A parallel-

faced plate is placed at an angle  . The upper half of the beam propagates to the 

observation plane without alteration, while the other half experiences a phase 

change due to the refractive index change of the parallel-faced plate. Figure 2.4 

shows that at point P , the intensity is observed and calculated using the Fresnel 

integral. 

 
 

Figure 2. 4. Representation of a phase step in transmission mode. 

 

The phase difference between the two beams, one passing through the plate and the 

other through the surrounding medium, results in a diffraction pattern at the 

observation plane. This phase difference is described by Equation (2.6), 

2 2'
2

( sin cos ) .
h

N N


  


                                      (2.6) 
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where   is the wavelength, h  is the thickness of the plate, N  is the refractive index 

of the plate, and 'N  is the refractive index of the surrounding medium. 

Below are three methods to determine the refractive index of a transparent plate: 

1. Fitting the Theoretical Curve to Experimental Data of Phase Change versus Angle 

of Incidence at Maximum Visibility: 

   - In this method, the refractive index is obtained by fitting Equation (2.6) to the 

experimental results of phase change versus the angle of incidence at maximum 

visibility. This involves identifying the angle of incidence where the visibility of the 

diffraction fringes is at its peak. Using these data points to fit Equation (2.6), the 

refractive index of the plate can be determined by comparing the experimental data 

with the adjusted theoretical curve. 

2. Counting States with Maximum Visibility within an Angle of Incidence Range: 

   - This method involves counting the number of states with maximum visibility 

within a specific range of the angle of incidence, 1 2  . The phase change data and 

corresponding angles of incidence, along with the plate thickness, are used in 

Equation (2.6) to solve for the refractive index. This approach relies on the 

relationship between maximum fringe visibility and the angles of incidence to 

determine the refractive index of the plate. 

3. Counting States with Similar Visibility in Two Successive Angles of Incidence 

Ranges: 

   - In this method, the number of states with similar visibility in two successive 

angles of incidence ranges is counted. The visibility data are used to calculate the 

refractive index of the plate based on the changes in the angles of incidence. By 

comparing the states of visibility in adjacent intervals, the refractive index of the 

plate can be determined precisely. 
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Using these methods, the refractive index of a transparent liquid can be calculated 

when a transparent plate with a known refractive index is illuminated and installed 

in a rectangular cell containing the liquid. This equation is applied in the context of 

measuring the refractive index of a liquid using Equation (2.7). By applying this 

equation and performing calculations based on the experimental data of phase 

change and angles of incidence, the refractive index of the liquid can be determined 

accurately. Given the known refractive index of the plate, the refractive index of the 

transparent liquid is measured using Equation (2.7), adjusting for the refractive 

index of the liquid 'N . 

2 2 2 2 )
2

( sin ' sin .
h

N N


  


                               (2.7) 

Figure 2.5 shows an example of the normalized intensity due to diffraction, obtained 

when a monochromatic light beam passes through a phase step in transmission 

mode, which is the case studied here. 

 
Figure 2. 5. Normalized intensity due to the phase step that is presented in the studied case. 
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2.3 Determination of the Refractive Index Using a 

Transparent Wedge and Fresnel Fringes. 
 

In another variant of the study [8], it is demonstrated that by illuminating a 

transparent wedge with a small angle, a plate is obtained that imposes a phase 

varying linearly in y -direction. The thickness of the wedge at a distance y  from the 

vertex is given by tany  . Considering this in Equation (2.2) for normal illumination 

of the wedge, Tavassoly et. al (2.8) obtained the following expression, 

 
2

' tan
y

N N


 


   .                                                  (2.8) 

The vertex of the wedge is perpendicular to its surface, and when it is illuminated 

with a parallel monochromatic light beam, as shown in Figure 2.6, Fresnel fringes 

are formed on a screen positioned perpendicular to the direction of the beam 

propagation. These fringes are caused by the abrupt change in the refractive index 

at the lateral boundary of the wedge. 

 
Figure 2. 6. Diffracted light in a phase plate with a small angle. The diffraction is due to 

changes in the optical path. 

 

The visibility of the diffraction fringes varies periodically in the y -direction 

between zero and one, perpendicular to the vertex of the wedge. For a known or 

measured wedge angle, the refractive index of the wedge can be obtained by 
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measuring the period length using a CCD. To measure the refractive index of a 

transparent liquid or solution, the wedge is placed in a transparent rectangular cell 

containing the sample. The cell is then illuminated perpendicularly, and the visibility 

period is measured. The refractive index can be measured with a relative 

uncertainty level of 
5

10


 [8], by measuring the distance between two similar 

visibility states at the far ends and dividing this distance by the number of periods 

in between, yielding the period  . With N , the refractive index of air, they can find 

the refractive index we are looking for Equation (2.9) 

'
tan

N N


 
      .                                                    (2.9) 

 

2.4 Precise Measurement of Refractive Index and 

Light Wavelength. 
 

When a quasi-monochromatic parallel light beam illuminates the edge of a 

transparent parallel plate, diffraction fringes appear on a plane perpendicular to the 

transmitted beam's direction. This phenomenon arises due to the sudden phase 

change imposed by the abrupt refractive index transition at the plate's boundary, 

resulting in Fresnel diffraction patterns. The visibility of these fringes varies with 

the plate's thickness, refractive index, light wavelength, and angle of incidence.  

This study [9], illustrates that by systematically recording the visibility versus angle 

of incidence, they can achieve precise measurements of the plate's refractive index, 

thickness, and wavelength of light used. Furthermore, our findings underscore the 

indispensable nature of this technique in characterizing color dispersion within 

plate-shaped samples. They apply this method to effectively measure dispersion in 

fused silica plates and determine refractive indices for soda-lime glass sheets. 
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This versatile technique offers high accuracy across a broad range of parallel plate 

thicknesses. Utilizing a plate of known thickness enables precise determination of 

the light wavelength. Notably, contrast variations in the fringes are observed 

particularly for thicker plates and at angles of incidence different from zero. 

For (2 1)m   with m  being an integer, the phase step's contribution causes 

equal contrast on both sides of the fringes. The visibility changes with variations in 

the angle of incident light, which induces phase shifts. Moreover, this visibility 

decreases with distance as the plate moves away from the light source. 

The transmittances on either side of the plate edge are not equal, and the 

transmission coefficient of the plate varies significantly with changes in the angle of 

incidence, unlike the surrounding medium's transmission coefficient. To minimize 

these differences in coefficients, it is preferable to work with polarized light path 

angles of incidence close to the Brewster angle. 

 

2.5 High-Resolution Measurement of Thermal and 

Electromechanical Expansions Using Fresnel 

Diffraction 
 

The study introduces a technique utilizing a directed laser beam aimed at a two-

dimensional circular phase step, as shown in Figure 2.7, the light from a point source 

strikes a plane   located at a distance 0
z  from the source S , which contains an 

aperture A . The diffracted rays from various points on the aperture then interfere 

with another plane   at a distance z , creating the Fresnel diffraction pattern. To 

measure variations in visibility in Fresnel diffraction fringes by altering the step 

height with an external object. This technique is demonstrated by measuring 

thermal expansion in the radius of a tungsten wire and electromechanical expansion 

in a thin piezoelectric ceramic. The results show high resolution in the order of a few 

nanometers and good agreement with theory [10]. 
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Compared to conventional interferometers, this method offers several advantages 

such as intrinsic calibration based on the wavelength of light and reduced sensitivity 

to mechanical vibrations and optical surface roughness. The device can measure 

displacements of several millimeters with a resolution in the nanometer range [10]. 

 
Figure 2. 7. Fresnel diffraction from an arbitrary aperture. Light from a point source S  

strikes a plane   located at a distance 0z  from the source, which contains an aperture A . 

The diffracted rays from various points on the aperture then interfere on another planeat a 
distance z , creating the Fresnel diffraction pattern. 

 

Coherent and nearly monochromatic light with wavelength   originates from a 

point source S  and reaches a mask   with an aperture of arbitrary shape A  and 

size D . The origin of the coordinate system is established at point O  on  . The 

optical disturbance at a point ( , )P x y  on the plane  , which is parallel to and at a 

distance z  from the mask  , is considered. The Fresnel-Kirchhoff approximation 

Equation (2.10), is used to analyze the paraxial region, where the distances between 

the source S or the point P and   are finite but large compared to
2
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where  
  0

( ) 0
s

ik r r
U P A e r r


  ,  and    ( )

i

A

k
P i d de   


   

In Equation (2.10), sA  represents the amplitude of the incident spherical wave, 0
  

is the angle between the vector OS  and the positive direction of z , k  is the wave 

number, 0r  and r are the distances from the origin point to the source point and 

observation point respectively, and   is the path difference. 

As can be seen, from ( )E P , the optical disturbance is divided into three parts: a 

geometric field )(PU , a modification of the geometric field by diffraction ( )P , and 

a tilt factor )cos( 0  according to Lambert's law. In [10], detailed expressions for 

each of these parts are provided, specifically for a circular aperture of radius ca  in 

the paraxial approximation, and the Fraunhofer and geometric limits are 

established. 

The experimental setup for measuring nanometric displacements of a moving object 

(OBJ) is shown in Figure 2.8 and consists of a He-Ne laser, a beam expander (BE), a 

beam splitter (BS), a circular phase step (STEP) with two concentric mirrors (M), 

and a CCD camera to capture diffraction patterns.  

 The central mirror of the phase step was calibrated to modify its height, causing 

changes in the diffraction pattern recorded by the CCD camera. Khorshad, Hassani, 

and Tavassoly made measurements to evaluate the sensitivity of the proposed 

technique. Electromechanical expansions in piezoelectric ceramics were used, and 

the method proved sensitive to average displacements as small as 2 nm produced 

by a single thin piezoelectric ceramic. Thermal expansions in a tungsten wire with a 

diameter of only 1.5 mm were measured in the second experiment, successfully 

detecting expansions of approximately 3.2 nm in the wire's radius [10]. 
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Figure 2. 8. Experimental setup for Fresnel diffraction from a variable circular step. It 
consists of the following components: BE, a beam expander; M, a mirror; BS, a beam splitter; 

STEP, a circular phase step; OBJ, a moving object; and a CCD camera. 

 
 

2.6 Precision Measurement of Thin Film Thickness  
 

In this method, a thin film prepared in the form of a step on a substrate and 

uniformly coated with a reflective material is illuminated by a coherent parallel 

beam of monochromatic light [11]. The visibility of these fringes depends on the film 

thickness, the angle of incidence, and the wavelength of the light. By measuring the 

visibility versus the angle of incidence, the film thickness can be determined with 

high precision, typically within a few nanometers [11]. The setup is based on Figure 

2.1 to obtain the visibility of the diffraction fringes from the phase step in reflection 

mode. These fringes vary with   and with the distance from the edge of the step h . 

The visibility is defined for the three central fringes as shown in Equation (2.4). 

Figure 2.9 displays the visibility against the optical path difference divided by the 

wavelength 2    . The curve presented is universally applicable to any step 

with the same reflectance on both sides of the edge. This implies that by fitting 

experimental visibilities to this curve, it is possible to determine the step height or 

the film thickness. As the optical path difference changes by 2 , which is 

equivalent to a change in film thickness by 4  in reflection, the visibility varies 
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from zero to one. By fitting the experimentally obtained visibilities, one can derive 

the step height or film thickness. 

The straight lines that appear in the interval where the optical path difference 

divided by the wavelength is less than 0.25 or greater than 0.75 can be used to 

measure the film thickness. Since changing the angle of incidence allows for 

adjustment of the optical path difference in these regions, the plotted lines are useful 

for general film thickness measurements. In practice, visibilities are measured over 

an appropriate range of incidence angles, and the slope of the best-fit line is 

determined, which is then equated to the calculated slope using the following 

formula,  

2 1

2 1

( )
tan

2 (cos cos )

V V

h




 





                                               (2.11) 

 

If 2 cosh    for the line corresponding to the left side of Figure 2.9. 

 
Figure 2. 9. Calculated visibility of diffraction fringes from a 1D step. The visibility is 

calculated with the three central diffraction fringes formed by the diffracted light from a 1D 
step and plotted against the optical path difference divided by the wavelength, Δ/λ. 
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The straight lines have inclination angles of 2.77 degrees with respect to the 

horizontal. By substituting    
2 12 1 cos cosV V    from Equation (2.11) with 

the experimentally obtained slope sm , the step height h  is determined. 

5.54

sm
h


                                                             (2.12) 

 

In the experimental procedure, a film is coated onto a partially masked glass slide 

using vacuum evaporation. The mask is then removed to create the required step in 

the film. Both sides of the step are coated with a reflective material, such as 

aluminum, to ensure uniform reflectance. The slide is mounted on a holder that can 

rotate horizontally and is illuminated with an expanded parallel laser beam. A CCD 

camera is mounted on an arm that can rotate around the axis of the holder and is 

connected to a computer via an image capture card. 

The diameter of the laser beam used in the setup is 30 mm, and the angle of 

incidence can be varied with a precision of 1 arc minute. The CCD camera, positioned 

at a distance of 100 mm from the slide, records the diffraction pattern formed by the 

step when it is illuminated. By rotating the slide holder to change the angle of 

incidence, the CCD captures the diffraction pattern. 

The authors illustrate three typical experimental diffraction patterns formed by 

steps and the corresponding intensity profiles averaged along lines parallel to the 

edge of the step. 
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2.7 Focal length measurement based on Fresnel 

diffraction from a phase plate 
 

To measure the effective focal length (EFL) of optical imaging systems using Fresnel 

diffraction, a parallel monochromatic light beam is restricted by an aperture that 

makes it convergent through a positive lens system [14]. The beam illuminates the 

plate parallel to the observation plane, which may be positioned either before or 

after the focal point. In this case, z  represents the distance from the focal point to 

the observation plane, as shown in Figure 2.10. The angle Max  is related to the EFL 

( f ) and the aperture diameter by Equation (2.13). 

2 2
tan Max

a d

f z
                                                   (2.13) 

where d  is the diameter of the observation spot. The phase difference is expressed 

in terms of x , which is the distance from the optical axis to the edge of the plate in 

the observation plane, and z d a . 

 
 

Figure 2. 10. Fresnel diffraction from a phase plate to determine the EFL.  
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This results in Equation (2.14) which represents the phase difference in terms of the 

parameters illustrated in Figure 2.10. 

 

 

 
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              (2.14) 

This approach for accurately measuring effective focal lengths offers a 

straightforward method that avoids the need for complex elements while 

maintaining low levels of mechanical and optical noise compared to interferometric 

methods. The technique applies to a wide range of focal lengths, both positive and 

negative. Results obtained for five different lenses demonstrate significant 

consistency, validating the method's effectiveness and reliability, with accuracies 

reaching up to 0.02% [14]. 

 

2.8 Fabrication and characterization of glass 
 

The study focuses on analyzing the effects of the concentration and temperature of 

the hydrofluoric acid (HF) solution on the etching rates of glass using wet etching. A 

novel method is employed, which involves a transparent plastic chamber filled with 

a diluted HF solution and a glass plate submerged in the solution, illuminated by a 

collimated laser beam. The resulting Fresnel diffraction pattern is recorded using a 

CCD camera, and the visibility of the diffraction fringes is calculated to assess the 

etching rate. The experimental setup used for this study is illustrated in Figure 2.1. 

During the etching process, the continuous decrease in the thickness of the glass 

plate leads to periodic variations in the visibility of the diffraction fringes. It is 

observed that visibility is a periodic function of time, with an average period of 

T  450 seconds. Additionally, a correlation is found between phase changes and 

variations in the glass plate thickness, allowing for the calculation of the etching rate. 

The phase change is given by 2 , as shown in Equation (2.6), and h  varies with 
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 h N n   , where the etching rate is h T  . When the refractive index of 

the glass plate is 1.5160 at   = 633 nm and that of the solution is 1.3314, the etching 

rate when both sides of the glass are etched is 7.6 nm/s. As the concentration 

increases, the etching rate rises almost linearly. The effect of temperature on the 

etching rate is also investigated, using constant values for the refractive indices of 

glass and water at different temperatures. The experimental results show that, 

within the temperature range studied, changes in the etching rate are negligible 

[16]. 

 

2.9 Analyzing Thin Film Phase Steps Using 

Diffraction Patterns and Spectral Profile. 
 

The phase step is examined in reflection mode, as illustrated in Figure 2.1. Based on 

this theory, the calculation of the Fresnel diffraction intensity for a phase step is 

conducted, highlighting how the spectral profile of light affects this pattern. It is 

observed that the visibility of the diffraction fringes decreases as the spectral width 

increases, as demonstrated by experimental data obtained from various light 

sources, including a Helium-Neon (HeNe) laser 0
 = 632.899 nm and yellow 0

 = 

592 nm and green 0
 = 513 nm Light Emitting Diodes (LEDs), all with a step size of 

h = 194 nm. A spectral line fitting approach is proposed to calculate the diffraction 

pattern and compare it with experimental data, allowing for the extraction of 

detailed information about the light spectrum used. This method is presented as a 

useful tool for analyzing the relationship between the spectral profile of light and its 

diffraction pattern in light source characterization applications. 

The experimental setup was designed to study diffraction patterns using a one-

dimensional coherent light source. In this setup, the light first passed through a 

narrow slit, which served to produce a collimated beam. This beam was then 
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directed at a sample with phase steps, which was mounted on a goniometer for 

precise angular adjustments. 

Two distinct samples were prepared for the experiment, each featuring phase steps 

of different heights: 1
h  = 200 nm and 2

h = 1000 nm. These samples were fabricated 

by depositing a thin layer of chromium onto flat glass substrates using an 

evaporation technique. The process ensured that the phase steps were accurately 

created with the desired heights 4 . 

For capturing the diffraction patterns, a stable He-Ne 0
 = 632.899 nm laser was 

employed. The laser's monochromatic and coherent light provided a consistent and 

controlled illumination for the experiment. The diffraction patterns resulting from 

the interaction of the laser light with the phase steps on the samples were recorded 

and analyzed. 

The intensity of the diffraction patterns was measured and compared with 

theoretical predictions. By fitting the experimental data to the intensity Equation 

(2.2), the heights of the phase steps 1
h and 2

h  were accurately determined. This 

approach allowed for a precise assessment of the phase step heights based on the 

observed diffraction patterns. 

For obtaining the experimental diffraction patterns, a stable HeNe laser was utilized. 

The laser's monochromatic and coherent light was directed onto the phase steps of 

the samples. The intensity of the resulting diffraction patterns was measured and 

compared with theoretical predictions using Equation (2.2). This approach allowed 

for the accurate determination of the phase step heights. 

Subsequently, similar measurements were conducted by Hassani, Jabbari, and 

Tavassoly, using yellow and green LEDs. The yellow LED had a wavelength of 0
 = 

592 nm and a full-width at half-maximum spectral bandwidth of FWHM = 19 nm, 

while the green LED had a wavelength of 0
  = 513 nm and a spectral bandwidth of 
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FWHM = 40 nm. These additional measurements provided data on how different 

light sources with varying spectral profiles affected the diffraction patterns, 

contributing to a comprehensive analysis of the phase steps and their impact on the 

resulting diffraction phenomena. 

The diffraction patterns obtained were fitted to a Voigt spectral function to 

determine the central wavelength 0 and spectral width. In [18], a simplified Voigt 

function is defined by three parameters: the central wavelength 0 , the Gaussian 

width G
 , and the Lorentzian width L . These parameters were estimated by 

fitting the Voigt function to the obtained experimental diffraction patterns, and were 

then used to calculate the full width at half maximum ( FWHM ) of the spectrum 

based on the fit results and the following relation: 

22
0.5346 0.2166L L GFWHM         .                     (2.15) 

The results are summarized in Table 2.1, which shows the central wavelengths, 

spectral FWHM , and standard uncertainties after several measurements at 

different incidence angles. The accuracy of the measurements largely depends on 

the uniformity of the step heights along the edge of the step. 

 

Spectral results for the green LED Spectral results for the 
yellow LED 

Method 0 (nm) FWHM (nm) 0 (nm) FWHM (nm) 

Spectrometer 513±3 40±1 592±3 19±1 
Step 1 512±3 47.4±0.8 606±2 18.7±0.3 

Step 2 507±22 46±1 594±9 15±4 

  ______________________________________________________________________________________________ 

Table 2.1 



24 
 

Additionally, a systematic discrepancy was observed between the results obtained 

from diffraction measurements and those from the commercial spectrometer 

readings. This discrepancy arose due to asymmetries in the spectral profiles of the 

LED sources used. Specifically, the spectral shapes of the LED sources exhibited 

irregularities or non-uniformities that affected the accuracy of the diffraction 

pattern analysis. These spectral distortions led to deviations in the measured central 

wavelengths and FWHM values when compared to the results obtained using the 

spectrometer. The LEDs' non-ideal spectral characteristics thus introduced errors 

in the diffraction-based calculations, highlighting the impact of source quality and 

spectral purity on measurement precision. 

 

2.10 Measuring source width and transverse 

coherence length. 
 

In this study [19], Fresnel diffraction from a step in reflection mode is used to 

measure the source width and transverse coherence length. Both theoretical and 

experimental demonstrations show that these quantities can be determined by 

specifying the position of the minimum visibility in the diffraction pattern. To 

achieve this, a sodium vapor lamp with a variable slit in front of it is employed as a 

one-dimensional extended incoherent light source. Alipour and Tavassoly made 

measurements by recording a single diffraction pattern formed by the step. 

Based on Figure 2.1, a quasi-monochromatic light beam originating from an 

incoherent one-dimensional extended source is considered. This beam reaches a 

cylindrical lens and then impinges upon a phase step of height h  through another 

cylindrical lens with a focal length f . The objective is to calculate the intensity 

distribution of the light diffracted from the phase step to an arbitrary point 0PP  on 

a screen that is perpendicular to the reflected ray. 
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The light emitted by the incoherent source has a mutual intensity given by Equation 

(2.16), 

         *
01 02 0 0 01 01 02, :s s s sJ I                    (2.16) 

where  0s   and      *
0 0 0s s sI      are the complex amplitude and the 

intensity of the light from the source, respectively,  is a constant, and  is the Dirac 

delta function. The effect of propagation on the mutual intensity of an incoherent 

source can be described using the Van Cittert-Zernike theorem. For a cylindrical 

wave at a distance 0r  from the source, the amplitude can be expressed as 0rs . 

The intensity of the partially coherent light diffracted from the step is obtained using 

the convolution theorem, resulting in the equation 'i coI J I  , where   denotes 

the one-dimensional convolution. The intensity of the coherent light diffracted 

 0xIco is calculated through the Fourier transform of the amplitude of the diffracted 

coherent wave, as given by Equation (2.17). 

   
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where  'tS x is the function of the phase step and 'R  is a distance related to the 

reflected light (see Figure 2.1). The intensity  0xIco  is the square of the absolute 

value of this amplitude  0A x . 

The quasi-monochromatic light beam, emitted by a finite-width incoherent source, 

illuminates a 1D phase step through a cylindrical lens, producing a diffraction 

pattern on a screen. This setup allows for the study of how the visibility of the 

diffraction fringes varies with the width of the source, providing insights into the 

transverse coherence of the light. 
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The width of the light source affects the visibility of the diffraction patterns 

generated by a phase step. The intensity distribution of an incoherent source is 

modeled by a Gaussian function  
2 2
/2

0sI I e
 




 , where 0I  is the maximum 

intensity and   is the width of the distribution. The intensity of the partially 

coherent diffracted light 0( )nI x  is obtained by convolving the intensity of the 

coherently diffracted light  0coI x  with the intensity distribution of the source

 sI  , resulting in Equation (2.18). 

   0 0( )n co sI x I x I d




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

                          (2.18) 

with ' 2R a f   and a  as the width of the source, the derivative of the 

normalized intensity with respect to 0x  is expressed as 

 
   0

0 0

0

n
co co

dI x
I x I x

dx
     , which is used to determine the visibility of 

the diffraction fringes. The visibility decreases as the width of the source increases. 

The transverse coherence length cl , a measure of the distance over which the light 

maintains a coherent phase, is related to the visibility function (Equation (2.4) ) of 

the diffracted light: 'cl R  , where   is the wavelength of the light and   is 

the parameter describing the width of the incoherent source. As the width of the 

source increases, the visibility decreases, indicating lower transverse coherence 

because a wider source introduces more phase variations, reducing the ability for 

constructive and destructive interference. 
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Figure 2. 11. Sketch of the experimental setup. A 670 nm diode laser beam illuminates a 690 
nm high phase step at a 76° angle via two perpendicular mirrors. The diffraction pattern is 

captured by a CCD camera 213 mm from the step and sent to a PC. 

 

The experimental system consists of a He-Ne laser with a wavelength   = 632.8 nm 

used as a quasi-monochromatic light source. A 670 nm diode laser beam illuminates 

a 690 nm high phase step at a 76° angle via two perpendicular mirrors. The 

diffraction pattern is captured by a CCD camera 213 mm from the step and sent to a 

PC, as shown in Figure 2.11. The laser light passes through an adjustable slit, which 

acts as the one-dimensional incoherent source. The slit width can be varied to 

change the effective width of the source. The light then passes through a cylindrical 

lens with a focal length f = 200 mm, focusing the beam onto a phase step of height 

h . The phase step is fabricated on a glass plate with an adjustable height, 

introducing a phase difference between the two halves of the incident light beam. 
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The intensity distribution of the diffracted light is measured on a screen placed at a 

distance 'R  behind the phase step. 

A CCD camera is used to measure the intensity by recording the intensity 

distribution on the screen. The captured images are analyzed using software to 

obtain normalized intensity profiles. Measurements are taken for different slit 

widths, varying from a = 0.1 mm to a = 1 mm, to study the effect of source width on 

the visibility of the diffraction fringes. 

The experimental results corroborate the theory presented earlier, demonstrating 

that diffraction from a phase step can be used to measure both the width of the light 

source and the transverse coherence length. The decrease in fringe visibility with 

increasing source width and the calculated relationship for the transverse 

coherence length agree with theoretical values, thus validating the proposed 

methodology. 

 

2.11 Measuring Phase Shifts in Optical Fibers  
 

The study describes how the optical path difference (OPD) of light, which depends 

on the angle of incidence, the refractive index of the plate and the surrounding 

medium, and the wavelength of the light, influences the diffraction fringes. By 

plotting the intensity of the diffraction fringes against the OPD, this method can be 

used to measure phase changes by varying the angle of incidence, as shown in 

Equation (2.19), where 
jNI  is the normalized intensity of the diffraction fringes for 

  and 2   [20]. 

The authors applied this technique to measure the phase shift imposed by the 

refractive index profile of a single-mode optical fiber. The demonstrated technique 

is reliable and precise for measuring phase changes and refractive index profiles.  
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In summary, the work proposes a phase shift calibration method based on Fresnel 

diffraction to measure phase changes in various optical contexts, including the 

evaluation of optical fibers. 

 12sin 1
jNI       .                                          (2.19) 

For the experiment, a cell with dimensions of 25252 mm3 was constructed using 

two glass slides to introduce an index-matching liquid into the cell. The liquid was 

composed of 87% dimethyl sulfoxide and 13% distilled water. Inlets and outlets 

were prepared for a single-mode optical fiber with a diameter of 0.125 mm through 

the cell, as shown in Figure 2.12. The single-mode optical fiber was placed in the 

path of a monochromatic laser beam with a wavelength of  =632.8 nm, and 

positioned using a microscope objective such that the light incident on its axis was 

perpendicular. The parallel beams exiting the objective illuminated a microscope 

glass slide with dimensions of 22220.2 mm3, with the transparent plate parallel 

to the slide. The plate was mounted on a holder that could be rotated with a 

precision of 1 arc minute. The diffraction patterns of the light diffracted from the 

plate were recorded using a commercial CCD camera. 

 
 

Figure 2. 12. Sketch of the experimental setup for measuring phase shifts in optical fibers. 

 
The OPD of the light transmitted through the fiber changes, modulating the 

diffraction fringes along the edge of the plate. To measure the phase shift imposed 

by the optical fiber, diffraction patterns were recorded in the presence of the fiber, 

and then the fiber was gently removed to record a series of consecutive patterns 
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while rotating the plate. The intensity of the central dark fringe in the recorded 

diffraction patterns was measured, and the normalized intensity of the fringe was 

obtained for each pattern.  

The phase shift results from the phase difference between the light passing through 

the left and right sides of the plate's edge, which is obtained using Equation (2.19). 

The minimum distance from the plate's edge must be cos 'coy d   , which in the 

experiment is approximately 9 µm. cod  is the core fiber’s diameter and ' is the 

intersection angle between the fiber and the plate’s edge. 

The study highlights the effective use of Fresnel diffraction to calibrate and measure 

phase shifts in optical fibers. Potential sources of error were identified, such as CCD 

dark current and variations in the index-matching solution. Measures were 

implemented to mitigate these errors, such as calculating and subtracting the 

background phase. The method proved practical and cost-effective, with less 

sensitivity to environmental vibrations than other approaches. The results were 

presented with error bars for precise comparison with conventional methods. 

 

2.12 Quantitative Phase Imaging Using Scanning 

Diffractometry 
 

A simple methodology is introduced for obtaining quantitative phase images 

without interference using scanning diffractometry [21]. The setup includes a low-

coherence light beam passing through a condenser lens and focused on the 

microscopic sample, which is mounted on a computer-controlled translation stage 

to allow precise scanning of the sample. The light diffracted from the sample is 

collected by a microscope objective and directed towards a camera after passing 

through a transparent phase step (TPS) in transmission mode, placed 5 mm from 

the camera. 
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As the sample is scanned in front of the objective, the additional phase imposed by 

the section of the object in the optical axis transforms the TPS into a phase step with 

a different height. This height difference corresponds to the phase change of the 

sample and is extracted from the Fresnel diffraction patterns recorded by the 

camera, as described by Equation (2.20). The intensity distribution of the diffraction 

pattern is analyzed using Fresnel integrals, and the visibility is obtained to 

determine the phase changes and height of the sample. It is known that visibility is 

a periodic function of the TPS height. 

2
22

sin cosTPS
m i i

m

n
hn

n


  



 
       
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                        (2.20) 

where TPSn  and mn  are the refractive indices of the TPS material and the 

surrounding medium, respectively.  

In addition to the visibility, the positions of the minima and maxima in the diffraction 

pattern are analyzed. This parameter called the "extrema position parameter”   , 

is defined by Equation (2.21). 

min

max min

C

R L

x

x x
 


                                                   (2.21) 

where minx  and maxx  are the positions of the minima and maxima of the fringes, 

respectively, on the left ( minL ), right ( maxL ), and center ( minC ). The variation of   

with changes in height is approximately linear, allowing for robust phase change 

measurements. 
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Figure 2. 13. The experimental setup of quantitative phase imaging using scanning 
diffractometry. It provides a straightforward and effective method for quantitative phase 

imaging. 

 

 

In this work, a condenser lens is used to focus the light beam onto the sample Figure 

2.13. The setup includes a 40x microscope objective, a camera with a resolution of 

10241280 pixels and a pixel size of 5.2 µm, and a transparent phase step (TPS) 

fabricated by physical vapor deposition of an MgF₂ film with a thickness of 2.2 ± 0.04 

µm. 

The sample is positioned around the focal plane of the microscope objective, and the 

distance between the objective's back aperture and the TPS is approximately 30 cm. 

This ensures proper projection of the sample onto the TPS. During the scanning of 

the sample, the additional phase imposed by the section of the sample in the optical 

axis transforms the TPS into a phase step with a different height. 

The proposed method for quantitative phase imaging via diffractometry offers a 

simple and effective configuration capable of measuring phase changes in 

microscopic samples with high precision. The described techniques provide a 

powerful tool for advanced studies in biomedicine and other scientific disciplines. 
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2.13 Fresnel Diffraction of Cylindrical Wavefronts at 

Phase Plate Edges 
 

Fresnel diffraction of a cylindrical wavefront from the edge of a phase plate occurs 

when a cylindrical wave hits the edge of a transparent plate, causing a sharp phase 

change. The resulting phase difference varies continuously along the edge, and by 

using the Fresnel-Kirchhoff integral, the amplitude of the diffracted light in the 

Fresnel approximation can be determined. The phase distribution in the 

observation plane is a linearly varying function of the squared position, influenced 

by the light's wavelength, plate thickness, refractive index, and wavefront curvature. 

This creates a periodic intensity pattern along lines parallel to the edge, allowing for 

precise single-shot measurements of various optical parameters. Theoretical and 

experimental results show that the phase distribution is linear to the squared 

position and independent of the plate's position, validating the method's 

effectiveness in measuring wavefront curvature and displacement. 

In the study of Fresnel diffraction (FD) from a line source at the edge of a transparent 

plate, a monochromatic cylindrical wave, with its symmetry axis perpendicular to 

the plane, strikes a plane-parallel plate near its upper edge. The plate is positioned 

at a distance 0z  from the source point S , with the edge perpendicular to the 

symmetry axis. When the wave transmits through the plate, it undergoes a phase 

change at the plate's boundary. The phase distribution on the ' 'x y plane, 

immediately after the plate, is determined by considering rays that either propagate 

above the plate or pass through it at an incident angle , as shown in Figure 2.14. 
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Figure 2. 14. Geometry used to calculate the optical Fresnel diffraction of cylindrical and 
spherical waves from a phase plate. 

 

The phase distribution is given by: 
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            (2.22) 

For mathematical details review [15]. The normalized intensity provides a phase-

shifting technique for optical measurements, showing periodicity along lines 

parallel to the plate edge ( x -direction). As  x changes by 2 , the intensities 

repeat perpendicular to the plate edge ( y -direction). The phase  is a linear 

function of 
2

x , dependent on light wavelength, plate thickness, refractive index, 

and Radius of Wavefront Curvature (RWC).  

To evaluate the simulations presented and measure the RWC, Ghoorchi, and 

Dashtdar conducted experiments using a He-Ne laser with a wavelength of 632.8 

nm, focused on a slit by a cylindrical lens, which then struck the edge of a 7.518 mm 

thick BK7 glass plate with a refractive index of 1.5151. The plate was aligned 

normally to the optical axis, and the resulting diffraction patterns were recorded by 
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a CMOS sensor connected to a computer. The sensor, mounted on a translation stage, 

captured the diffraction pattern at a distance of about 140 mm from the focal plane. 

By analyzing the phase difference of the fringe minimums along the plate edge and 

fitting the data to theoretical equations, the RWC was determined with high 

precision. The experiment was repeated with the sensor displaced by 20.0 mm, and 

consistent RWC measurements confirmed the method's accuracy. Additional 

experiments with a spherical wavefront showed similar results, validating the 

technique for different wavefront shapes. The phase distribution along the plate 

edge remained consistent even when the plate was displaced along the optical axis, 

demonstrating that the RWC measurement is robust against changes in plate 

position. This method provides a precise and straightforward approach to 

determining RWC and can be applied to quantitative phase imaging and studying 

material inhomogeneities. 

3. Analytical description 

As shown in the previous chapter, the phase step generates a diffraction pattern that 

can be used to develop relatively simple systems for its study and to obtain various 

applications. In this section, we will see the analysis necessary for the study of this 

phenomenon with a phase step in transmission mode and compare it with the FGSI 

method, in the measurement of glucose in water. 

 

3.1 Diffraction of a phase step in transmission  
 

In the literature, it is found that in most applications where a phase step is used to 

study diffraction, the laser beam is converted into a plane wave because it simplifies 

the study. In this section, we will examine the behavior of the phase step in 

transmission mode when it is in a medium with a given refractive index, and a plane 

wave propagates in that medium and transmits over the phase step. All calculations 

were simulated using the Fresnel integral, shown in the following Equation (3.1)  
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     
1 2 2

exp expx i z s i x s ds
zi z

 

 

   
      

                           (3.1) 

 s  is the wavefront,   represents the wavelength of the local medium, and z

propagates a distance, within the region of propagation. The limits of integration 

over the parameter s  correspond to the region of illumination which, in the case of 

a Gaussian wavelet, are ± infinity [31-32]. 

Figure 3.1 depicts a one-dimensional thin transparent plate with a width PL

partially immersed in a homogeneous medium with a refractive index 1n . The thin 

plate is placed at an initial plane and has a refractive index 2n . The initial plane has 

coordinate x . A plane wave propagating in a direction parallel to the optical axis Z

illuminates a central region of a width D of the initial plane. A plane of observation, 

parallel to the initial plane, with coordinate Fx is placed at a distance Z , with 

Pz L , as depicted in Figure 3.1.  

 

Figure 3. 1. Plane wave illuminating a transparent plate. 

 

The amplitude distribution at the plane of observation with coordinate Fx  can be 

calculated by using the Fresnel diffraction integral, Equation (3.1), as follows, 
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(3.2) 

In Equation (3.2), A  is the amplitude of the illuminating plane wave. 

After integration, Equation (3.2) can be expressed as, 
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In Equation (3.3),  1

0

2n
q

z
  and  2 1

0

2
Pn n L





  .  The function  F z  is equal to

   C z i S z , where, the Fresnel cosine and sine functions are defined as, 
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In Figure 3.2 we show normalized intensity profiles obtained with  zF  in Figure 

3.2(a) and with FGSI in Figure 3.2(b), for the propagation of the setup shown in 

Figure 3.1, with 1 1.3317088n  , 2 1.5006n  ,  2.0D  cm, 1.0PL  mm, and 40z 

cm. 
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Figure 3. 2. Normalized intensity profiles due to the Fresnel diffraction from the transmission 

phase step of Figure 3.1.  The plots were obtained by using, a)  F z   and b) FGSI. 

 

Figure 3.2 demonstrates the accuracy of the calculations obtained with FGSI which, 

additionally, provides a cleaner intensity profile compared with  F z . In [33], it is 

demonstrated that calculations performed with  F z  exhibit noisy distributions as 

z decreases. This effect can be expected upon analyzing the quadratic phases in the 

integrals of Equation (2.2) which oscillate more rapidly as z  decreases. Hereafter, a 

small interval, around x = 0, along the x -axis, where the central ripples occur, will 

be referred to as the region of interest. 

In the following sections, we will examine applications of diffraction from 

transmission phase steps utilizing FGSI.  
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3.2 Optical Setup for Measuring Glucose 

Concentration in Distilled Water Using FGSI: 

Analysis and Improvements 
 

In addition to the applications mentioned in Chapter 2, recent applications [34 - 35] 

have been made for measuring glucose concentration in distilled water, which is the 

study we focus on to examine the diffraction phenomenon due to a phase step in 

transmission mode described in one dimension. We will start by describing the 

setup, referring to Figure 3.3. 

A portion of a thin transparent plate is immersed in a container that has a width    

CL = 10 cm and contains the liquid sample under inspection. The thin plate has a 

width PL  = 1.0 mm and a refractive index 2n  of approximately 1.5006. Its bottom 

edge is located at x = 0.  A coherent collimated beam with wavelength 0 = 632.8 nm, 

propagating from the left, illuminates the front surface of the container through an 

aperture of width D . The front surface of the container is placed at a distance            

AD =1.0 cm from the initial plane. The intensity distribution of the beam after being 

transmitted through the setup is recorded at a plane of observation placed at a 

distance BD = 25 cm from the back surface of the container. 

 



40 
 

 
 

Figure 3. 3. Setup used in reference [34] as described in the text. A plane wave traveling 
through an aperture of width D  in the air with a refractive index 0n  , illuminates a 

transparent, homogeneous medium with a refractive index 1n  in which a transparent thin 

plate with width PL  and refractive index  2n  is immersed. The initial and observation planes 

have coordinates x and Fx  respectively.  

 

We applied FGSI to calculate the propagation at the plane of observation to the setup 

depicted in Figure 3.3, 0n , 1n  and 2n  represent the refractive indexes of air, the 

solution under measurement, and the thin plate respectively. The illuminating 

aperture has width D . It should be noted that all distance and width parameters of 

the plane wave were found by trial and error, as they are not mentioned in the 

reference. In Figure 3.4 we provide corresponding normalized intensity profiles in 

the region of interest for an aperture width D = 2.0 cm, centered at x = 0, for glucose 

concentrations 0, 10, 20, and 30 mg/dl, For the calculations, PL =1.0 mm, CL =10.0 

cm, AD = 1.0 cm,  BD = 25.0 cm, 0r =0.4 mm and 0 = 632.8 nm. 

To relate the refractive index of the surrounding medium, 1n , with glucose 

concentration, we will follow [35] where it was found experimentally that in a range 

between 0 and 400 mg/dl, the refractive index can be written as,  
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-6
1 1.3317078 1.515x10 Cn   .                                            (3.5) 

In Equation (3.5) the first term corresponds to the refractive index of pure distilled 

water at 25⁰C and the parameter C corresponds to the concentration. Equation (3.5) 

indicates that the refractive index of the surrounding medium increases with 

concentration. 

We did not conduct experiments for the setup depicted in Figure 3.3, as the 

corresponding experimental results are available in reference [34]. Instead, we 

emphasize that the graphs shown in Figure 3.4, obtained numerically with FGSI, fit 

well with the corresponding intensity distributions provided in the reference.  

 
Figure 3. 4. Normalized intensity profiles obtained with FGSI for the setup of Figure 2.4.         

A plane wave travels through an aperture with a width of D = 2.0 cm for glucose 
concentrations 0, 10, 20, and 30 mg/dl. As the concentration increases, the minimums of the 

plots approach zero. For the calculations, PL =1.0 mm, CL =10.0 cm, AD = 1.0 cm,              

BD = 25.0 cm, 0r =0.4 mm and 0 = 632.8 nm. 

 

Figure 3.4 shows that, as the concentration increases, the minimum values of the 

plots approach zero. We have found that this excursion continues until the 

minimums reach zero and begin to increase again until reaching a maximum value 

and diminish again in a cyclic manner. Therefore, we have found that this cyclic 
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behavior causes the replication of graphs at different concentrations. For example, 

we have verified that graphs corresponding to concentrations 0.0, 418.0, and 836.0 

mg/dl are strictly equal in the region of interest. This cyclic behavior represents a 

disadvantage, especially for clinical applications. Therefore, this method requires 

the support of auxiliary techniques to distinguish between different ranges of 

concentration. 

Aside from our above finding, which represents a drawback, it is necessary to 

decrease the container width and replace the plane wave with a narrower beam to 

use the minimum possible amount of sample to permit extending the applicability 

of the method for clinical purposes. We want to demonstrate that performing these 

two changes will not deteriorate the sensitivity of the measurements. 

 

3.3 Experimental measurements 
 

The experimental setup in this section corresponds to the one depicted in Figure 3.3, 

with the illuminating plane wave replaced by a Gaussian beam obtained from a 

commercially available He-Ne laser, with a semi-width 
0r  of approximately 0.4 mm 

and a wavelength 0  of 632.8 nm. This beam maintains its narrowness up to some 

moderate distances of propagation. For example, we can use Equation (3.1) to verify 

that this beam will exhibit a semi-width of 0.43 mm after propagating a distance of 

53.0 cm, which will correspond to our setup to A BD D .  We set AD = 22.0 cm and 

BD = 31.0 cm. For the phase step, we have used a transparent thin plate with an 

optical quality λ/20. We have estimated the values for the width and refractive index 

of the thin plate as 1.02273 mm and 1.473894, respectively. To record the intensity 

profiles at the plane of observation we used a Pixelink PL-B762U CCD. The pixel 

pitch = 6.0 µm and resolution=752 x 480 (0.4 MP).  

First, the Gaussian beam was verified using the CCD camera to ensure that the 

measurements made did not have any noise unrelated to the diffraction of the phase 



43 
 

step. Figure 3.5 shows the theoretical and experimental profile for the Gaussian 

beam.  

 

Figure 3. 5. Comparison of the Gaussian beam obtained with the CCD and a simulated beam. 

Tests were also conducted to verify that temperature changes in the laboratory did 

not affect the measurements, as the system is sensitive to changes of up to 

approximately 3°C. The temperature in the laboratory ranges between 24°C and 

27°C, which ensures that the measurements for this system will be reliable. Figure 

3.6 shows a graph of 10 measurements taken every half hour. 
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Figure 3. 6. Measurements of the diffraction due to a phase step. Ten measurements were 
taken over 5 hours, showing that the laboratory temperature is stable for conducting the 

experiments. 

 
We will decrease the container width to accomplish the task mentioned at the end 

of the above section. In our experiments, the container width is 3.0 mm which 

represents a drastic reduction compared with the 10.0 cm width used in reference 

[34].  

For the measurements, the medium inside the container will have the following 

refractive indexes:  1.3317078, 1.33172295, 1.3317381, 1.33175325, 1.3317684, 

and 1.33178355, which correspond to liquid, transparent solutions of distilled 

water with glucose concentrations ranging from 0 to 50 mg/dl in steps of 10 mg/dl, 

respectively, according with Equation (3.5). Figure 3.7 shows normalized intensity 

profiles, at the plane of observation, due to the illuminating Gaussian beam 

described above, transmitted through the optical setup. The plots correspond to the 

experimental measurements and their corresponding ones obtained with FGSI [37]. 

 
Figure 3. 7. Experimental and theoretical normalized intensity profiles at the observation 
plane. The illuminating beam is a Gaussian beam. Plots a)-f) correspond to the refractive 

indexes in the order listed in the text. 
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At the initial plane, the illuminating Gaussian beam had a slight tilt of 0.04°. The 

positions of the bottom edge correspond to x = 99, 105, 110, 117, 134, and 143 µm 

corresponding to Figures 3.7 a) – 3.7 f) respectively.  

In practice, through simulation of the behavior of the phase step phenomenon, it was 

found that a Hermite-Gaussian (1,0) beam can be obtained by meeting certain 

distances. The Hermite-Gaussian beam 1,0HG  is characterized by its distinct 

intensity distribution, which has a single node along one of the transverse 

dimensions. This beam can be mathematically described by the product of a 

Gaussian function and a Hermite polynomial, resulting in an intensity profile with a 

central peak flanked by symmetric lobes. Such beams are often used in optical 

trapping and manipulation due to their unique focusing properties. 

Since we do not have available this illuminating source, we have devised an 

alternative approach that closely resembles the desired beam. The approach 

consists of illuminating with a Gaussian beam a phase step made of a glass thin plate 

with surfaces of low optical quality. The width of the thin plate is approximately one-

millimeter and its bottom edge is placed approximately at x =0 so that the upper 

half of the Gaussian illuminating beam is transmitted through the thin plate while 

the bottom half propagates freely. We can describe our approach with the help of 

the following Figure 3.3 as follows. Replacing the illuminating plane wave with two 

different sources, a Gaussian beam, and a Hermite–Gauss (1, 0) mode beam, denoted 

as 1,0HG . This beam may find applications where optical traps are used [36]. We 

obtained this beam using the Gaussian beam and an optical diffracting element. The 

amplitude of the 1,0HG beam is given as, 

 
2 2

1,0 1 1 2
0 0

, 2 exp
x x y

HG x y C H
r r

  
  
 

   


  .                              (3.6) 

 
In Equation (3.6), 1C is a constant and 1H  is the first-order Hermite polynomial. 
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Figure 3. 8. Wavelets propagating through the low optical quality thin plate (LOQTP). The 
wavelet depicted near the bottom edge undergoes two total internal reflections; therefore, it 
does not reach the observation plane. The irregularities of the surfaces of the thin plate have 

been exaggerated for illustrative purposes. 

 

In Figure 3.8, the illuminating beam is represented as a superposition of propagating 

wavelets, as suggested by FGSI. The figure shows six of these wavelets. The wavelets 

transmitted through the thin plate will undergo a small amount of tilt due to the 

irregularities of the walls, as depicted. In the figure, we have exaggerated the 

wavelet tilts and the irregular shape of the plate walls for illustrative purposes. Due 

to the random profile of the plate walls, it is possible to choose a zone where the 

wavelets that propagate near the bottom edge undergo two total internal 

reflections, therefore not reaching the observation plane. As a result, a central region 

of the transmitted beam resembles a 1,0HG  beam. 

 In Figure 3.9, we show gray level contours of the normalized intensity of the beam 

obtained in the manner described, propagated up to a plane of observation as 

recorded by the CCD, confirming our approach. 
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Figure 3. 9. Gray level contours of the normalized intensity distribution of a Hermite–Gauss 

(1, 0) mode beam obtained as described in the text, recorded by the CCD. 

 
In Figure 3.10, we show the normalized intensity distribution that corresponds 

to a cut along y = 0 of Figure 3.9. It will be convenient now to compare the analytical 

equation of the 1,0HG beam, propagated up to the plane of observation obtained 

with FGSI with the experimental one, obtained with the approach described above.  

Figure 3.10 shows the corresponding one-dimensional normalized intensity 

profiles of both beams.  

 

 



48 
 

  
 
 

Figure 3. 10. Normalized intensity profile, at a plane of observation, of a cut along  y = 0 of 

Figure 3.9. For comparative purposes, the normalized intensity profile of a 1,0HG beam 

obtained analytically with FGSI is also shown. 

 

Figure 3.10 shows the close resemblance of the beam, obtained with the approach 

described above, and the 1,0HG beam. At x =0, its intensity distribution, for practical 

purposes, is zero. This characteristic is typical for this beam. Additionally, at 

approximately x = ±0.35 mm, the beam exhibits maximum intensity. For our 

following experiments, we will investigate the effect of illuminating the phase step 

with this beam for two cases: when the thin plate edge is at a x =0 and x =0.35 mm. 

To perform the experiments, the illuminating 1,0HG  beam obtained with the 

approach described above will illuminate the phase step as illustrated in the 

following Figure 3.11. 
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Figure 3. 11.  1,0HG   beam obtained with the approach described in the text to illuminate the 

phase step (PS). LOQTP is a low optical quality thin plate. 

 

In Figure 3.11, the initial plane is placed at a short distance, 0D , from the LOPQT 

to separate it to fit within the Fresnel region, PL =1.02261 mm, AD =1.0 cm, BD

=25.0 cm. In addition, we confirmed that the 1,0HG beam propagates appropriately 

within the zone between the initial and observation planes as set in our 

experiments. 

The following Figures 3.12 (a) and 3.12 (b), show the corresponding 

experimental and theoretical normalized intensity profiles for two different 

positions of the thin plate edge, x = 0 and 0.35 mm. To better appreciate the effect, 

the figures include a gray bar which represents the location of the phase step for 

each case. 
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Figure 3. 12. Experimental and theoretical normalized intensity profiles at the observation 

plane for the illuminating obtained 1,0HG  beam. PL =1.02261 mm, AD = 1.0 cm, BD =25.0 

cm. The gray bar represents the location of the bottom edge. 

 

By comparing the profiles of Figure 3.12 with Figure 3.10, one can observe that 

the thin plate has altered the distribution of the illuminating 1,0HG  beam for the 

two positions of the plate edge.  

In addition to our findings described above, the accuracy of our theoretical 

results allows us to confirm the reliability of FGSI for calculating the overall 

diffraction that occurs through the optical setups analyzed. In the following section, 

we will take advantage of the reliability of FGSI to investigate more exhaustively 

appropriate conditions that will permit us to assess, analytically, the performance 

of the Fresnel diffraction from a phase step. 
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4. Numerical evaluation of the performance of 

the diffraction from a transmission phase step 

using FGSI. 

From the work carried out and the results obtained, mentioned in the previous 

chapter, it was possible to discover that the phase step has an operating range, 

where a maximum sensitivity or zero sensitivity can be obtained. That is to say, it 

may be that we cannot obtain changes in the system depending on the refractive 

indexes and the thickness of the plate. 

 

4.1 Normalized Sensitivity in Fresnel Diffraction 

Systems 
 

Let us denote the normalized sensitivity of the system by the symbol eS . To 

understand how eS  behaves, we will explore its dependence on the optical 

properties of the system. Specifically, we aim to demonstrate that eS  is 

characterized by a sinusoidal variation, which is governed by half the optical path 

difference (OPD) between adjacent wavelets. These wavelets propagate in a 

direction that is parallel to the bottom edge of the setup, traversing both the thin 

plate and the surrounding medium. 

The optical path difference arises due to the difference in the refractive indices of 

the thin plate and the surrounding medium. As the wavelets travel through these 

materials, the phase shifts they experience lead to constructive and destructive 

interference patterns. These interference patterns are what ultimately determine 

the system's sensitivity. 

By analyzing the propagation of these wavelets, we find that the normalized 

sensitivity eS  can be mathematically described as a sinusoidal function of half the 

OPD. This relationship highlights the periodic nature of the sensitivity to changes in 
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the optical path difference, which is crucial for understanding and optimizing the 

system's performance. 

Analytically, this can be expressed as follows: 

 
2

1
sin

2
eS OPD

  
   

  
.                                                   (4.1) 

In Equation (4.1),  

 2 1
0

2
POPD n n L




  .                                                       (4.2) 

In Equation (4.2), 1n  and 2n correspond to refractive indexes of the surrounding 

medium and the thin plate respectively. 

Equation (4.1) indicates that the sensitivity is completely lost when OPD is a 

multiple of 2𝜋. In contrast, the maximum sensitivity occurs for an odd multiple of 𝜋.  

At this stage, it is important to analyze the influence of the parameter eS  on the 

measurements obtained from the setup depicted in Figure 3.11, particularly in 

response to changes in the refractive index of the surrounding medium. This 

analysis will provide deeper insights into how variations in eS  affect the accuracy 

and sensitivity of the system in detecting different glucose concentrations. 

To illustrate this, Figure 4.1 presents a series of plots showing the normalized 

intensity profiles at the observation plane for four distinct glucose concentrations. 

These plots are essential for understanding the system's performance under varying 

conditions. 

The figure includes graphs corresponding to the two extreme cases of sensitivity: 

the minimum sensitivity, when 0eS   , and the maximum sensitivity, when 1eS  . 

for different glucose concentrations 0, 10, 20, and 30 mg/dl for two different 

sensitivity values, 0eS   and 1eS   in a) and b) respectively.  
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 By comparing these extreme cases, we can observe how the intensity profiles 

change with the refractive index variations caused by different glucose 

concentrations in the surrounding medium. This comparison allows us to evaluate 

the system’s response and reliability in detecting changes in glucose concentration. 

Through this analysis, we aim to demonstrate the critical role of the parameter eS  

in the overall measurement process and highlight the system’s capability to 

distinguish between different concentrations effectively. This understanding is 

crucial for optimizing the setup for precise and reliable measurements. 

 

 
 

Figure 4. 1. Normalized intensity profiles for an illuminating Gaussian beam at different 
glucose concentrations and different sensitivity values. The normalized intensity profiles 

were performed for different glucose concentrations 0, 10, 20, and 30 mg/dl for two different 

sensitivity values,  eS = 0 and  eS =1 in a) and b) respectively. The peaks at   x = - 0.35 

decrease as glucose concentration increases. 

 

Figure 4.1 (a) confirms that the changes in the recorded intensity profiles are 

negligible when 0eS  .  
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It is important to observe that the profiles shown in Figure 4.1 differ significantly 

from those presented in Figure 3.7. This discrepancy arises from several factors. 

Firstly, in Figure 3.7, the sensitivity parameter eS  was set to an arbitrary value 

within the range of 0 to 1. This variability in sensitivity directly affects the intensity 

profiles, leading to the differences observed. 

Additionally, another contributing factor is the slight tilt of the illuminating Gaussian 

beam used in the experiments depicted in Figure 3.7. This tilt introduces variations 

in the way the light interacts with the phase step and the surrounding medium, 

further altering the resulting intensity profiles. 

Moreover, the positions of the bottom edge of the phase step differ between the two 

sets of figures. In Figure 3.7, the bottom edge is positioned at various locations, 

which impacts the diffraction pattern and the subsequent intensity profiles 

recorded at the observation plane. 

These combined factors – the arbitrary sensitivity value, the tilt of the illuminating 

beam, and the varying positions of the bottom edge – contribute to the noticeable 

differences between the profiles in Figures 3.7 and 4.1. Understanding these 

variations is crucial for accurately interpreting the experimental results and for 

optimizing the setup to achieve consistent and reliable measurements. 

To substantiate the aforementioned statement, we will closely examine the 

experimental setup illustrated in Figure 3.1. In this setup, 
1n represents the 

refractive index of the surrounding medium, while 2n  denotes the refractive index 

of the thin plate. Our objective is to analyze how slight changes in 1n  affect the 

overall system, particularly focusing on the parameter eS  which represents the 

normalized sensitivity of the system. 

Initially, we will use Equation (3.5) to determine appropriate conditions that allow 

us to set 1n  to a specific initial value. It is important to note that the actual initial 
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value of 
1n is not crucial for this demonstration. The key point is to establish a 

baseline from which we can introduce controlled variations.  

Once the initial value of 
1n is established, we will proceed by introducing small, 

incremental changes to
1n . During this process, all other parameters and conditions 

of the system will be held constant to isolate the impact of the changes in
1n . By doing 

so, we can accurately measure and calculate the resultant variations in the 

parameter eS .  

These induced variations in eS  due to the changes in 
1n will be quantified and 

analyzed. The goal is to demonstrate the sensitivity of the system to changes in the 

refractive index of the surrounding medium.  

The corresponding calculation can be written as, 

 
1 0

sine
P

dS
L OPD

dn




    .                                               (4.3) 

 

Equation (4.3) shows that the rate of change of eS with respect to 
1n  is proportional 

to PL . 

To confirm the aforementioned result, Figure 4.2 shows plots obtained using FGSI, 

for four different glucose concentrations and two different plate widths, 

approximately 1.0 and 2.0 mm. The illuminating beam is the same Gaussian beam 

described in the previous sections. The glucose concentrations range from 0 to 30 

mg/dl in increments of 10 mg/dl. 

In both plots, it is observed that the peak heights located approximately at -0.3 mm 

decrease as the glucose concentration increases. This trend is due to the interaction 

of the light beam with the glucose dissolved in the medium, which alters the 

observed diffraction pattern. 
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In plot a), corresponding to a plate width of approximately 1.0 mm, a clear decrease 

in the peak heights is noticeable as the concentration increases from 0 to 30 mg/dl. 

This behavior is repeated in plot b), which represents a plate with a width of 

approximately 2.0 mm, showing a similar trend but with differences in the 

amplitude of the peaks due to the greater thickness of the plate. 

These observations are crucial for understanding how variations in plate width and 

glucose concentration affect the normalized intensity profile at the observation 

plane. The results obtained demonstrate the system's sensitivity to these changes, 

highlighting its potential application in detecting and quantifying glucose 

concentrations. The consistency of the results across different plate width 

configurations reinforces the validity of the method used and its capability to 

provide precise and reliable measurements. 

 
 

Figure 4. 2. Normalized intensity profiles calculated with FGSI. Normalized intensity profiles 
were calculated with FGSI due to an illuminating Gaussian beam for two thin plate widths of 

approximately 1.0 and 2.0 mm a) and b) respectively. 

 

Figure 4.2 illustrates that the intensity profile corresponding to the thicker plate 

experiences greater variations due to changes in 1n , the refractive index of the 

surrounding medium. This observation is consistent with our expectations. The 



57 
 

thicker plate results in a longer interaction path for the illuminating beam as it 

passes through the interface between the plate and the surrounding medium. 

Consequently, even small changes in the refractive index 
1n  lead to more 

pronounced variations in the intensity profile. 

This characteristic highlights a fundamental principle: under equal sensitivity 

conditions, the extent of variation in the intensity profile is directly proportional to 

the length of the interaction path of the illuminating beam. Therefore, when the 

interaction path is longer, as is the case with the thicker plate, the system becomes 

more sensitive to changes in the refractive index. This increased sensitivity can be 

advantageous for applications requiring precise detection of small refractive index 

changes in the surrounding medium. 

By carefully analyzing the intensity profiles for different plate thicknesses, we can 

better understand the influence of the interaction path length on the system's 

sensitivity. This understanding allows us to optimize the setup for specific 

applications, ensuring that the system can reliably detect and quantify changes in 

the refractive index with high accuracy. 

 

4.2 Impact of system sensitivity for various beams 
 

To confirm the validity of Equation (4.1), we will perform theoretical calculations 

using FGSI for four different illuminating sources with distinct spatial profiles. The 

profiles of the illuminating sources will be as follows: Gaussian, Hermite-Gaussian 

1,0HG , 3,0HG , and Airy. 

By employing these different illuminating sources in our theoretical calculations, we 

aim to thoroughly test the robustness and general applicability of Equation (4.1). 

Each beam profile will interact differently with the phase step and the surrounding 

medium, providing a comprehensive evaluation of the equation's validity under 

varying conditions. This approach will help ensure that the findings are not limited 
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to a specific type of beam but are applicable across a range of commonly used optical 

beam profiles. A brief description of the 3,0HG  and the Airy beams follows. 

The amplitude distribution for the 3,0HG  beam is given as, 

 
2

3,0 3 3 2
0 0

2 exp
x x

HG x C H
r r

  
  
 

   

  .                                    (4.4) 

In Equation (4.4), 3C is a constant and 3H  is the third-order Hermite polynomial. 

The Airy beam is notable for its non-diffracting nature and its ability to maintain its 

shape over a long distance. The intensity profile of an Airy beam exhibits a main 

peak accompanied by a series of diminishing side lobes. This beam is described by 

the Airy function, which gives it a characteristic curved trajectory. Airy beams are of 

particular interest in applications requiring long-range beam propagation and 

precise control of the beam trajectory. 

The corresponding amplitude distribution of an Airy beam can be written as 

 BxAi / , where B  represents a constant scaling factor and Ai  represents the Airy 

function. The Airy function is a solution to the following second-order linear 

differential equation [38]: 
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  . 

The Airy function is known for its distinctive properties, including its non-diffracting 

behavior and ability to form self-healing beams. This function is central to the 

description of Airy beams, which exhibit a main intensity peak followed by a series 

of diminishing side lobes, providing a curved trajectory of the beam as it propagates. 
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These properties make Airy beams particularly useful in applications requiring 

precise beam control over long distances.  

By incorporating the Airy beam profile into our theoretical calculations, we aim to 

validate Equation (4.2) under conditions where the beam exhibits unique 

propagation characteristics. The Airy function is available in SymPy, a free Python 

library for symbolic mathematics [39]. 

To calculate the propagation of the Airy beam, we use the Fresnel diffraction 

integral, Equation (2.2), and with the aid of the Fourier transform of Equation (4.5), 

one obtains a closed-form expression that permits writing the amplitude 

distribution of the propagated Airy beam at an observation plane with the 

coordinate Fx , as, 
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In reference [30] a detailed description of the derivation of Equation (4.6) is 

provided. 

Equation (4.6) explicitly demonstrates that the Fresnel diffraction integral has the 

remarkable property of preserving the unique characteristics of Airy beams. 

Specifically, it maintains the intensity distributions of these beams invariant during 

propagation. This preservation means that an Airy beam, when subjected to Fresnel 

diffraction, will retain its distinct intensity profile, which is a fundamental property 

that distinguishes Airy beams from other types of beams. 

Furthermore, Equation (4.6) not only conserves the intensity distribution but also 

imparts the correct phase information necessary for the propagation of Airy beams. 

This phase information is crucial as it reflects the accelerating behavior that is a 
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hallmark of Airy beams. Unlike other beams that typically follow straight paths, Airy 

beams exhibit a parabolic trajectory, giving them the unique ability to accelerate 

during propagation. 

It is important to note that Equation (4.6) was derived using a different analytical 

method in a previous study [41]. In that study, the preservation and propagation 

characteristics of Airy beams were analyzed without directly referencing the 

Fresnel diffraction integral. This independent derivation underscores the 

robustness and fundamental nature of the results encapsulated in Equation (3.2). 

Moreover, the behavior of Equation (4.6) has been extensively studied in the context 

of truncated Airy beams. These experimental studies, as reported in [42], provide 

valuable insights into how truncated Airy beams—those with a finite extent—

propagate and maintain their unique properties. The experiments confirm that even 

when an Airy beam is truncated, the core properties dictated by Equation (4.6) still 

hold to a significant extent. These studies are critical as they bridge the gap between 

theoretical predictions and practical implementations, demonstrating that the 

theoretical underpinnings are applicable in real-world scenarios. 

In summary, Equation (4.6) is a powerful analytical tool that highlights the 

invariance of Airy beam intensity distributions under Fresnel diffraction. It also 

correctly predicts the phase evolution that gives rise to their accelerating behavior. 

This equation, corroborated by both independent analytical methods and 

experimental studies, provides a comprehensive understanding of the propagation 

dynamics of Airy beams, making it a cornerstone in the study of beam optics. 

The following Figures 4.3 to 4.6 show calculations performed with FGSI of the 

Fresnel diffraction from a transmission phase step for the four illuminating sources 

listed above. For these simulations, we set the width of the phase step plate, denoted

PL , to be approximately 1.0 mm. This adjustment was crucial to ensure that the 

optical path difference (OPD) values were correctly aligned with the conditions 

necessary to achieve two different sensitivity settings, eS  = 0 and eS  = 1. 
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By carefully tuning these parameters, we attempt to accurately simulate diffraction 

effects and capture the phase step behavior under different lighting conditions. The 

figures clearly show how each type of beam interacts with the phase step, revealing 

the nuances of the diffraction patterns and providing insight into the optical 

phenomena at play. 

These calculations serve as a comprehensive analysis and provide valuable data that 

can be used to better understand the effects of transmission phase steps in various 

optical systems. 

The following Figure 4.3, corresponds to the illuminating Gaussian beam for three 

positions of the bottom edge and both sensitivities. The upper three plots 

correspond to an OPD that fits maximum sensitivity conditions; the three lower 

plots correspond to minimum sensitivity. The positions of the bottom edge 

correspond to x  = - 0.3, 0.0 and 0.3 mm, AD = 1.0 cm, BD = 25.0 cm,  
0r = 0.4 mm and 

0 = 632.8 nm. PL   1.0 mm and adjusted to fit with the required OPD values. The 

gray bar indicates the position of the thin plate. 
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Figure 4. 3. Fresnel diffraction from a transmission phase step surrounded by pure distilled 
water and illuminated by a Gaussian beam. The upper three plots, a), b) and c), correspond 

to an OPD that fits maximum sensitivity conditions; the three lower plots, d), e) and f), 
correspond to minimum sensitivity. The positions of the bottom edge correspond to x  = - 0.3, 

0.0 and 0.3 mm, 
AD = 1.0 cm, 

BD = 25.0 cm,    0r = 0.4 mm and 0 = 632.8 nm. PL   1.0 mm 

and adjusted to fit with the required OPD values. The gray bar indicates the position of the 
thin plate. 

 

In Figure 4.4 we show plots corresponding to the illuminating 1,0HG  beam under 

the same conditions as for the Gaussian beam. 
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Figure 4. 4. Normalized intensity profiles due to the illuminating 0,1HG  beam, recorded under 

the same conditions as those in Figure 4.3. Maximum sensitivity conditions for a), b) and c), 
and minimum sensitivity conditions for d), e) and f). 

 
 

Figure 4. 5. Normalized intensity profiles of an illuminating  3,0HG  beam. The beam was 

recorded under analogous conditions as those in Figure 4.4. Maximum sensitivity conditions 
for a), b) and c), and minimum sensitivity conditions for d), e) and f). The positions of the 

bottom edge correspond to x = 0.0, 0.17, and 0.6 mm. 
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In Figure 4.5 we show plots for an illuminating 3,0HG beam, analogous to the above 

cases, the positions of the bottom edge correspond to 𝑥 = 0.0, 0.17, and 0.6 mm. 

In Figure 4.6 we show the plots corresponding to the illuminating Airy beam, The 

positions of the bottom edge correspond to x = - 0.40, - 0.23, and - 0.10 cm. 

 
 

Figure 4. 6. Normalized intensity profiles due to the illuminating Airy beam. It was recorded 
under analogous conditions as those in Figure 4.5. Maximum sensitivity conditions for a),b) 

and c) , and minimum sensitivity conditions for d), e) and f). The positions of the bottom edge 
correspond to x = - 0.40, - 0.23 and - 0.10 cm. 

 

Figures 4.3 to 4.6 illustrate the intensity profiles observed at the detection plane 

under conditions of minimum sensitivity eS =0. These results highlight an important 

characteristic of the optical system: the intensity profiles remain undistorted even 

after passing through the transmission phase step. This implies that the phase step 

does not alter the intensity distribution of the beams when the sensitivity is set to 

its minimum value. 
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Additionally, the observed intensity profiles at the plane of observation are identical 

to those of the illuminating beams at the initial plane. This consistency between the 

initial and observed profiles confirms that the phase step, under minimum 

sensitivity conditions, does not introduce any significant diffraction effects or 

distortions. As a result, the integrity of the original beam profiles is maintained 

throughout the propagation process. 

These findings are crucial as they validate the system's performance under low-

sensitivity settings. By ensuring that the phase step does not affect the beam 

profiles, we can confidently use this setup for applications where maintaining the 

original beam characteristics is essential. The results demonstrate the robustness of 

the system in preserving the quality of the illuminating beams, which is a vital aspect 

for various optical experiments and applications. 

Based on the plots presented in Figures 4.3 to 4.6, it is evident that the system's 

sensitivity is entirely lost when the Optical Path Difference (OPD) is a multiple of 

2 , as anticipated earlier. In such instances, the intensity profile observed at the 

plane of observation remains unchanged regardless of the thin plate's position. 

Conversely, at points of maximum sensitivity (corresponding to odd multiples of     

 ), the intensity profile does vary. This suggests that, from a physical standpoint, 

the primary interaction of light with the phase step predominantly occurs at the 

interface between adjacent wavefronts. 

Additionally, Figures 4.6 a) and 4.6 b) demonstrate that the non-diffracting nature 

of the Airy beam remains dominant even when interacting with the phase step, 

including under conditions of highest sensitivity. When the edge of the thin plate 

aligns with a position where the Airy beam exhibits zero intensity, the entire 

intensity profile remains essentially unchanged for practical purposes. This unique 

behavior is not observed with other types of beams that also show zero intensity at 

specific positions. This distinction is confirmed through the analysis of Figures 4.3 

and 4.4, where other beam types do not maintain an unaltered profile under similar 

conditions. 
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Furthermore, Figures 4.6 a) and 4.6 b) provide a revealing insight into the behavior 

of the Airy beam in the context of its interaction with the phase step. These figures 

clearly illustrate that the Airy beam's non-diffracting property remains 

predominant, even under conditions where the system is at its highest sensitivity. 

Specifically, when the edge of the thin plate is positioned at a point where the Airy 

beam's intensity is zero, the entire intensity profile remains virtually unchanged. 

This implies that, for all practical purposes, the presence of the phase step does not 

significantly alter the overall intensity distribution of the Airy beam. 

This unique characteristic of the Airy beam contrasts sharply with the behavior of 

other types of beams. For these other beams, which also exhibit positions of zero 

intensity, the interaction with the phase step results in noticeable changes in their 

intensity profiles. This difference is substantiated by the data presented in Figures 

4.4 and 4.5. These figures reveal that other beam types do not maintain a stable 

intensity profile when the edge of the thin plate coincides with a zero-intensity 

position. Thus, while the Airy beam's profile remains remarkably stable and 

unaffected by the phase step under certain conditions, other beams demonstrate a 

clear sensitivity to similar interactions, leading to altered intensity distributions. 

Based on our findings, we can propose a novel scanning device designed to function 

as a thickness profilometer along the edge of a transparent plate. This device would 

utilize the setup illustrated in Figure 3.3, which is illuminated by a Gaussian beam. 

To achieve optimal sensitivity, we can finely adjust it to a value between 0 and 1. 

This adjustment can be easily accomplished by employing a liquid solution with a 

suitable glucose concentration as the surrounding medium. This will ensure that the 

height of one of the lobes is set to approximately half of its maximum value. 

Figure 4.7 presents the intensity plots at the observation plane, obtained using the 

FGSI technique for four different thicknesses of the thin plate along its edge under 

these specified conditions. These plots demonstrate a clear relationship between 

the thickness of the plate and the resulting peak heights in the intensity profile. 

Specifically, the peaks shown in Figure 4.7 correspond to a plate with an initial 
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thickness of 1.0 mm, with subsequent increases in thickness in steps of 100 nm. As 

the thickness of the plate increases, there is a corresponding increase in the heights 

of the peaks. 

This proposed scanning device offers a precise and reliable method for measuring 

the thickness of a transparent plate along its edge, leveraging the sensitivity and 

accuracy of the Gaussian beam setup and the tailored glucose concentration in the 

surrounding medium. The ability to detect incremental changes in thickness with 

high resolution makes this device an invaluable tool for applications requiring 

meticulous thickness profiling. 

 
 

Figure 4. 7. Normalized intensity profiles for four hypothetical thicknesses of 1.0 mm + 0.0, 
100.0, 200.0, and 300.0 nm.  Along the bottom edge of a thin plate. As the width of the plate 

increases, the height of the left peaks increases. 

 

 

The numerical results depicted in Figure 4.7 must be validated through rigorous 

experimental procedures to ensure their accuracy and reliability. This validation 

step is crucial for confirming the theoretical predictions and numerical simulations 

presented in this study. Before concluding this report, it is important to highlight 
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that the findings discussed herein are expected to be equally applicable to the case 

of reflection phase steps, as the underlying equations governing these phenomena 

are analogous to those for transmission phase steps. 

To broaden the understanding of the physical interaction between the illuminating 

beam and the phase step, it is pertinent to mention recent advancements in the field. 

Specifically, it has been suggested that the diffracted wave generated at the 

discontinuity -precisely at the interface- can be described using a modulated 

probability function. This approach draws parallels with methods used in quantum 

mechanics, where such functions are employed to extract statistical information 

about particles. By applying this framework to the study of diffracted waves, 

researchers can gain valuable insights into the statistical behavior of the interacting 

photons. This perspective not only enriches our comprehension of the interaction 

dynamics but also opens up new avenues for exploring the quantum-like properties 

of light in classical optical systems. By considering the diffracted wave as a 

modulated probability function, we can better understand how light interacts with 

discontinuities at a fundamental level. This approach enables the extraction of 

detailed statistical information about the photons involved in the interaction, 

potentially leading to novel applications and techniques in both classical and 

quantum optics. 

In summary, while the numerical results presented in this report provide a robust 

theoretical foundation, experimental validation is essential to confirm their validity. 

Additionally, the analogy with quantum mechanics offers a fascinating framework 

for further exploring the interaction of light with phase steps, providing a deeper 

understanding of the underlying physics and expanding the potential applications 

of this research. 
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5. Conclusions 

We have developed and presented a straightforward experimental procedure to 

evaluate optical diffractometry using Fresnel diffraction from a transmission phase 

step. This procedure involves partially immersing a thin, high-optical-quality plate 

into differently calibrated glucose solutions, allowing precise variation in the 

refractive index of the surrounding medium. By employing this method, we can 

systematically control and observe the impact of changing refractive indices on the 

diffraction patterns produced. 

Our experimental results have been meticulously compared with numerical 

calculations obtained using the Fresnel Gaussian Shape Invariant (FGSI) method. 

This comparison has demonstrated the accuracy and reliability of our procedure in 

numerically calculating the propagation of an illuminating field through optical 

setups containing phase steps. The precision of the FGSI method has been crucial in 

these calculations, ensuring that the results are both dependable and reproducible. 

A key finding from our study is the behavior of the system's sensitivity related to the 

optical path difference between neighboring wavelets propagating parallel to the 

edge through the thin plate and the surrounding medium. Specifically, we have 

shown that the system completely loses its sensitivity when this optical path 

difference is a multiple of 2 . Conversely, the system exhibits maximum sensitivity 

when the optical path difference is an odd multiple of  . This sensitivity behavior 

is independent of the type of illumination used, underscoring the robustness of our 

findings. 

Additionally, we have observed that the intensity variations at the plane of 

observation increase with the path length of the interaction of the illuminating beam 

at the interface of the phase step. This relationship highlights the importance of the 

interaction length in determining the intensity patterns observed in the diffraction 

setup. 
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To further substantiate our findings, we performed additional calculations for four 

different illuminating beams: Airy, Gaussian, and Hermite–Gaussian beams in the (1, 

0) and (3, 0) modes. Our results indicated that the non-diffracting property of the 

Airy beam remained dominant even when interacting with the phase step. 

Specifically, when the edge of the thin plate coincided with one of the positions of 

zero intensity of the Airy beam, the entire profile of the beam remained unaltered, 

even under conditions of maximum sensitivity. 

Based on the insights gained from our study, we have proposed a design for a high-

resolution thickness profilometer. This device leverages the principles observed in 

our experiments to measure the thickness along the edge of a thin plate with high 

precision. The proposed profilometer holds significant potential for applications 

requiring detailed thickness measurements, particularly in fields such as metrology 

and material science. 

6. Annex.  Wave-front propagation with FGSI 
 

FGSI is a numerical method utilized to calculate the diffraction of fields as they 

propagate through optical setups. This method represents the initial field as a 

superposition of Gaussian wavelets, which allows for a versatile and detailed 

analysis of various optical phenomena. The initial field can, in principle, be any real 

or complex field, making FGSI a highly adaptable tool for different types of optical 

studies. 

Typically, the representation of the one-dimensional field at the initial plane 

involves between 200 and 1000 Gaussian wavelets. Each Gaussian wavelet's 

amplitude corresponds to the local complex amplitude of the field, and these 

wavelets are uniformly distributed across the initial plane. This uniform distribution 

and the correspondence of wavelet amplitudes to the local field values simplify the 

programming of the FGSI method. However, it is important to note that other 
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configurations and distributions are also possible, depending on the specific 

requirements of the study. 

A brief description of the FGSI method is as follows: 

1. Initialization: The initial optical field is represented by a superposition of 

Gaussian wavelets. Each wavelet has a specific amplitude and phase corresponding 

to the local complex amplitude of the field at the initial plane. 

2. Wavelet Distribution: The Gaussian wavelets are uniformly distributed across the 

initial plane. This uniform distribution helps in simplifying the numerical 

implementation of the method. 

3. Propagation: The propagation of each Gaussian wavelet through the optical setup 

is calculated using the appropriate diffraction integrals. This step involves 

computing the contribution of each wavelet to the field at subsequent planes within 

the optical setup. 

4. Superposition: The contributions of all the Gaussian wavelets are summed to 

obtain the total field at each plane of interest. This superposition principle allows 

for the reconstruction of the field as it evolves through the optical setup. 

5. Analysis: The resulting field is analyzed to extract relevant information, such as 

intensity profiles, phase distributions, and diffraction patterns. This analysis 

provides insights into the behavior of the optical system under study. 

By using 1000 Gaussian wavelets, we ensure a detailed and accurate representation 

of the initial field, leading to precise calculations of the diffraction effects. The FGSI 

method's flexibility and adaptability make it a powerful tool for exploring complex 

optical phenomena and obtaining high-resolution results. 

Figure A.1 shows one Gaussian wavelet, propagating through an optical setup. At the 

initial plane, the wavelet is directed at an angle
0 . For simplicity, we focus on a one-

dimensional model; extension to two dimensions is straightforward.   
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Figure A. 1 Illustration of a Gaussian wavelet propagating from an initial up to an 
observation plane by iterative propagations, as described in the text. 

At the n-wavefront, the analytical equation given by FGSI for the referred wavelet 

can be written as [24], 

       
  

2
2 2exp exp exp exp .

2

x n
x A i x i x i xn n n n n n

rn
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   

 
    
 
 

    (A.1) 

In Equation (A.1), nx  is replaced by x to allow us to calculate the overall 

superposition of the wavelet through the optical setup in an iterative manner.  The 

parameter nr  represents the semi-width of the wavelet.  At the initial plane, the 

semi-width of the wavelets is chosen such that the maximum of the wavelet to the 

left coincides with the e/1 value of the wavelet at its right, allowing a uniform 

distribution of the wavelets at the initial plane.  The terms n  and n  give the spatial 

and quadratic phase centers of the wavelet respectively. The parameter n  gives 

the value of the quadratic phase and it is set equal to zero at the initial plane. nA

represents the complex amplitude of the wavelet, and corresponds to the complex 

local amplitude. The parameter n  allows directing the wavelet (as we describe 

later). The parameter n   allows to focus or defocus of the wavelet to represent 

optical diffracting elements that may be in the optical setup. 
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As illustrated in Figure A.1, the Gaussian wavelet in Equation (A.1) propagates a 

distance z , along the optical axis, towards the (n+1)-wavefront. The analytical 

expression for the propagated wavelet  1n x  can be obtained by using the 

Fresnel diffraction integral [18-19] written as, 

     
2

1
1 2

exp expn x i z s i x s dsn
zi z

 

 


   
      

                    (A.2) 

In Equation (A.2),   represents the wavelength of the local medium, within the 

region of propagation. The limits of integration over the parameter s  correspond 

to the region of illumination which, in the case of a Gaussian wavelet, are ± infinity. 

 After performing the calculations, the propagated wavelet can be written as [24], 
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               (A.3)    
   

It will be noticed that Equation (A.3) has the same mathematical shape as Equation 

(A.1), hence the term shape invariant. This characteristic will permit us to calculate 

the propagation through the optical system in an iterative manner.  

As mentioned above, the parameter n  allows directing the Gaussian wavelet at an 

angle of propagation n ,  depicted in Figure A.1. This task is performed by assigning 

to it the value  02 / tann n nN    , being nN the refractive index of the local 

medium and, 0  the free space wavelength. 

The analytical expression of the parameters of the propagated wavelet given in 

Equation (A.3) can be written as [24],  
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(A.4)  
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In Equation (A.4), for brevity [24],  

 

 2 2 4 2.n n n nD z r z                                                (A.5) 

Additionally, 
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(A.8) 

We will use the set of Equations (A.1) - (A.8) to guide each Gaussian wavelet along 

its path through the propagation process.  

As indicated above, at an interface, it may be necessary to change the direction of 

propagation of the wavelet as we illustrate in Figure A.1 where it can be observed 

that between the nx and the 1nx  planes and between the 1nx   and the 2nx   

planes, the refractive indexes are equal to nN  and 1nN  respectively.  The referred 

wavelet propagates from the nx -plane towards the 1nx  with an angle of 

propagation n . Then, it propagates with an angle 1n   between the 1nx  and the 

2nx  planes, as shown. The relation between the angles follows Snell’s law. We will 

provide the appropriate wavelet angle as follows. 
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 As indicated by Equation (A.4), after each iteration, the next n takes a zero value 

and has to be updated to redirect the wavelet. For this task, first, we have to update 

the local wavelength, in this case, using the relation 0 1/ nN   . Here 0  is the 

free-space wavelength. Next, based on Equation (A.6), we use the following relation, 

   1
2

tan 2 2 .n n n n n n n


      


                                             (A.9) 

In Equation (A.9), we have used the fact that,    1 1tan /n n n z     , being z the 

distance between consecutive planes. Finally, to maintain continuity at the interface 

we must replace the value of nA  by  expn n nA i  . This process is repeated at 

each interface to update the direction of the wavelet throughout the overall 

propagation process. 

The parameter n  allows to focus or defocus of each wavelet due to the presence of 

optical diffractive components that may be present in the optical setup, as is the case 

of lenses, as illustrated in detail in [24]. As in this report, we will not include focusing 

or defocusing components, we will set this parameter equal to zero at the initial 

plane. We will update this parameter using Equation (A.4) along the propagation 

process. 
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