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1

Introduction

An essential alternative to reducing gas emissions primarily caused by fossil fu-

els is the use of renewable energies. Applications such as heat generation, re-

frigeration, and electric power generation have started to be implemented using

these clean energy sources. Among the various renewable sources, solar energy

is the most abundant and is available anywhere on Earth. Consequently, many

countries, including Mexico, are actively promoting research and technological

development in the field of solar energy. One of the most advanced technologies

in utilizing solar energy is the parabolic trough collector (PTC). PTCs capture

solar radiation and convert it into heat, which is then transferred to a work-

ing fluid. Because these collectors rely on solar energy, they must be installed

outdoors, making them more susceptible to dirt accumulation, which can reduce

their efficiency.

Currently, visual inspections are carried out by individuals to determine if

cleaning is necessary. This method is impractical as it relies on subjective judg-

ment and personal experience, leading to inconsistent assessment criteria. To

address this issue, a proposed solution is to develop a system capable of au-

tonomously detecting different levels of dust deposition on the receiver tube of

parabolic trough collectors. This system would analyze images taken by a camera

mounted on an unmanned aerial vehicle (UAV) using a deep-learning approach.

Figure 1.1 illustrates the proposed system. To address the challenge of localizing

the collectors in the parabolic trough, a semantic segmentation neural network

is proposed. This approach resolves the issue of developing an automatic system
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1. INTRODUCTION 1.1 Background

Figure 1.1: Unmanned Aircraft Vehicle taken images from a parabolic trough

collector.

capable of detecting the collector and analyzing it to determine its level of dust.

Once this is accomplished, a graphical interface will be developed, resulting in

user-friendly software for final implementation and use.

1.1 Background

Parabolic trough collectors are a widely used technology in concentrating solar

power (CSP) systems to harness solar energy efficiently. These systems use mir-

rors to focus sunlight onto a receiver tube, heating a fluid that generates steam to

drive turbines for electricity production. However, one of the critical challenges

that impact the efficiency of PTCs is dust deposition on the reflective surfaces of

the mirrors and the glass covering the receiver tube. Dust particles reduce the

reflectivity of the mirrors and decrease the amount of solar radiation that reaches

the receiver, leading to a significant drop in thermal efficiency. This problem is

especially prevalent in arid regions, where CSP plants are often located, and dust

accumulation can be rapid. The decreased efficiency not only increases opera-
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1. INTRODUCTION 1.2 Problem definition

tional costs, as frequent cleaning is required, but also reduces the overall energy

output, undermining the potential benefits of solar energy as a clean and sus-

tainable energy source. Addressing dust deposition is crucial for optimizing the

performance and cost-effectiveness of PTC-based solar power plants.

1.2 Problem definition

Dust accumulation on the surface of a solar collector reduces the amount of solar

radiation that reaches the conversion device by decreasing the transmittance of

the protective cover of non-concentrating collectors . Consequently, the impact

of dust accumulation on the efficiency of solar photovoltaic (PV) modules and

protective transparent covers has been extensively studied.

Erdenedavaa et al. (2018) investigated the effects of dust accumulation on the

transmittance of glass tubes in a solar thermal collector in Usamentiaga et al.

(2020). Effective solar radiation transmittance prediction models on transparent

covers have been developed to evaluate the optimal cleaning time.

Zefri et al. (2018) developed a model to calculate the optimum tilt angle for

soiled PV systems, considering dust accumulation rather than just irradiance.

Additionally, Salari and Hakkaki-Fard (2019) numerically examined the impact

of dust accumulation on the performance of PV and photovoltaic-thermal sys-

tems. Zhao and Zhang (2020) investigated dust deposition processes and behavior

on ground-mounted solar PV arrays using the shear stress transport turbulence

model and the discrete particle model.

These studies focused on the effect of dust accumulation on optical transmit-

tance loss. For conventional non-concentrating panels, the direct and indirect

light scattered from dust particles on the glass package can still reach the solar

cell. However, an optical concentrating system collects sunlight more efficiently.

When the surface of the dust collector is contaminated, a significant portion of

the light is scattered and lost. Therefore, it is crucial to study concentrator loss.

The research methods investigating the effects of dust accumulation on optical

performance and the development of dust deposition models, as well as numerical

investigations, provide valuable guidance for studying the impact of dust on the

optical properties of reflectors.

2



1. INTRODUCTION 1.2 Problem definition

These findings highlight the significant effects of dust accumulation on solar

PV systems. Light interactions with dust particles can lead to even greater

losses on reflective surfaces. Therefore, understanding the mechanisms of dust

deposition is crucial for developing optimized cleaning strategies for reflectors.

Cohen et al. (1999) proposed that dust accumulation on solar reflectors reduces

their reflectivity by absorbing and scattering sunlight, with cleaning initiated

when reflectivity drops below 90%. Pettit and Freese (1980) investigated the

reflectivity loss on mirrors due to dust deposition over a 10-month period, finding

that the average decrease in reflectivity at 500 nm was slightly less for silvered

glass mirrors compared to aluminized reflective mirrors (Bagavathiappan et al.,

2013).

The efficiency of cleaning operations depends on the cleaning frequency and

the properties of the dust adhering to the solar reflector surface. Research into

the characteristics of dust and soil at various sites is essential to understand the

stickiness between dust and mirrors. Azouzoute et al. (2020) developed a mirror

sphere with three tilt angles relative to the vertical plane: 45◦ (facing the sky), 0◦

(vertical), and −45◦ (facing the ground). Their results showed that the highest

average cleanliness drop values per month were 45% for horizontal mirrors and

33% for vertical mirrors.

Vivar et al. (2010) used artificial dust on plane mirrors to test reflectivity,

finding an average reflectivity loss of 20% compared to clean mirrors. The maxi-

mum daily reflectivity loss was 0.7–1.3% per day. Hachicha et al. (2019) studied

the characteristics of dust particles and their impact on CSP performance un-

der UAE weather conditions, reporting a reflectivity decrease of about 63% after

three months of exposure.

Recent studies have reported various modeling methods to predict the decrease

in reflectivity of dusty mirrors. Bouaddi et al. (2015) developed a model to

describe and forecast the loss of reflectivity on solar reflectors used in CSP plants,

using time series analysis with dynamic linear Gaussian state space models and

incorporating weather parameters as explanatory variables. They also proposed a

new approach to simulate the soiling of regularly cleaned reflectors, addressing the

inaccuracies of fixed reflectivity assumptions in CSP yield estimations (Cipriani

et al., 2020).

3



1. INTRODUCTION 1.3 Justification

Biryukov et al. (1999) created a computerized microscopic system to study the

physics of dust particles adhering to different solar collector surfaces. This system

provided particle size distribution data, which helped calculate the fraction of the

surface area covered by dust and the resulting reduction in optical efficiency based

on particle size.

Heimsath and Nitz (2019) presented a model predicting mirror reflectivity

for various cleanliness levels, applying the Lambert-Beer law to relate incidence

angle-dependent attenuation of solar radiation to the dust layer. Another novel

model measured airborne dust concentration, estimated the size distribution, and

considered the position of the mirrors, wind speed, and air temperature.

Despite these advances, few studies have specifically examined the effect of

dust accumulation on reflectivity at different positions on the surface of a reflector

in a parabolic trough solar concentrator.

1.3 Justification

The parabolic-trough collectors are a great source of electricity and heat. It is

estimated that, in a typical factory, the heat demand in the process can range

from 40% to 60% of the total energy consumed and that 30% of that heat is used

on temperatures of 80◦C to 250◦C, so it is a good option for the development of

the country.

Additionally, it is indispensable that PTCs have an appropriate performance,

hence the importance of counting with mechanisms that ensure its optimum func-

tioning through the detection of dirty.

Therefore, this project aims to develop an integrated vision system and a

neural network capable of detecting dirt in parabolic trough collectors.

1.4 Objectives

1.4.1 General objective

Create a graphical interface where the end user can interact in a friendly way

and thus recognize the presence of dirt in the parabolic trough PTCs and thus

4



1. INTRODUCTION 1.5 Hypothesis

promote their correct operation in the best performance. In this way, to improve

the development of new technologies that are friendly to the environment, such

as these systems.

1.4.2 Specifics objectives

• Develop a Convolutional Neural Network.

• Develop a Semantic Segmentation for tube detection.

• Create an Embedded interface.

1.5 Hypothesis

A vision system integrated into a neural network will be able to detect the dirt

in a parabolic-trough collector, thereby increasing its performance.

5
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Theoretical Framework

The improvement in quality of life and high demographic growth globally has led

to a direct increase in energy demand. Therefore, it is crucial to develop strategies

to meet these growing needs, especially considering that common energy resources

such as oil, coal, natural gas, and uranium are becoming increasingly scarce. As

demand approaches the limits of our ability to refine and extract these resources,

prices continue to rise. The finite nature of these fuels has compelled us to seek

greater efficiency in energy production and use, as well as to advance science and

technology to enable renewable energies to compete with the generation costs of

fossil fuels.

Renewable Energies are those that convert natural phenomena such as solar

radiation, wind, waterfalls, to name a few, into forms of energy such as electricity

and thermal energy. Renewable energies have great potential. However, most of

them face two great challenges; intermittency and variability. However, despite

these challenges, renewable energies have proven to be cost-effective compared to

fossil fuels.

Mexico is geographically situated between 14◦ and 33◦ Latitude, a prime lo-

cation for solar energy utilization. The national average daily global irradiation

is approximately 5.5 kWh/m2 day, making Mexico one of the countries with the

highest potential for solar energy generation worldwide (Pérez-Denicia et al.,

2017). This potential is especially pronounced in the northern and central re-

gions, which receive some of the highest levels of solar radiation globally. This

abundant solar resource can be effectively harnessed for concentrated solar power

6



2. THEORETICAL FRAMEWORK 2.1 Parabolic-Trough Collectors

(CSP) technologies, such as parabolic trough collectors (PTCs), providing a sig-

nificant opportunity for clean energy development. Figure 2.1 shows the distri-

bution of DNI and GH irradiance in Mexico.

(a) (b)

Figure 2.1: Solar irradiance in Mexico. (a) DNI irradiance. (b) GHI irradiance

2.1 Parabolic-Trough Collectors

Photothermal solar collectors convert solar energy into thermal energy. These

systems transfer energy from a distant radiant source (the Sun) to a fluid. With-

out the use of optical concentration, the maximum flux of incident solar energy

radiation 1000W/m2 approximately (Moghimi and Ahmadi, 2018). With these

radiative flux levels, solar flat plate collectors can be designed for applications

where fluid temperatures need to be up to 100◦C. However, many other appli-

cations require temperatures higher than those typically achieved by flat plate

collectors. These higher temperatures can be achieved by placing an optical de-

vice between the sun and the energy-absorbing surface to increase the density of

the incident radiative flux on the absorber. Such systems, which include both

the optical device and the absorber, are referred to as solar collectors (LACYQS

Laboratorio Nacional de Sistemas de Concentracion y Quimica Solar, 2020).
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2. THEORETICAL FRAMEWORK 2.1 Parabolic-Trough Collectors

A parabolic-trough collector is a unified system consisting of two primary

components: (i) parabolic-shaped mirrors and (ii) a receiver tube positioned along

the focal axis of the parabola.

This design allows solar radiation that strikes the system in parallel to be

concentrated at the focal point, as shown in the Figure 2.2.

Figure 2.2: Diagram of operation of a parabolic-trough collector.

The focus of the parabola extends into a focal line along the length of the

channel. A receiver tube is placed along this line, containing a thermal fluid

(usually oil) that is heated as the tube absorbs the concentrated solar radiation.

The collection of radiant energy from the Sun is used for electric power gen-

eration or conversion to thermal energy for industrial processes. Solar thermal

collectors may be used in low-temperature applications as in flat-plate collectors

(less than 80°C) or of medium temperature with an optical concentration stage,

in which the light first impinges on a reflecting surface and then it is redirected

towards a receiving element with selective absorbing properties. Here, energy

is transferred to a fluid—usually water—thus raising its temperature, and sub-

sequently, it is stored in a thermally insulated tank (Los Santos-Garćıa et al.,

2016).

Two main types of collectors without concentration are used for household

processes (Pérez-Denicia et al., 2017). The first one is the flat-panel collector

and the second one is the evacuated-tube collector; both collect direct and diffuse

radiation. On the other hand, the main concentration systems are dish collector,

parabolic trough, linear Fresnel configuration, and central receiver. Concentration

8



2. THEORETICAL FRAMEWORK 2.1 Parabolic-Trough Collectors

systems are used when the temperature to be achieved is beyond 150°C as in steam

generation systems (Los Santos-Garćıa et al., 2016).

Due to their geometry, parabolic-trough collectors focus the incident radiation

on a focal line, using evacuated tubes as receivers. This type of collector requires

tracking the Sun in one axis; this increases its complexity and, consequently, the

costs of initial investment, as well as operating and maintenance costs, in con-

trast to the flat-plate collector systems, which have no moving parts (AlZahrani

and Dincer, 2018). For parabolic-trough geometry, a highly reflective aluminum

sheet with surface-protective Alanod multilayer (Moghimi and Ahmadi, 2018) is

commonly used in industrial concentrators. On July 11, 2012, it rounded costs

of $58.50 per square meter. Besides, a supporting structure is needed, in which

the aluminum sheet is placed with a Sun-tracking mechanism. Consequently, this

system has mobile parts and high price and weight.

The Institute of Renewable Energy (IER) and the Electrical Research Insti-

tute (IIE), both in the state of Morelos in Mexico, have developed projects with

parabolic-trough concentrators. Their manufacturing and materials costs reached

$1706 per square meter A complete overview of parabolic-trough solar collectors

and their applications can be found in the work reported by Erdenedavaa et al.

(2018).

Most solar thermal applications for industrial processes have been installed on

a relatively small scale and are mostly experimental. Only 85 solar thermal plants

for processing heat were reported worldwide in 2008, with an installed capacity of

25 M 35, 700m2 and with an average power of 320 K; the capacity of the systems

was in the range between 50 K and 1.5 M. This 25 M capacity was a minuscule

amount compared to the total industrial demand. Industrial applications typi-

cally require high temperatures and great volumes. Solar thermal systems, when

correctly integrated into an industrial process, can provide increased energy effi-

ciency and reduction of carbon-dioxide emissions (Los Santos-Garćıa et al., 2016).

Parabolic trough collectors can efficiently drive industrial processes that re-

quire medium-temperature heat, typically in the range of 150◦C to 400◦C. These

processes include the production of hot water, low-enthalpy steam, and ther-

mal energy for industrial heating applications. PTCs are widely used in sectors

such as food processing, textile manufacturing, and chemical industries, where

9



2. THEORETICAL FRAMEWORK 2.2 Dust problem

medium-temperature heat is crucial for various production stages. The versatil-

ity of PTC designs allows for a broad range of industrial applications. Specific

PTC models are optimized for delivering hot water and low-enthalpy steam, which

are essential in sterilization, pasteurization, and other heat-demanding processes.

These systems are often modular, with solar collection areas ranging from 2.5

to 5.0m2, making them scalable and adaptable to different industrial setups Los

Santos-Garćıa et al. (2016).

Moreover, by integrating PTCs with existing industrial heating systems, com-

panies can significantly reduce their reliance on fossil fuels, lower operational

costs, and contribute to reducing greenhouse gas emissions, thus aligning with

global sustainability goals Frein and Valenzuela (2018). Recent advancements in

thermal storage and hybridization with conventional energy sources have further

enhanced the reliability and efficiency of PTCs in industrial applications, extend-

ing their usability even in regions with intermittent solar resources Kalogirou

(2009).

2.2 PTC and the problem of dust

To harness solar energy on Earth, two main types of technologies have been de-

veloped: photothermal conversion technologies and photovoltaic conversion tech-

nologies. Among the photothermal options, parabolic trough collectors stand out

as the most advanced and widely used technology, contributing significantly to

global concentrating solar power generation. Given their pivotal role, it is cru-

cial to maintain PTCs in optimal working condition to ensure continuous high

performance (ROJO, 2017).

Maintaining this performance begins with accurate prediction and optimiza-

tion of the system’s optical efficiency. This was achieved through finite element

simulations, geometric measurements, and analysis of the optical properties of

key components. The simulations included reflector deformations and receiver

sag under various tracking orientations, while an elastostatics model character-

ized torsional deformations. Additionally, module alignment errors, slope devi-

ations in the reflector layout, and bracket placement inconsistencies—based on

typical manufacturing assembly—were incorporated into the analysis. Using a

10



2. THEORETICAL FRAMEWORK 2.2 Dust problem

Monte Carlo Raytracing software, the collected data on geometrical and optical

inputs was combined with the physical properties of the receiver and reflectors

to predict the overall optical efficiency of the system (ROJO, 2017).

Following the optical assessment, thermal performance testing was conducted

at the Solucar Platform’s HTF Test Loop facility. Using an oil-based heat transfer

fluid at a nominal outlet temperature of 393◦C, the thermal tests validated the

collector’s capacity to increase fluid temperature under controlled conditions.

This facility, originally designed to test a four-collector EuroTrough loop, was

recently upgraded with the CompoSol expansion for qualifying larger aperture

collectors and high-temperature heat transfer fluids. Thermal testing involved

measuring temperature gains along the collector under specific flow rates, with

each collector’s performance evaluated individually to ensure that the nominal

outlet temperature was consistently reached (AlZahrani and Dincer, 2018).

After the optical and thermal optimizations, a comprehensive startup proce-

dure was implemented. The procedure involved incrementally raising the HTF

temperature by 50◦C and tracking the sun for at least four hours at each in-

crement, ensuring the early detection of any potential issues related to thermal

expansion or design flaws. This rigorous testing process accumulated over 500

hours of operational data, during which the real-world thermal power output was

compared against model predictions. The successful correlation between pre-

dicted and actual performance confirmed the reliability of the PTC system at

its nominal operating conditions of 393◦C and 40 bar pressure (AlZahrani and

Dincer, 2018).

Through these detailed optical, thermal, and operational procedures, the PTC

system was thoroughly tested and optimized, ensuring its ability to harness solar

energy efficiently for industrial and large-scale power generation applications.

2.2.1 Dust deposition effect

The efficiency of solar energy utilization and the subsequent production of ther-

mal energy are closely linked to the optical properties of the collector. Critical

factors, such as the transmissivity of the glass cover on the receiver tube and

the reflectivity of the mirrors, are significantly impacted by the accumulation of

11



2. THEORETICAL FRAMEWORK 2.2 Dust problem

dust on these surfaces. In response to this issue, some power plants have begun

implementing strategies to mitigate the negative effects that dust accumulation

can have on the overall performance of the power plant. These strategies aim to

maintain the optimal functionality of the collectors, ensuring consistent energy

output.

To assess how much the presence of dust affects, different studies have been

carried out; for instance, in the work presented by Şahin (2007), the authors have

observed a reduction of between 10% to 60% in the transmittance of the glass

plates of several photovoltaic modules. As expected, an increase in the amount

of dust produces a drop in the transmittance, which consequently leads to a drop

in the power generated, as in the work presented in Ghazi et al. (2014), where

the authors have reported a decrease of up to 60% of the energy produced. Given

this problem, some strategies have been proposed to determine the level of dust,

in such a way that it is possible to take actions that avoid significant drops in

energy production.

2.2.2 Characterization of Dirtiness

Dust accumulation on the surfaces of parabolic trough collectors (PTCs) poses a

significant challenge to their efficiency in capturing solar energy. PTCs depend on

their mirrors to reflect sunlight onto a receiver tube, where the energy is concen-

trated to generate heat. However, when dust settles on these reflective surfaces or

the glass covering the receiver tube, the system’s optical performance is degraded.

Dust particles cause light scattering and absorption, reducing the reflectivity of

the mirrors and diminishing the intensity of the sunlight reaching the receiver.

This reduction in optical efficiency lowers the thermal output, resulting in less

electricity generated from the same amount of solar energy. In regions prone to

frequent dust storms or high levels of particulate matter in the air, the impact

is even more severe. Moreover, constant cleaning, which is necessary to maintain

efficiency, leads to higher operational costs and increased water usage, making it

essential to develop strategies for efficient dust monitoring and management.

Digital image processing offers an efficient way to address this issue by moni-

toring dust levels in real time. One promising method is to use histogram analysis

12
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of images captured from the mirrors and receivers (Yfantis and Fayed, 2014). A

histogram is a graphical representation of the intensity distribution of pixels in

an image, which can reveal variations in brightness caused by dust accumula-

tion. Clean mirrors or receiver tubes exhibit bright, uniform histograms with

high pixel intensity values, while dust-covered surfaces show a shift in the his-

togram towards lower intensity values due to reduced reflectivity. By tracking

these changes over time, operators can quantify the amount of dust present and

determine when cleaning is necessary. This method can be highly effective in en-

vironments where manual inspections are impractical or too costly. Implementing

an image-based dust monitoring system allows for more efficient use of resources,

reducing the need for frequent cleaning and preventing efficiency losses without

requiring constant human oversight.

While histogram analysis provides a simple and effective method for detect-

ing dust, deep learning techniques, particularly convolutional neural networks

(CNNs), offer an alternative and more advanced approach. CNNs are a type of

deep learning model specifically designed for image recognition and analysis. In

this context, CNNs can be trained to detect and classify varying levels of dust ac-

cumulation on PTC surfaces by learning patterns and features from large datasets

of images. Unlike histogram analysis, which relies on changes in pixel intensity

distribution, CNNs can capture more complex and subtle features such as dust

particle size, distribution patterns, and different lighting conditions, which might

be challenging to detect with traditional methods.

The advantage of using CNNs lies in their ability to generalize better across

different conditions, such as varying light angles, weather conditions, and mir-

ror degradation over time. For instance, CNNs can be trained to differentiate

between shadows, dirt, and actual dust accumulation, providing more accurate

assessments than histogram-based methods. Additionally, CNNs can automate

the process of not only detecting dust but also predicting future cleaning needs

based on environmental data, integrating weather forecasts, and historical perfor-

mance metrics. However, this approach requires a larger dataset for training and

significantly more computational power compared to histogram analysis, which

is simpler and easier to implement in real time.

13
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In conclusion, both histogram analysis and CNNs offer valuable solutions for

monitoring dust accumulation in PTC systems. Histogram analysis provides a

straightforward, low-cost method for real-time dust detection and is suitable for

basic applications with limited computational resources. On the other hand,

CNNs provide a more sophisticated, robust approach that can handle complex

conditions and yield higher accuracy, though at the expense of requiring more

data and computational power. Depending on the specific needs and resources of

a solar power plant, either technique could be employed to maintain high efficiency

and reduce the negative impacts of dust deposition on solar energy generation.

2.3 Deep learning-based image analysis

Deep learning-based image analysis refers to the use of deep neural networks,

specifically CNNs, to automatically analyze and interpret images (Wei et al.,

2021). Unlike traditional image processing methods that rely on predefined al-

gorithms (such as edge detection or histogram analysis), deep learning models

learn patterns and features directly from raw image data. These models are com-

posed of multiple layers of artificial neurons, where each layer learns increasingly

abstract features of the image—starting from simple patterns like edges and tex-

tures in the early layers, to more complex objects and relationships in deeper

layers.

A key strength of deep learning for image analysis lies in its ability to learn

from large datasets and generalize across different conditions. CNNs, for in-

stance, can be trained to identify objects, classify images, segment regions of

interest, or even detect subtle variations such as different levels of brightness

or texture. One of the most common applications is object recognition, where

a trained CNN can accurately identify objects within an image, regardless of

changes in orientation, lighting, or background. Another important use case is

image segmentation, where deep learning can be applied to label every pixel in

an image, separating foreground objects from the background or different regions

within an object (Alzubaidi et al., 2021).

Deep learning-based image analysis is highly effective in fields such as medical

imaging, where CNNs can be trained to detect tumors or abnormalities in X-
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rays or MRIs. Similarly, in autonomous driving, deep learning models are used

to interpret real-time images from cameras, detecting pedestrians, vehicles, and

road signs. These models also excel in more creative applications, such as style

transfer, where the model learns to recreate an image in the style of a famous

painting, or in image restoration, where CNNs can remove noise or recover missing

parts of an image.

2.3.1 Neural Network

A neural network is a simplified model that emulates how the human brain pro-

cesses information. Works by combining a significant number of interlinked pro-

cessing units that look like abstract versions of neurons IBM (2020).

The processing units are organized in layers. There are normally three parts

in a neural network: an input layer with units that represent the entry fields,

one or several hidden layers, and an output layer with one or several units that

represent the target field(s). The units are connected with variable connecting

forces (or weightings). The input data are presented in the first layer, and the

values are propagated from each neuron to each neuron of the subsequent layer.

In the end, a result is sent from the output layer. Figure 2.3 shows the basic

diagram of a neural network IBM (2020).

Figure 2.3: Simple Neural Network
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The neural network learns by examining the individual records, generating a

prediction for every record, and making adjustments to the weightings whenever

such a prediction is wrong. This process is performed repeatedly and the network

still improves its predictions until reaches one or several stopping criteria Medsker

and Jain (2001). Examples in which the result is known are continuously pre-

sented to the network and the responses provided are compared to the known

results. The information from this comparison is passed backward through the

network gradually changing the weightings. As training progresses, the network

becomes more accurate every time in the replication of known results.

Once the network is trained, can be applied in future cases in which the result

is unknown Bertozzi et al. (2002).

2.3.2 Convolutional Neural Network

A Convolutional Neural Network is a model specifically designed for process-

ing structured grid data, such as images. CNNs are particularly well-suited for

image analysis tasks because they automatically learn spatial hierarchies of fea-

tures, starting from low-level patterns like edges and textures, to more complex

structures like shapes and objects, through a process called convolution. This

architecture mimics how the human visual system works, making CNNs highly

effective for tasks like image recognition, classification, object detection, and seg-

mentation (Dhruv and Naskar, 2020).

The core building blocks of a CNN include convolutional layers, pooling layers,

and fully connected layers. In a convolutional layer, filters (or kernels) slide across

the input image, performing a mathematical operation called convolution. Each

filter detects specific features such as edges, corners, or textures by transforming

small regions of the image into feature maps. These feature maps capture the

presence of certain patterns, which are then passed on to the next layer. Through

multiple layers of convolution, the CNN learns more abstract and high-level rep-

resentations of the image, such as specific objects or parts of objects.

Pooling layers, often placed between convolutional layers, are used to reduce

the spatial dimensions of the feature maps, making the network more computa-

tionally efficient and reducing the risk of overfitting. Pooling typically takes the
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form of max pooling, where only the most significant value within a small region

is retained, allowing the network to focus on the most prominent features while

discarding irrelevant details. This process reduces the complexity of the data

while preserving key information.

At the end of the network, fully connected layers are used to make final

predictions. The outputs from the convolutional layers are flattened into a single

vector, which is fed into one or more fully connected layers. These layers combine

the high-level features extracted from the earlier layers to perform tasks such as

classifying the image into categories, detecting objects, or recognizing patterns.

In image classification, for instance, the final layer assigns a probability score to

each possible class, and the class with the highest score is chosen as the network’s

prediction. Figure 2.4 shows the general form of a CNN model.

Figure 2.4: General CNN architecture.

CNNs are widely used in a variety of applications, for instance, to improve

the accuracy on electric power bushing identification based on images where a

novel algorithm was developed, building upon the YOLOv2 network Huang et al.

(2021), to enhance the recognition performance of these images. While YOLOv2

is a powerful convolutional neural network, it has limitations in handling rotated

objects and to solve this problem, the standard Hough transform and image

rotation are utilized to determine the optimal recognition angle for target de-

tection, such that an optimal recognition effect of YOLOv2 on inclined objects

(for example, bushing) is achieved. To overcome the rotation in-variance issue,

the Hough transform and image rotation techniques were employed to identify

the ideal. Concerning the problem that the bounding box is biased, the shape

17



2. THEORETICAL FRAMEWORK 2.3 DL - Image analysis

feature of the bushing is extracted by the Gap statistic algorithm, based on K-

means clustering; thereafter, the sliding window (SW) is utilized to determine the

optimal recognition area. To address the bias in bounding box generation, the

Gap statistic algorithm and K-means clustering were used to analyze the shape

characteristics of the bushings. Subsequently, the sliding window technique was

implemented to pinpoint the most suitable recognition region, further refining

the detection process. Experimental verification indicates that the proposed ro-

tating image method can improve the recognition effect, and the SW can further

modify the BB. The accuracy of target detection increases to 97.33%, and the

recall increases to 95% Zhao and Zhang (2020).
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3

Methodology

This chapter details the research design, data collection techniques, and analytical

tools used to address the objectives of the study. Particularly, a two-step approach

has been implemented. First, high-resolution images of the collector are captured.

In the second step, image processing algorithms are applied to these images to

identify and quantify the extent of dust deposition.

3.1 Image analysis

In this section, we outline the implemented approach for classifying dust particles,

see Figure 3.1, the proposed methodology consists of three stages.

Figure 3.1: Methodology used during the realization of this work.

In the initial phase, UAVs were used to capture images of the parabolic-trough

collector. Subsequently, in the second stage, a semantic segmentation of the ROI
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is performed, and a perspective transformation was applied to ensure that only

pertinent information was utilized and that the images were standardized in terms

of pixel dimensions. Then in the third the classification results were obtained by

mean of the implemented CNN.

A more detailed explanation of each stage is presented in the following sec-

tions.

3.1.1 Image acquisition

Several images with different levels of dirt and at different times of day were

taken using a drone DJI Matrice 100 (DJI, 2021) and a DJI-Zenmuse Z3 camera,

equipped with a 3.5x optical zoom and a 12-megapixel image resolution. After

this, it was performed a perspective transformation to the images in Python,

and the image processing was carried out on OpenCV (Library, Open Source

Computer Vision, 2020), so as to homogenize the dimensions and turn them easy

to study. Subsequently, the images were processed, following two approaches:

digital image processing and deep learning-based analysis.

A dataset of 3,500 images was collected, capturing various dust levels and

different times of day. Figure 3.2 shows some of the images acquired with the

UAV.

3.1.2 ROI extraction

Following image acquisition, a ROI was extracted, specifically focusing on the

receiver tube. This step was taken to isolate pertinent information from the PTC.

Given that the captured images were often non-rectangular, a manual perspective

transformation was implemented to ensure that the image set used in subsequent

processes maintained consistent dimensions in terms of pixel count.(487×125). In

Figure 3.3 the ROI as well as the perspective transformation can be appreciated.
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(a) (b)

(c)

Figure 3.2: Example of images acquired by UAV..

b) Image with ROI
 c) Image after ROI
and change of

perspective

487
Pixels

125
Pixels

a) Image from
UAV


Figure 3.3: Preprocessing of the parabolic-trough collector images
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3.1.3 Automatic ROI extraction

To effectively obtain the ROI automatically, a UNet architecture (Ahmad et al.,

2021; Ronneberger et al., 2015) has been implemented. In particular, the method-

ology to be followed is the one proposed in Figure 3.4.

Figure 3.4: Methods for Segmentation Semantic Neural Network

The U-Net architecture comprises two primary processes. The first process,

known as contraction or encoding, is responsible for capturing the contextual in-

formation within an image. This process involves a series of convolutional and

max-pooling layers, which enable the creation of a map of the image’s character-

istics while simultaneously reducing its size to optimize the number of network

parameters (Ahmad et al., 2021).

The second process is the symmetric expansion, also known as “decoding”,

which enables precise localization through transposed convolution The architec-

ture of the neural network that was proposed in this work is the one described in

Figure 3.5.

The segmented image produced by the U-Net enables the automated detection

of the collector and subsequent analysis of its dust level. Figure 3.6 shows the

segmentation process.

3.1.4 Labeling

To train the classifier effectively, each image was manually categorized based on

its dust level. Four distinct dust levels were defined: clean, middle1, middle2,
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Figure 3.5: U-Net architecture.

1
2

3

4

5

Figure 3.6: ROI segementation. (1) Input image. (2) Obtained Mask. (3)

Located the mask in the original image. (4) Section with area of 36,000 pixels. (5)

Perspective transformation.

and dirty. Subsequently, the images were divided into training and test groups

to ensure that the classifier could be evaluated with unseen images, allowing for
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accurate validation.

Characteristic images of each class are shown in Figure 3.7.

(a)

(b)

(c)

(d)

Figure 3.7: Example of images labeled. Each image corresponds to each of the

four classes (clean, middle1, middle2, and dirty)

To enhance model training, a data augmentation process was implemented,

generating “new” images through various transformations, including rotation and

movements along both the horizontal and vertical axes (Taqi et al., 2018). Fig-

ure 3.8 shows some images resulting from this process.

The resulting dataset is made up of 3,100 images, of which there are 775

images per class.
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Figure 3.8: Example of images resulting from data augmentation process.

3.1.5 CNN model

A neural network (NN) can be employed for dust classification, it necessitates

the definition and extraction of a set of features. This approach, however, may

not be optimal as it involves mapping a two-dimensional object (image) into a

one-dimensional representation. Such a transformation can lead to drawbacks,

such as the loss of spatial information within the image. An alternative approach

to addressing the classification problem involves the utilization of Convolutional

Neural Networks (CNNs). CNNs have demonstrated remarkable effectiveness,

particularly in the realm of image-related tasks. Their applications encompass

image classification, image semantic segmentation, and object detection within

images, among others. This efficacy can be attributed to their architectural

design, which is specifically tailored to handle three-dimensional objects. This is

exemplified by color images, where each channel can be interpreted as a distinct

dimension.

To classify the dust levels, a deep learning approach was proposed, specifically

utilizing a Convolutional Neural Network.

The proposed CNN (see Figure 3.9) is made up of an input layer of 514,650

flat neurons (this corresponds to the number of pixels that each of the images

has), followed by a layer of convolution (Kembuan et al., 2020). This layer applies

a kernel (a small, learned filter) to the input image, sliding it across the image

and producing an output tensor. This process is known as convolution (Kembuan

et al., 2020). Subsequently, aMax-polling layer is employed. This layer is designed

to extract the most significant information from each image while reducing its
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3232 I
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Figure 3.9: Architecture of the proposed CNN.

size. It achieves this by analyzing 2x2 pixel neighborhoods and preserving the

pixel with the highest value.Hussain et al. (2018).

Following this, another convolutional layer is introduced, this time utilizing

64 kernels. Subsequently, another Max-polling layer is applied, further reducing

image size and extracting only the most critical information, thereby optimizing

the training process within the hidden layers. There are two hidden layers, each

consisting of 100 neurons (Hussain et al., 2018).

The optimization model used is Adam (Meng et al., 2017) since it allows effi-

cient computing in terms of memory and it is optimized on solving issues with

large amounts of data as the images are. Finally, as output a softmax layer is

implemented.

The softmax function takes as input a vector z ofK real numbers, and normal-

izes it into a probability distribution consisting of K probabilities proportional

to the exponential of the input numbers, in this case K = 4.
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As previously noted, all images used to train the CNN model must have consis-

tent dimensions in terms of pixel count. Furthermore, the images are converted to

floating-point format and normalized to facilitate effective learning (Meng et al.,

2017).

3.2 Graphical user interface

To have an easy way to use the trained models of both U-Net for the collec-

tor localization and CNN for the dust classification, it was decided to make a

graphical user interface (GUI) that was developed in Python (Foundation, The

Python Software, 2020). The interface is capable of both analyzing a saved video

or acquired real time images.

The implemented GUI is depicted in Figure 4.2. As it may be observed, the

output of the GUI shows the identification of the dust level per area is shown by

a box drawn on the video/image with a legend that describes the level of dust

that is being detected.

Figure 3.10: Caption

The implementation of a GUI for the dust classification problem in parabolic

trough collectors (PTCs) is essential to enhance usability, streamline analysis,

and facilitate decision-making for non-expert users. A GUI provides an intuitive

platform for operators and engineers to analyze images of dust deposition without
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needing extensive technical knowledge of image processing techniques. By incor-

porating user-friendly features such as automated dust classification algorithms,

and visual displays of results, the GUI simplifies complex tasks like detecting

dust accumulation patterns and assessing their impact on collector performance.

Overall, the GUI bridges the gap between advanced image analysis techniques

and practical, day-to-day management of PTC systems.

3.3 Performance metrics

A confusion matrix is a tabular representation used to evaluate the performance

of classification algorithms by displaying the relationships between actual and

predicted classes. Each row of the matrix represents the instances in an actual

class, while each column represents the instances in a predicted class. The diag-

onal elements of the confusion matrix represent the number of instances where

the predicted class matches the actual class (i.e., correctly classified instances),

while the off-diagonal elements indicate misclassifications, where the predicted

class differs from the actual class.

For a multi-class problem with n classes, the confusion matrix is an n × n

matrix, where each row corresponds to the actual class, and each column repre-

sents the predicted class. The elements of the matrix, denoted as Mij, represent

the number of instances where the true class was i and the predicted class was

j. In this way, the diagonal elements Mii show the number of correct predictions

for each class, while the off-diagonal elements represent the misclassifications.

Table 3.1 shows the confusion matrix structure for a multi-class classification

Predicted A Predicted B Predicted C

Actual A TP (A) FP (B) FP (C)

Actual B FN (A) TP (B) FP (C)

Actual C FN (A) FN (B) TP (C)

Table 3.1: Confusion Matrix for Multi-Class Classification

problem with three classes (A, B, and C). From this table, TP (True Positives)

denotes the correctly classified instances for a given class (on the diagonal), FP
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(False Positives) are the instances that were incorrectly classified as a different

class, and FN (False Negatives) indicates the instances of a class that were mis-

classified as another class.

3.3.1 Performance Metrics from the Confusion Matrix

Several performance metrics can be derived from the confusion matrix, allowing

for a more detailed evaluation of the classifier’s performance across all classes:

• Accuracy: The overall accuracy of the model is defined as the ratio of

correctly predicted instances (sum of the diagonal elements) to the total

number of instances. Mathematically, it is expressed as:

Accuracy =

∑n
i=1Mii∑n

i=1

∑n
j=1Mij

However, accuracy can be misleading when dealing with imbalanced datasets,

where some classes have more instances than others.

• Precision, Recall, and F1-Score: These metrics are typically calculated

for each class individually.

– Precision for class i is the ratio of correctly predicted instances of class

i to all instances predicted as class i:

Precisioni =
Mii∑n
j=1Mji

– Recall (or sensitivity) for class i is the ratio of correctly predicted

instances of class i to all instances that actually belong to class i:

Recalli =
Mii∑n
j=1 Mij

– F1-score for class i is the harmonic mean of precision and recall, pro-

viding a balanced measure:

F1-Scorei = 2× Precisioni × Recalli
Precisioni +Recalli
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The confusion matrix thus provides a comprehensive way to visualize and

measure the performance of a multi-class classifier, offering insights into not just

overall accuracy but also the specific areas where the model may be underper-

forming, such as misclassifications between certain classes.
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Results

The results section presents the performance analysis of the convolutional neu-

ral network (CNN) model applied to the dust classification problem in parabolic

trough collectors (PTCs). Through a series of experiments, the model was trained

and tested on a dataset of images capturing various levels and patterns of dust

deposition on PTC surfaces. The section explores key performance metrics, in-

cluding accuracy, precision, recall, and F1-score, for multiple dust categories,

providing insights into the CNN’s ability to distinguish between different dust

levels. Additionally, confusion matrices and visualizations of misclassified sam-

ples are analyzed to assess the strengths and weaknesses of the model.

The proposed methodology has been implemented using Python as the pro-

gramming language, and the libraries used were Tensorflow (TensorFLow, 2021)

for the Convolutional Neural Network and UNet architectures and OpenCV (Li-

brary, Open Source Computer Vision, 2020) for the digital image processing.

4.1 Training results

During the training stage of the U-Net network for dust classification, the model’s

performance was tracked using two key metrics: the loss function and Intersection

over Union (IoU). The training curve for the loss function showed a consistent

downward trend as training progressed, indicating that the model was effectively

minimized the error between the predicted and actual segmentations of dust re-

gions. At the beginning of training, the loss decreased monotonically and rapidly,
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implying that the model converged. Similarly, the intersection over union (IoU)

metric, which measures the overlap between predicted and true dust regions,

improved steadily throughout the training. Initially, the IoU values were low,

reflecting poor segmentation, but as the model learned from the data, the IoU

increased, approaching higher values that indicated more accurate dust segmenta-

tion. The combination of decreasing loss and increasing IoU over epochs suggests

that the U-Net network was learning to effectively capture and segment dust pat-

terns on the parabolic trough collectors. In Figure 4.1 the training behavior of

the U-Net model is shown.

Figure 4.1: Loss and IoU behavior during training.

In contrast, during the training stage of the CNN classification network for

dust classification, the model’s performance was evaluated using the loss-accuracy

training curve. Initially, the loss decreased rapidly as the model adjusted its

weights, indicating that it was learning to minimize the error between predicted

and actual class labels. This sharp drop in loss was accompanied by a corre-

sponding increase in accuracy, as the network began to correctly classify a greater

proportion of dust images. Over time, the loss continued to decline at a slower

rate as the model neared convergence. Meanwhile, accuracy showed a steady

upward trend, with occasional fluctuations due to the learning process. These
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fluctuations typically occurred in the earlier epochs but stabilized in later stages,

reflecting the model’s increasing generalization capabilities. By the end of the

training, the network demonstrated high accuracy and low loss, signifying that

the CNN effectively learned to classify different dust levels in the images.

(a) (b)

Figure 4.2: Training stage behavior of the CNN. (a) Loss vs #Epochs. (b)

Accuracy vs #Epochs.

4.2 Dust classification results

The results of the CNN classification model for dust classification are presented in

this section, highlighting the model’s ability to distinguish between various levels

of dust accumulation on parabolic trough collectors. The CNN was evaluated

using multiple performance metrics, including accuracy, precision, recall, and F1-

score, to assess its classification capabilities. The results are further illustrated

through confusion matrices that reveal how well the model differentiates between

different dust categories. Additionally, misclassifications are analyzed to identify

common errors and potential improvements.

The classification report of the CNN model, presented in Table 4.1, provides

a detailed breakdown of the model’s performance across four different classes:

“Clean”, “Middle 1”, “Middle 2”, and “Dirty”. The table includes key metrics

such as precision, recall, F1-measure, and support for each class.
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Table 4.1: Classification report of the CNN model.

Class Precision Recall F1-Score Support

Clean 0.960 0.960 0.960 25

Middle 1 0.913 0.840 0.875 25

Middle 2 0.821 0.920 0.868 25

Dirty 0.958 0.920 0.938 25

Accuracy 0.91 100

For the “Clean” class, the model achieved a high precision, recall, and F1-

measure of 0.960, indicating that it can accurately identify clean surfaces with

minimal false positives and false negatives. The performance for the “Dirty” class

is also strong, with an F1-measure of 0.938, supported by high precision (0.958)

and recall (0.920), showing that the model is effective at detecting dirty surfaces.

The “Middle 1” and “Middle 2” classes represent intermediate levels of dust,

and the model’s performance for these classes is slightly lower. For “Middle 1”,

the F1-measure is 0.875, with a precision of 0.913 and a recall of 0.840, indicating

that the model is better at predicting this class than detecting it. In contrast,

for “Middle 2” the recall (0.920) is higher than the precision (0.821), suggesting

that the model is more sensitive to identifying this class but generates more false

positives.

Overall, the model achieved an accuracy of 0.91 across all classes, demon-

strating strong classification performance. The slight variations in precision, re-

call, and F1-measure between the “Middle” classes highlight potential areas for

improvement, particularly in distinguishing between intermediate levels of dust

accumulation. However, the high overall accuracy and strong performance in

detecting the extremes (“Clean ” and “Dirty”) indicate that the CNN model is

effective for the dust classification task.

Similarly, the confusion matrix depicted in Figure 4.3 illustrates the perfor-

mance of the CNN model in classifying dust levels across the four categories

(“Clean”, “Middle 1”, “Middle 2”, and “Middle 3”). As mentioned, each cell

in the matrix represents the proportion of predictions made by the model for a

given class, relative to the actual class.
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Figure 4.3: Classification confusion matrix.

For the “Clean” class, the model performs exceptionally well, with 96% of the

“Clean” samples being correctly classified. Only 4% were misclassified as “Middle

1”, and none were misclassified into higher dust levels, showing that the model

has a high precision for identifying “clean surfaces”.

The “Middle 1” class shows some confusion with both “Clean” and “Middle

2”. While 84% of the samples were correctly classified, 4% were misclassified

as “Clean” and 12% as “Middle 2”. This indicates some overlap in the model’s

ability to distinguish between the lower and middle dust levels.

For the “Middle 2” class, the model achieves 92% accuracy, but 4% of samples

were confused with “Middle 1” and another 4% with “Middle 3”. This suggests

that the model struggles slightly with distinguishing between the adjacent levels

of dust accumulation.

The “Middle 3” class has a high classification accuracy of 92%, with only 8%

of instances being misclassified as “Middle 2”. This performance suggests that

the model is more effective at classifying the higher dust levels, but still has some

difficulty in precisely distinguishing between the “Middle” dust categories.

Overall, the confusion matrix reveals strong classification performance for the

“Clean” and “Middle 3” classes, while the “Middle 1” and “Middle 2” classes show
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a degree of confusion, particularly between adjacent dust levels. This suggests

that further refinement may be needed in the model to improve its ability to

differentiate between intermediate dust categories. For instance, to enhance the

model’s performance, increasing the database size or refining the criteria used to

define each class could be considered.

4.2.1 Three Levels of Dust Classification

The use of three levels of dust classification (“Clean”, “Middle”, “Dirt”) instead

of four (“Clean”, “Middle 1”, “Middle 2”, “Dirt”) simplifies the problem and

offers practical advantages without sacrificing the operational usefulness. First,

merging the intermediate levels simplifies decision-making, as the distinction be-

tween slightly dusty (Middle 1) and moderately dusty (Middle 2) surfaces often

does not result in different maintenance actions. A single ”Middle” category

still captures the necessary gradations between clean and heavily soiled collec-

tors, while minimizing confusion. Additionally, reducing the number of classes

improves the robustness of the classification model, lowering the risk of misclas-

sification and increasing overall accuracy. Operational relevance is another key

factor; real-world applications benefit from clear thresholds between clean, mod-

erately dusty, and heavily soiled surfaces, without the need for more granular

categories that offer little practical benefit. Lastly, the use of three levels instead

of four reduces computational complexity, resulting in faster training times and

more efficient model deployment. Figure 4.4 shows the model performance in

terms of the confusion matrix when merging the two intermediate dust levels,

“Middle 1” and “Middle 2”, into a single “Middle” class.

The fusion of “Middle 1” and “Middle 2” into a unified “Middle” class shows

some interesting shifts. First, the model correctly classifies 88% of “Middle”

cases. 4% of the “Middle” instances are misclassified as “Clean”, and only 2%

as “Dirt”. This misclassification toward “Clean” could indicate that borderline

“Middle” cases, particularly those closer to “Middle 1”, resemble clean surfaces

optically. The slight 2% misclassification as “Dirt” suggests that a small portion

of moderately dusty surfaces may exhibit characteristics of heavily soiled ones,

though this error is minimal.
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Figure 4.4: Classification confusion matrix with three dust levels.

In summary, the fusion of the intermediate classes into a single “Middle” cate-

gory simplifies the classification problem, reducing complexity without sacrificing

significant performance. This adjustment improves the model’s robustness in

cases where the distinction between adjacent dust levels (“Middle 1” and “Mid-

dle 2”) may not be crucial for practical purposes, such as determining cleaning

schedules. By focusing on three clear categories, the model can more effectively

support decision-making in maintenance operations.
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5

Conclusions and

Recommendations

5.1 Conclusions

The research presented in this work has laid a solid foundation for the develop-

ment of a robust dust classification system in parabolic trough collectors which

was addressed in two main stages: the automatic segmentation of ROI using a

U-Net network and the subsequent classification of the segmented ROIs into four

dust levels using a CNN.

In the first stage, the U-Net network was employed to automatically segment

the ROI, identifying the areas of the collector surfaces where dust deposition

was present. This segmentation was essential for isolating relevant regions for

further analysis, ensuring that only the surfaces of interest were considered in the

classification stage. The performance of the U-Net, as measured by metrics such

as Intersection over Union (IoU) and loss, showed that the network was effective

in accurately identifying dust-covered regions, providing a reliable foundation for

the subsequent classification task.

The second stage involved classifying the segmented ROI into four dust lev-

els: “Clean”, “Middle 1”, “Middle 2”, and “Middle 3”. This was achieved using

a CNN, and the results, as presented in the confusion matrix, demonstrate the

model’s strong performance overall. The CNN achieved high classification accu-

racy for extreme dust levels, with 96% accuracy for the “Clean” class and 92%
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for the “Middle 3” class. However, intermediate dust levels, such as “Middle 1”

and “Middle 2”, exhibited some misclassification. Specifically, 12% of “Middle 1”

instances were classified as “Middle 2”, and “Middle 2” was misclassified as ”Mid-

dle 1” and “Middle 3” at a rate of 4% each. This suggests that while the model

effectively distinguishes between very clean and very dirty surfaces, it encounters

difficulties in differentiating between adjacent intermediate levels of dust.

The implementation of a GUI is crucial for translating these advanced tech-

nical methods into a user-friendly tool for operators in solar energy plants. A

GUI allows non-expert users to seamlessly input images, view the results of auto-

matic segmentation, and classify dust levels with minimal effort. This simplifies

the process of monitoring dust deposition and optimizes cleaning schedules by

providing real-time feedback on collector surface conditions. The GUI not only

enhances accessibility but also improves operational efficiency by integrating the

model’s capabilities into practical, day-to-day plant management.

In summary, the combined approach of automatic segmentation and classi-

fication successfully addresses the dust deposition problem in parabolic trough

collectors, providing a reliable system for detecting and categorizing dust accu-

mulation. While the model performs well overall, improvements in distinguishing

between intermediate dust levels would enhance its robustness, particularly for

optimizing cleaning schedules in solar energy systems.

The implementation of this system can significantly enhance the efficiency and

longevity of parabolic-trough collectors, essential components of solar thermal

power plants. By accurately monitoring and addressing dust accumulation, op-

erators can optimize collector performance, reduce maintenance costs, and max-

imize energy output.

Future research could explore the following areas to further refine and expand

the capabilities of the dust classification system:

• Real-time monitoring: Integrating the system with real-time data acquisi-

tion and analysis can enable operators to proactively address dust accumu-

lation issues, preventing performance degradation.
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• Adaptive learning: Developing algorithms that allow the model to con-

tinuously learn and adapt to changing environmental conditions and dust

characteristics can improve its accuracy and robustness over time.

• Integration with other plant systems: Integrating the dust classification

system with other plant monitoring systems, such as weather forecasting

and maintenance scheduling, can provide a more comprehensive view of

plant operations and enable predictive maintenance.

• Cost-effective implementation: Investigating strategies to reduce the hard-

ware and computational costs associated with deploying the system can

make it more accessible for a wider range of applications, including smaller-

scale solar thermal installations.

5.2 Recommendations

To train robust and accurate segmentation models based on deep learning, it is

essential to establish a comprehensive and diverse proprietary database. This

database should encompass a wide range of parameters, including:

• Lighting conditions: Images taken under different lighting conditions (e.g.,

direct sunlight, overcast, low light).

• Viewing angles: Images captured from various angles to simulate different

inspection scenarios.

• Image resolution and quality: Images with varying resolutions and quality

levels to account for real-world conditions.

To train effective classification models, the database may include other condi-

tions such as defects accurately identified and labeled. This requires a meticulous

process of manual or automated segmentation to delineate the boundaries of de-

fects within the images. On the other hand, determining the optimal height for

image acquisition is crucial for obtaining accurate and informative data. Factors

to consider include:
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• Different sizes and orientations: The height should be adjusted to ensure

that the entire collector is captured in the image.

• Image resolution: A higher acquisition height may be necessary to capture

sufficient detail.

• Environmental conditions: The height may need to be adjusted based on

factors like wind, rain, or other environmental conditions that could affect

image quality.

• Conducting experiments to evaluate the impact of different acquisition

heights on image quality and defect detection accuracy, it is possible to

determine the most suitable height.
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