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Abstract

In this work, a special two-ring single-mode photonic crystal optical fiber with

high losses of the fundamental mode is designed for multiparameter sensing applica-

tions using the lossy mode resonance phenomenon. To achieve this phenomenon, a

photonic crystal fiber with an absorptive coating was analyzed, and causal relation-

ships between design parameters and system response were found. Subsequently, a

pair of optical fibers were manufactured by varying the microstructure, and a setup

was implemented using bending to promote confinement losses. Tests were then con-

ducted to corroborate the existence of resonant modes through the influence of the

coating.

Resumen: En este trabajo se diseña una fibra óptica de cristal fotónico monomodal

de 2 anillos con altas pérdidas en el modo fundamental para aplicaciones en sensado

multiparamétrico, utilizando el fenómeno de resonancia de modos débiles. Para esto,

se analizó un sistema de fibra de cristal fotónico con recubrimiento absorbente y se

encontraron relaciones causales entre parámetros de diseño y la respuesta del sistema.

Posteriormente, se fabricó un par de fibras ópticas variando la microestructura y se

implementó un setup de estas utilizando un bending para favorecer las pérdidas por

confinamiento, y luego se hicieron pruebas para corroborar la existencia de modos

débiles resonantes mediante la influencia del recubrimiento.
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Introduction

In the last decade of the past millennium, a photonic crystal or microstructured op-

tical fiber was developed as a consequence of continuous scientific and technological

advances in physics and engineering [1, 2]. This led to the emergence of multiple

research studies in the field of photonics and physical optics due to the scientific and

technological potential of these types of devices [3, 4].

Photonic crystal fiber (PCF) technologies represent a significant advancement for

basic science, technology, and industry due to their unique capabilities and versatility

[5, 6]. In basic science, these fibers enable the exploration of new physical and opti-

cal phenomena thanks to their ability to manipulate light in ways not possible with

conventional optical fibers [7]. For example, PCFs can confine light in an air core,

allowing the investigation of light-matter interactions under conditions that mimic a

vacuum [8]. Additionally, their capacity to guide light through materials with exotic

optical properties has facilitated the study of new states of matter and the develop-

ment of highly sensitive sensors [9].

In the technological and industrial fields, PCFs have revolutionized data trans-

mission and communications, offering higher speeds and bandwidths than traditional

technologies [10]. These fibers are essential for the development of high-capacity opti-

cal communication systems, which are fundamental for modern internet and telecom-

munications infrastructure [11]. Additionally, in the industry, they are used in sensor

applications for environmental, medical, and structural monitoring due to their high

sensitivity and precision [12]. For instance, sensors based on PCFs can detect mini-

xiv
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mal changes in temperature, pressure, and chemical composition, which is crucial for

applications in areas such as biomedicine and industrial monitoring [13, 14]. These

applications not only improve the efficiency and safety of industrial processes but also

open new possibilities for the development of emerging technologies [15, 16].

Thus, in the last decade, various devices and physical systems based on PCFs have

been reported, aiming to complement, improve, or even invent methodologies that al-

low the acquisition of new technologies or the understanding of physical phenomena

that enable the continued and enhanced technological development of modern soci-

ety, both at the academic and industrial research levels, in fields that are transversal

[17, 18].

Now, physical and chemical optical fiber sensors that use Lossy Mode Resonance

(LMR) have been the subject of intensive research [19, 20]. LMR occurs due to the

interaction of light propagating through an optical fiber coated with an absorbing film

with suitable optical properties. If the modes supported by the coating are in phase

matching with the modes of the fiber, then the fiber modes can couple to the coating

modes, generating a lossy mode. LMR will undergo variation if the properties of the

film (either the refractive index or thickness) change or if changes occur in the optical

properties of the surrounding medium. These variations result in a detectable mod-

ulation of the fiber’s transmission spectrum, which constitutes a sensing effect [19, 20].

In most cases, the devices used to generate LMR are typically standard optical

fibers in which the mode propagation constants exceed the refractive index of the

coating [20]. Thus, phase-matching modes in the fiber and the coating have evanes-

cent fields in the fiber’s coating region without any form of resonance. This implies

that coupling of these modes requires close contact between the fiber core and the

absorbing film. This necessitates removing a portion of the fiber’s coating and using

a different coating material in its place to generate resonance [19].



INTRODUCTION xvi

The LMR phenomenon, as explained earlier, is generated through the coupling

in the coating of the energy contained by the fundamental mode. The fundamental

mode is characterized by having a circular pattern with graduated intensity within a

transverse trace when inspecting the output signal in an optical fiber [21, 22]. This

pattern has higher intensity at the center than at the ends, and its intensity values

are typically associated with a Gaussian distribution. When the conditions for the

propagation of only the fundamental mode within an optical fiber are met, it can be

said that all signals traveling through the core follow the same optical path under the

paraxial approximation. This considerably reduces the number of internal reflections

and, therefore, decreases optical power losses, allowing signals to travel much longer

distances or alternatively facilitating the efficient detection of changes in the trans-

mission spectrum. On the other hand, in the multimodal regime, we can observe an

intensity pattern resulting from the combination of different pure and hybrid elec-

tromagnetic propagation modes of higher order [23, 24]. In other words, an optical

fiber operating in this regime allows for significant differences in the optical paths of

the propagated rays, increasing the number of internal reflections and thus increasing

energy losses. This limits the propagation range and sensitivity of the fiber compared

to an optical fiber operating in the single-mode regime.

Now, in standard optical fibers the work regime is determined by the diameter

of the core. The larger the diameter, the greater the number of modes the optical

fiber can support for a specific wavelength. On the other hand, within the design

of special optical fibers, PCFs can be used to modify the optical properties of the

waveguide based on the microstructure defined for the fiber [25]. By modifying the

lattice parameters of the microstructure, it is possible to achieve single-mode operat-

ing regimes for specific wavelengths and it is also possible to increase the fundamental

mode losses to facilitate the creation of loss modes presented in the LMR phenomenon.

In this work, we consider the possibility of obtaining LMR using a PCF with high

losses (HL-PCF) instead of standard fiber due to the mentioned limitations [19]. The
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proposal is based on the idea that if a PCF is formed by a finite number of air chan-

nels in a dielectric matrix, then the mode propagation constants within the PCF are

typically lower than the refractive index of the matrix (in contrast to conventional

fibers) [25]. As a result, the modes leak from the fiber core, meaning the modes ex-

perience confinement losses. In PCFs, coupling occurs between the confinement loss

modes and the modes of the coating by phase-matching. Coupling of filtered modes

from different waveguides (fiber-coating) can occur at a significant distance between

the guides. This makes it possible to obtain LMR due to the coupling between the

core modes of the PCF and the modes of an absorbing film applied directly to the

outer surface of the fiber’s cladding without local modification of the cladding, as is

the case with conventional fibers. The described LMR has the advantage of allow-

ing single-mode operation in the sensor and also eliminates nearly all losses due to

diffraction in PCF irregularities[19].

In this work, a PCF was designed and fabricated to increase confinement losses

within the single-mode regime in the infrared region. Subsequently, sensing tests were

conducted using the fabricated fibers through bending, which promotes system losses

to enhance the likelihood of forming LMR. By analyzing the characteristic peaks of

the loss pattern of the mentioned system for different concentrations of glycerin, a

refractometer was obtained, intended to serve as the basis for a multiparameter sens-

ing platform.

The design of the optical fiber was carried out by implementing a numerical

method based on an experimental model proposed by Koshiba and Satoih, which

allows for defining an appropriate single-mode regime based on the geometric param-

eters of the fiber’s microstructure. The sensing device design was then developed

by studying the LMR phenomenon in PCFs, working in collaboration with Dr. Sot-

sky’s group to obtain sufficient calculations and to analyze the corresponding physical

system. Subsequently, the microstructural parameters were rescaled to define the di-

mensions of all the elements of the preform (stack) and the fabrication process was
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carried out using the drawing tower at the Center for Optical Research (CIO). Finally,

the fabricated optical fiber was used to construct a sensing system by incorporating

bending in the fiber to enhance losses and the formation of LMR, allowing the mea-

surement of refractive index variations. Characterizations were obtained for glycerin

concentrations.

Thus, the design and fabrication of a multiparameter sensing platform were car-

ried out using a system composed of PCF with high confinement losses, to which

bending was applied to promote the formation of LMR in the coating. During the

study of the sensing system design, two scientific articles were published, the results of

which contribute to the construction of the theoretical framework that allows for un-

derstanding the physics of the LMR phenomenon in the PCF-coating system through

causal relationships between the design parameters and the system response. Finally,

this multiparameter sensing system was used to characterize the concentration of

glycerin by studying the LMR peaks.
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Objectives

General objective

Fabricate and investigate special photonic crystal fibers for multiparameter

sensing.

Specific objectives

Design a multiparametric sensing system based on photonic crystal fiber

to study the formation of Lossy Mode Resonance in an absorbing coating.

Establish causal relationships between the design parameters and the LMR

response in a PCF through computational calculations.

Manufacture a serie of single-mode photonic crystal optical fibers with high

confinement losses.

Build a multiparameter sensing platform that allows measuring variations

in refractive index using a single-mode optical fiber with high confinement

losses.

xxii



Chapter 1

Fundaments of Fiber Optics

1.1 Guided waves

A PCF is a waveguide. For this reason, it is of our interest to describe in this chap-

ter the physical foundations that allow its theoretical conceptualization. In the first

instance, the description of this physical system is done by considering the propaga-

tion of an electromagnetic wave (EM wave) in a material medium characterized by

possessing a particular geometry. All of this is accomplished by solving the equa-

tions proposed by James Clerk Maxwell (a Scottish physicist) in 1865, which can

have an analytical or numerical solution depending on the complexity of the problem.

Its solution is achieved through numerical methods such as finite difference meth-

ods in the time domain or in the frequency domain (FDTD: Finite Differences Time

Domain or FDFD: Finite Differences Frequency Domain, respectively). The latter

method involves a domain change and is made possible through the use of Fourier

theory, specifically its canonical transformation that allows transitioning from the

time domain to the spectral domain. The solution of the Maxwell’s equations en-

ables determining how the propagation of EM waves can occur within waveguides.

By this, we specifically refer to the ways in which the EM field can be distributed

within a waveguide according to a corresponding set of propagation constants (βi).

Subsequently, based on this, we can understand how, from Maxwell’s equations, one

can calculate the distribution of the electric field in a waveguide with cylindrical sym-

1
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metry to study its possible propagation modes associated with the electromagnetic

field [1]. This will allow us to configure what is understood as the Fiber Optic (FO)

and then define its optical properties [2, 3].

1.1.1 Maxwell’s Equations in Materials

A waveguide is any material object that allows for the manipulation of electromagnetic

radiation in such a way that its propagation can be controlled. This specifically

refers to controlling the path followed by a beam of light when it is confined within a

material and allows for controlled propagation of radiation within it. To achieve this,

the principle of total internal reflection (TIR) exhibited by electromagnetic radiation

when it transitions from one medium to another is utilized. This results in an angular

deviation from its propagation direction away from the normal, and beyond a certain

angle of incidence, this deviation causes the radiation to continuously reflect along the

material [4]. Below is the total internal reflection condition derived from Snell’s law

for a transmission angle of π/2, n1 and n2 are the refractive indices of the media, θ1 y

θ2 are the angles of incidence and transmission respectively which are measured from

the normal of the interface to the incident or transmitted beam, all of this information

being contained in the same plane known as the plane of incidence:

n1 sin θ1 = n2 sin θ2, (1.1)

θ1 = arcsin(
n2

n1

), n2 > n1. (1.2)

As already mentioned, a mathematical description of the propagation of a light

beam through a material can be given using Maxwell’s equations. Electromagnetic ra-

diation is composed of two fields that oscillate in time, generating each other through-

out space and can be described as two functions E⃗(r⃗, t) y H⃗(r⃗, t), where by using the

method of separation of variables to solve the differential equations that satisfy it

can be obtained that the temporal part has a complex exponential solution whose

argument is negative and depends on the product between the angular velocity ω and

the time t, all this just for a monochromatic electromagnetic (EM) wave [2]. Thus,
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the equations that must satisfy these fields have the form:

∇⃗ · (ϵ0n2E⃗) = σ, (1.3)

∇⃗ · (µ0H⃗) = 0, (1.4)

∇⃗ × E⃗ = −µ0
∂H⃗

∂t
= iωµ0H⃗ = i

√
ϵ0
µ0

kH⃗, (1.5)

∇⃗ × H⃗ = J⃗ + ϵ0n
2∂E⃗

∂t
= J⃗ − iωϵ0n

2E⃗ = J⃗ − i

√
ϵ0
µ0

kn2E⃗, (1.6)

of which, considering that the electrical permittivity (ϵ) and magnetic permeability

(µ) do not change in time but only in space (r⃗) and which can also be written as

ϵ(r⃗) = n2(r⃗) and also because in practice the magnetic contribution of the materials

that serve as a medium is considered weak, it has to be µ = µ0, wave equations can

be constructed that must satisfy both fields [2]. The wave equation for the electric

and magnetic field has the form:

(∇⃗2 + k2n2)E⃗ = −∇⃗(E⃗ · ∇⃗ ln n2)− i

√
µ0

ϵ0

{
J⃗ +

1

k
∇⃗(

∇⃗ · J⃗
n2

)

}
, (1.7)

(∇⃗2 + k2n2)H⃗ = (∇⃗ × H⃗)× ∇⃗ ln n2 − ∇⃗ × J⃗ − J⃗ × ∇⃗ ln n2. (1.8)

Now, to find the solutions to these wave equations, we need to define the boundary

conditions and initial conditions and rewrite the problem in the coordinate system

that best fits the geometry presented.

Specifically, in the case of PCFs, their boundary conditions will be given by the

structure of the photonic crystal, which can be characterized by including the periodic

variations of the electrical permittivity ϵ(r⃗), On the other hand, the initial conditions

and geometry of the waveguide are identical to those used for a conventional FO.

The solution of this approach for PCFs is done by using the generalized plane wave

method that encompasses the vector nature of Maxwell’s equations [5]. This method

is an extension of the scalar plane wave method widely used in solving the Schrödinger

wave equation for electrons immersed in periodic potentials. Specifically, the previous

problem of finding solutions to the wave equation for a PCF can be rewritten as an
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eigenvalue problem, where it is then possible to obtain its solution through numer-

ical simulation by applying the aforementioned plane wave method. This method

incorporates the use of Bloch’s theorem, transforming the direct space into reciprocal

space by introducing Fourier series expansions and their transforms. This approach

allows us to determine the permitted and forbidden energy bands that arise due to

the periodicity exhibited by the functions describing this physical system, which is

characterized by having a periodic lattice structure [5].

1.1.2 Optical Fibers: Cylindrical Coordinates

To solve the system of equations posed in the previous section, it is necessary to

introduce the Laplacian operator as the sum of its transverse component (XY plane)

plus its longitudinal component (z-axis). This is possible because an optical fiber

remains invariant under longitudinal translations. Similar to the temporal solution

obtained for the longitudinal component, it is possible to perform a separation of

variables, and the solution is analogous. However, the product inside the argument

of the negative imaginary exponential now involves the propagation constant β and

the z-component of the position vector [2]. Thus, considering that there are no net

nonzero current densities or point charges in the material where the electromagnetic

wave propagates, the previous problem can be reformulated as follows:

E⃗(r⃗, t) = e⃗(r⃗t)e
i(βz−ωt), (1.9)

H⃗(r⃗, t) = h⃗(r⃗t)e
i(βz−ωt), (1.10)

∇⃗ = ∇⃗t + ẑ
∂

∂z
= r̂

∂

∂r
+

ϕ̂

r

∂

∂ϕ
+ ẑ

∂

∂z
, (1.11)

(∇⃗2
t + k2n2 − β2)e⃗ = −(∇⃗t + iβẑ)(e⃗t · ∇⃗t ln n2), (1.12)

(∇⃗2
t + k2n2 − β2)⃗h = ((∇⃗t + iβẑ)× h⃗)× ∇⃗t ln n2. (1.13)

The above system of equations must be solved for each of the components of the

electric and magnetic fields. For this purpose, equations 1.5 and 1.6 are utilized,
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enabling the expression of the transverse components of these fields in terms of com-

binations of their longitudinal components of the electric and magnetic fields. Thus,

we have:

er =
1

n2k2 − β2

{
β
∂ iez
∂r

+

√
µ0

ϵ0

k

r

∂ ihz

∂ϕ

}
, (1.14)

eϕ =
1

n2k2 − β2

{
β

r

∂ iez
∂ϕ

−
√

µ0

ϵ0
k
∂ ihz

∂r

}
, (1.15)

hr =
1

n2k2 − β2

{
β
∂ ihz

∂r
−
√

µ0

ϵ0

kn2

r

∂ iez
∂ϕ

}
, (1.16)

hϕ =
1

n2k2 − β2

{
β

r

∂ ihz

∂ϕ
+

√
µ0

ϵ0
kn2∂ iez

∂r

}
. (1.17)

Finally, by substituting these relationships into the system generated by equa-

tions 1.12 and 1.13, coupled differential equations for the longitudinal components of

both fields are obtained. The solution of these equations automatically allows for the

calculation of the other components. As mentioned earlier, there is a direct relation-

ship between the longitudinal and transverse components. The coupled equations are

presented below:

∇⃗2
t ez + (n2k2 − β2)ez −

d ln n2

dr

β

(n2k2 − β2)

{
β
ez
∂r

+

√
µ0

ϵ0

k

r

∂hz

∂ϕ

}
= 0, (1.18)

∇⃗2
thz + (n2k2 − β2)hz −

d ln n2

dr

n2k2

(n2k2 − β2)

{
hz

∂r
+

√
ϵ0
µ0

β

kr

∂ez
∂ϕ

}
= 0. (1.19)

1.1.3 Propagation Modes

Now, it will be important to define what modes of propagation will exist in the

waveguide based on the values assigned to its components. In particular, there are

transverse electric (TE) and transverse magnetic (TM) modes that are defined by

nullifying their respective z-components [2]. That is, a TE mode has a null ez com-

ponent, and a TM mode has a null hz component. Now, when both components are

null, we refer to them as transverse electromagnetic (TEM) modes, which are the

typical modes under which electromagnetic waves propagate in a vacuum. Finally,

in general, when there are no null components, we refer to them as hybrid modes
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HE and EH [2]. Below is a diagram showing the first propagation modes present

in an optical fiber according to their characteristic parameters such as normalized

frequency (V ) and normalized propagation constant (β). This diagram illustrates

the different modes and their regions based on characteristic parameters in an optical

fiber, providing a visual representation of the variety of propagation modes supported

by the waveguide.

Figure 1.1: Diagram β vs V showing the first modes of
propagation of an FO [6].

Now, the propagation modes generated by a cylindrical resonator are the TEMρ,l

modes, where ρ is the radial number representing the quantity of concentric rings

associated with intensity, and l is the angular number representing the quantity of

divisions associated with the radial structure [2]. The modes propagated in an optical

fiber are of a vectorial nature and can be approximated using scalar mode theory

through the linear polarization of the modes ([2] and [6]). This is achieved by grouping

the different modes into sets using LPn,m, where the indices n and m traverse the

mode groups distributed on the β vs V diagram, as shown previously. Below, the

TEMρ,l modes generated by a cylindrical resonator are illustrated in the diagram
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that illustrates the TEMρ,l modes generated by a cylindrical resonator. The radial

number ρ and angular number l determine the characteristics of these modes, and

they are distributed in groups on the β vs V diagram.

The donut mode TEM∗
0i is a specific laser beam pattern formed by the super-

position of two TEM∗
0i modes, where i is an integer (e.g., 1, 2, 3). To create this

mode, one TEM∗
0i mode is rotated by an angle of 360◦

4i
relative to the other before

they are combined. This rotation and superposition result in a beam profile with a

dark central region and a bright, ring-like intensity distribution, giving it a donut

appearance. The syntax for describing this mode is TEM∗
0i, where i indicates the

specific configuration of the superimposed modes.

Figure 1.2: TEMρ,l propagation modes generated by a
cylindrical resonator [7].

1.2 Properties of Optical Fibers

There are several important characteristics in optical fibers (FO) such as: Numerical

Aperture, Normalized Frequency, Attenuation, and Cutoff Wavelength. These char-

acteristics are crucial as they determine the mode and efficiency of operation of an
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optical fiber.

1.2.1 Numerical Aperture (NA):

The numerical aperture of an optical fiber provides an indication of how many light

rays can satisfy the condition of total internal reflection (TIR) along the fiber. Its

value is calculated as the square root of the difference of the squares of the refractive

indices of the core n1 and the cladding n2, respectively, or the product of the sine of

the maximum angle θmax that satisfies TIR and the refractive index of the medium

n0 where the fiber is located ([6] and [1]). Mathematically, it is expressed as:

NA =
√
n2
1 − n2

2 = n0 sin(θmax). (1.20)

This measure is fundamental for understanding the fiber optic’s ability to collect

and guide light, and a higher numerical aperture value typically indicates greater

light-capturing capacity and improved signal transmission efficiency.

For other hand, numerical aperture also determines the resolution of an optical

system together diffraction which also influences what can be resolved. Diffraction is

a phenomenon that causes light to scatter as a wave. This property prevents even the

highest resolution lens from being able to focus on a single pinpoint source, resulting

in the focal point being more of a disk than a point. The smallest resolvable disk of

light is known as the Airy disk, and its radius is expressed by the following formula

r = 0.61 λ/NA (1.21)

The value of this formula represents the resolution. According to this equation,

the higher the numerical aperture, the smaller the radius of the Airy disk. Therefore,

a lens with a higher NA can resolve smaller features, leading to a sharper image.
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1.2.2 Normalized Frequency

The normalized frequency provides an indication of the number of modes a fiber

optic can support and is directly proportional to the numerical aperture. For values

of normalized frequency less than 2.405, it is said that an optical fiber operates in

the single-mode regime, and for values greater than or equal to this threshold, the

fiber optic transitions to the multimode regime ([6] and [1]). The limit at which the

transition from one regime to another occurs is characterized by the cutoff frequency

that the source coupled into the fiber must have. Mathematically, the normalized

frequency is expressed as:

V =
2π

λ
a NA. (1.22)

Where 2π
λ

is the wave vector associated with the source coupled into the optical

fiber, a is the diameter of the optical fiber, and NA is its numerical aperture. This

parameter is crucial for determining the number of modes a fiber can support and,

consequently, significantly affects its performance in terms of transmission capacity

and signal quality.

1.2.3 Attenuation

Attenuation is a measure of the transparency or purity of the material from which

the optical fiber is made and is directly proportional to the material’s absorption at

a specific wavelength. This quantity can be calculated for a particular optical fiber

using an Optical Spectrum Analyzer (OSA), which obtains the power spectrum in

dBm of a white light source transmitted through the optical fiber at two instances:

the first involves the measurement (P0) over a short length (for example, L0 = 1m)

of the optical fiber, which is used as a reference, and the second involves another

measurement (P1) over a long length (for example, L1 = 10m) of the optical fiber ([6]

and [1]).

Finally, the calculation of attenuation can be obtained as the difference between

these spectra. This subtraction yields the attenuation, providing information about
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the loss of power as the light travels through the optical fiber over the specified lengths

L0 and L1.

α[dB/m] = −(P1[dBm]− P0[dBm])

∆L[m]
, (1.23)

where, additionally, there are the relationships:

P1[W ] = P0[W ] · 10
−
α ∆L

10 , (1.24)

P [dBm] = 10 log(
P [mW ]

1mW
). (1.25)

1.2.4 Fundamental mode

The fundamental mode of a Gaussian beam can be represented in intensity as follows:

I(r) = Imax e−r2/2ω2
0 . (1.26)

Where the intensity is a function of the radius (r) and decays as the argument is

quadratic and negative, modulated by the squared width of the fundamental mode

ω0. The standard deviation is given by ω0/2 ([6] and [1]). Also, there is an interesting

relationship involving the diameter of the incident beam (d2) on a positive lens with

the waist diameter (d1) it generates. This relationship is expressed as follows:

d2 =
4 λ f

π d1
. (1.27)

Where λ and f are the wavelength of the source and the focal length of the lens,

respectively. Finally, through the Marcuse equation, a mathematical relationship can

be established between the effective mode radius (ωeff) and the core radius (aeff) of a

single-mode optical fiber, which can be expressed as follows:

ωeff

aeff
= 0.65 +

1.619

V 1.5
eff

+
2.879

V 6
eff

. (1.28)

Then, once the value of ω0 is known, it is possible to calculate the numerical aperture
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as:

NA = n0 sin(θ) = n0 sin(tan−1(ω0/L)). (1.29)

Where L is the distance to the screen or reference point. This is illustrated below:

Figure 1.3: Calculation of the numerical aperture from the
width associated with the fundamental mode of propagation [8].

1.2.5 Chromatic Dispersion

Chromatic dispersion (D) is a measure of the changes in refractive index at different

wavelengths ([9] and [10]). It can be calculated as the variation of the inverse of the

group velocity with respect to the wavelength in vacuum as:

D =
d

dλ

(
1

vg

)
= −λ

c

d2neff

dλ2
+Dm. (1.30)

Where, Dm =
dnm

c dλ
is known as the material dispersion and is calculated using

the Sellmeier equation shown below:

n2
m(λ) = 1 +

B1λ
2

λ2 − C1

+
B2λ

2

λ2 − C2

+
B3λ

2

λ2 − C3

. (1.31)

For each material there are different coefficients Bi and Ci with i = 1, 2, 3.

Specifically for the case of silica, which is the material used in FOs, there are the

following coefficients represented in the table 1.1
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B1 B2 B3 C1 C2 C3

Sílice 0.696166300 0.407942600 0.897479400 4.67914826 x10−3µm2 1.3512031 x 10−2µm2 97.9340025 µm2

Table 1.1: Sellmeier coefficients for SiO2.

On the other hand, Rayleigh dispersion is also present, contributing 96% of the

losses present in an FO. The attenuation is subtended along the Rayleigh scattering,

which traces a lower bound along it. Mathematically the attenuation due to this

dispersion can be written as:

αR ∝ kB Tf

λ4
(1.32)

Where kB is the Boltzmann constant and Tf is the cooling temperature to which the

material was subjected during its manufacture.

1.3 Photonic Crystals

Photonic crystals (PCs) are structures that possess a dielectric function with peri-

odicity in one, two, or three dimensions, and their main characteristic is that they

interact with different ranges of the electromagnetic spectrum depending on the scale

of the structure’s periodicity [5]. This interaction manifests when the scale order of

the structure’s periodicity coincides with the order of the scale at which electromag-

netic radiation propagates through the PC [11]. Examples of these PCs in one and

two dimensions are Bragg gratings in optical fibers and PCFs, respectively. On the

other hand, it is generally stated that the range of wavelengths that cannot propagate

in a PC defines the photonic gap or the forbidden energy band ([12] and [5]).

In 1887, Lord Rayleigh explained the phenomenon of reflection in a system com-

posed of alternating dielectric layers with different refractive indices, where only cer-

tain wavelengths could propagate through the system [13]. A century later, in 1987,

Eli Yablonovitch [14] and Sajeev John [15] independently proposed, for the first time,

the construction of a three-dimensional photonic crystal.
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Photonic crystals are useful in the manufacturing of high-reflectance mirrors, the

generation of nonlinear optical effects, the guidance of electromagnetic radiation in a

circuit, among other applications ([16] and [17]). Ultimately, all these efforts lead to

the fabrication of photonic devices aimed at advancing various modern technological

disciplines, such as photonic computing [16].

The physical space where the structure of the photonic crystal is situated is known

as the direct space and is characterized by the vectors ai, which form a basis. When

a Fourier transformation is performed on a function defined in the direct space, it is

represented in the reciprocal space. The reciprocal space is the space of moments K,

and the region where one typically works is known as the first Brillouin zone, which

is uniquely associated with the primitive cell corresponding to the reciprocal lattice

([16] and [12]). The concept of the Brillouin zone was developed throughout the 20th

century by Léon Brillouin, a French physicist. Additionally, the first Brillouin zone

can be bounded to a minimum region known as the irreducible Brillouin zone by

considering all symmetry groups present in the lattice while maintaining the origin

of the cell ([11]). Below are the properties that the bases of both spaces must fulfill:

ai · aj = 2πδij, K = Kb + 2πp. (1.33)

For a photonic crystal fiber, its dielectric function can be defined periodically as a

step function and then expanded into Fourier series to work in reciprocal space. The

dielectric function is bounded by ϵ1 and ϵ2, representing the extreme values within

the interval defined by the constants a and b, which are associated with the hole pitch

(Λ) and hole diameter (d) of the PCF microstructure ([16] and [12]). The following

equations illustrate this:
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ϵ(r) = ϵ1 + (ϵ2 − ϵ1) h(
a
2
− |r|), (1.34)

−ε−1(y) =
∑

G ε̂−1(G)eiG·y, (1.35)

ε̂−1(G) = 1
ε1
f + 1

ε2
(1− f)δ0G +

[
1
ε1
− 1

ε2

]
f 2J1(∥G∥R)

∥G∥R (1− δ0G). (1.36)

Where f = πR2/a2 is the filling fraction, and J1 is the Bessel function of the

first kind. On the other hand, the Helmholtz equation obtained from the Maxwell

equations can be represented as an eigenvalue problem of the form ([16] and [17]):

L(W(u)) = EW(u), (1.37)

u(y) = (2π)−N/2
∫
RN û(K)eiK·ydK. (1.38)

up(Kb,y) = exp(iKb · y)ϕp(Kb,y), (1.39)

up(Kb,y +T) = exp(iKb ·T)up(Kb,y). (1.40)

Where the operator L acting on the Wannier transformation has, as its eigenfunc-

tions, the Bloch functions u, which are quasiperiodic. Now, any square-integrable

function (u) in RN can be mapped to a family of pseudoperiodic functions defined by

K, denoted as W(u) ([16] and [17]). The operator L has a set of quasiperiodic eigen-

functions that form a Hilbert basis, known as Bloch waves ([16] and [17]). Then, for

the TM polarization case, it takes the form −ε(y)−1∆, and for the TE polarization

case, it takes the form −div(ε(y)−1grad(·)) as shown below:

−ε−1(y) ∆Ez =
(w
c

)2

Ez, (1.41)

−div(ε−1(y) grad(Hz)) =
(w
c

)2

Hz. (1.42)

Finally, the electric and magnetic fields, after being substituted into their series

representations, generate the following differential equations:
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Ez(K,y) =
∑

G Ê(K,G)ei(G+K)·y, (1.43)

Hz(K,y) =
∑

G Ĥ(K,G)ei(G+K)·y. (1.44)∑
G′(K+G) · (K+G′)ε̂−1(G−G′)Ĥ(K,G′) =

(
w
c

)2
Ĥ(K,G) (1.45)∑

G′(K+G′)2ε̂−1(G−G′)Ê(K,G′) =
(
w
c

)2
Ê(K,G). (1.46)

When brought into matrix form, it defines an eigenvalue problem for the electric

field and its allowed propagation modes in terms of energy, according to the dielectric

operator defined for a PCF whose microstructure has rotational symmetry and lies

in the plane transverse to the propagation axis ([16] and [17]).

On the other hand, it is possible to approximate the waveguiding behavior of a

PCF to the ordinary waveguiding mechanism of a standard optical fiber through the

appropriate use of values associated with the two refractive indices corresponding to

the core and cladding [18]. This is schematically illustrated below.

Figure 1.4: Equivalence approximation between a PCF and a standard optical fiber
[8].

In this equivalence, the refractive index of the material used in the PCF core

is equated with the index of the new standard optical fiber’s core. The effective

refractive index corresponding to the filling factor d
Λ

is equated with the refractive

index nFSM associated with the cladding of the new standard optical fiber.
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1.4 Types of PCFs

Photonic Crystal Fibers (PCFs) can be classified into two types, depending on the

principle under which the guidance of electromagnetic radiation occurs. Thus, in the

first instance, there are PCFs whose effective refractive index allows the necessary

condition for total internal reflection. In the second instance, there are PCFs whose

guiding principle is based on the Photonic Band Gap (PBG) effect.

Now, within these two groups, there are further sub-classifications that correspond

to the specific dimensions and shape of the microstructure, determining specific prop-

erties. This classification is shown in Figure 1.5.

Figure 1.5: Classification of photonic crystal fibers according to their microstructures
and properties [8].
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Chapter 2

Lossy Mode Resonance in PCFs

2.1 Design of the Device

In the previous chapters, the optical characteristics associated with cylindrical

waveguides or optical fibers have been described. These properties allow us to predict

the behavior of the modes that a fiber optic system can support based on the materials

and dimensions of each of its parts. This fact is important to employ an appropriate

mechanism in the generation of the Lossy Mode Resonance (LMR) phenomenon, as

it mainly occurs due to the migration of loss modes from the fundamental mode in

the spectral region where a coating with suitable optical properties can support the

propagation of these modes, generating resonance.

As mentioned earlier in the introduction, conventional optical fibers need to

be modified to shorten the distance between the evanescent fields of both the modes

traveling through the coating and those migrating from the core. For this purpose,

a part of the fiber is usually removed in a cut called D, exposing the fiber core to

facilitate energy exchange with a coating that occupies the removed section, allowing

the formation of the LMR phenomenon. Fiber optics for physical and chemical sensors

using LMR have been intensively investigated for conventional fibers [1] y [2].

19
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We have designed a photonic crystal optical fiber device that avoids such modi-

fication and allows greater control over the losses of the fundamental mode depending

on the microstructure of the fiber. In this design, a simple taper or even just placing

the coating on the outside of the fiber is sufficient to obtain the LMR phenomenon.

This design is based on the information presented in the second chapter, where

it is clearly shown how it is possible to modify the optical properties of an optical fiber

based on its microstructure. In this case, we can directly define a microstructure that

promotes the propagation of the fundamental mode in the outer region by increasing

the diameter of the fundamental mode and reducing the number of rings in the fiber

to favor its migration towards the boundaries where it encounters the coating. All

of this synergistically combines to achieve greater efficiency in generating the LMR

phenomenon.

Next, we present the design of the device in question:

Figure 2.1: An adiabatic taper of the PCF with three hexagonal rings of air channels
and an absorbing coating of length L and thickness d around the taper waist of
diameter 2AW

In the figure 2.1, a photonic crystal fiber with 3 rings and a triangular hexagonal

structure can be observed. A taper is applied to this PCF, and subsequently, a coating

is placed on it. This device enables the formation of the LMR phenomenon, as will

be seen below.
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We explore another theoretical approach to achieve Loss Mode Resonance (LMR),

facilitated by a specialized photonic crystal fiber (PCF) [3]. When the PCF is com-

posed of a finite number of air channels within a dielectric matrix, the propagation

constants of PCF modes are typically lower than the refractive index of the matrix

[3, 4]. Consequently, in an unbounded matrix, the fields of these modes leak from

the fiber core, resulting in confinement losses [3, 4]. In practical PCFs with bounded

claddings and absorbing film coatings, these leaky modes can only be phase-matched

with the leaky ones of the film coatings.

The coupling of leaky modes from different waveguides can occur at a signif-

icant distance between the waveguides. This phenomenon allows the realization of

LMR through the coupling between modes of a PCF core and modes of an absorb-

ing film coating applied directly to the outer surface of the fiber cladding, without

the need for local modification of the cladding [5]. Given the current state of tech-

nology, where PCFs can be easily fabricated as single-mode [3], this approach offers

the advantages of enabling single-mode operation for sensors and almost completely

eliminating diffraction losses at irregularities in the PCF.

The investigation of LMR in PCFs was initially explored in [5], providing an

interpretation of the experimentally observed quasi-periodic transmission spectrum

of a regular PCF with an absorbing polymer coating. The aim of this work is to

evaluate the features of using LMR in PCFs for sensing applications. Numerical

estimates are presented for both modal properties of PCFs with absorbing coatings

and transmission spectra of PCFs in sensing refractive index of a liquid, pressure in

the liquid, and an adsorption nanoscale layer. The modeling is conducted using the

method of integral equations [5], a full vectorial mode solver formulated with respect

to the transverse components of the magnetic field within a PCF. This method allows

for a rigorous calculation of the fields and propagation constants of guided and leaky

modes of PCFs with layered coatings.
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2.2 Condition in PCF to get LMR.

To investigate regular and adiabatically tapered Photonic Crystal Fibers (PCFs)

with absorbing coatings, we conduct calculations involving the time factor eiωt. The

specific PCF utilized in our computations comprises a solid core surrounded by three

rings of air channels arranged in a hexagonal pattern. The material of the PCF is

quartz glass, with its refractive index ns assumed to be real and described by the

well-known three-term Sellmeier formula [6]. The parameters for the untapered PCF

are as follows: cladding diameter D0 = 123.4µm, diameter of the air holes a0 = 3µm,

and photonic crystal pitch Λ0 = 8.8µm [7].

The structure of the adiabatically tapered PCF is illustrated in Figure 2.1.

During the taper fabrication process, the diameter of the holes (a) and the pitch

(Λ) within the taper waist are adjusted according to the rule [8]: a =
(

2Aw
D0

)
a0,

Λ =
(

2Aw
D0

)
Λ0. For the taper calculations, we adopt 2Aw = 44µm and L = 3 cm as

values (see Figure 2.1); the chosen parameter values correspond to single-mode PCFs

[3, 7]. Consequently, in the subsequent analysis, PCF modes are referred to as the

fundamental modes of the PCF.

We will examine two categories of PCF modes: the first type comprises leaky

modes of PCFs with an infinite cladding, denoted as PCF core modes. The second

type includes modes of a PCF with a bounded cladding and an absorbing coating,

referred to simply as PCF modes. Modes of the first and second types exhibit distinct

imaginary parts of the propagation constants. However, they have nearly identical

real parts of the propagation constants and transverse field distributions within the

PCF core [5].

Figure 2.2 shows the modal dispersion β(λ) for the untapered Photonic Crystal

Fiber (PCF) with 2Aw = D0. Here, β represents the dimensionless complex propaga-

tion constants of PCF modes, encompassing both types and modes of the absorbing

film coating, while λ denotes the light wavelength.
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The PCF is envisioned to be coated with multifunctional butyl acrylate polymer,

characterized by a complex refractive index nc = 1.54− i0.00002, situated below the

polymer coating. The PCF is surrounded by water (εw = n2
w, nw = 1.33, see Fig.

2.1).

In the context of Fig. 2.2a, the term ’Loss’ is defined as 4π×107|Imβ|/(λ ln 10),

where Imβ represents the imaginary part of the propagation constant of the PCF

mode.

Figure 2.2b elucidates spectral dependencies, encompassing the refractive index

for quartz glass, the complex propagation constants of the PCF core mode, and the

modes of the absorbing coating. This presentation aids in qualitatively explaining

the non-monotonic character of the dependence shown in Fig. 2.2a.
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Figure 2.2: Spectral dependencies of mode propagation constants for an untapered PCF with a
polymer coating of thickness d = 20µm, surrounded by water. (a) Loss of the PCF mode, (b) Phase
diagram. Curve 1: Quartz glass refractive index. Curves 2 and 2’ represent Re(β) and Im(β) of
the PCF core mode. Curves 3 and 3’, 5 and 5’ depict Re(β) and Im(β) of TE modes of different
orders for the coating. Curves 4 and 4’, 6 and 6’ show Re(β) and Im(β) of TM modes of the same
orders for the coating. Dashed lines indicate wavelengths of phase synchronism of the PCF core and
coating modes, corresponding to intersection points of curves 3, 4, 5, and 6 with curve 2.
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The PCF core mode was calculated on the assumption that εw = εc = εs = n2
s.

According to Fig. 2.2b, for this mode, Re(β) < ns; that is, it leaks from the PCF

core. At the same time, as Re(β) > nw, the PCF mode field experiences total

internal reflection at the outer boundary of the PCF coating. Therefore, and also

since Imns = 0, loss of the PCF mode in Fig. 2.2a is entirely caused by dissipation of

its energy in the coating. The corresponding solid curve in Fig. 2.2a and curves 2, 2’

in Fig. 2.2b are computed through the method of integral equations [5]. Curves 3–6

and 3 – 6 in Fig. 2.2b are the results of a numerical solution by means of the contour

integration method [9] of the dispersion equation for modes of a planar dielectric

waveguide [10].

[γw
σ

(
εc
εw

T

− σ

iγs

(
εs
εc

)T

sin(k0σd) +

[
1 +

σ

iγs

(
εs
εc

)T
]
cos(k0σd) = 0,

where T =

0, for TE modes,

1, for TM modes, and each constant is:

(2.1)

γw =
√
β2 − εw (Re(γw) ≥ 0), γs =

√
εs − β2 (εs = n2

s,Re(γs) ≥ 0),

σ =
√

εc − β2 (εc = n2
c ,Re(σ) ≥ 0) and k0 =

2π

λ
,

(2.2)

Modeling the absorbing coating of thickness d. These curves are computed

based on the reasons that, from the point of view of the ray optics, the fundamental

mode of the PCF is mainly formed by meridional rays [5]. When considering a

reflection of such rays from the coating, the latter can be approximately replaced

by a planar-parallel layer of thickness d. In this approximation, the coating modes

should be understood as the modes of the planar dielectric waveguide. Due to the

hybrid polarization of the PCF core mode, it can be coupled with both TE and TM

modes of the coating [5].
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2.3 Dependence of LMR Modes Due to Variations

in Sensor Parameters

In Fig. 2.2b, segments of curves 3–6 located above curve 1 correspond to guided

modes of the planar dielectric waveguide, and those below curve 1 correspond to leaky

modes of the waveguide. The transition in the mode type from guided to leaky occurs

as the wavelength increases [10]. At the moment of this transition at the critical

wavelength λ = λc, the mode propagation constant β coincides with the refractive

index of the quartz glass, ns. In this case, −Im(β) reaches its minimum. As the

difference λ − λc grows, the value of −Im(β) increases sharply due to the leakage

effect (see Fig. 2.2b).

At the same time, curve 2 passes everywhere below curve 1 in Fig. 2.2b; so, the

PCF core mode is always leaky. As a result, this mode can be phase matched with

only leaky modes of the coating at resonance wavelengths indicated in Fig. 2.2 by

vertical dashed lines (at these wavelengths, real parts of the propagation constants

of the modes coincide); in Fig. 2.2a, the loss of the PCF mode sharply grows in the

vicinity of these wavelengths. As observed in Fig. 2.2a, a quasi-periodic spectrum of

the PCF mode loss can be explained by the resonance coupling of the PCF core mode

with leaky modes of the absorbing coating [5]. This coupling leads to a resonance

capture of the PCF mode energy by the coating, and to the release of heat in it.

It should be noted that there is a large difference of about 5 orders of magnitude

between the imaginary parts of the propagation constants of the PCF core mode and

the absorbing coating modes in the vicinity of the resonance wavelength in Fig. 2.2b.

This mismatch of propagation constants negatively affects the coupling noted. Since

the attenuation of the coating modes sharply decreases with decreasing wavelength

(see Fig. 2.2b), it causes a left shift of the centers of gravity of the attenuation peaks

relative to the dashed lines in Fig. 2.2a. This shift increases with an increase in

attenuation of the coating modes (see below).
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Note also that the simple qualitative coupling model described does not allow

us to fully explain the complex multi-peak loss dependence (λ) in Fig. 2.2a.

When using untapered PCFs, the mentioned coupling of leaky modes can be

rather weak. As a result, it can only be observed when sufficiently long pieces (of the

order of meters) of coated untapered PCFs are used (this conclusion follows from Fig.

2.2a). Besides, to realize the LMR, it is necessary to keep the coating thickness d con-

stant along the entire sensitive piece of the PCF, with a tolerance of 0.075λ/
√
n2
c − n2

s

[5]. For long PCF pieces and thick coatings, this requirement is difficult enough to

fulfill. It is suggested that the use of thinner coatings (less than 20µm) and adiabatic

PCF tapers with a length of a sensitive region (taper waist) of the order of centimeters

will overcome these difficulties.

Figures 2.3 and 2.4 illustrate the modal characteristics of both untapered and

tapered PCFs, both coated with the same 5µm-thick polymer coating. These figures

follow a similar format to Figure 2.2, but show that as the coating thickness (denoted

as ’d’) decreases, the spectral intervals between the dispersion curves of the coating

modes widen [5]. Consequently, in the spectral range covered by Figures 2.3 and 2.4,

only two coating modes (one TE and one TM) can be resonantly coupled with the

PCF core modes.
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Figure 2.3: Spectral dependencies of mode propagation constants for an untapered PCF with a
polymer coating of thickness d = 5µm, surrounded by water. (a) Loss of the PCF mode, (b) Phase
diagram. Curve 1: Quartz glass refractive index. Curves 2 and 2’ represent Re(β) and Im(β) of the
PCF core mode. Curves 3 and 3’, 5 and 5’ depict Re(β) and Im(β) of TE modes of different orders
for the coating. Curves 4 and 4’, 6 and 6’ show Re(β) and Im(β) of TM modes of the same orders for
the coating. Dashed lines indicate wavelengths of phase synchronism of the PCF core and coating
modes, corresponding to intersection points of curves 3, 4, 5, and 6 with curve 2. Dotted lines refer
to minima of |β − βTM | (left line) and |β − βTE | (right line)

In Figure 2.3, the resonance wavelengths are concentrated around λ = 1.24µm.

As evident from Figure 2.3a, the peak attenuation of the untapered PCF mode re-

mains comparable to that in Figure 2.2a. This implies that it is predominantly

determined by the confinement losses of the PCF core mode, which remain consistent
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in both cases. However, in the proximity of the resonance wavelengths, the values of

−Im{β} in Figure 2.3b are roughly three times higher than the corresponding values

in Figure 2.2b. This phenomenon demonstrates that reducing the coating thickness

exacerbates the mismatch between the complex propagation constants of the PCF

core mode and the coating modes. This, in turn, leads to a more pronounced left-

ward shift of the centers of gravity of the attenuation peaks relative to the dashed

lines in Figure 2.3a compared to the analogous shift in Figure 2.2a.

To quantitatively explain this shift, we have calculated the wavelengths cor-

responding to the minima of the module |β − βTE| and |β − βTM | using the phase

diagram depicted in Figure 2.3b. These wavelengths are marked in Figure 2.3a by

dotted lines, with the left of the lines indicating min |β−βTM | and the right indicating

min |β − βTE|. As observed, they align well with the primary loss peaks.

To enhance the coupling between the PCF core and coating modes and, conse-

quently, the attenuation of the PCF mode, an adiabatic PCF taper can be employed,

as shown in Figure 2.4. According to Figures 2.3a and 2.4a, such a device permits a

more significant influence of the absorbing coating on PCF transmission. Specifically,

in Figure 2.4a, the peak of the loss dependence (λ) is an order of magnitude higher

than the corresponding peak in Figure 3a. This allows for a one-order-of-magnitude

reduction in the length of the fiber segment exhibiting the LMR. However, in ac-

cordance with Figures 2.3b and 2.4b, the transition to a tapered PCF results in a

decrease in Re{β} and an increase in −Im{β} of the PCF core mode, leading to a fur-

ther misalignment of the complex propagation constants of the PCF core mode and

the coating modes. Consequently, the aforementioned simple coupled mode model

cannot fully elucidate the transmission properties of the adiabatically tapered PCF.

In fact, in Figure 2.4a, two distinct loss peaks, located close to the resonant

wavelengths λ = 1.285µm and λ = 1.299µm, exhibit significant shifts in relation to

these wavelengths. Dotted lines in Figure 2.4a, which have a similar significance as

in Figure 2.3a, provide a better match with these peaks but do not align perfectly
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with the peaks in detail. Additionally, alongside these sharp peaks, several broader

attenuation peaks are noticeable. These additional peaks are attributed to the reso-

nance coupling of the PCF core mode with modes of the PCF cladding concentrated

in the region between air channels and the absorbing coating [8]. As a result, these

cladding modes effectively interact with the coating.
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Figure 2.4: Spectral dependencies of mode propagation constants for the tapered PCF with a poly-
mer coating of thickness d = 5µm, surrounded by water. (a) Loss of the PCF mode, (b) Phase
diagram. Curve 1: Quartz glass refractive index. Curves 2 and 2’ represent Re(β) and Im(β) of the
PCF core mode. Curves 3 and 3’, 5 and 5’ depict Re(β) and Im(β) of TE modes of different orders
for the coating. Curves 4 and 4’, 6 and 6’ show Re(β) and Im(β) of TM modes of the same orders for
the coating. Dashed lines indicate wavelengths of phase synchronism of the PCF core and coating
modes, corresponding to intersection points of curves 3, 4, 5, and 6 with curve 2. Dotted lines refer
to minima of |β − βTM | (left line) and |β − βTE | (right line)

The losses observed in Figures 2.5a and b, occurring at the wavelengths λ =

1.244µm and λ = 1.279µm, are attributed to the direct coupling between the tapered
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PCF mode and the absorbing coating, as illustrated in Figure 2.4.

This association is affirmed by examining Figures 2.5 and 2.6, which compare the

normalized intensity distributions Sz(x, y)/Szmax for the tapered PCF mode across

different wavelengths. Here, Sz(x, y) represents the z-component of the Poynting

vector of the PCF mode field, where the 0Z axis aligns with the PCF.

It’s important to note that, on the linear scale of Sz(x, y)/Szmax displayed

in Figure 2.5, except for a narrow vicinity around the wavelength λ = 1.244µm,

the optical density distributions for the PCF mode across the entire spectral range in

Figure 2.4 visually overlap and resemble the pattern in Figure 2.5b. For more detailed

information on the distribution of mode intensity at various wavelengths, Figure 2.6

presents distributions on a logarithmic scale (the orientation of the coordinate axes

0X and 0Y relative to the PCF cross-section is evident from Figure 2.5).
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Figure 2.5: The optical densities of the fundamental mode in the tapered PCF are
depicted for wavelengths 1.244µm (a) and 1.279µm (b). The arrows labeled "E"
denote the primary orientation of the electric field vector of the PCF mode. The
small circles represent cross-sections of the air channels encircling the PCF core.

Figures 2.6a and 2.6c offer detailed distributions of the mode intensities depicted

in Figures 2.5a and 2.5b, respectively. Meanwhile, Figure 2.6b corresponds to the

intermediate wavelength between the loss maxima shown in Figure 2.4a. As indicated

in Figure 2.6, the peaks in mode losses at wavelengths 1.244µm and 1.279µm in

Figure 2.4a are due to a relatively high normalized intensity of the PCF mode in

the absorbing polymer coating. Specifically, the averaged intensities in Figures 2.6a



CHAPTER 2. LOSSY MODE RESONANCE IN PCFS 34

and 2.6b, delineated between dashed lines, are over 4 orders of magnitude higher

compared to the similar intensity in Figure 2.6b.

Figure 2.6: The intensity distributions of the fundamental mode in the tapered PCF,
Sz(x, 0)/Szmax, are shown at wavelengths 1.244µm(a), 1.26µm(b), and 1.279µm(c).
The dashed lines mark the boundaries of the polymer coating.
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Furthermore, it is noteworthy that the optical field between the PCF core and

the absorbing coating, seen in Figures 2.5a and 2.6, adopts the shape of standing

waves, a natural occurrence owing to the coupling between the PCF core and PCF

coating facilitated by propagating waves.

In summary, the intensity distributions presented in Figure 2.6 validate the link

between the emergence of spectral peaks in PCF mode losses and the resonant capture

of mode energy by the absorbing coating.

2.4 Calculation for sensing by LMR in PCF

Given the susceptibility of the modal characteristics of the PCF absorbing coat-

ing to environmental factors, alterations in environmental parameters induce a mod-

ulation in the propagation constants of leaky modes within the absorbing coating.

This modulation, in conjunction with the coupling of these modes to the PCF mode,

subsequently influences the fiber transmission near resonance wavelengths.

Figures 2.7 and 2.8 pertain to the adiabatic PCF taper coated with a polymer

layer of thickness d = 5µm, surrounded by water, as previously examined. These

figures demonstrate the utilization of the LMR associated with the direct coupling

between the PCF mode and the leaky coating modes occurring close to λ = 1.28µm

(refer to Fig. 2.4a). Figure 2.7 showcases the application of the discussed PCF taper

as a refractive index sensor for liquids, a potential application in bio-chemical sensing

[11, 12].
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Figure 2.7: The change in the transmission spectrum of the adiabatic taper in the
PCF, having a length of L = 3 cm and a polymer coating thickness of 5 µm, varies
according to alterations in the refractive index within the surrounding liquid.

In this scenario, the efficacy of the sensor can be quantified by the sensitivity

parameter dλmin/dnw, where dλmin denotes the shift in resonance wavelength corre-

sponding to an infinitesimal increase in the refractive index of the environment (dnw),

and by a resonance spectral width (δλ0.5), influencing the signal-to-noise ratio [13].

The interrelation of these parameters with the thickness of the polymer coating

is presented in Table 1. Here, λmin signifies the resonance wavelength, Transmission(λmin)

represents the corresponding PCF transmission at the initial environmental refrac-

tive index nw = 1.33, and δλ0.5 is the resonance spectral width calculated as δλ0.5 =

λ2 − λ1, where λ2 and λ1 (λ2 > λ1) are the roots of the equation:

Transmission(λ) = 0.5 [1 + Transmission(λmin)]

The values for these parameters, derived for various thicknesses of the polymer

film, are presented in Table 2.1. Comparative analysis suggests that in contrast to
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multimode sensors employing an absorbing polymer coating directly applied to the

silica fiber core [14], the considered devices exhibit lower sensitivity to alterations in

the refractive index of the surrounding liquid. However, they display a more than

tenfold decrease in the spectral width of resonances. Notably, unlike the refractive

index sensors examined in [14], the sensitivity of the described PCF sensors diminishes

as the thickness of the absorbing coating increases. These distinctions stem from the

specific interaction between the leaky coating modes and the environment and the

single-mode functionality of the sensor.

Table 2.1: The adiabatically tapered PCF with a polymer coating can serve as a
refractive index sensor. In this context, RIU stands for Refractive Index Unit.

Figure 2.8 exhibits the potential of utilizing the adiabatically tapered PCF with

a polymer coating as a liquid pressure sensor. Such a sensor holds applicability in

various domains such as petroleum pipelines, water conservancy, hydropower, and

hydraulic machinery.
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Figure 2.8: The modification in the transmission spectrum of the adiabatic taper in
the PCF, featuring a length of L = 3cm and a polymer coating with a thickness of
5µm, is contingent upon fluctuations in pressure within the surrounding liquid.

In evaluating the pressure sensor, we considered that alterations in pressure

lead to changes in the coating’s thickness (∆d) and the photo elastic shift (∆nc) of

the coating’s refractive index. Both these factors affect the propagation constants of

the coating’s leaky modes. In accordance with elasticity theory [15], the relationship

between the increment in coating thickness and the increment in pressure (∆P ) in

the environment is given by the formula:

∆d = −∆PB(B2 + A2
W )(1 + σ)(1− 2σ)

E [B2 + A2
W (1− 2σ)]

Here, B = Aw+d, E represents Young’s modulus, σ is the Poisson’s ratio for the

coating. The photo elastic shift (∆nc) is estimated using the formula ∆nc = K∆P ,

where K denotes Brewster’s coefficient. For butyl acrylate, we considered σ = 0.3,

K = 10−101/Pa, and E = 7 × 108Pa. Neglecting slow phase effects arising from

PCF cladding and core deformation due to the significantly higher Young’s modulus
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of quartz glass, the pressure increments in the surrounding liquid directly modulate

the PCF transmission. As depicted in Figure 2.8, the sensitivity of the described

pressure sensor is estimated as dλmin/dP = 4× 10−5µm/atm. According to Eq. (1),

the sensitivity can be altered by adjusting the thickness of the polymer coating (it

will increase with an increase in d).

Figures 2.7 and 2.8 indicate that sensors employing an absorbing polymer coat-

ing are well-suited for assessing parameters in liquids.

While numerous absorbing coatings for silica fibers are currently known [1, 2],

our calculations reveal that most of these coatings can be used in sensors similar to

those considered here. However, the impact of leaky mode resonance coupling varies

when employing low-refractive and high-refractive absorbing coatings, as evidenced by

data presented in Figures 9 and 10. These figures pertain to tin dioxide coatings doped

with antimony (7 wt%) that selectively adsorb ammonia molecules from air. The

calculations were carried out for the adiabatic taper with the mentioned parameters,

but surrounded by air instead of water. The SnO2 coating has a thickness of 0.6µm,

its complex refractive index is nc = 1.90819 − i0.00042, and an adsorption layer

of ammonia molecules on the outer surface of the coating possesses a thickness of

0.37nm and a refractive index na = 1.355. These parameters were chosen based on

experimental data obtained using the prism-coupler scheme [16]. Figures 2.9 and 2.11

depict the sensor’s initial state in the absence of an adsorption layer.

Upon comparing Figs. 2.4b and 2.9b, the transition from a low-refractive to

a high-refractive coating noticeably increases the attenuation of coating modes at

wavelengths corresponding to the intersection points of curves 3 and 4 with curve

2. This intensifies the mismatch between the complex propagation constants of the

PCF core mode and coating modes, making the above coupling-mode model even

more significant. This may explain the presence of only one loss peak in the vicinity

of the dashed curves in Fig. 2.9a, contrary to the previously observed two peaks.
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Figure 2.9: The spectral relationships of mode propagation constants are presented for the tapered
PCF with a SnO2 coating of 0.6µm thickness, surrounded by air. The description of the curves is
as follows: Curve 1 represents the refractive index of quartz glass. Curves 2 and 2’ correspond to
the real (Reβ) and imaginary (Imβ) components of the PCF core mode. Curves 3 and 3’ depict
the real (Reβ) and imaginary (Imβ) components of the TE mode of the coating. Curves 4 and 4’
exhibit the real (Reβ) and imaginary (Imβ) components of the TM mode of the coating. Dashed
lines indicate the wavelengths of phase synchronism between the PCF core and coating modes.
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Figure 2.11 compares the intensity distributions of the PCF mode at resonant

(λ = 1.297µm) and non-resonant (λ = 1.26µm) wavelengths (see Fig. 2.9a), holding

a similar significance to Fig. 6. An analysis of Fig. 2.11 allows for conclusions akin

to those drawn from the examination of Fig. 2.6 earlier.

Figure 2.10: The shift in the transmission spectrum of the adiabatic taper in the
PCF, having a length of L = 3cm and a tin dioxide coating with a thickness of
0.6µm, occurs upon the creation of an adsorption layer of ammonia molecules, with
a thickness of 0.37nm, on the surface of the coating.

Figure 2.10 demonstrates the alteration in the transmission spectrum of the

SnO2-coated adiabatically tapered PCF when an adsorption layer of ammonia molecules

is deposited on the coating. The thickness of this adsorption layer is known to be

contingent upon the concentration of ammonia in the atmosphere. Moreover, it is im-

perative to note that an excessive release of ammonia can pose a threat by polluting

the atmosphere [17].

Based on the data presented in Figures 2.9, 2.11, and 2.10, sensors utilizing high-

refractive absorbing coatings, as described, exhibit potential for detecting nanoscale
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adsorption layers.

Figure 2.11: The distributions of the tapered PCF fundamental mode intensity
Sz(x, 0)/Sz max are illustrated at wavelengths 1.297µm(a) and 1.26µm(b). Dashed
lines mark the boundaries of the tin dioxide coating.

We conducted theoretical investigations of the Leaky Mode Resonance (LMR)

by utilizing specific single-mode PCFs with thin-film absorbing coatings of varying
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thickness and refractive indices. The emergence of this LMR was attributed to the

interaction between fundamental leaky modes of the PCF core and the coating. Our

analysis of intensity distributions for the PCF fundamental mode revealed that the

coupling between the PCF core mode and the absorbing coating, situated on the

outer surface of the PCF, occurs through waves propagating within the fiber cladding,

generating standing waves within the cladding.

We found that LMR in PCFs can be achieved by applying a thin-film coat-

ing directly to the outer surface of the PCF cladding without locally modifying the

cladding. This results in multi-peak spectral transmission in the PCF. Two qual-

itative mechanisms were proposed for implementing such transmission. The first

involves resonance coupling of the leaky fundamental PCF mode with the coating’s

leaky modes, leading to the capture of the fundamental PCF mode’s energy by the

coating and subsequent heat release. The second, observed in PCFs with sufficiently

small cladding diameters in adiabatically tapered special PCFs, comprises resonance

coupling of the leaky fundamental PCF mode with cladding modes located between

air channels and the absorbing coating.

Compared to the latter mechanism, the first mechanism allows for the real-

ization of narrower spectral absorption bands, making it more appealing for sensor

applications. We demonstrated, through examples such as refractive index, pressure,

and ammonia molecular adsorption layer sensors, that minor changes in the refractive

index and/or the PCF absorbing coating’s thickness lead to detectable spectral shifts

in PCF transmission near resonance wavelengths.

Compared to LMR sensors utilizing standard multimode fibers where the ab-

sorbing coating is applied directly to the fiber core, the investigated sensors are less

sensitive to changes in the refractive index of the surrounding liquid. However, they

exhibit spectral widths of resonance more than an order of magnitude lower. No-

table advantages of the considered sensors include their single-mode operation and

the potential to almost entirely eliminate diffraction losses of light energy in the PCF
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sensitive segment.

This work aimed to outline the fundamental aspects of LMR in PCFs with

absorbing coatings and did not delve into optimizing sensor capabilities in detail.

The detailed exploration and experimental realization of these devices will be the

focus of a separate forthcoming publication.
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Chapter 3

Methodology of Manufacturing PCFs

3.1 Experimental Model to Calculate Optical Prop-

erties of PCFs

To study optical properties of PCFs, Koshiba and Satoih propose an experimental

fitting model for the normalized frequency (V ) associated with a hexagonal photonic

crystal fiber that operates at a wavelength (λ) and has an effective core radius (aeff =

Λ/
√
3). On the other hand, the normalized frequency can be decomposed into the

parameters U and W , associated with normalized transverse phase and attenuation

constant, respectively. Now, these parameters do not relate the core refractive index

(nco) to the cladding refractive index (nFSM), but rather concatenate these indices

with the effective refractive index (neff ) associated with the photonic crystal structure

present in the optical fiber ([1] and [2]). The decomposition of the parameter V into

the parameters U and W is shown below.

V =
2π

λ
aeff

√
n2
co − n2

FSM =
√
U2 +W 2 (3.1)

U =
2π

λ
aeff

√
n2
co − n2

eff (3.2)

W =
2π

λ
aeff

√
n2
eff − n2

FSM (3.3)
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3.2 Calculation of parameter V

The parameter V has an effective value for an effective core radius equal to the lattice

spacing parameter. This value is shown below along with its corresponding fitting

parameters aij.

Veff =
2π

λ
Λ
√
n2
eff − n2

FSM (3.4)

V

(
λ

Λ
,
d

Λ

)
= A1 +

A2

1 + A3exp(A4λ/Λ)
(3.5)

Ai = ai0 + ai1

(
d

Λ

)bi1

+ ai2

(
d

Λ

)bi2

+ ai3

(
d

Λ

)bi3

(3.6)

i=1 i=2 i=3 i=4
ai0 0.54808 0.71041 0.16904 -1.52736
ai1 5.00401 9.73491 1.85765 1.06745
ai2 -10.43248 47.41496 18.96849 1.93229
ai3 8.22992 -437.50962 -42.4318 3.89
bi1 5 1.8 1.7 -0.84
bi2 7 7.32 10 1.02
bi3 9 22.8 14 13.4

Table 3.1: Adjustment coefficients for the parameter V .

Below is the behavior of the parameter V for some PCFs with specific values for

the filling ratio d/Λ.
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Figure 3.1: Behavior of the parameter V for some PCFs [3].

Also, it is possible to observe the single-mode and multimode regions by making

a contour plot of the parameter V , specifically for the value 2.405, in relation to its

independent variables λ/Λ and d/Λ. Below is the result:

Figure 3.2: Single-mode and multimode regions using a contour plot of the normalized
frequency [1].



CHAPTER 3. METHODOLOGY OF MANUFACTURING PCFS 51

3.3 Calculation of parameter W

Analogously, for the parameter W we have:

W

(
λ

Λ
,
d

Λ

)
= B1 +

B2

1 +B3exp(B4λ/Λ)
(3.7)

Bi = ci0 + ci1

(
d

Λ

)di1

+ ci2

(
d

Λ

)di2

+ ci3

(
d

Λ

)di3

(3.8)

i=1 i=2 i=3 i=4
ci0 -0.0973 0.53193 0.24876 5.29801
ci1 -16.70566 6.70858 2.72423 0.05142
ci2 67.13845 52.04855 13.28649 -518302
ci3 -50.25518 -540.66947 -36.80372 2.7641
di1 7 1.49 3.85 -2
di2 9 6.58 10 0.41
di3 10 24.8 15 6

Table 3.2: Adjustment coefficients for parameter W .

Below is the behavior of the parameter W for some PCFs with specific values for

the filling ratio d
Λ
.
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Figure 3.3: Behavior of the parameter W for some PCFs [3].

3.4 Effective refractive index nFSM

Finally, the parameter of interest for calculating, for example, chromatic dispersion

is the effective refractive index. To obtain it, it is necessary to solve the system of

equations formed by equations 3.3 and 3.4 once the values of V and W are known,

which are obtained using equations 3.5 and 3.7, collecting all the coefficients shown

in tables 3.1 and 3.2 respectively ([1], [4], [2]). Now, the behavior of the refractive

indices neff and nFSM for different PCFs can be observed below:



CHAPTER 3. METHODOLOGY OF MANUFACTURING PCFS 53

(a) neff

(b) nFSM

Figure 3.4: Behavior of the effective and cladding refractive indices under approxi-
mation for different PCFs [3].

So, in Figure 3.5, the chromatic dispersion is shown after fixing a lattice parameter

(Λ = 2.5 µm) and varying the dimension of the holes to obtain different filling ratios

(d/Λ).
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Figure 3.5: Chromatic dispersion for a PCF with a lattice parameter Λ = 2.5 µm and
different hole diameters [3].

3.5 Design of the preform.

The manufacturing process of a PCF begins with the design of a stack (a set of stacked

elements forming the structure of a photonic crystal fiber). The stack is composed of

rods (solid tubes that help fix the stack’s structure), tubes (hollow tubes that provide

the hexagonal structure of the photonic crystal), and the core located in the center

of the photonic crystal, which is typically made of silica. The mentioned pieces can

be stacked using an epoxy resin binder with a refractive index similar to that of silica.

To determine the dimensions of the tubes, the first step is to define the dispersion

zero that the PCF will have according to the required applications. Once this is

defined, a dispersion curve is generated, and its zero is approximated as proposed.

Since the dispersion curve explicitly depends on the structural parameters of the

PCF (d and Λ), it is possible to scale these parameters according to the dimensions
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of standard elements in fiber optic manufacturing processes to obtain the dimensions

that the tubes should have. Subsequently, each of the tubs and rods is stretched

using a fiber optic stretching tower. Below is the final design of the stack used

to manufacture the series of PCFs obtained in this work, created using commercial

software (AutoCAD). Additionally, the calculation of the required tubs to form the

designed stack is shown, obtained from a program created in Matlab, and the program

is attached in the appendices.
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(a) Design of Stack (Tubes and Rods)

(b) Design of Stack (Tubs)

Figure 3.6: Design of Stack used to built the PCF.

This stack contains all the information to know how many tubes and rods need to

be manufactured individually and what dimensions each one must have. Additionally,

it is worth mentioning that to modify the dimensions of the external diameter of the

tubes or rods the speed with which the material is extracted from the oven is varied

by means of an electronically controlled pulley mechanism. Regarding the internal

diameter of the tubes, it can be varied by changing the pressure (normally working
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with a pressure of 100 mbar) of the flow of argon gas that circulates throughout the

material, or also by changing the temperature of the smelting furnace (normally works

at 1950 °C). This temperature is below the working temperature of 2000 °C, used to

stretch standard FO, since softening the hollow structure that a PCF has requires

less energy. This is also taken into account when splicing PCFs with FOs, since in

the process the gaps can collapse if the parameters that occur during the process are

not controlled. Below is the stack obtained in the laboratory after the manufacturing

process of around 250 tubes and 150 rods.

Figure 3.7: Arrangement of tubes and rods arranged to form the PCF preform.

Finally, the complete manufacturing of a PCF is obtained through stages that

range from the manufacturing of the tubes and rods to form the stack, to the second

preform from which the optical fiber is finally obtained. These stages are shown

below:
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Figure 3.8: Manufacturing stages of a PCF: a) CF structure (Tubes + Rods); b)
Stack; c) Cane; d) Second preform (Cane + Jacket) [3].

3.6 Preform

To obtain a PCF, it is necessary to manufacture each element of the design piece

by piece. Then, the elements are assembled and fixed by sealing the ends of the

manufactured stack. This is done to ensure that it does not come apart. The sealing

stage of the preform is shown below.

Figure 3.9: Sealing process at the preform ends for the PCF.

3.7 PCF Stretching

The phase that molten silicon dioxide or fused silica must reach to be used in the

manufacturing of optical fibers is the super cooled liquid phase, so that it can later

form a glass that is cast slowly or rapidly depending on the crystallization rate em-

ployed. The crystallization rate depends on viscosity, temperature ramp, and Gibbs
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free energy, which determines the material’s tendency to crystallize. Crystals have

a melting temperature (Tm) and do not have an associated glass transition temper-

ature (Tg); conversely, this is the case for glasses. For crystals, viscosity decreases

logarithmically with increasing temperature.

To obtain cast glass from the crystalline phase, it is necessary to apply a rapid

heating profile that transitions the material to the liquid phase. Subsequently, to

move from the liquid phase to glass, the material must be allowed to gain volume,

reducing its density progressively while decreasing the temperature. This transition

occurs consecutively from the super cooled liquid phase to the cast glass phase, either

slowly or rapidly, depending on the cooling profile employed. This process can be

applied to each glass element used in the drawing tower with the help of a furnace

that allows the material to fall by gravity. The phase diagram is illustrated below:

Figure 3.10: Phase diagram representing transitions from the crystalline or glass
phase to the liquid phase [5].

Once the preform is obtained, it is possible to obtain the PCF. Initially, there is

the preform positioning process where a light beam is used to check the material’s

continuity, and a flow of argon gas is passed through to support the structure and
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prevent it from collapsing. Subsequently, there are the PCF diameter gauges and the

stretching mechanism that allow for controlling and monitoring the PCF dimensions.

Next, the process involves adding the polymeric coating to the PCF using a liquid

solution, which is then sealed with UV radiation. Finally, the PCF is collected in

a container at the end of the process. The steps that the PCF goes through in the

drawing tower are illustrated below.

Figure 3.11: Stretching process of the PCF [3].

Now, it is worth noting that the guiding mechanism for this optical fiber is through

refractive index (IG, index-guiding) and not through a forbidden energy band since
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this PCF has a solid core of silica doped with germanium.

It is important to note that when the pressure of the argon gas flow is excessive, it

can distort the preform because the material is softened and can be deformed by the

formation of bubbles inside, due to the pushing force of the gas in the cross-section

of the preform. This is illustrated below.

Finally, we show a photograph from an optical microscope of a PCF where the

tubes or capillaries have collapsed due to the use of high pressure in the preform

during the manufacturing process. The structure of this PCF is completely distorted

compared to the designed stack.

Figure 3.12: Cross section of the PCF altered by the use of high pressures in the
capillaries seen from an optical microscope.

3.8 Confinement Losses by Influence of Microestruc-

ture Parameters of PCFs

The leakage properties depend on hole diameter, on their pitch and on the number of

ring witch define the microestructure and the behavior of the field confinement and
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its decay rate.

In figure 3.13, confinement losses are presented as functions of hole diameter with

a constant pitch for different numbers of rings and of pitch for different ratios of mi-

croestructure:

Figure 3.13: (a): Confinement loss as a function of hole diameter ’d’ normalized to
pitch ’Λ = 2.3µm’ for different numbers of rings. (b): Confinement loss as a function
of pitch ’Λ’ for different ratios ’d/Λ’. In both cases, a wavelength ’λ = 1.55µm’ is
assumed. [6]

Confinement losses decrease when the microestructure ratio increase respect to

the hole diameter. They also show high values for low number of rings and the other

way around it presents small values for many rings. Furthermore, confinement losses

decay when pitch is increased respect to different constant microestructure ratios and

they get high values for microestructure ratios with low value.

3.9 Fabrication of a 2 Ring PCF for Sensing

Fiber optic sensors exploiting lossy mode resonance (LMR) have been the sub-

ject of extensive research [7, 8]. LMR arises from the interaction between light trav-
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eling through an optical fiber and a specially designed thin-film absorbing coating,

often present on a side-polished section of the fiber cladding. When coating modes

are aligned with the fiber modes, they can couple together. The manifestation of

LMR is contingent upon the properties of the coating and variations in the surround-

ing medium’s optical properties. These alterations cause noticeable changes in the

transmission spectrum of the fiber, creating a sensory effect [9, 10].

Traditionally, devices leveraging this effect have relied on standard multimode

optical fibers, resulting in relatively broad absorption bands. Moreover, these conven-

tional fibers are notably delicate due to their modified claddings in regions supporting

LMR [11, 12].

An alternative approach to realize LMR, as discussed theoretically in the pre-

vious chapter, involves utilizing specialized photonic crystal fibers (PCFs) featuring

three air channel rings that were fabricated preliminary before starting the work on

this thesis. We spent about two and a half of months to fabricate adiabatic tapers

from these three air channel rings PCFs to confirm our theoretical results presented

in our Chapter 2. Unfortunately, by using our CIO tapering equipment we did not

fabricate the needed tapers with stable waist diameters. For this reason, we designed

and fabricated new PCFs with two air channel rings to use in our subsequent research

these untapered PCFs with an absorbing coating made from butyl acrylate polymer

mentioned in our calculation.

The stack-and-draw method [3] was employed in the fabrication of our PCFs.

The design of the preform for drawing the PCFs is outlined in Figure 3.14(a). This

preform is based on a cladding tube characterized by an inner diameter of 9.5 mm

and an outer diameter of 19.9 mm. Two complete hexagonal layers of capillaries and

supplementary rods are arranged around a solid core rod. Additional filler rods are

incorporated to mitigate preform deformation during PCF fabrication and prevent the

emergence of unintended channels. A cross-sectional view of the preform is depicted

in Figure 3.14(b).
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Figure 3.14: (a) Design of our preform and (b) a transversal image of the preform.

We produced our fibers from the previously mentioned preform in a single step

by heating it using a Centorr Vacuum Ind. optical drawing furnace and an upgraded

conventional fiber drawing tower (Heathway Inc.). This preform underwent drawing

to create two PCFs (F1 and F2), possessing an outer diameter of 124 ± 1µm. This

was achieved by utilizing varying gas pressures within the PCF preform and different

drawing velocities. Finally, the PCFs were coated with a butyl acrylate polymer,

resulting in an outer diameter of 220± 2µm.

The manufactured PCF samples, each approximately 300 meters in length, were

wound onto spools measuring 16 cm in diameter. Figure 3.15 showcases optical

microscope images, captured with a 40x objective, displaying the cleaved end faces

of PCFs (F1) and (F2) with d/Λ = 0.36 [Figure 3.15(a)] and 0.43 [Figure 3.15(b)],

respectively. Here, ’d’ represents the diameter of the PCF air channels, while ’Λ’

signifies the spacing between the air channels.
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Figure 3.15: Transversal cut images of fabricated PCFs: (a) PCF (F1), (b) PCF (F2).

To determine the geometric dimensions of ’d’ and ’Λ’ for our fibers, we employed

an atomic force microscope (Digital Instruments) with a resolution of 50 nm for 30

µm x 30 µm images. Three measurements were taken for ’d’ and ’Λ’ for each of the

fabricated PCFs, and their averages were subsequently calculated. Additionally, we

calculated the mode field diameters (MFDs) for the fabricated fibers at 1.31 µm. The

obtained results are presented in the following table.

Table 3.3: Measurement results of geometric dimensions and results of our MFD
calculations for fabricated PCFs.

Attenuation measurements were conducted using a cut-back method, as illus-

trated in figure 3.16(a). We utilized a white light source (AQ-4305) and an optical

spectrum analyzer (AQ-6315E) for these measurements. The attenuation spectra for

the fabricated fibers are depicted in figure 3.16(b). The spectra reveal three distinct
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absorption peaks corresponding to the presence of OH- function groups situated at

950 nm, 1244 nm, and 1383 nm.

The fabricated fibers operate as single-mode fibers within the wavelength range

from 550 nm to 1700 nm. They exhibit relatively high optical losses, exceeding 40

dB/km. The attenuation in the F1 fiber surpasses that in the F2 fiber due to the

smaller ’d/Λ’ ratio for the F1 fiber. Consequently, it is evident that the attenuation of

the PCF fundamental mode in our fibers can be altered by varying ’d/Λ’. Estimations

suggest that such fibers can be employed for fiber optic sensors measuring refractive

index or pressure and for detecting a nanoscale adsorption layer of ammonia molecules

deposited on a specialized, thin, absorbing coating.

Figure 3.16: (a) Experimental scheme for attenuation measurements and (b) attenu-
ation spectra for fabricated fibers.

In this study, we detail the design and fabrication process of specialized silica PCFs

containing a solid core and two air channel rings within their claddings, tailored for

use in fiber optic sensors relying on lossy mode resonance. Geometrical dimensions

of ’d’ and ’Λ’, as well as mode field diameters for our fibers, were both measured

and calculated. Two photonic crystal fibers, with relative channel diameters of ’d/Λ’

equal to 0.36 (F1) and 0.43 (F2), were fabricated and subjected to attenuation mea-

surements. These fibers exhibit attenuation rates exceeding 40 dB/km, with the F1
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fiber displaying higher attenuation compared to the F2 fiber due to its smaller ’d/Λ’

ratio.

Within our measured wavelength range spanning from 550 nm to 1700 nm, these

fibers operate as single-mode fibers. We anticipate that these developed fibers, cou-

pled with thin-film specialized absorbing coatings, hold substantial potential for di-

verse applications in various fiber optic sensors.



Bibliography

[1] Masanori Koshiba Kunimasa Saitoh. Empirical relations for simple design of

photonic crystal fibers. Optical Society of America, Optics Express, Vol. 13, No.

1, pp. 267-274, 2005.

[2] Kunimasa S. Masanori K. Applicability of classical optical fiber theories to holey

fibers. Optics Letters, Vol. 29, No. 15, pp. 1739-1741, 2004.

[3] Carlos Porras. Design, fabrication and characterization of nonlinear photonic

crystal fibers for telecommunication wavelength range and for near infrared wave-

length supercontinuum light sources. Tesis de Maestría, Centro de Investigaciones

en Óptica., 2017.

[4] Naoya Inoue Yoh Imai Yutaka Sasaki Hirohisa Yokota, Kosuke Ushiroda. Fabri-

cation of photonic crystal fiber optical attenuators with air hole diameter control

using CO2 laser irradiation technique. Elsevier, Optical Fiber Technology, Vol.

23, pp. 37–41, 2015.

[5] Alejandro Santos. Caracterización de las Propiedades Ópticas no Lineales de

Vidrios de Telurio (TeO2) con Nanocristales Embebidos por Medio de la Técnica

Z-scan. Tesis de Maestría, Centro de Investigaciones en Óptica., 2014.

[6] K. Saitoh and M. Koshiba. Confinement losses in air-guiding photonic bandgap

fibers. IEEE Photonics Technology Letters, 15(2):236–238, 2003.

[7] I. Del Villar, F. J. Arregui, C. R. Zamarreño, J. M. Corres, C. Bariain,

J. Goicoechea, C. Elosua, M. Hernaez, P. J. Rivero, A. B. Socorro, A. Urru-

68



BIBLIOGRAPHY 69

tia, P. Sanchez, P. Zubiate, D. Lopez, N. De Acha, J. Ascorbe, and I. R. Ma-

tias. Optical sensors based on lossy-mode resonances. Sensors and Actuators B:

Chemical, 240:174–185, 2017.

[8] V. P. Minkovich, V. Kir’yanov, A. B. Sotsky, and L. I. Sotskaya. Large-mode-

area holey fibers with a few air channels in cladding: modeling and experimental

investigation of the modal properties. Journal of the Optical Society of America

B, 21(6):1161–1169, 2004.

[9] T. P. White, R. C. McPhedran, C. M. De Sterke, L. C. Botten, and M. J. Steel.

Confinement losses in microstructured optical fibers. Optics Letters, 26(21):1660–

1662, 2001.

[10] J. Stone and G.E. Walrafen. Overtone vibrations of OH groups in fused silica

optical fibers. The Journal of Chemical Physics., 76:1712, 1982.

[11] U. Grzesik U. Haken O. Humbach, H. Fabian and W. Heitmann. Analysis of OH

absorption bands in synthetic silica. Journal of Noncrystalline Solids, 203:19–26,

1996.

[12] L. Bosselaar M. Bredol, D. Leers and M. Hutjens. Improved model for OH

absorption in optical fibers. Journal of Lightwave Technology., 8(10):1536–1540,

1990.



Chapter 4

Applications for Bending and RI

Sensing

4.1 Scheme of the platform system for sensing

In this chapter we present a PCF (Fiber F1) system with a dual-rings configuration

using a bending setup that allows for the characterization of substances based on

their refractive index. We demonstrate its application by measuring different concen-

trations of glycerin diluted in water.

When configuring the optical fiber system with a bending setup instead of using a

straight optical fiber, a characteristic pattern of loss peaks appears. These peaks are

formed by interference phenomena, whose appearance is associated with the optical

path difference generated by the pressure applied to the system and the formation of

resonant loss modes due to the increase in loss modes exiting the core towards the

cladding caused by the bending. The scheme is shown in the next figure:
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Figure 4.1: a) Scheme of the platform of sensing for different setups. b) setup for
measurements of different kinds of bending and c) setup for several glycerin concen-
tration measurements.

The sensing experiments consist of supplying white light to any of the given con-

figurations in the optical fiber system and then measuring the resulting transmission.

In the case of the bending configuration, the light transported inside the optical fiber

is forced out of the core due to the change in the direction of the normal vector at the

interface with the bending. This causes the spatial breakdown of the total internal

reflection principle at each interface of the curved section. Ultimately, this results

in the appearance of a loss spectrum associated with the magnitude of the applied

bending. The nature of the loss pattern is due to interference phenomena and reso-

nant loss modes, as periodicity is observed, and when the cladding is removed, fewer
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losses are observed, since the possibility of resonance is eliminated.

On the other hand, for the experiment measuring the refractive index, we have 2

fixed weights at the input and output of a bending characterized by maximum ampli-

tude. This configuration allows us to obtain a loss pattern associated with maximum

bending, and additionally, losses can be increased by including fixed weights as they

add elastic deformation to the fiber’s cross-section and possibly birefringence in the af-

fected area. The elastic deformation and birefringence produced by the fixed weights

are considered negligible for theoretical calculations but relevant for experimental

measurements because they enhance the sensitivity of the optical system.

4.2 Bending Measurements

Initially, the attenuation behavior was analyzed as a function of the separation of the

optical fiber at the ends of the bending, as shown in scheme b of the previous figure.

The appearance of a loss pattern composed of several peaks can be observed, shifting

towards the infrared from the visible spectrum starting at a bending separation or

bending diameter of 3.5 cm. The most pronounced loss peak is the last one in each

case, which we assume is due to the formation of a resonant loss mode in the bend-

ing coating area. This assumption is based on the irregularity in the amplitude and

wavelength of the peaks and the observation that when the coating is removed, the

intensity of the loss pattern decreases. This behavior is shown in the figure 4.2.
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Figure 4.2: The loss in the fiber for different bendings by changing the bending
diameter between the edges.

Subsequently, a data fitting was performed with the collected data for each peak

as a function of their separation, and it was found that the data follow a linear behav-

ior between the displacement of the last loss peak and the separation distance of the

bending ends. From this data, we can extrapolate new values beyond the measure-

ments taken with an R-squared fidelity greater than 99.85%. The remaining fitting

data are available in the upper table accompanying the fit.
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Figure 4.3: The fit for the shift of peaks for different bendings by changing the bending
diameter between the edges.

4.3 Glycerin Concentration Measurements.

Subsequently, we selected the minimum separation as it allowed for a more efficient

experimental implementation, with the transfer spectrum showing the last loss peak

in the infrared range. The first setup used was to vary the bending diameter (figure

4.1b) and and then we use the second setup to measure the glycerin concentration

(figure 4.1c).

After selecting the minimum separation for the bending, we decided to apply

weights to the input and output of the bending, as this significantly increased the
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system’s losses. Due to the system’s sensitivity to small variations in any of the pos-

sible degrees of freedom configuring the bending, multiple measurements had to be

taken and the system parameters had to be carefully monitored to obtain a charac-

teristic loss pattern. This pattern could then be analyzed for future variations when

implemented as a refractometer. Newly all that is shown in 4.1c.

The measurements of the refractometer are of particular interest for our sensing

platform, as they establish a basis for characterizing systems across multiple fields of

interest, ranging from physical variables to biomedical variables, depending on future

functionalizations of the system due to coatings that can be applied in the bending

region.

Figure 4.4: The behaviors of the losses for different concentration of glycerin.
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In figure 4.4, we observe a family of functions from the transmission spectrum

obtained for different concentrations of glycerin. We found a characteristic and sta-

ble pattern with variations in two peaks of interest. One peak shows variations in

amplitude, while the other shows variations in wavelength. As mentioned earlier, the

formation of these peaks is associated with phenomena occurring in the optical fiber

coating in the bending region, as their removal results in a significant decrease in

losses. It should be noted that the refractive index for air is 1.000, for distilled water

it is 1.333, for 60% glycerin it is 1.420, and for 100% glycerin it is 1.474.

In figure 4.5, we can clearly observe the transmission of the fiber before and

after removing the coating, as well as before and after applying the bending. This

measurement was conducted for various bending diameters, but we only show the

result for a bending diameter of 0.5 cm. The behavior was the same in all cases.

Without bending, similar results were observed with and without coating. Upon

applying the bending, greater losses were observed for the fiber with coating compared

to the fiber from which the coating was removed. This is experimental evidence that,

by using a single-mode fiber with high confinement losses, we are achieving strong

resonance in the coating when the bending is applied.
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Figure 4.5: The response of the system with a polymer coating and without coating.

Now, by taking an enlargement of the region of interest where the aforementioned

peaks are located for different glycerin concentrations, we can detail the variations

observed for each peak (amplitude and wavelength) and establish a relationship be-

tween the concentration and the changes for each corresponding peak. The zoom is

shown in the figure 4.6
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Figure 4.6: A zoom for the interest region in the transmission spectra for the platform
of sensing.

After conducting multiple measurements to ensure a characteristic loss spectrum

for different concentrations of glycerin in water, the transmission spectra of the sens-

ing system were obtained. These transmission spectra show regular variations in

two peaks of the loss pattern. Both variations are linear and vary according to the

glycerin concentration with respect to the amplitude of the losses for the last peak of

the loss pattern and the position of the penultimate peak within the same loss pattern.



CHAPTER 4. APPLICATIONS FOR BENDING AND RI SENSING 79

Figure 4.7: The variations in amplitude and wavelength for each peaks.

In the figure 4.7 we can see a record of the variations in amplitude and wavelength

for the peaks of interest.

4.4 Fitting for the refractometer

The linear fit of the data for each peak of the loss pattern allows us to determine new

sample concentrations through extrapolation. With these results, we can highlight

that the configuration given to the dual-ring PCF enables the formation of a sens-

ing system susceptible to variations in the refractive index for samples that can be

brought into contact with the system’s bending region.

In figure 4.8, the minima of the loss peaks for each glycerin concentration were

plotted. The reduction in loss depth for each loss peak corresponds to the sample
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change (water and 20% glycerin) and the densification of the medium for higher con-

centrations (60% and 100% glycerin), explaining the linear and positive trend of peak

depth versus concentration. Additionally, the slope of 0.03826 represents the sensi-

tivity of the system, as it is the ratio of the variation in losses in dBm with respect

to the different glycerin concentration percentages.

Figure 4.8: A fit for the first peak which has variations in losses

In both cases, linear fits were obtained with an R-squared of 85.38% for the first

peak and 96.97% for the second peak. Recall that these variations correspond to

wavelength and amplitude for each concentration. It is noteworthy that the displace-

ment in wavelength and amplitude is anomalous because absorption should increase

with higher concentration, and there should also be resonance at a higher wavelength
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when the concentration increases. We believe this behavior is due to the formation

of LMR in the bending region, resulting in low penetration of the evanescent field

and, consequently, modified coupling conditions compared to the findings studied in

previous chapters regarding this phenomenon.

It is also worth noting that the experimental system used as a multiparameter

platform differs significantly from the initial design analyzed in Chapter 2, as the

fiber used has 2 rings instead of 3, and bending was introduced along with some

weights at the system’s input and output. This added some birefringence to the sys-

tem in exchange for obtaining a better loss profile within the transmission spectrum

of the sensing platform. Additionally, the single-mode regime is maintained for both

studies, and the characteristic of seeking high confinement losses depending on the

number of rings is preserved.

In figure 4.9, the wavelength shifts of the other loss peak for each glycerin concen-

tration were plotted. The blue shift of the wavelength for each loss peak minimum

corresponds to the sample change (water and 20% glycerin) and the densification of

the medium for higher concentrations (60% and 100% glycerin), explaining the linear

and negative trend of the wavelength shift versus concentration. Additionally, the

slope of -0.32386 represents the sensitivity of the system, as it is the ratio of the vari-

ation in wavelength shift of the other loss peaks with respect to the different glycerin

concentration percentages.
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Figure 4.9: A fit for the second peak which has a wavelength shift.

During the completion of this doctoral thesis project, techniques were also devel-

oped to deposit layer-by-layer intercalated films of a graphene oxide and polymer.

The aim was to find the ideal thickness by observing the resulting transmission spec-

trum and to enhance the device’s functionality through the advantages offered by

the graphene oxide in the field of biosensing. The characterization of the attenuation

spectrum with respect to the number of the a graphene oxide and polymer layers is

sheduled in the future work. The future work is proposed, as tests on this alternative

system are ongoing, in conjunction with another doctoral thesis.



Conclusions

− A multiparameter detection system based on a special photonic crystal fiber

was designed to study the formation of lossy mode resonance in an absorbing

coating, the results were published in 2 scientific articles.

− It was found that the thicker the fiber waist, the greater the resonance length

is obtained and it was also found that the thicker the absorbing coating, the

more LMR modes it can support as they move towards the infrared.

− A multiparameter detection platform was built to measure variations in refrac-

tive index using a 2-ring single-mode optical fiber with high confinement losses.

− Linear fits were found for the bending diameter and its spectrum and the corre-

lation of the variations of 2 characteristic peaks with the glycerin concentration.

− The influence of the coating on the formation of the characteristic loss peaks of

the system was observed, this being an argument in favor of the formation of

resonance modes in the coating.
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Annexes

A.1 Matlab Code to Calculate Optical Properties in

a PCF.

1 %script basado en los articulos de Koshiba y Saitoh.

2 clc, clear;

3

4 %definición de los parámetros experimentales para hacer la aproximacion del

5 %método full-vectorial mediante un modelo experimental; los vectores a,b

6 %contienen la información de los parámetros de ajuste para V y los

7 %parámetros c,d contienen los parámetros de ajuste para W.

8

9 a = [

10 [0.54808 0.71041 0.16904 -1.52736];

11 [5.00401 9.73491 1.85765 1.06745];

12 [-10.43248 47.41496 18.96849 1.93229];

13 [8.22992 -437.50962 -42.4318 3.89]

14 ];

15

16 b = [

17 [5 1.8 1.7 -0.84];

18 [7 7.32 10 1.02];
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19 [9 22.8 14 13.4]

20 ];

21

22 c = [

23 [-0.0973 0.53193 0.24876 5.29801];

24 [-16.70566 6.70858 2.72423 0.05142];

25 [67.13845 52.04855 13.28649 -5.18302];

26 [-50.25518 -540.6647 -36.80370 2.7641]

27 ];

28

29 d = [

30 [7 1.49 3.85 -2];

31 [9 6.58 10 0.41];

32 [10 24.8 15 6]

33 ];

34

35 %parámetros para usar la formula de sellmeier

36

37 f = [0.696166300 0.407942600 0.897479400];

38

39 g = [4.67914826E3 1.35120631E4 97.9340025E6];

40

41 %fibra 3

42 hd = 1.15E3;

43 hp = 1.65E3;

44

45 %Radio

46 R = hd/hp;

47 %R=0.4;

48 %hp=2.5E3;
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49

50 %nucleo y dispersión constantes

51 %nCsilice = 1.548;

52 %Dm = -1.85E-4;

53 %nCaire = 1;

54

55 %coeficientes calculados a partir de los datos experimentales para usarlos

56 %en la estimación del valor de los parametros V (Ai) y W (Bi).

57 A1 = a(1,1) + a(2,1)*R^(b(1,1)) + a(3,1)*R^(b(2,1)) + a(4,1)*R^(b(3,1));

58 B1 = c(1,1) + c(2,1)*R^(d(1,1)) + c(3,1)*R^(d(2,1)) + c(4,1)*R^(d(3,1));

59 A2 = a(1,2) + a(2,2)*R^(b(1,2)) + a(3,2)*R^(b(2,2)) + a(4,2)*R^(b(3,2));

60 B2 = c(1,2) + c(2,2)*R^(d(1,2)) + c(3,2)*R^(d(2,2)) + c(4,2)*R^(d(3,2));

61 A3 = a(1,3) + a(2,3)*R^(b(1,3)) + a(3,3)*R^(b(2,3)) + a(4,3)*R^(b(3,3));

62 B3 = c(1,3) + c(2,3)*R^(d(1,3)) + c(3,3)*R^(d(2,3)) + c(4,3)*R^(d(3,3));

63 A4 = a(1,4) + a(2,4)*R^(b(1,4)) + a(3,4)*R^(b(2,4)) + a(4,4)*R^(b(3,4));

64 B4 = c(1,4) + c(2,4)*R^(d(1,4)) + c(3,4)*R^(d(2,4)) + c(4,4)*R^(d(3,4));

65

66 syms l;

67

68 %Definición de las ecuaciones para las magnitudes física de interés a partir

69 %de los parámetros definidos previamente

70 nm = (1 + (f(1) * l^2)/(l^2 - g(1)) + (f(2) * l^2)/(l^2 - g(2)) +

71 (f(3) * l^2)/(l^2 - g(3)))^(1/2);

72 nC = subs(nm,l);

73

74 V = A1 + A2/(1+A3*exp(A4*l/hp));

75 W = B1 + B2/(1+B3*exp(B4*l/hp));

76 nFSM = (nC^2-(V*l/(2*pi*hp/3^(1/2)))^2)^(1/2);

77 nEFF = (nFSM^2+(W*l/(2*pi*hp/3^(1/2)))^2)^(1/2);

78
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79 %calculo de la dispersión a partir de la dispersión material y la

80 %dispersión material.

81 Dm = diff(nC,1);

82 D2nEFF = diff(nEFF,2);

83 D = -(l/3E-7)*D2nEFF + Dm/3E-7;

84

85 l = 500:10:2200;

86 l1 = l+120;

87 hold on;

88

89 win = figure(1);

90 win(1) = subplot(5, 2, [1,2]);

91 win(2) = subplot(5, 2, [3,4]);

92 win(3) = subplot(5, 2, [5,6]);

93 win(4) = subplot(5, 2, [7,8]);

94 win(5) = subplot(5, 2, [9,10]);

95

96 set(win,'Nextplot','add');

97

98 y = double(subs(D,l1));

99 plot(win(1),l,y);

100 %title(win(1),'Dispersión Cromática');

101 xlabel(win(1),'\lambda [nm]');

102 ylabel(win(1),'D [ps/(Km-nm)]');

103 win(1).XGrid = 'on';

104 win(1).YGrid = 'on';

105 %axis([600 1600 -200 200])

106

107 %calculo de la apertura numérica

108 acore=hp/sqrt(3);
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109 w0 = 1E-3*acore*(0.65 + 1.619./(double(subs(V,l1)).^(3/2)) +

110 2.879./(double(subs(V,l1)).^6));

111 plot(win(2),l,w0);

112 %title(win(2),'Radio del Modo Fundamental');

113 xlabel(win(2),'\lambda [nm]');

114 ylabel(win(2),'\omega [\mu m]');

115 win(2).XGrid = 'on';

116 win(2).YGrid = 'on';

117 %axis([-1 1 0 1.1])

118

119 NA = double(subs(V,l1)).*(l1)./(2*pi*acore);

120 plot(win(3),l,NA);

121 %title(win(3),'Apertura numérica');

122 xlabel(win(3),'\lambda [nm]');

123 ylabel(win(3),'NA');

124 win(3).XGrid = 'on';

125 win(3).YGrid = 'on';

126 %axis([-1 1 0 1.1])

127

128 Veff = double(subs(V,l1));

129 plot(win(4),l,Veff);

130 %title(win(4),'Frecuencia normalizada');

131 xlabel(win(4),'\lambda [nm]');

132 ylabel(win(4),'V');

133 win(4).XGrid = 'on';

134 win(4).YGrid = 'on';

135 %axis([-1 1 0 1.1])

136 %{

137 subplot(5,2,6);

138 Nc = double(subs(nC,l1));
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139 plot(l,Nc);

140 title('Índice Core');

141 xlabel('\lambda [nm]');

142 ylabel('nCore');

143 %axis([-1 1 0 1.1])

144 grid on;

145

146 subplot(5,2,7);

147 Neff = double(subs(nEFF,l1));

148 plot(l,Neff);

149 title('Índice Efectivo');

150 xlabel('\lambda [nm]');

151 ylabel('nEFF');

152 %axis([-1 1 0 1.1])

153 grid on;

154

155 subplot(5,2,8);

156 Nfsm = double(subs(nFSM,l1));

157 plot(l,Nfsm);

158 title('Indice Cladding');

159 xlabel('\lambda [nm]');

160 ylabel('nFSM');

161 %axis([-1 1 0 1.1])

162 grid on;

163 %}

164 CNL = 6*(3.2E-2)./((l1)*hp^2)*1E12;

165 plot(win(5),l,CNL);

166 %title(win(5),'Coeficiente de no-linealidad');

167 xlabel(win(5),'\lambda [nm]');

168 ylabel(win(5),'\gamma [Km-W]^{-1}');
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169 win(5).XGrid = 'on';

170 win(5).YGrid = 'on';

A.1.1 Matlab Code to desing tubs from Stack in a PCF.

1 %código para generar el Stack de la PCF

2 ph = 1;

3 hd = 0.5;

4 x = 0;

5 y = 0;

6 n = 8;

7

8 hold on

9

10 %Algoritmo que crea el stack poniendo esferas equidistantes en cada anillo

11 for i = 1:n

12 for j=0:i*6

13 viscircles([x+i*ph*cos(2*pi/(i*6)*j),y+

14 i*ph*sin(2*pi/(i*6)*j)],ph/2,'EdgeColor','b');

15 viscircles([x+i*ph*cos(2*pi/(i*6)*j),y+

16 i*ph*sin(2*pi/(i*6)*j)],hd/2,'EdgeColor','b','LineStyle','--');

17 end

18 end

19

20 viscircles([x,y],(n+0.5)*ph,'EdgeColor','black');

21 viscircles([x,y],(n+1)*ph,'EdgeColor','black');

22 viscircles([x,y],ph/2,'EdgeColor','r');
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A.2 Absorbing Coating with Films of Graphene Ox-

ide and Polymer.

Figure A.1: Comparison of the transmission of PCF with Absorptive Coating for
Different Numbers of Interleaved Layers of Graphene Oxide and Polymer.

Figure A.1 shows the transmission spectrum of a photonic crystal fiber from which

a 6 cm segment of the cladding has been removed. Subsequently, alternating layers

of graphene oxide (GO) and PEI (a polymer based on ethylenimine monomers) were

deposited via an electrochemical process. The figure shows that the transmission

pattern is the same for each sample, but as more GO-PEI layers are added, the trans-

mitted power decreases due to the losses generated by the cladding, which absorbs

an increasing amount of energy as its thickness increases. This is an indication that

the cladding thickness gradually increases with the applied electrochemical deposition
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method, which can be used to add layers in a controlled manner. Later, through a

bending configuration like the one shown in Chapter 4, a system based on the LMR

phenomenon can be implemented to perform sensing measurements, taking advantage

of the GO properties through specific functionalizations.

Figure A.2: The transmission of PCF with Absorptive Coating for 8 Interleaved
Layers of Graphene Oxide and Polymer.

Figure A.2 specifically shows the data distribution obtained for the transmission

spectrum of a PCF on which 8 layers of GO-PEI have been deposited. Additionally,

a fit is performed to analyze the average trend of losses concerning wavelength. Once

the data adjustments were made for each of the layers that were being added, they

were plotted as shown in the previous figure to observe their overall behavior.
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A.3 Analysis of the Photonic Crystal Fiber with 3

Rings for Bending Configuration

Figure A.3: The transmission of the Photonic Crystal Fiber with 3 Rings for Bending
Configuration.

In the figure A.3, we can observe the transmission of an optical fiber with 3 hexagonal

rings used in the bending configuration. We can see a behavior analogous to that

observed in the system with 2 rings, as there is a loss pattern associated with the

curvature applied to the fiber and a redshift as the bending increases. On the other

hand, when comparing the losses, it is observed that the 2-ring fiber experiences losses

4 times greater. This is because the depth of the peaks for the 3-ring fiber is around

5 dBm, while for the 2-ring fiber, depths of 20 dBm are observed. This difference in

the loss pattern is justified by the design of the fibers used, as the confinement losses
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in the fundamental mode increase with a lower number of rings.

A.4 Analysis of coupling losses in a splice between

PCF and SMF-28.

Figure A.4: Results of the transmission spectrum measurements before and after
splicing the 2-ring PCF and SMF-28 sections.

It can be observed in figure A.4 a splice that was made by adjusting the STD (Stan-

dard) option, which defines the power of the arc discharge used for the splicing, while

maintaining a constant fusion time of 100 ms. It is possible to see that after splic-

ing the conventional fiber with the 2-ring PCF, low and stable losses are obtained

under the employed configuration. These losses are around 2 dBm across the entire

spectrum. Therefore, this splice allows remote measurement in the PCF using con-

ventional fiber, which is advantageous since SMF-28 is more durable than the 2-ring

PCF. This result also enables us to couple the 2-ring PCF system and work with the
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phenomena it generates, such as LMR (Lossy Mode Resonance), to transmit the sig-

nal to other conventional optical devices. All of this is possible thanks to the design

of the 2-ring PCF, which has a fundamental mode diameter smaller than 7 µm.


