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Abstract

Weeds drastically reduce the harvest volume of maize and the quality of forage if

not controlled in time. Spraying herbicides is the most commonly used method for

controlling weeds worldwide; however, it has led to environmental pollution. Inte-

lligent mechatronic systems for mechanically removing weeds or selectively spra-

ying herbicides are considered as alternatives to address the struggles associated

with herbicide usage. Nevertheless, detecting undesired plants under authentic

cornfields poses a significant challenge. Therefore, in this thesis, a vision system

based on deep learning (DL) was proposed and developed for real-time detection

and control of weeds in these complex scenarios. To develop the vision system, a

large dataset of RGB and multispectral images was primarily created and annota-

ted at the pixel level. Subsequently, both shallow and deep learning classification

algorithms were explored. Additionally, End-to-end semantic segmentation con-

volutional neural networks (CNNs) were proposed for weed detection. The com-

bined use of segmentation and classification networks was beneficial for detecting

weeds in natural cornfields. Transformer architectures for semantic segmentation

were also explored, yielding better results than CNNs. Our optimized transformer

achieved a dice similarity coefficient (DSC) of 90.24% and a mean intersection

over union (mIoU) of 82.91%. Afterward, a mechatronic platform commanded by

the vision system, named the Smart Weed Sprayer (SWS), was developed. The

SWS was evaluated in an authentic cornfield experiment, achieving a 45.64%

reduction in herbicide usage compared to a conventional weed sprayer (CWS).

Moreover, similar effectiveness in weed control was observed between the SWS

and CWS. Therefore, employing DL for weed control presents an alternative to

reduce herbicide usage and production costs.

Keywords: deep learning, weed detection, weed control, smart weed sprayer,

reduction of herbicide usage.
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Chapter 1

Introduction

The exigencies for food are growing every year along with the demand for

fibers and biomass energies (Rabab et al., 2021); factors directly related to the

agriculture sector. By 2050, these supply demands will rise by 70% about what is

needed currently because the human population is projected to be more than nine

billion in that year (Monteiro and Santos, 2022). Regarding the corn crop (Zea

mays L.), the third most cultivated cereal in the world, after rice (Oryza sativa

L.) and wheat (Triticum aestivum L.), the kernel is transformed into a vast sort

of food to feed humans. Therefore, the demand for this cereal will leap from

1, 482.1Mt to around 2, 521.1Mt globally (FAO, 2023) for the year above. Modern

technology from diverse engineering disciplines should work together to ensure

future food security by increasing crop yield per land area.

Nevertheless, increasing the harvest volume of any crop is challenging, not only

due to the correct and opportune implementation of management practices but

also due to factors such as weather change, which often bring long-drought periods

year after year (Konduri et al., 2020). The resistance that certain pathogen insects

and weed plants have gained to some chemical active ingredients (Westwood et al.,

2018), which also complicates boosting crop yield. Among the problems above,

weeds may be one of the most dangerous phenomena because they negatively

affect the yield and quality of harvests Monteiro and Santos (2022). The reason

is that weeds compete with crop plants for nutrients, sunlight, and water, and

also they host-pathogen insects (Picon et al., 2022; Raja et al., 2020), that even-

tually transmit diseases to crop plants. Therefore, opportune weed eradication

1



1. INTRODUCTION

is a mandatory cultural practice, especially at early growth stages, for preven-

ting competition among weeds and crop plants for resources (Garibaldi-Márquez

et al., 2022).

Although corn is a noble and resistant crop that can be grown in various soil

types and weather conditions, its yield is also affected by weed plants. Early work

found a directly proportional relationship between the reduction of kernel yield

and the increment of the biomass of weed plants (Yeganehpoor, 2015). In other

work, Gao et al. (2018) registered a kernel loss of 29% due to the competition

of corn plants with weeds. Even worse, it has been documented that weeds can

reduce the grain volume of this cereal by up to 90% by surface area if weeds

are never controlled (Knežević et al., 2021). In general, an estimated 29% of this

food is lost worldwide due to weeds (Gao et al., 2018).

The most common weed control methods are manual, mechanical, and che-

mical. Through manual control, it is possible to eliminate weeds in the row and

crop-plant lines. However, this method is barely adequate for subsistence pro-

duction systems (Wang et al., 2019). On the other hand, the mechanical method

is suitable for intensive production systems due to the development of weeding

and cultivator implements. Nonetheless, these types of equipment hardly elimi-

nate 50% of the weeds (Sabzi et al., 2020) because they are not able to handle

the herbs located in the crop-plant lines (Van Der Weide et al., 2008). For this

reason, the most often used method to eliminate weeds globally is by spraying

herbicides (Hamuda et al., 2016), attributable to its effectiveness and practicality.

According to Wang et al. (2018), the chemical method can eliminate between 90

to 99% of interrow and intra-row weeds. However, they are spilled uniformly th-

roughout the fields, even in regions where there are no herbs (Gao et al., 2018).

Overusing these chemicals has produced water, soil, and air pollution (Monteiro

and Santos, 2022; Quan et al., 2021). In this regard, the European Food Safety

Authority (EFSA) documented that 98.9% of agricultural food products contai-

ned specific residues of agrochemical molecules (Partel et al., 2019). Considering

this problem, some European countries have legislated to achieve a gradual reduc-

tion or even a total prohibition of herbicides in their territories (Hamuda et al.,

2016). This action has also been replicated in other countries such as Mexico,
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where the government has banned the glyphosate active ingredient. In substi-

tution, producers have being encouraged to use environment-friendly herbicides

from biological formulations (Alcántara-de la Cruz et al., 2021).

Stopping the use of synthetic herbicides completely in the short term is very

difficult because farmers consider the method of spraying practical (Imoloame,

2017). Therefore, to mitigate the harm of these products, alternatives for the

near future could rely upon the development of intelligent systems to spray weeds

just where they are situated, a technique called Site-Specific Weed Management

(SSWM) (Kamath et al., 2022).

The advances in computer and electronics science and engineering have per-

mitted the development of computers with more data processing capacity. This

has motivated the development of vision systems algorithms for mapping weeds

and implementing them in practically real-time (Janneh et al., 2023). Preliminary

studies have stated that SSWM could save from 45 to 66% of herbicides without

crop yield reduction, compared to those traditional methods of uniform applica-

tion (Christensen et al., 2003; Monteiro and Santos, 2022). Recently, Nikolić et al.

(2021) reported up to 82% of herbicide reduction when SSWM and time-specific

weed control (TSWC) were combined. However, the practical implementation of

SSWM in natural fields presents a significant challenge regarding weed-crop dis-

crimination. Given the excessive variability inherent to such environments, most

vision algorithms struggle with accurately localizing and classifying plant species.

In this thesis, an intelligent vision system based on DL models will be deve-

loped and investigated for detecting weed plants within natural cornfields. Sub-

sequently, the vision system will be installed over a mechatronic platform to

conform a smart weed sprayer (SWS). This SWS will be able to navigate through

cornfields pulled by an agricultural tractor spraying weeds in real-time.

The remainder of this chapter is organized as follows. Section 1.1 gathers the

most relevant works for weed classification, detection, and segmentation by using

either classical algorithms, machine learning (ML), or DL. The justification of

the research is provided in Section 1.2, whereas Section 1.3 lists the objectives of

the research. Finally, Section 1.4 states the hypothesis of the work.
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1.1. Background

The first challenge to overcome when implementing an automatic weed control

technique is discriminating weeds from crop plants (Wang et al., 2019). The used

algorithms should first extract the relevant features of crop plants, weeds, soil,

and residues. Then, these algorithms must be able to discriminate each of these

elements.

This section presents spectroscopy reflectance characteristics, image processing-

based algorithms, and DL-based architectures for crop and weed discrimination.

1.1.1. Reflecting characteristics for crop/weed discrimi-

nation

Spectral reflectance has been used to distinguish crops and weeds. Plant lea-

ves contain different concentrations of light absorbent compounds, such as α-

carotenoid (420, 440, and 470nm), anthocyanin (400−550nm), β-carotenoid (425,

450, and 480nm), chlorophyll a (435, 670− 680, and 740nm), chlorophyll b (480

and 650nm), lutein (425, 445, and 475nm), moisture (970, 1450, and 1944nm),

and violaxanthin (425, 450, and 475nm) (Zwiggelaar, 1998). These compounds

provoke peculiar reflectance curves among plant species. As an illustration, Figu-

re 1.1, which has been adapted from the work of Kyllo (2003), provides reflectance

curve behaviors of eight crops, wheat stubble, and soil. As it is observed, the re-

flectance drastically increases in the RedEdge region (670−760nm), the transition

from the red region to the NIR region. Therefore, the RedEdge region has been

widely used by scholars to discriminate among plant species, whereas the near-

infrared (NIR) region (700−1400nm), in which the reflective differences between

plants, soil, and residues are pronounced, is commonly employed to discriminate

vegetation from the background (Steward et al., 2019).

Many works have applied spectral reflectance for crop and weed discrimina-

tion using VIS/NIR/MIR spectroscopy. Vrindts et al. (2002) discriminated su-

garbeet/weeds and corn/weeds, including seven weed species, based on VIS/NIR

(480 − 820nm), reporting over 90% of correct classification. The discrimination
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Figure 1.1: Spectral reflectance of some crops, soil, and stubble. Adapted from Kyllo

(2003).

of corn plants from weeds in open fields at early growth seasons using hyperspec-

tral data in the VIS/NIR band (408− 947mn) based on Suppor Vector Machine

(SVM) and Artificial Neural Network (ANN) classifiers have also been explo-

red, achieving accuracy values of 69.2% and 58.3%, respectively (Karimi et al.,

2006). In other work, Pantazi et al. (2016) discriminated corn plants and weeds

using spectral reflectance and the classifiers auto-encoder network, SVM, one-

class mixture of Gaussians (MOG), and one-class self-organizing map (SOM). In

this work, the authors indicated that the classifier MOG and SOM performed

better than the rest of the classifiers; corn was 100% classified as such by MOG

and SOM, whereas weeds were classified in the range of 31%−98% by MOG

and 53%-94% by SOM. In the work of Che’Ya (2016), a trial for discriminating

Sorghum crops from eight weed species through spectral reflectance (VIS/NIR)

was carried out, obtaining accuracy values between 85% and 100%. Finally, Pott

et al. (2020) evaluated the accuracy of spectral bands to discriminate solely weeds

from crop mulch and soil in pre-planting conditions. Other carried out works for

weed discrimination using spectroscopy are listed in Table 1.1.
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Table 1.1: Works over crop plants and weeds discrimination using spectral reflectance.

Crop Weed species
Wavelength

Model
Accuracy

Reference
range used (nm) (%)

Soybean
Acalypha australis L. 400− 670, 680− 700,

PLS 98.3% Zhang and He (2006)
Marsilea quadrafolia L. 720− 1000

Soybean

Eleusine indica L.

VIS/NIR ANN 100% Zhu et al. (2008)Alternanthera philoxeroides

Amaranthus viridis L.

Corn Beta vulgaris L. 635,685,785 SVM 97% Akbarzadeh et al. (2018)

Corn
Dchinochloa crasgalli

VIS/NIR
SVM, ANN,

84.21% Deng et al. (2014)
Echinochloa crusgalli DT

Corn

Digitaria ischaemum (Schreb.) I

400− 425, 425− 490 PLSDA 94.8% Panneton et al. (2010)

Echinochloa crus-galli (L.) Beauv.

Panicum capillare (L.)

Setaria glauca (L.) Beauv.

Ambrosia artemisiifolia (L.)

Amaranthus retroflexus (L.)

Chenopodium album (L.)

Capsella bursa-pastoris (L.) Med.

Echinochloacrus-galli L.

VIS/NIR CA 100% Meinen and Rauber (2015)
Corn, Barley, Avenafatua L.

Wheat, Sugar beet Alopecurusmyosuroides

Chenopodium album L.

Sugarcane

Commelina benghalensis

SIMCA, RF 97% de Souza et al. (2020)

Brachiaria brizantha

Brachiaria decumbens

Panicum maximum cv 500− 550,

Alternanthera tenella 650− 750,

Ipomoea hederifolia 1300− 1450,

Ipomoea purpurea 1800− 1900

Ricinus communis L.

Ageratum conyzoides

Crotalaria juncea

Stizolobium aterrimum

Wheat, Chickpea

Echinochloacrus-galli L.

Bayesian 84.3% Deng et al. (2016)

Setaria viridis 567, 667, 715,

Eleusine indica L. 1345, 1402,1725,

Digitaria 1925, 2015

Chenopodium quinoa

PLS–partial least squares; ANN–artificial neural network; SVM–support vector machines; DT–

decision tree; PLSDA–partial least square discriminant analysis; CA–cluster analysis; SIMCA–

soft independent modeling of class analogy; RF–random forest.

Although the works above have obtained acceptable results on the discrimi-

nation of crops and weeds in natural fields, they have been performed to ensure

that the reflectance signal is not affected by external sunlight intensities. In this

regard, some researchers have concluded that the discrimination of crop plants

from weeds using spectrometers is complicated due to the influence of sunlight.

Additionally, crops and weeds have similar reflections, especially at early growth

stages (Pérez-Ortiz et al., 2015), and the reflection changes with the growth stage
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of the plants. This method is adequate only for a laboratory scale, in which the

environmental conditions can be controlled. Optoelectronic sensors, which mea-

sure reflection intensities usually in the spectrum’s red/near-infrared (R/NIR)

region, have been seen as an alternative. However, this kind of sensor can discri-

minate vegetation (crops and weeds) exclusively from the background (soil and

residues) (Biller, 1998). Therefore, it is barely applied to crops that follow a sown

pattern in clearly separated plant lines to detect weeds in the rows. Nonetheless,

when crop plants are close to each other or when crops have been broadcasting

sown, the systems fail.

1.1.2. Classic image processing algorithms for crop/weed

discrimination

Proximal sensors based on cameras in machine vision systems have been com-

monly studied for crop and weed distinction. The typical procedure includes pre-

processing, segmentation, feature extraction, and classification (Liu and Bruch,

2020; weis and Sökefeld, 2010), as shown in Figure 1.2.

Classified 
weed and cropFeaturesBinary image

Enhanced
image

Input
image

Pre-processing
Size reduction,
Color space 

transformation,
Contrast enhancement,

Denoising,
Normalization,

etc.

Vegetation 
segmentation

Feature
extraction

Classification

Threshold-based,
Learning-based.

Spectral property,
Morphology,

Visual texture,
Spatial contexts.

Machine learning,
Deep learning.

Figure 1.2: Common workflow of image processing-based weed recognition.

Pre-processing

Pre-processing images for weed detection usually start by reducing the re-

solution of images, to reduce the computation cost. Subsequently, color space

transformation is done principally to eliminate soil pixels later and leave just

vegetation pixels in input images. Since RGB color space is often used for visuali-

zation but not suitable for segmentation and analysis due to the high correlation
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between Red (R), Green (G), and Blue (B) channels, it is almost mandatory

to perform a color transformation. The color space HSV (hue, saturation, and

value) is often used for crop/weed separation (Garibaldi-Márquez et al., 2022).

According to Hamuda et al. (2016), in this color space the channels are not co-

rrelated, for that reason is good for outdoor segmentation since the illumination

value is correlated with the S channel. Other color spaces studied for vegetation

separation from the soil are HSI (hue, saturation, and intensity) (Li et al., 2016),

Lab (L for illumination, a for values from red to green, and b for values from

blue to yellow) (Chen et al., 2021) and YCrCb (Y for luminance component, Cb

for blue-difference chroma component, and Cr for red-difference chroma compo-

nent) (Wang et al., 2020).

Noise and contrast of images captured in outdoor field conditions are seriously

altered by the weather conditions (sunny, cloudy, rainy, etc.) and capture time

of the day (morning, noon, afternoon, etc.), making the greenness identification

complicated (Yang et al., 2015). Pulido-Rojas et al. (2016a) used median filtering

for noise suppression as a pre-processing step for detecting multiple weed plants

in open fields. Additionally, Rakhmatulin (2020) described the implementation

of blur, Gaussian, bilateral, and Laplacian filtering for image denoising on tasks

of weed recognition. On the other hand, adjusting the gray level in the range

[0 − 255] has been used to enhance contrast for plants and soil separation (Liu

et al., 2014). In another work, Siddiqi et al. (2014) improved the contrast and

light intensities of images for greenness identification by equalizing their global

histogram. As a final image pre-processing step, normalization is a typical action

performed in which the range of pixel values of the input images is changed to a

new one that is more familiar or normal to the senses (Wang et al., 2019).

Vegetation segmentation

Removing the soil and other residues, such as mulch and stone pixels, from ve-

getation is a typical subsequent process implemented in weed detection. Although

in Figure 1.2 learning based is pointed out, in this section, solely vegetation seg-

mentation based on thresholding is covered. Some works have segmented vege-

tation straight from the color spaces HSV, HSI, Lab or YCrCb. Such as in the

work of Yang et al. (2015), in which the maize seedlings were separated from the
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background elements: soil, straw ash, plastic film, corn straw, and wheat straw,

by thresholding the hue value of images. Chen et al. (2021) separated green ve-

getation (corn and weed plants) from the soil in natural conditions in the Lab

color space. Other scholars have explored the transformation of the images to

color indices derived from the color space RGB, the normalized rgb, or even in-

dices derived from multispectral cameras for vegetation and soil separation. In

this sense, in the work of Liu et al. (2020) maize plants were detected in natural

conditions, using the color indices excess green (ExG), excess red (ExR) and ExG

minus ExR and thresholding the images by Otsu method (Otsu, 1979). The NDVI

index is the most widely used for this task, which is derived from multispectral

images. Table 1.2 provides a list of common color-based indices for vegetation

segmentation reported in the literature.

Table 1.2: Typical color-based indices for vegetation segmentation.

Index Color space Formula Reference

Excess Green Index
rgb ExG = 2g − r − b

JIN et al. (2021); Liu et al. (2020); Yang et al. (2015)

(ExG) Espejo-Garcia et al. (2020); Guerrero et al. (2012)

Excessive Green
RGB EG = 2G−R−B + 127 Mathanker et al. (2010)

(EG)

Excess Red
RGB ExR = 1.3R−G Liu et al. (2020); Milioto et al. (2018); Wang et al. (2020)

Index (ExR)

Modified Excess
RGB MExG = 1.262G− 0.884R− 0.311B Burgos-Artizzu et al. (2011); Wang et al. (2020)

Green Index (MExG)

Modified Excess Green
RGB MExG1 = 2G−R−B Wu et al. (2011)

Index 1 (MExG1 )

Normalized Excessive
RGB NEG = 2.8G−R−B Jeon et al. (2011); Karadöl et al. (2020)

Green (NEG)

Green minus Red
RGB GMR = G−R Bakhshipour and Jafari (2018)

(GMR)

Green Pixel Count (GPC ) RGB GPC = 2G−R ∗G−B Prema and Murugan (2016)

Excess Green minus
RGB ExGR = ExG− ExR Le et al. (2019); Wang et al. (2020); Yang et al. (2015)

Excess Red Index (ExGR)

Color Index of Vegetation
RGB CIV E = 0.441R− 0.811G+ 0.385G+ 18.78745 Milioto et al. (2018); Wang et al. (2020); Yang et al. (2015)

Extraction (CIVE )

Vegetative Index
RGB V EG = G

R0.667B0.333 Wang et al. (2020); Yang et al. (2015)
(VEG)

Combined Indices (COM ) RGB COM = ExG+ CIV E + ExGR + V EG Wang et al. (2020); Yang et al. (2015)

Combined Indices 1
RGB COM1 = 0.36ExG+ 0.47CIV E + 0.17V EG Guerrero et al. (2012); Wang et al. (2020)

(COM1 )

Normalized Difference
RGB NDI = 128 ∗

((
G−R
G+R

)
+ 1
)

Lin et al. (2017); Milioto et al. (2018)
Index (NDI )

Normalized Green-Red
RGB NGRDI = G−R

G+R
Barrero and Perdomo (2018); Hunt et al. (2005)

Difference Index (NGRDI )

Normalized Difference
RGB-NIR NDV I = NIR+R

NIR−R

Barrero and Perdomo (2018); Lottes et al. (2016, 2017)

Vegetation Index (NDVI ) Milioto et al. (2018); Potena et al. (2017)

Although color indices provided acceptable results for greenness identification,

some scholars argue that they are directly affected by sunlight intensity; as a re-

sult, the regions of interest (ROIs) considered as vegetation often enclose pixels
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of soil or ROIs considered as soil include pixels of vegetation (Wang et al., 2019).

Feature extraction

Distinguishing crop plants from weed plants is the most difficult task for

SSWM implementation. Most traditional image pre-processing methods employ

feature differences among the plant leaves, including spectral properties, morpho-

logy, visual texture, and spatial contexts.

Spectral features for discrimination among plants are based on multispectral,

hyperspectral, and spectral indices imagery. Nonetheless, spectral features are

adequate solely when plant species to discriminate have distinct leaf colors. Such

as in the work of Pgnatti et al. (2016), in which hyperspectral imagery was used

to separate corn plants from five weed species by implementing the PROSAIL

model. Herrmann et al. (2013) studied the ground-level spectroscopy imagery for

detecting annual grasses and broadleaf weeds in wheat fields by using partial least

squares discriminant analysis (PLSDA), obtaining a total accuracy of 85%. The

classification of corn crop and three weed species was done with the classifiers

random forest (RF) and k-nearest neighbors (KNN) reaching a classification rate

of 100% for corn plants and a mean classification of 74.4% for weeds for RF,

which was better than KNN (Gao et al., 2018). In other work, Louargant et al.

(2018) discriminate corn and sugarbeat crops from diverse weed species, extrac-

ting spectral information from four-band multispectral images and training an

SVM model, obtaining a detection rate of 75%. Carrot and three weed species

were successfully discriminated by implementing an imaging spectrometer sys-

tem by means of SVM and linear discriminant analysis (LDA). The SVM model

reached 85% and 90% when the features of eight bands and 15 bands were ex-

tracted, respectively (Liu et al., 2019). The discrimination of two monocotyledon

weed species in rice crops was also explored by Zhang et al. (2019b) using hy-

perspectral images. Particularly, in this work, the authors have reported that a

100% and 92% recognition rate for the weeds and rice was reached when six spec-

tral features were used. However, in most cases, crop plants and weeds share the

“green color”, which results in no separation action, especially at early growing

stages when crop and weed have similar reflectance characteristics (Peteinatos

et al., 2013).
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The shape and structure of any part of a plant, also known as biological

morphology, have been used to identify plant species. Shape features are broadly

divided into shape parameters, region-based descriptors, and contour-based des-

criptors (Wu et al., 2021). Shape parameters include perimeter, area, diameter,

minor axis length, major axis length, eccentricity, compactness, rectangularity,

circularity, convexity, and solidity of the segmented regions (Bakhshipour and

Jafari, 2018; Herrera et al., 2014). These parameters are easy to implement and

are not affected by sunlight intensity. As region-based descriptors, we found the

Hu’s moment invariants (MI) (Hu, 1962) and two-dimensional Fourier descrip-

tors(FDs) (Pereira et al., 2012). Hu’s MI is represented by seven MI parameters

derived from the contour and the internal silhouette of the segmented regions.

These features are independent of geometric translation, scaling, and rotation

and are robust to noise. In the case of two-dimensional FDs, they measure the

shape properties by establishing feature points in the region plane and carrying

out Fourier transforms on rows and columns at the same time (Wu et al., 2021).

Contour-based descriptors often include spatial position descriptors, curvature

scale descriptors, and one-dimensional Fourier descriptors.

Although each category of shape features has the potential to distinguish

among plant species by itself, in literature, they often are combined to obtain

robust models. Chen et al. (2015) used eight shape features and seven Hu MI to

detect soybean plants in open fields, while the rest of the plants were conside-

red as weeds, obtaining more than 90% of accuracy. In other work, Pereira et al.

(2012) classified three aquatic weeds combining the shape descriptors Beam Angle

Statistics (BAS), Fourier Descriptors (FD), Hu MI, Multiscale Fractal dimension

(MS) and Tensor Scale Descriptor (TSD) obtaining a maximum recognition rate

of 96.41%. Corn plant discrimination had reached 100% under field environment

simulation in a laboratory when Hu MI and KNN were implemented (Midtiby

et al., 2011). The discrimination between monocotyledons and dicotyledons weeds

in natural corn fields have shown 92.9% of accuracy when Hu MI and six geo-

metric shape descriptors were classified with fuzzy multicriteria decision making,

surpassing the performance of SVM, Choquet fuzzy integral, the Sugeno fuzzy

integral and the Dempster-Shafer theory (Herrera et al., 2014).
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On the other hand, texture features, which reflect the spatial distribution

of pixels, have been reported lately to be efficient for discriminating crops from

weeds. This is because leaves’ veins differ in texture among species, and the

roughness of leaves’ surface also changes (Wu et al., 2021). The texture featu-

re methods are principally divided into four categories: i) statistical features, ii)

structural features, iii) model-based features, and iv) transformed-based featu-

res (Wang et al., 2019). On plant discrimination, into statistical feature category,

the most frequently reported feature descriptors are Gray-level Co-occurrence

Matrix (GLCM) (Haralick et al., 1973) and Gray-level Gradient Co-occurrence

Matrix (GLGCM) (Lam, 1996). Bakhshipour et al. (2017) extracted 52 GLCM

texture features in four directions from wavelet images for weed segmentation

of sugarbeet crop using ANN as the classifier, obtaining 96% of accuracy. In

the category of structural features, the texture operator local binary pattern

(LBP) (Ojala et al., 2002) is widely used because it is robust enough to mono-

tonic grey-level transformation, scaling, viewpoint, illumination invariance, and

rotation invariance (Hamouchene et al., 2014). In the work of Le et al. (2019),

the crops Corn, Canola, and radish were discriminated using LBP descriptors

and SVM, obtaining an accuracy of 91.85%. In a distinct work, Le et al. (2020a)

reported an algorithm named filtered Local Binary Pattern with contour masks

and coefficient “k” (k-FLBPCM); here, the authors have implemented an SVM

classifier, achieving an accuracy of 90.94%. Finally, Gabor filters are more often

used for the recognition of crops and weeds into the group of transformed-based

features category. Nonetheless, it is always accompanied by other texture des-

criptors. Like in the work o Chaki et al. (2015), in which grayscale images were

convolved with the Gabor filter, and then GLCM texture features were computed

for leaves recognition.

The final feature extraction algorithms for crop and weed discrimination take

advantage of the spatial contexts of the crop by locating the line of crop plants (Xu

et al., 2020b). Then, the plants that were outside the line were considered weeds.

As it could be inferred, they are more accurate for crops that follow a sown

pattern and are not adequate for crops broadcasting sown. In order to detect crop

rows, the Hough transform (HT) algorithm is frequently used, and the methods

Harries corner, pixel histogram, edge, vertical projection, and linear scanning are
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also used. For instance, Tellaeche et al. (2008) identified isolated weeds located in

corn rows by localizing the crop lines throughout HT. The Harries corner method

was successfully used for detecting crop rows as a pre-step for estimating the

density of weeds (Xu et al., 2020b). In another work, Asif et al. (2010) detected

the edge of corn rows and then, with the help of the HT delimited the area

between the crop lines for controlling weeds. In the work of Wu et al. (2011), the

center line of wheat rows was located using the pixel histogram method, then

the wide of the rows was delimited, finding the edge of the rows. Then, plants

outside of that area were considered as weeds. Also, the weed area in corn crop

was identified throughout the pixel histogram method for a variable rate spraying

system (Xu et al., 2018). In the work of Tang et al. (2016), the vertical projection

method and the linear scanning method were combined to detect corn plant lines

for site-specific spraying of weeds.

Plants’ features effectively discriminate crops and weeds under low plant-

density scenarios (Wu et al., 2021). In this way, the following Table 1.3 provides

the advantages and disadvantages of the aforementioned features.

Table 1.3: Advantages and disadvantages of common features for weed recognition.

Features Advantages Disadvantages

Spectral property

Crop and weed plants share green

Spectral features are robust color, especially at early growing

to partial occlusion of foliage. stages, having similar reflectance

characteristics.

Morphology

Monocotyledon and dicotyledon crops

Easy to implement and are not and weeds share similar morphology

affected by sunlight intensity. at early grown stages, making

the discrimination very difficult.

Visual texture

Most of the methods are robust to

monotonic grey-level transformation, They do not meet the real-time

scaling, viewpoint, illumination invariance, requirements.

and rotation invariance.

Spatial contexts

Weeds located in the line of crop plants

The sowing pattern of crops are not distinguished. Also, under a high

improve the discrimination accuracy density of weeds, it is difficult to detect the

at early growth stage of the weeds. crop rows. Finally, some algorithms fail to

detect the crop rows at the border of the fields.

The recognition of crops and weeds in open fields is difficult using a single

feature of the plants due to the interference of uncontrolled factors. Thus, many
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works have combined features to increase the discrimination potential. In this

way, De Rainville et al. (2014) combined HT for crop row detection and morpho-

logical features for the classification of weeds from corn and soybean fields. They

reported a classification average of 94% for corn and soybean plants and 85%

for weeds. Pérez-Ortiz et al. (2015) mapped weeds in sunflower crops using vege-

tation index images, NDVI images, and detection of crop rows using HT. Then,

the following classifiers were tested: unsupervised classifiers k-means and Repea-

ted k-means, the semi-supervised SVM and the supervised KNN, linear SVM,

and SVM. Finding that semi-supervised SVM obtained similar performance to

that of supervised classifiers. Lottes et al. (2017) segmented weeds in sugarbeet

crop implementing diverse image-based processing techniques. First, they seg-

mented vegetation from the background using the NDVI index; then, images

were transformed to the color space Hue Saturation and Lightness (HSL), from

which statistical features, texture features using LBP, and shape features we-

re extracted and combined. As a final example, Chen et al. (2021) studied the

combination of multi-features for weed detection in corn fields to obtain better

feature descriptor combinations. They work with the following feature descrip-

tors: rotation-invariant LBP, HOG, GLCM, GGCM, Hu moment invariant, and

Gabor. As a result, they reported that a combination of rotation-invariant LBP

and GGCM showed the highest accuracy of 97.50%.

1.1.2.1. Classification of crops and weeds

According to the works reported in the literature, obtaining an acceptable

performance (when implementing classic ML methodologies after feature extrac-

tion) depends on the correct classifier selection. Conventional ML-based classifiers

usually reported in literature for crop and weed species are SVM (Bakhshipour

and Jafari, 2018; Chen et al., 2021; Le et al., 2019; Pulido et al., 2017), ANN (Da-

dashzadeh et al., 2020; Nikolić et al., 2021; Torres-Sánchez et al., 2021; Zhu et al.,

2008), KNN (Dadashzadeh et al., 2020; Gao et al., 2018; Pulido-Rojas et al.,

2016b), RF (Gao et al., 2018; Kamath et al., 2020; Lottes et al., 2016), Bayesian

algorithm (Deng et al., 2014; Tang et al., 2016), Bayesian classifier (De Rainvi-

lle et al., 2014), AdaBoost (dos Santos Ferreira et al., 2017; Xu et al., 2020a),
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and k-means (Chen et al., 2021; Zhang et al., 2019a). Other classifiers found are

PLSDA (Herrmann et al., 2013), LDA (Liu et al., 2019), and fuzzy multicriteria

decision (Herrera et al., 2014). The adaptation of the correct classifier depends

on the complexity of the task, whether it is binary or multi-class; the amount of

data also impacts the output performance. For instance, SVMs can address the

challenges of nonlinear and high-dimensional pattern recognition. They also de-

monstrate strong performance in handling small-sample and non-local minimum

problems (Wu et al., 2021), whereas ANN has a strong learning capability and

can classify unseen data (Bakhshipour et al., 2017). Therefore, many scholars

have iterated on classifiers to find the best that adapts to their datasets.

For instance, in the work of Pereira et al. (2012), the classifier SVM, Baye-

sian classifier, multilayer perceptron (MLP), Self-Organized Maps (SOM), and

Optimum-Path Forest (OPF) were evaluated on classifying the aquatic weeds E.

crassipes, P. stratiotes and S. auriculata. These models were trained with shape

descriptors Beam Angle Statistics (BAS), Fourier Descriptors (FD), Hu MI, Mul-

tiscale Fractal dimension (MS), and Tensor Scale Descriptor (TSD). The authors

found that the OPF classifier trained with BAS descriptors was the better option

for recognizing the weeds. In other work, Bakhshipour and Jafari (2018) found

that SVM exhibited an overall accuracy of 95%, whereas ANN reached 92.92%

when they were trained with shape features of common weeds. The dataset com-

prises 600 images acquired in “real” field conditions. However, the sunlight was

obstructed when images were acquired. In a binary approach to classifying ve-

getable crops and weeds, an SVM model better classified the class crop while a

KNN model classified better the class weed (Pulido-Rojas et al., 2016b) when

trained with GLCM texture features. In other research, a comparative analysis

on classifying soybean crop, broadleaf, and grass weeds using the classifiers SVM,

AdaBoost, and RF indicated that SVM was better than AdaBoost and RF when

the dataset was balanced. Nevertheless, when the dataset was unbalanced, the

Adaboost models surpassed the performance of the SVM and RF models. These

models were trained with GLCM, HOG, and LBP descriptors, and the minimum,

maximum, mean, and standard deviation attributes of each channel of RGB,

HSV, and CIELab color spaces (dos Santos Ferreira et al., 2017).
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1.1.3. Deep learning models for crop/weed discrimination

DL models for weed classification, detection, and segmentation typically em-

ploy Convolutional Neural Networks (CNNs). CNNs consist of convolutional la-

yers and fully connected layers. The convolutional layers execute operations like

convolutions between filters and input data, capturing spatial and temporal featu-

res. On the other hand, fully connected layers are responsible for classifying the

features extracted by the convolutional layers. Networks with more than three

layers are commonly referred to as deep networks.

The performance that the AlexNet architecture (Krizhevsky et al., 2012)

achieved in classifying images from the ImageNet dataset (Deng et al., 2009)

in the large scale visual recognition challenge in 2012 was a benchmark for di-

verse DL-based computer vision tasks. This superior performance also motivated

scholars to duplicate efforts on the application of this CNN architecture and de-

velop new ones for weed classification, detection, and segmentation. Nowadays,

the commonly used DL architectures for weed identification in open fields inclu-

de CNNs and fully connected networks (FCNs) (Kamilaris and Prenafeta-Boldú,

2018). Besides, since 2017, the self-attention modules proposed by Vaswani et al.

(2017) in the transformer architecture have also been utilized for weed identifica-

tion.

Deep learning-based architectures are deeper than traditional ML architectu-

res. That is, they have more hidden layers that transform the input data using di-

verse operations, allowing the representation of the data in a hierarchical way (Hu

et al., 2021). Then, what make CNNs, FCNs, and Transformer interesting is that

they can extract and learn multiple features of the input data on their own du-

ring the training process, and then, they can discriminate new unseen data at

relatively high performance in real close-time using GPUs (Moutik et al., 2023).

The three aforementioned DL architecture groups for weed identification use

RGB, multispectral, and hyperspectral imagery. Other works have used color in-

dices images derived from RGB or multispectral channels. The DL architectures

must be trained with a large dataset to obtain a high performance and robust-

ness to adapt to new information. Figure 1.3 gives the usually followed steps

for training a DL architecture for weed recognition. It is worth mentioning that
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not all the sub-steps need to be implemented, principally on the classification of

crop/weed tasks, but the steps of data acquisition, dataset preparation, image

pre-processing, training DL architecture, and testing of the models are manda-

tory.

Test
the model

Image
pre-processing

Dataset
preparation

Collect data,
Use public data

Data labeling,
Image augmentation,

Generate syntetic data,
Color space

transformation,
Color indices images,

Image resize

Image resize,
Background removal,
Image enhancement,

Denosinig,
Image augmentation

Data
acquisition

Training DL
architecture

Training stage

Figure 1.3: Common DL workflow for weed recognition.

Data acquisition

For developing an automatic vision system for weed identification, the first

step is to acquire the data. RGB, multispectral, or hyperspectral images could

be acquired using Unmanned Aerial Vehicles (UAV), field robots, and all-terrain

vehicles or captured manually. For instance, a drone DJI Mavic 2 Pro, equipped

with an RGB camera, that flew five meters above the soil surface has been used

to create an image dataset containing sorghum crop and diverse monocotyledon

and dicotyledon weeds (Genze et al., 2022). In another study, Xu et al. (2023)

also captured images using a DJI Phantom 4 V2 Pro drone equipped with an

RGB camera, of soybean crops and multi-species of weeds. In this case, the drone

was flown six meters in height. Respecting the use of field robots, Lottes et al.

(2020) employed a robotic platform called “BoniRob” equipped with a 4-channel

RGB+NIR camera for capturing images of sugarbeet and weeds. Meanwhile,

Le et al. (2020a) mounted a multispectral camera over an all-terrain vehicle to

generate a dataset of canola and radish crops. It is worth noting that many of the

studies consulted used manually generated datasets for their experiments. In this

way, Zhang et al. (2023) used an iPhone XS to generate a corn dataset of images
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captured at 60 centimeters. A different dataset of ten weeds that commonly grow

in grasslands was acquired manually using smartphones (Jiang et al., 2023).

Other researchers have used publicly available datasets to create or comple-

ment their data to train their DL models. Few public datasets specialize in the

classification, detection, and segmentation of crops and weeds. Table 1.4 lists so-

me public datasets already annotated, which scholars have used for training DL

models.

Data preparation

The dataset preparation step starts labeling the dataset according to the pur-

pose of the research, which could be classification, detection, or segmentation.

Datasets for training classification networks are integrated with images that have

single plants, or at least one plant is predominant in the image. Then, the dataset

is annotated at the image level. On the other hand, datasets dedicated to detec-

ting crops and weeds could contain multi-plant images. The plants in the images

are labeled individually by tracing a bounding box, which provides the localiza-

tion and the class to whom each plant belongs. Finally, whether the dataset would

be for segmentation, the images are annotated at the pixel level. Labeling images

is a difficult and time-consuming task because images may contain multiple plant

species, and each plant’s pixels must be enclosed by tracing a polygon. Further-

more, if the image contains a high density of plants, the operation becomes more

complicated due to the occlusion and overlap of the plants.

On the other hand, if the dataset size is small, a data augmentation technique

must be used to obtain a robust model capable of performing correctly. Standard

augmentation techniques for crop/weed identification are flipping, cropping, ro-

tation, translation, and noise injection (Shorten and Khoshgoftaar, 2019). Other

scholars create synthetic images to enlarge their dataset using DL architectures

to retain similar features of the original instances while avoiding the annota-

tion work. Such as in the work of Espejo-Garcia et al. (2021), in which plenty

of synthetic images derived from the “early crop weed” dataset (Espejo-Garcia

et al., 2020) were created using a generative adversarial network (GAN) for weed

identification.
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Table 1.4: Public available crop/weed datasets.

Dataset name Crop Weed species Image type Purpose Reference

Soybean and weeds Soybean Grass and broadleaf weeds RGB Classification dos Santos Ferreira et al. (2017)

Plant seedlings dataset

Corn, Nine weed species,

RGB Classification Giselsson et al. (2017)Sugar beet broadleaf weeds

and Wheat and narrow-leaf weeds

Leaf counting dataset Not specified Eighteen weed species RGB Classification Teimouri et al. (2018)

DeepWeeds Not specified Eight weed species RGB Classification Olsen et al. (2019)

Early crop weed
Tomato Solanum nigrum L. and

RGB Classification Espejo-Garcia et al. (2020)
and cotton Abutilon theophrasti Medik.

Corn, lettuce and weed

Cirsium setosum

RGB Classification Jiang et al. (2020)
Corn and Chenopodium album

lettuce Cyperus esculentus

Poa annua

Perennial ryegrass and weed Perennial ryegrass

Euphorbia maculata

RGB

Classification

Yu et al. (2019a)Glechoma hederacea and detection

Taraxacum officinale

Sugar beet dataset Sugar beet

Nine weed species, Multispectral, Classification,

Chebrolu et al. (2017)species not specified RGB-D detection and

segmentation

Food crops and weeds

Chenopodium album L.

RGB Detection Sudars et al. (2020)

Common beet, Galium aparine

Carrot, Thlaspi arvense

Zucchini, Capsella bursa-pastoris

Pumpkin, Matricaria perforata

Radish and Polygonum convolvulus

Black radish Viola arvensis

Galinsoga parviflora

Open plant phenotype database Not specified
47 weed species. Names

RGB Detection Madsen et al. (2020)
given in the paper

Sugar beet and hedge bindweed Sugar beet Convolvulus sepium RGB Detection Gao et al. (2020)

Crop/Weed Carrot
Weeds. Names

Multispectral Segmentation Haug and Ostermann (2015)
do not specified

Carrot/Weed Carrot Not specified RGB Segmentation Lameski et al. (2017)

GrassClover

Lolium perenne

RGB Segmentation Skovsen et al. (2019)
Red clover and Taraxacum officinale

white clover Capsella bursa-pastoris

Cirsium arvense

WeedNet
Crop. Name Weeds. Names

Multispectral Segmentation Sa et al. (2018)
do not specified do not specified

Rice seedling and weed Rice Sagittaria trifolia RGB Segmentation Ma et al. (2019)

Crop and weeds

Chenopodium album

RGB Segmentation Champ et al. (2020)
Corn and Matricaria chamomilla

common bean Brassica nigra

Lolium perenne

Sunflower dataset Sunflower Not specified Multispectral Segmentation Fawakherji et al. (2021)

Data preparation could also include transforming the images from RGB to

a different color space or color index images for training models. Wang et al.

(2020) segment crop and weed plants training DL architectures using images in

the YCrCb and YCgCb color space and from eight distinct color indices. Also,

Milioto et al. (2018) used 14 distinct image representations, including color spaces

and color indices for weed and crop segmentation. On the other hand, image re-

sizing is done as dataset preparation when scholars pretend to make public their
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data. As a reference, the datasets provided in Table 1.4 have been configured with

fixed image size. However, we argue that datasets whose size of their images was

manipulated have lost prominent features, preventing the users from exploring

with other techniques.

Training stage

The training stage encloses the steps of image pre-processing, training DL

architecture, and testing of the model. Image resizing is often the first step in

image pre-processing if the data has not been resized previously. The size of the

images depends on the requirements of the model architecture. Common image

sizes, in pixels, found for weed recognition are 64 × 64 (Milioto et al., 2018;

Reedha et al., 2022), 128 × 128 (Dyrmann et al., 2016; Espejo-Garcia et al.,

2020), 224× 224 (Jiang et al., 2020; Olsen et al., 2019; Wang et al., 2023), 256×
256 (dos Santos Ferreira et al., 2017; Tang et al., 2016; Zou et al., 2022) and

512 × 512 (Janneh et al., 2023; Zhang et al., 2023). The size of images also

contributes to the performance of the networks. Sahin et al. (2023) found that

the Sunflower dataset (Fawakherji et al., 2021) was better segmented using 704×
704 image size than a size of 512 × 512 through the UNet architecture. Other

works have found the better performance of DL models as image resolution was

increased (Sabottke and Spiele, 2020; Thambawita et al., 2021). To avoid the loss

of prominent features during the training of DL architectures, some scholars have

opted to use the original size of the images and work with patches. Fawakherji

et al. (2020) patchify the dataset Sunflower (Fawakherji et al., 2021) and Sugar

beet (Chebrolu et al., 2017) for segmentation of crop and weeds.

Although DL architectures have the potential to learn multiple features, some

scholars argue that eliminating the background (soil, rocks, or human body parts)

contributes to increasing the performance of the models on specific tasks because

the background features do not interfere with the features of the plants (KC et al.,

2021). Commonly, if background removal is applied over images, it comes along

with image enhancement and/or image denoising actions to obtain a foreground in

most corresponding to alive vegetation. Le et al. (2020a) implemented E×G−E×
R index to keep solely green vegetation pixels on images of wild radish and barley.

They also implemented opening and closing morphological operations (Soille,
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2004) to remove noise in the images. The NDVI also was used for background

removal and opening and closing morphological operations for noise elimination

Milioto et al. (2017) over the sugar beet dataset (Chebrolu et al., 2017) to detect

crops/weeds.

Nonetheless, image enhancement and denoising have also been employed in-

dependently as pre-processing techniques during the training stage for weed/crop

recognition. Lottes et al. (2020) removed the noise of input images by applying a

Gaussian blur kernel and enhanced them by standardizing the channels by sub-

tracting the mean of channel values and dividing by standards deviation of the

channel values in order to minimize the influence of changes of the environment

for crop/weed classification. Furthermore, the effects of image enhancement and

denoising have been evaluated on the performance of CNNs. Lottes et al. (2018)

found that applying a Gausian kernel to remove noise, standardizing and norma-

lizing the pixels at zero-center values helped the networks to increase the genera-

lization capabilities. Nkemelu and amd Nancy Lubalo (2018) also reported that

applying a Gaussian kernel for smoothing the training images and removing the

background, the classification of seedling weeds through a CNN increased around

12.40%. Nonetheless, all the actions carried out in the image pre-processing step

into the training stage increase the training time of the networks.

After having chosen or designed a DL architecture for crop/weed identifica-

tion, the training process involves the “syntonization” of the weights, parame-

ters, and hyper-parameters of the networks over a portion of the experimental

dataset (training and validation). Afterward, the models should be tested over

another portion of the dataset. In the literature, for weed identification, it is com-

mon to find splitting rates of datasets of 7:2:1 (Wang et al., 2023; Zhang et al.,

2023), 6:2:2 (Jiang et al., 2023; Vaidhehi and Malathy, 2022; Zou et al., 2022),

8:1:1 (Picon et al., 2022; Subeesh et al., 2022) for training, validation and testing,

respectively.

1.1.3.1. Classification, detection and segmentation of crops and weeds

The design of the DL networks is done according to the recognition approach

wanted, such as classification, detection, and segmentation. Because in recent
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years, plenty of works have been reported for weed recognition based on deep

learning, below are listed some works that cover weed recognition solely in na-

tural conditions, in which the networks used, the crop/weed species, and the

corresponding descriptive metrics are highlighted.

Classification

Classification is the task of assigning a class to a single object present within

an image (Skansi, 2018). This means that classification networks do not provide

the spatial localization of the crop and weed plants in the field. Since the AlexNet

was reported in 2012, modern classification architectures are composed of convo-

lutional layers for feature extraction and fully connected layers for classification of

the features (Santosh et al., 2022). Since that year, CNN architectures have suffe-

red diverse modifications, such as the network depth, which has been achieved by

reorganizing the processing units, from plain stacking of convolutions to the deve-

lopment of new blocks like inception, residual connections, and dense blocks. On

the other hand, transformer architectures for crop/weed recognition, which prac-

tically arose in 2017, have also evolved. Therefore, works settled in Table 1.5 for

weed recognition in open fields include the following architectures: AlexNet and

VGGNet, which have been designed stacking the convolution operations; and the

modern Inception-based CNNs, ResNet and its variants, and finally DenseNet;

whereas transformers include Vision Transformer (ViT) and Swin Transformer,

principally.

Detection

Detection consists of localizing the instances of an object in a given image and

designating each object a class from a group of predefined classes (Amjoud and

Amrouch, 2023). DL architectures specialized in detection are integrated with

a backbone, which is a CNN designed to extract relevant features of the input

images; a localization algorithm, which provides the spatial localization of the

instances in an image; and finally, a fully connected networks, which classify the

region proposal that comes from the localization algorithm. The main difference

among detection architectures is principally its localization algorithms.
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Table 1.5: Works over the classification of crops/weeds in natural fields based on CNNs

and transformers.

Crop Weed species Model Accuracy Reference

Soybean Grass and broadleaf weeds AlexNet 99.5% dos Santos Ferreira et al. (2017)

Sugar beet Volunteer potato

AlexNet 97.9%

Suh et al. (2018)

VGG19 98.7%

GoogleNet 97.3%

ResNet50 97.2%

ResNet101 98.5%

InceptionV3 94.8%

Corn

Cirsium setosum, AlexNet 93.0%

Jiang et al. (2020)
Chenopodium album, VGG16 95.8%

Cyperus esculentus ResNet101 96.5$

and Poa annua

Lettuce

Cirsium setosum, AlexNet 96.65%

Jiang et al. (2020)
Chenopodium album, VGG16 97.61%

Cyperus esculentus, ResNet101 98.25%

and Poa annua

Alopecurus myosuroides Huds,

Peteinatos et al. (2020)

Amaranthus retroflexus L.,

Avena fatua L.,

Corn, Chenopodium album L., VGG16 82.0%

potato and Lamium purpureum L., ResNet50 97.0%

sunflower Matricaria chamomila L., Xception 98.0%

Setaria spp.,

Solanum nigrum L. and

Stellaria media Vill.

Canola Wild radish

VGG16 91.55%

Le et al. (2020a)
VGG19 989.55%

ResNet50 89.73%

InceptionV3 90.87%

Corn and soybean

Xanthium strumarium, VGG16 99.90%

Ahmad et al. (2021)
Setaria viridis, ResNet50 97.80%

Amaranthus retroflexus InceptionV3 96.70%

and Ambrosia trifida

Bell paper

AlexNet 96.7%

Subeesh et al. (2022)
Multiple weeds. GoogleNet 95.9%

Species are not specified InceptionV3 97.7%

Xception 96.8%

Beet, Multiple weeds. Visual Transformer B-16 99.28%
Reedha et al. (2022)

Parsley and Species are not specified EfficientNet B0 96.53%

Spinach ResNet50 97.54%

Corn seedling

Cyperus rotundus L., VGG16 96.12%

Wang et al. (2023)

Amaranthus retroflexus L., ResNet50 96.33%

Abutilon theophrasti Medicus, DenseNet121 96.73%

Portulaca oleracea L., SE-ResNet50 96.94%

Chenopodium album L., EfficientNetV2 97.35%

Cirsium setosum and Swin Trasnformer 97.96%

Descurainia sophia L.

Corn
Multiple weeds. MobileNetV2 90.0%

Wessner et al. (2023)
Species are not specified InceptionV3 71.0%
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In Table 1.6 detection specialized architectures that have been implemented over

crops and weeds are listed. The most often used architectures for this task in

natural fields are DetectNet, YOLO in its different variants, SSD, Fast Region-

Based Convolutional Neural Network (R-CNN), Faster Region-based Convolutio-

nal Neural Network (Faster R-CNN), and RetinaNet.

Segmentation

Segmentation is divided into semantic segmentation and instance segmenta-

tion. Semantic segmentation is the task of assigning a label to each pixel (classi-

fication) of an image from predefined classes grouping the instances into classes,

whereas instance segmentation not only assigns a label to each pixel of an image

from predefined classes but also distinguishes between different instances of the

same class (Michelicci, 2019).

The DL architectures for semantic segmentation are grouped into Region Pro-

posal, Fully Convolutional Neural Networks (FCNN), and transformer-based. Sec-

tion 3.1.3 will cover some of these approaches. Region proposal-based architec-

tures extract multiple region proposals from an input image, and then the pixels

of the proposal are labeled with the highest score label the proposal contains.

The most well-known architectures in this group are Region-based Convolutional

Neural Network (R-CNN), Fast R-CNN, Faster R-CNN, and Mask Region-based

Convolutional Neural Network (Mask R-CNN). On the other hand, FCN-based

segmentation is divided as follows, encoder-decoder networks, such as UNet and

SegNet; Networks with Dilated Autrous Convolutions, like DeepLab networks;

Feature fusion networks, such as ParseNet; Multi-Scale Feature and Pyramid Ar-

chitectures, like PSPNet and CNet (Soylu et al., 2023). Since 2023, Transformers

have been used for the segmentation of crops and weeds. Those reported in the

literature are Vision Transformer, Swin Transformer, SegFormer, Segmenter, and

Swin-UNet. All these networks follow an encoder-decoder structure. Table 1.7

provides some DL architectures used for the segmentation of crops and weeds in

outdoor conditions.

It is worth mentioning that from the works reported in Table 1.7 for segmen-

tation of corn plants, Picon et al. (2022) worked under high density of plants,

whereas the density of plants in the work of Zhang et al. (2023) was lower. The
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crop and weed plants were also at the seedling stage in this last work. Therefore,

the magnitude difference of the metric mIoU among these works is attributable

to these factors.

Table 1.6: Works over the detection of crops/weeds in natural fields based on CNNs.

Crop Weed species Model IoU mAP50 Reference

Wheat
Multiple weeds.

DetectNet 64.0% – Dyrmann et al. (2017)
Species are not specified

Sugar beet Convolvulus sepium YOLO 3 – 83.20% Gao et al. (2020)

Corn seedling Weeds are not included
YOLO 3-tiny 3 84.0% –

Liu et al. (2020)
YOLO 3 76.0% –

Corn and soybean

Xanthium strumarium,

YOLO 3 – 54.3% Ahmad et al. (2021)
Setaria viridis,

Amaranthus retroflexus

and Ambrosia trifida

Lettuce

Sonchus brachyotus, SE-YOLO 5 – 97.1%

Zhang et al. (2022)

Plantago asiatica L., YOLO 5 – 96.2%

Malachium aquaticum L. SSD-VGG16 – 86.2%

Avena fatua and SSD-MobileNetV2 – 95.1%

Veronica officinalis Faster R-CNN-ResNet50 – 81.5%

Faster R-CNN-VGG16 – 83.8%

Tomato

Cyperus rotundus L.,

López-Correa et al. (2022)

Echinochloa crus galli L., RetinaNet – 92.75%

Setaria verticillata L., YOLO 7 – 83.08%

Portulaca oleracea L. and Faster R-CNN – 92.13%

Solanum nigrum L.

Sesame

Fast R-CNN – 72.96%

Chen et al. (2022)

SSD – 78.83%

Multiple weeds. EfficientDet-d0 – 80.64%

Species are not specified YOLO 3 – 65.81%

YOLO 4 – 91.19%

YOLO 4-tiny – 81.71%

YOLO-sesame – 96.16%

Ipomoea purpurea

Sapkota et al. (2022)

Cotton, soybean Ipomoea hederacea

and corn. Urochloa texana YOLO 4 – 65.83%

(Crops do not detected) Sorghum halepense Faster R-CNN – 59.33%

Amaranthus palmeri

Euphorbia humistrata

Panicum fasiculatum

IoU-intersection over union; mAP50- mean average precision considering an IoU = 0.5.

1.2. Justification

Agricultural practices for corn crops should be improved now to ensure food

security in the future. Weeds significantly reduce the harvest volume of this ce-
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Table 1.7: Works over the segmentation of crops/weeds in natural fields based on CNNs

and transformers.

Crop Weed species Model mIoU DSC Reference

Rice seedling Sagittaria trifolia

SegNet-VGG16 91.80% –

Ma et al. (2019)FCN 53.80% –

UNet 53.00% –

Rice seedling Sagittaria trifolia

UNet 59.67% 74.74%

Khan et al. (2020)

SegNet 67.41% 80.53%

FCN-8s 54.78% 70.78%

DeepLabV3 67.60% 80.67%

CED-Net 71.05% 83.08%

Canola

Broadleaf weeds and UNet-VGG16 78.05% 99.52%

Asad and Bais (2020)
narrowleaf weeds. UNet-ResNet50 82.74% 99.64%

Species are not specified SegNet-VGG16 79.20% 99.55%

SegNet-VGG16 82.88% 99.29%

Rice

Broadleaf weeds and PSPNet-ResNet50 62.44% –

Kamath et al. (2022)narrowleaf weeds. UNet-ResNet50 51.35% –

Species are not specified SegNet-VGG16 31.88% –

Wheat Not included DeepLabV3+ - ResNet50 77.50% 86.30% Zenkl et al. (2022)

Corn

Setaria verticillata,

Picon et al. (2022)

Digitaria sanguinalis,

Echinochloa crus-galli, PSPNet-ResNet50 – 45.33%

Abutilon theophrasti, Dual PSPNet-ReSNet50 – 47.97%

Chenopodium albums and

Amaranthus retroflexus

Wheat

Trigonotis peduncularis, Modified UNet 92.84% –

Zou et al. (2022)
Rorippa indica (L.) Hiern, UNet 92.45% –

Cirsium setosum and SegNet 78.68% –

Chenopodium album L., FCN 72.15% –

Canola

UNet 60.95% –

Das and Bais (2021)

UNet-ResNet50 63.34% –

Broadleaf weeds and SegNet 65.21% –

narrowleaf weeds. SegNet-ResNet50 59.37% –

Species are not specified. DeepLabV3+ 61.61% –

DeepLabV3+ - VGG19 56.47% –

DeepVeg 76.79% –

Soybean

DeepLabV3+ 92.80% –

Xu et al. (2023)

DeepLabV3 96.70% –

Broadleaf weeds and FCN 91.90% –

narrowleaf weeds. UNet 92.20% –

Species are not specified. FastFCN 93.10% –

Vision Transformer 93.20% –

Swin Transformer 93.00% –

ResNet101-DSASPP 93.90% –

mIoU- mean intersection over union; DSC - dice similarity coefficient.
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1. INTRODUCTION 1.2 Justification

Table 1.7: Continue.

Crop Weed species Model mIoU DSC Reference

Grass

Trifolium repens,

Jiang et al. (2023)

Ambrosia artemisiifolia,

Digitaria,

Taraxacum, Swin Transformer 65.41% –

Glechoma hederacea, SegFormer 65.74% –

Chenopodium album, Segmenter 59.24% –

Amaranthus,

Plantago asiatica L.,

Festuca arundinacea and

Unknown weeds

Corn

DeepLabV3+ 90.48% –

Zhang et al. (2023)

Broadleaf weeds and PSANet 91.67% –

narrowleaf weeds. Mask R-CNN 91.97% –

Species are not specified. Swin-UNet 92.03% –

Improved Swin-UNet 92.75% –

mIoU- mean intersection over union; DSC - dice similarity coefficient.

real, and they are most often controlled by spraying herbicides, which pollute

the environment. SSWM is an alternative for mitigating this pollution. Nonethe-

less, localizing weed plants in open corn fields is still a challenge. In this way, the

nowadays reported studies have relied on supervised vision ML to tackle this trou-

ble. Most works have trained the models with datasets acquired under controlled

light conditions and low background variability, meaning that soil appearance

and straws do not change, or even datasets with scarce plant species are used.

To implement DL-based vision systems in natural field conditions, a considera-

ble quantity of images captured at different scenarios and growing stages of the

plants are needed so that the performance of the systems does not decay with

new data. It was found in the literature that DL algorithms were trained to clas-

sify individual plant species. Also, vision systems for detecting weeds and crops

have been implemented in crops different than corn, and a low number of works

have been carried out on corn, which is of economic and sociocultural impor-

tance. Therefore, in this work, classification and detection algorithms based on

segmentation networks have been implemented for detecting corn plants (Crop),

common narrow-leaf weeds (NLW), and broad-leaf weeds (BLW) from multi-plant
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images. Moreover, to train the proposed DL models, a large dataset of images

acquired in a typical cornfield under natural environmental conditions has been

created. This dataset contains nine plant species grouped into three classes.

1.3. Objectives

1.3.1. General objective

Developing a vision system that uses DL architecture to detect weeds in natu-

ral corn fields and implementing it on a mechatronic platform for real-time weed

control.

1.3.2. Specific objectives

To generate an image dataset of common weeds that grow in corn fields.

To explore shallow and deep learning algorithms to extract features of weed

plants for detecting them in the field.

To explore deep learning algorithms for semantic segmentation of weeds and

classic algorithms for object location.

1.4. Hyphotesis

Through a DL-based vision system, it is possible to detect in real-time (20

fps) at least 95% of the weed plants situated in the crop fields of Aguascalientes,

Mexico.
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Chapter 2

Theoretical framework

This section provides an in-depth exploration of the theoretical underpinnings

that serve as the framework for this research. It provides a comprehensive un-

derstanding of the technical knowledge involved in the algorithms used to classify

and segment corn and weed plants.

2.1. Artificial Intelligence

Artificial Intelligence (AI) is a branch of computer science that aims to create

intelligent machines capable of mimicking human cognitive functions, including

learning, problem-solving, and decision-making (Alzubaidi et al., 2021). The de-

velopment of AI involves the creation of algorithms and models that enable ma-

chines to process information, recognize patterns, and adapt their behavior ac-

cordingly. The importance of AI lies in its transformative potential across various

industries, offering unprecedented opportunities for innovation and efficiency. AI

technologies can enhance decision-making processes, automate repetitive tasks,

and analyze vast datasets at speeds beyond human capability. From healthcare

and finance to manufacturing and entertainment, the applications of AI are di-

verse and expansive, spanning predictive analytics, natural language processing,

image recognition, and autonomous systems.

AI, ML, DL, and ANN are interrelated technologies often used interchan-

geably, leading to confusion about their differences. It is, therefore, valuable to

clarify that deep learning is a specialized subset of ML, which in turn is a subset
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2. THEORETICAL FRAMEWORK 2.2 Machine learning

Artificial Intelligence

Machine Learning

Deep Learning

Development of smart systems and machines 
that can carry out tasks that typically require human intelligence

Creates algorithms that can learn from data
and make decisions based on patterns observed

Uses an artificial neural network,
a brain-like logical structure, to

reach accurate conclusions without
human intervention 

 

Figure 2.1: The artificial intelligence family. Machine learning is a subset of artificial

intelligence and deep learning is a subset of machine learning.

of AI, as shown in Figure 2.1. ML needs human intervention for feature ex-

traction steps and commonly works with small datasets. In case the number of

features increases, the performance of ML models usually decreases. In contrast,

deep learning does not need human intervention because the models extract and

learn features in one step. However, they need large datasets to obtain powerful

models (Mueller and Massaron, 2022; Taulli, 2019)

2.2. Machine learning

To implement ML-based object recognition, it is necessary to first extract

“features” from the objects in question (weeds and crops for this work), i.e.,

φ : T → X where φ represents the mapping from “object” to features, T is the

set of objects, and X = {xn}Nn=1 is the set of “N” feature vectors corresponding

to each object. It is worth mentioning that each x ∈ X takes the form of d-

dimensional vectors, i.e., x ∈ Rd, where d ∈ N∖ {0} is the dimension size, then,

X ∈ RN×d.

Once having a prepared dataset, the following step under the ML approach
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is to find out a model with a prediction function f(·), based on some measure

of “quality”, that maps X to the output Y, namely, f : X × Θ → Y, where Θ

represents model’s parameters. This is expressed as follows,

Y = f(X,Θ) (2.1)

Mainly, in this thesis, the classification of crop and weed plants was first

performed using a ML approach, specifically, a supervised learning method. Su-

pervised learning is a ML paradigm where a model is trained on a labeled dataset,

meaning that the algorithm learns from input-output pairs provided during trai-

ning. Therefore, the output was a set of labels, i.e., Y = {yn}Nn=1, in which each

label yn ∈ R is associated with each feature vector xn ∈ Rd. Hence, we have

proposed a model that implements the prediction function f : X×Θ→ Y. Then,

the Equation 2.1 can be expressed as:

yn = f(xn,Θ), ∀n ∈ {1, ..., N} (2.2)

Common shallow learning approaches in supervised learning include classic

algorithms such as linear regression, decision trees, SVM, k-nearest neighbors

(KNN), random forest (RF), and Bayesian classifiers (Bishop, 2006).

For a typical image classification problem, the output is a set of L labels

known as classes, Y = {1, 2, 3, ..., L}. The input X = {xn}Nn=1, could be the set of

vectors with the pixel intensity of images. In this way, having color images with

three channels (c = 3) of size w×h pixels. Then, X ∈ RN×w×h×c belongs to a very

high-dimensional space. Thus, learning a prediction function (f : X×Θ→ Y) for

mapping the input images to labels is relatively challenging.

Remarkably, this thesis adopted the well-known texture feature operator LBP riu2
P,R

(Ojala et al., 2002). This decision allows the input to belong to a lower-dimensional

space. Then, utilizing an SVM for classification tasks becomes a feasible alterna-

tive.
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2.2.1. Local binary pattern

LBP was introduced by Ojala (Ojala and Pietikainen, 1999; Ojala et al., 1996).

This descriptor specializes in texture analysis of gray-scale images. What distin-

guishes LBP is its monotonic gray-scale transformation and its illumination and

rotation invariance (Hamouchene et al., 2014).

The LBP operator works by comparing the value of a center pixel with those

of its surrounding pixels. If the center pixel value is greater than the surrounding

pixel value, it is assigned a value of 0; otherwise, it is assigned a value of 1. The

LBP operator is defined as follows,

LBPP,R =
P−1∑
p=0

s(gp − gc)2
p (2.3)

where gc represents the gray value of the center pixel, gp is the gray value of the

neighbors, P is the number of pixels in the circular neighborhood of radius R,

and s : Z→ [0, 1] is a function defined as,

s(x) =

{
1, x ≥ 0

0, x < 0
, x ∈ Z (2.4)

Figure 2.2 calculates the LBP “code” of a 3 × 3 gray-scale image window.

First, the intensity of the center pixel (gc = 77) is compared with the intensity

of each of the eight surrounding pixels (gp). The pixel intensities are shown in

Figure 2.2(a). Starting from the top left corner of the window, when the difference

value of (gp − gc) is greater than 0, it is considered 1; otherwise, it is considered

0. From this process, an 8-bit binary pattern obtained is 11110010, as shown in

Figure 2.2(b). The weights of Figure 2.2(c) are calculated by the operation 2p,

a factor of Equation (2.3). Then, the binary pattern (Figure 2.2(b)) is element-

wise multiplied with the weights (Figure 2.2(c)), and the products are summed to

obtain an LBP code, which in this case is 79. Finally, this LBP code is replaced

by the central pixel of the window (Figure 2.2(d)). Figure 2.3 shows an instance

RGB image whose pixels were labeled with LBP values.

The LBP algorithm above reflects the texture features of an image utilizing

the histogram of the LBP codes. This histogram is enclosed in a vector of 256
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112 87 96

53 77 154

221 36 72

1 1 1

1

001

0

1 2 4

8

64 32 16

128

(a) (b) (c)

32

(d)

79

Figure 2.2: Example for computing the LBP code. (a) Fraction of gray-scale image. The

numbers represent the intensity of the pixels. (b) 8-bit binary pattern. It is computed

comparing the intensity of the center pixel (gc) with the intensity of the eight surrounding

pixels (gp), starting from the top left corner, using Equation 2.4. (c) Weighs for computing

patterns, computed by the operation 2p, where p = 0, ..., 7, and (d) the LBP code of the

central pixel calculated through Equation 2.3.

(a) (b) (c)

Figure 2.3: Visualization of an RGB image whose pixels have been labeled with LBP

codes. (a) Input RGB image. (b) Gray color space. (c) Labeled image with LBP codes.

possible patterns (xn ∈ R256). To further analysis, the formed set X = {xn}Nn=1

is usually normalized for subsequent training of the selected prediction function.

The original LBP operator fails to capture other outstanding features becau-

se only a 3× 3 neighborhood is considered and it always contemplates the same

number of surrounding pixels, which is a drawback. Additionally, not all 256 pos-

sible patterns are necessary to extract the most important features (Hamouchene

et al., 2014; Le et al., 2019). Ojala et al. (2002) improved the original LBP algo-

rithm by considering exclusively the number of transitions between 0 and 1 or 1

and 0, denoted by the “uniform” measure U . This new algorithm has been named

rotation-invariant uniform local binary pattern (LBP riu2
P,R ).
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The following Figure 2.4 clarifies LBP riu2
P,R , in which the black circles represent

a bit value of 1 and the white circles represent a bit value of 0 in the 8-bit output of

the traditional LBP. Then, this algorithm adopts the uniform patterns with zero

(U = 0) or two transitions (U = 2). When the pattern has zero transition, it is a

compound of either ones or zeros, such as 11111111 (Figure 2.4(a)) and 00000000

(Figure 2.4(b)), respectively. A pattern with two transitions transits from 0 to

1 or from 1 to 0, such as 00111100 (Figure 2.4(c)). Non-uniform patterns have

more than two transitions, such as 10110111, represented in Figure 2.4(d). In

this way, the LBP riu2
P,R descriptor is denoted as follows,

U=0 U=0 U=2 U=4

(a) (b) (c) (d)

Figure 2.4: Rotation invariant binary pattern instances in a circular neighbor set of eight

pixels. The black circles represent a bit value of 1 and the white circles represent a bit

value of 0. (a) Uniform pattern with cero transitions (11111111), (b) uniform pattern with

cero transitions (00000000), (c) uniform pattern with two transitions (00111100), and (d)

nonuniform pattern. This type of pattern have more than two transitions from 0 to 1 or

from 1 to 0.

LBP riu2
P,R =

{∑P−1
p=0 s(gp − gc), if U(LBPP,R) ≤ 2

P + 1, otherwise
(2.5)

where,

U(LBPP,R) =
∣∣s(gP−1 − gc)− s(g0 − gc)

∣∣+ P−1∑
p=1

∣∣s(gp − gc)− s(gp−1 − gc)
∣∣ (2.6)

LBP riu2
P,R breeds individual datapoints xn ∈ RP+2, that reduce the feature

space and increase the speed of LBP. For instance, if a window of eight circular

neighbor pixels is used, then xn ∈ R10.
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2.2.2. Support vector machines

SVM, a supervised ML algorithm, solves the two-classes classification problem

using the following linear model,

f(x) = wTx+ b (2.7)

where the parameters w and b, the weights and bias, respectively, are calculated

from a training dataset of input vectors X = {xn}Nn=1 with corresponding target

values Y = {yn}Nn=1, where yn ∈ {−1, 1}, in such a way that new data points xn are

classified according to the “sign” of f(x). The SVM approaches the classification

problem by maximizing the margin distance, defined as the distance between the

decision boundary and the closest samples, as shown in Figure 2.5.

M
arg

in =

Figure 2.5: Illustration of the decision boundary of SVM for two classes.

The margin is calculated by an optimization process of the parameters w and

b as follows:

argmax
w,b

{
1

||w|| mı́n
n

[
yn(w

Tx+ b)
]}

(2.8)

To solve this optimization problem, a Lagrange multiplier is needed,

L(w, b, a) =
1

2
||w||2 −

N∑
n=1

an{yn(wTx+ b)− 1} (2.9)
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where a is a vector of multipliers, whose elements an ≥ 0, and N are the input

vectors. To simplify Equation (2.9), the derivatives with respect to w and b are

computed. Next, these derivatives are set equal to zero, resulting,

w =
N∑

n=1

anynx (2.10)

0 =
N∑

n=1

anyn. (2.11)

Thus, using these conditions, Equation (2.9) can be expressed as follows,

L̃(a) =
N∑

n=1

an −
1

2

N∑
n=1

N∑
m=1

anamynymK(xn,xm) (2.12)

with constraints,

an ≥ 0, n = 1, . . . , N, (2.13)

N∑
n=1

anyn= 0 (2.14)

where K is a kernel function, which transforms a non-linearly separable space to

a linear separable one, and an is a constant known as the Lagrange multiplier.

2.3. Deep learning

DL encloses models with low training parameters, such as shallow ANNs,

that usually comprehend two or three layers. On the contrary, deep learning

encompasses a large family of models that contain more complex functions. For

instance, if a shallow ANN is added with more hidden layers, deep learning trait

these problems. Therefore, the working principle of shallow and deep ANNs is

first provided to further understand CNNs and transformers.
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2.3.1. Artificial Neural Networks

The simplest representation of an ANN is the perceptron, which was proposed

by Rosenblatt (1958). The perceptron is constituted by a single artificial neuron

in one layer, as shown in Figure 2.6.

Figure 2.6: The perceptron network representation. The inputs (xi) are pondered by their

corresponding weights (wi) to regulate how much of the initial value will be forwarded to

a given neuron. The resulting value is added with the parameter bias (b) for obtaining an

activation potential (u) that is then an argument of the activation function σ(·). The final

value y is produced by a neuron given a set of input signals.

The basic elements elements of an ANN are the following:

The input signals X = {xn}Nn=1, which are the magnitude of the variables

that describe a particular application.

The weights W = {wn}Nn=1 are the numbers used to regulate how much of

the initial value will be forwarded to a given neuron.

Linear aggregator (
∑

) congregates all input signals pondered by the weights.

The bias (b) is a parameter employed to define the requisite threshold that

the outcome from the linear aggregator must possess to initiate a triggering

response in relation to the neuron output.

Activation function (σ(·)) is used to incorporate non-linearity into the net-

work by limiting the neuron output within a reasonable range of values.
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Output signal (y) is the final value produced by a neuron given a set of

input signals.

McCulloch and Pitts (1988) proposed the following expressions that describe

the mathematical notation performed by the perceptron:

u =
n∑

i=1

wi · xi + b (2.15)

y = g(u) (2.16)

where xi is an input to the network, wi is the weight related with the i-th input,

b is the bias, g(·) is the activation function and u is the activation potential.

The working principle of a single neuron starts when the inputs (xi) are pon-

dered by their corresponding weights (wi) to regulate how much of the initial

value will be forwarded to a given neuron. The resulting value is added with the

parameter bias (b) for obtaining an activation potential (u) that is then an argu-

ment of the activation function (σ(·)). The information in the perceptron network

always flows from the input layer to the output layer, at this stage, do not exist

feedback from the output neuron to the input.

2.3.1.1. Multilayer Perceptron Network

An MLP, a feedforward neural network, arranges multiple neurons in layers.

These layers are usually known as the input , hidden and output layer; in which

every layer is represented by nodes connected to all nodes to the next layer, as

shown in Figure 2.7. The weight parameters are indicated as links between the

nodes. The bias(b) is also represented by links coming as inputs to every node

of the hidden and output layers. In this network, the information flows from the

input layer to the output layer during forward propagation, which is represented

by the arrows.

For instance, for constructing a three-layer network, M linear combination of

the input variables (x1, x2, ...xD) is constructed first, in the form,

uj =
D∑
i=1

w
(1)
ji xi + b

(1)
j (2.17)

38



2. THEORETICAL FRAMEWORK 2.3 Deep learning

Input layer Output layerHidden layer

Figure 2.7: A simple neural network representation of three layers.

where j = 1, ...,M and the superscript (1) indicates that these parameters co-

rrespond to the first layer of the network. The parameters wji and b are the

weights and the bias, correspondingly. Every merging activation potential u is

then transformed using any differentiable, non-linear activation function σ(·) to
obtain,

zj = σ(uj) (2.18)

where zj is the output of the hidden units. It is worth mentioning that the most

often used non-linear activation function σ(·) in the hidden layers of an ANN

is the logistic sigmoid. However, different layers may have different activation

functions. Nonetheless, all neurons in the same hidden layer shall have the same

activation function. The next section covers different activation functions that

are commonly used in an ANN for the hidden layers and output layer.

Continuing, each zj is anew linearly combined to obtain output activation for

the second layer,

uk =
M∑
j=1

w
(2)
kj zj + b

(2)
k (2.19)
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where k = 1, ..., K, and K is the total number of outputs. Then, the output

activation potentials uk are transformed using an appropriate activation function

to obtain the output of the network yk.

yk = σ(uk) (2.20)

In this case, for this three-layer network, the above equations that represent

the network function could be grouped as follows,

yk(X,W) = σ

(
M∑
j=1

w
(2)
kj σ

(
D∑
i=1

w
(1)
ji xi + b

(1)
j

)
+ b

(2)
k

)
(2.21)

where the set of all weight and bias parameters have been grouped into a matrix

W. In this way, the model of the neural network is nested of non-linear functions

from a set of input variables xi to a set of output variables yk controlled by the

matrix W of adjustable parameters.

Usually, networks of a maximum of three layers are known as shallow neural

networks; on the other hand, any network with more than three layers receives

the name of Deep Artificial Neural Network.

Therefore, for a neural network with L layers, in which the jth neuron accept

a set of input responses generated by N previous neurons, the output of the lth

layer is estimated as

al = σ

(
N∑
i=1

wl
ija

l−1
ij + blj

)
(2.22)

Then, expressed as matrix-vector notation,

al = σ
(
WTal−1 + b

)
(2.23)

where σ refers to any non-linear activation function of the neuron.

2.3.1.2. Activation functions

The activation function, as aforementioned, incorporates non-linearity to the

neural network. That is, it allows to approximate a non-linear function and find

relationships between the input variables and the target variables. In this way,
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activation functions could be classified as linear activation function and non-

linear activation functions. Figure 2.8 shows some graphs of the commonly used

activation functions in ANNs.

(a) Identity (b) Bipolar step (c) Sigmoid

(d) Tanh (e) ReLu (f) Hard Tanh

Figure 2.8: Common activation functions used in ANNs.

Linear activation function. The linear activation function, which is illustrated

in Figure 2.8(a), is also known as “identity function” and it is defined as follows,

σ(x) = x (2.24)

This function provides an output proportional to the input, which means that

this function does not do anything to the activation potential (u in Equation 2.15).

If used in hidden layers, no matter the number of layers a network has, it will be

reduced to single layers because the output layer will be a linear transformation of

the first layer. Additionally, since the derivative of this function is a constant, it is

impossible to adjust the parameters w and b of the network for the training data

(X). Therefore, the identity activation function should not be used for hidden
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layers of ANN. However, the identity activation function could be used in the

output layer of ANNs when the target is a real value.

No-linear activation functions. The activation functions in this group permit

the model to create complex mappings between the network’s inputs and outputs

because they are derivative, which allows backpropagation, an algorithm that

achieves the learning of the parameters of ANNs. Also, due to this characteristic

of the functions, the stacking of multiple layers of neurons is possible because the

output would now be a non-linear combination of input passed through multiple

layers (Hecht-Nielsen, 1989).

The bipolar step function, whose graphical representation is shown in Figu-

re 2.8(b) could be used to map a binary output at prediction time. The output

produced by this function will be 1 when the neuron activation potential is grea-

ter than zero; 0 when the potential is also 0; and −1 when the potential is less

than zero. The mathematical notation of this function is as follows,

σ(x) =


1, if x > 0

0, if x = 0

−1, if x < 0

(2.25)

On the other hand, the outputs of the sigmoid activation function exist bet-

ween (0, 1), which is useful in performing computations that should be interpreted

as probabilities; since probability exists only between the range of 0 and 1. The

graphical representation of this function is illustrated in Figure 2.8(c), and it is

mathematically described by the following expression,

σ(x) =
1

1 + e−x
(2.26)

The tanh activation function, which is graphically shown in Figure 2.8(a), has

a similar shape to the sigmoid function; however, its output range is between

(−1, 1). Its mathematical expression is written as,

σ(x) =
2

1 + e−2x
− 1 (2.27)

However in the early implementation of ANN, the sigmoid and the tanh fun-

ctions were often selected for incorporating non-linearity into the neural network.
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In modern ANNs, scholars have replaced these functions with the rectified linear

unit (ReLu) and hard tanh activation functions, whose graphs are shown in Fi-

gure 2.8(e) and Figure 2.8(f), respectively. The reason is that these functions are

less affected by the problem of the vanishing gradient and typically show better

convergence behavior (Lottes, 2021). The ReLU activation function performs a

threshold; the input values that are less than zero are set to zero and it behaves

as a linear activation for those values equal to or above zero (Equation. 2.28).

On the other hand, the Hard tanh function lies within the range of -1 to 1 and is

expressed by Equation 2.29.

σ(x) = máx(0, x) (2.28)

σ(x) =


1, if x > 1

x, if − 1 = x ≤ 1

−1, if x < −1
(2.29)

According to the description given above, the identity activation function

must be used exclusively in the output layer of networks for standard regression

problems. Respecting ReLu and hard tanh, they are most recommended to use in

hidden layers of neural networks, and avoid using sigmoid and Tanh functions in

these layers. Instead, sigmoid and Tanh functions could be implemented in the

output layers of ANNs for binary classification and multilabel classification (Ag-

garwal, 2018).

In this thesis, the ReLu activation function was implemented in hidden la-

yers of ANNs for feature classification and into CNNs (Section 2.3.2) for feature

extraction. Additionally, since this work lies with multiclass classification, the

output layer of the networks was provided with the number of neurons equiva-

lent to the number of classes. Additionally, the softmax activation function was

applied to the last activation vector (al) , defined as follows,

σsoftmax(a
L) =

ea
l∑C

j=1 e
al

(2.30)

where C is the number of classes.

43



2. THEORETICAL FRAMEWORK 2.3 Deep learning

The softmax function computes the probability distribution from a vector

of real numbers. The length of the output vector is equivalent to C and their

magnitude is between 0 and 1, with the sum of the probabilities being equal to

1. Therefore, the target class has the highest probability.

2.3.1.3. Loss functions

In this thesis, supervised ML was implemented. Therefore, we had the input

data X and the actual labels Y. In this way, the model’s parameters were optimi-

zed with respect to a loss function L when training a neural network. The loss

function L measures the difference between network’s predictions and the labels.

Consequently, the objective of the training procedure is to adapt the model pa-

rameters Θ to minimize the difference computed by L. This is because the loss

function always penalizes incorrect classifications, so that the network achieves

adequate mapping between the input and the output.

The loss functions used depend on the architecture of the networks and the

goal task. Therefore, they are grouped into regression loss functions and clas-

sification loss functions. Scholars have proposed a considerable number of loss

functions, such as the ones documented in Terven et al. (2023). Since, in this

thesis, the experiments focused on the classification of plants, we implement Ca-

tegorical cross-entropy loss (LCCE), dice loss (Ldice) and focal loss (Lfocal).

LCCE measures the dissimilarity between the predicted probability distribu-

tion and the true distribution. This loss function is expressed as

LCCE = − 1

N

N∑
i=1

C∑
j=1

yij log(pij) (2.31)

where N is the number of samples, C is the number of classes, y is the true label,

and p is the predicted probability of the true class.

The dice loss was used in the classification of pixels as a strategy to compen-

sate the small ROIs that certain plant species might occupy in images; this is

because this loss increases the IoU twice, promoting an easy localization of small

ROIs into the images. The computation of dice loss is as follows,
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Ldice = 1− 2yŷ + 1

y + ŷ + 1
(2.32)

where y refers to the ground truth label and ŷ is the predicted value from the

model.

Respecting the focal loss, it was used to compensate for the pixel imbalance.

This is because plant species usually appear small in the images, predominating

the background pixels. The focal loss addresses this issue by down-weighting the

easy negative samples and up-weighting the hard positive samples. The mathe-

matical notation of this function is as follows,

Lfocal = −αt(1− pt)
ϕlog(pt) (2.33)

where αt ∈ [0, 1] is a vector of class weights which is computed as the inverse

class frequency from the dataset labels, pt is a matrix of probabilities that each

class has to be ground truth, and ϕ is the degree of modulating the pixels that

are easy to classify (usually ϕ = 2).

2.3.1.4. Training of neural networks

So far, the configuration of neural networks has been analyzed, encompassing

input layers, hidden layers, output layers, parameters Φ, and differentiable acti-

vation functions. This network configuration facilitates the execution of a forward

pass to predict an output based on input data, utilizing the current parameters

Φ. Subsequently, the loss function estimates the error between predictions and

labels. Here is when the network training comes in, involving the identification

of suitable values for the parameters Φ to minimize the error calculated by the

loss function. For the training of neural networks, the backpropagation algorithm

and optimizer algorithms work together.

Backpropagation computes the gradient of a loss function concerning the

weights of the network one layer at a time, iterating backward from the out-

put layer until the input layer. In contrast, the optimizer algorithms perform

the strategy for actualizing the weights using the gradients to optimize the loss

function (Bishop, 2006).
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Backpropagation. It is an algorithm for computing the gradient of the loss

function concerning the parameters Φ of each layer of networks. It is simply an

application of the chain rule for derivatives, and its definition can be expressed

as follows,

∂L

∂wij

=
∂L

∂alj
× ∂alj

∂ul
j

× ∂ul
j

∂wl
ij

(2.34)

where L is the error or cost function, alj is the activated output of the neurons of

layer l, ul
j is the activation potential of neurons of layer l.

To clarify this algorithm, suppose the network is using the mean squared error

loss function and sigmoid activation function (ec. 2.26), then the gradient of the

error with respect to wij is as follows,

∂L

∂wij

=
∂

∂alj
(
1

2
(y − alj)

2)× ∂

∂ul
j

(
1

1 + e−ul
j

)
× ∂

∂wl
ij

(
wl

ija
l−1
j + blj

)
(2.35)

The gradient of the error with respect to weights is propagated backward

to every neuron through each layer of the network. Subsequently, an optimizer

algorithm actualizes the weights.

Optimizers. The networks’ weights are actualized iteratively to learn the input

data’s features utilizing an optimizer algorithm. Choosing the correct optimizer

could impact the evaluation accuracy and speed of training.

The traditional gradient descent, also called full-batch learning estimates the

error gradient at the end of each epoch. One epoch is the set of iterations that

goes through the entire dataset once. Nevertheless, it is not recommended to use

gradient descent for extensive training datasets due to its time-consuming nature.

This is because it processes the entire dataset for just one weight update during

training. Moreover, when dealing with larger datasets, gradient descent consu-

mes more memory, as it necessitates storing the complete dataset for training

purposes. For that reason, in this thesis stochastic gradient descent (SGD) opti-

mizer (Equation 2.36) and Adam optimizer (Equation 2.41) were implemented.

In SGD, considering a dataset on n samples, the gradient of the error is updated

in each iteration. SGD also allows dividing the whole dataset in mini batches, and

then iterate over them and finally actualize the network parameter in a randomly
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selected mini batch, which results in a more efficient and feasible optimization

procedure.

Wτ+1 = Wτ − η∇En (2.36)

where Wτ are the weights in the iteration τ , η is the learning rate parameter and

∇En is the gradient matrix of the error. The learning rate guides the algorithm

by determining the distance of each step and, consequently, the magnitude of

parameter updates. It stands out as a crucial parameter requiring careful tuning.

If the learning rate is too small, it results in insufficient learning progress. On the

contrary, a huge learning rate can negatively impact convergence behavior and

may even lead to divergence in the learning process (Bishop, 2006).

Respecting Adam optimizer, it combines the benefits of the optimizers RMS-

prop and SGD with momentum. Adam is an “adaptive moment estimator”, which

means, it computes individual learning rates for different parameters. It utilizes

the squared gradients to adjust the learning rate similar to RMSprop, and it le-

verages momentum by incorporating a moving average of the gradient instead of

the gradient itself, as seen in SGD with momentum. First of all, Adam optimizer

computes an ongoing average of both gradients and squared gradients for each

parameter in the model. Subsequently, these averages are employed to determine

the updates for each parameter, as follows,

mt = β1mt−1 + (1− β1)gt (2.37)

st = β2st−1 + (1− β2)g
2
t (2.38)

m̂t =
mt

(1− βt
1)

(2.39)

ŝt =
st

(1− βt
2)

(2.40)

where gt is the gradient at time t, mt and st are the first and second moments

of the gradients, respectively, β1 and β2 are hyperparameters that control the

decay rates of the moment estimates, and gt is the gradient. Usually, β1 = 0.9,

47



2. THEORETICAL FRAMEWORK 2.3 Deep learning

indicating a long memory for the first moment, offering a reliable indication of

the gradient’s trend. Conversely, β1 = 0.999, implying a shorter memory for the

second moment, emphasizing the magnitude of the gradient (Murphy, 2022).

Finally, the weights update is as follows,

Wτ+1 = Wτ − η
m̂t√
ŝt + ϵ

(2.41)

where η is the learning rate, and ϵ is a small constant used to prevent division by

zero, usually ϵ = 10−6.

2.3.2. Convolutional neural networks

CNNs are specialized for high-dimensional data, such as images and videos.

Concerning image analysis, they could be used for classification, object detec-

tion and segmentation challenges. Also, they are used for both supervised and

unsupervised learning approaches. In supervised learning, the inputs and their

corresponding labels are known, while in unsupervised learning, the model seeks

to estimate the underlying distribution of input data samples without knowledge

of true labels for a given set of inputs (Khan et al., 2018).

A basic CNN is a compound of convolutional layers and fully connected layers

(FCL), as shown in Figure 2.9. Convolutional layers are specialized in feature

extraction, also known as feature learning (Murphy, 2022). A CNN could have

multiple convolutional layers, which gives the depth of the network. On the other

hand, the FCL are used for classification and follow the typical architecture of an

ANN, already covered in the last sections.

The CNN receives input data organized in a 2D grid structure I ∈ Rh×w,

where h is the height and w is the width of the structure, or also a CNN could

receive a 3D grid structure I ∈ Rh×w×d, where d is the depth of the structure.

In the case of RGB images, the values at each grid point are known as pixels,

representing specific spatial locations within the image (Ihw(i, j)). Since CNNs

need to be fed with an array of values, an RGB image could be transformed to a

3D array (structure) of size I ∈ Rh×w×d, where (h,w) is the spatial dimension of

the image and d is the depth, representing the RGB channels (Aggarwal, 2018).
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Figure 2.9: A simple architecture of a classification CNN. Convolutional layers are specia-

lized in feature extraction, and their number determines the depth of the network; whereas,

the fully connected layers are in charge of classification.

A convolutional layer of a CNN commonly involves the operations convolution,

non-linear activation function (usually ReLU) and pooling. Therefore, as the pixel

intensities of primary colors enter the first layer of a CNN, the two dimensions

capture spatial relationships, while the third dimension accounts for independent

properties along channels. After Ihwd(i, j) is operated by the first convolutional

layer, it produces feature maps (M ∈ Rh×w×d). In this way, every convolutional

layer, as we move forward into layers, produces an array of feature maps with

reduced spatial size Mhw but with major depth (Md) compared to the previous

layer (Aggarwal, 2018). In simpler terms, the network constructs a hierarchical

representation of the input. For instance, in the context of this thesis, where

images of weed species serve as input, the initial layers depict basic features

like edges, subsequent layers capture more intricate features like corners, and

deeper layers can identify abstract features such as leaves or stems. All these are

achieved through the training process. Further details on the operations within

convolutional layers will be discussed below.

2.3.2.1. Input image

In the Section 1.1.3, it was mentioned the spatial resize, background removal,

enhancement, denoising, and augmentation as pre-processing techniques carried

out over input images for training CNNs. Nonetheless, it is mandatory to reduce

the range of the input values (pixels) over which the backpropagation algorithm
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works, so that the variables vary over a small range, which facilitates the training.

Mean-subtraction and normalization are the frequent algorithms applied over

input images. Consider an image I(i, j) ∈ Rh×w×d, then mean-subtraction and

normalization are computed according to Equation 2.42 and Equation 2.45, as

follows

Î(i, j) = I(i, j)− µ (2.42)

µ =
1

hw

h−1∑
i=0

w−1∑
j=0

I(i, j) (2.43)

σ2 =
1

hw

h−1∑
i=0

w−1∑
j=0

[I(i, j)− µ]2 (2.44)

x(i, j) =
Î(i, j)√

σ2
(2.45)

where Î(i, j) is the mean-substracted image, µ is the mean of the image I(i, j),

σ2 is the variace of the image I(i, j) and x(i, j) is the normalized image.

2.3.2.2. Convolution layers

A 2d-convolution operation is executed using a kernel f over the input. The

most often used filters are of size (7× 7), (5× 5), (3× 3) and (1× 1). The kernel

traverses the entire input, conducting a dot product between its values and the

corresponding values of the input at each position.

The mathematical expression of a 2d-convolution is expressed as

[f ⊛ I](i, j) =
h−1∑
u=0

w−1∑
v=0

f(u,v)I(i+u,j+v) (2.46)

where f is a 2d kernel of size (h,w). The output from a convolution M = f ⊛ I

is named feature map.

The Figure 2.10 is a representation of the convolutions operation among a

kernel of size (3× 3) and an input of size (5× 5). Always, a fh × fw kernel over

an image of size Ih× Iw produces an output of size (Ih− fh + 1)× (Iw − fw + 1).
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Figure 2.10: Illustration of a 2d-convolution with a (3×3) kernel and (5×5) input. Notice

that the output has been reduced by f − 1 along the height and the width concerning the

input.

The convolution illustrated in Figure 2.10 is called valid convolution because

the kernel always is applied in ”valid” positions of the input feature map. However,

this kind of convolution produces an output feature map reduced by f − 1 along

the height and width with respect to the input. This type of size reduction is not

desirable in general, because it tends to lose some information along the borders of

the image or feature map, in the case of hidden layers. That is, the contributions

of the pixels on the borders of the image or feature map will be under-represented

in the next hidden layer, which is undesirable.

This problem can be resolved by using zero-padding. Zero-padding means ad-

ding pixels of value zero all around the borders of the input image or feature map,

as illustrated in Figure 2.11. Importantly, the border sections do not influence the

ultimate dot product as their values are set to 0. To estimate the amount of pad-

ding to ensure that the output retains the same size as the input depends on the

kernel size, and it is denoted by p = f−1
2
. In this case, the convolution is referred

to as same convolution. The output size of same convolution, if the input has size

Ih × Iw and a kernel of size fh × fw is expressed as

(Ih + 2ph − fh + 1)× (Iw + 2pw − fw + 1) (2.47)

So far it has been covered convolution operation when the kernel slides one

step along the horizontal or vertical position of the input. This step is referred

to as the stride of the convolution filter. However, the consequence of using a

stride of 1 is that each spatial location of the feature map M(i, j) will be similar

in value to its neighboring because the regions covered by the kernel overlap
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Figure 2.11: Same convolution representation using padding of one. The output is the

same size as the input.

for their computation (Murphy, 2022). Nonetheless, the stride value could be

modified to a value of two, and it is rare to use strides more than 2 in normal

circumstances. Larger strides reduce computation costs and reduce overfitting if

the spatial resolution of the input is unnecessarily large (Aggarwal, 2018). Strides

have the effect of rapidly increasing the receptive field of each feature in the hidden

layer (the size of the region in the input that produces the feature) while reducing

the spatial size of Mh ×Mw in the specific layer. Large receptive fields permit

to capture complex features in a larger spatial region of the image (Khan et al.,

2018). For instance, Figure 2.12(a) represents a same convolution (zero padding)

among a 5 × 7 input and a 3 × 3 kernel, which produces a 5 × 7 output. In this

scenario, the receptive field (input) and output (feature map) are of the same

size. On the other hand, Figure 2.12(b) shows a convolution with an input of size

5 × 7 and a kernel of size 3 × 3, but with a stride of two. In this scenario, the

output is of size 3× 4, which means that the feature map is produced by a large

receptive field. In general, if the input has size Ih × Iw, kernel of size fh × fw,

padding is used of size ph and pw, and stride of sizes sh and sw, the output size

is determined as(
Ih + 2ph − fh + sh

sh

)
×
(
Iw + 2pw − fw + sw

sw

)
(2.48)

Scenarios covered above, in Figure 2.10 and Figure 2.11 correspond to 1d-

input, such as a gray image. Nonetheless, in practice, we face inputs of multiple

channels, such as an RGB image that has three channels. In this issue, the kernel
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(a)

(b)

Figure 2.12: Illustration of padding and stride in 2D convolution. (a) Same convolution

among a 5×7 input and a 3×3 kernel, which produces a 5×7 output, and (b) convolution

with an input of size 5× 7 and a kernel of size 3× 3, but with a stride of two; the output

is of size 3× 4. Adapted from Murphy (2022).

must have the same number of channels as the input data to produce an output

of one channel. Therefore, the kernel f is an nd weight matrix or tensor. Each

spatial grid location of the output (feature map) is mathematically expressed as

follows

M(i, j) = b+
h−1∑
u=0

w−1∑
v=0

C−1∑
c=0

w(u,v,c)I(si+u,sj+v,c) (2.49)

where s is the stride and b is the bias term.

To comprehend a third-dimension convolution, Figure 2.13 illustrates an input

53



2. THEORETICAL FRAMEWORK 2.3 Deep learning

of 3 channels convolved with a filter of similar channels. In general, the shape of

the output (feature map) from a third-dimension convolution is defined by the

expression
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Figure 2.13: Ilustration of a 2d-convolution performed over an input of 3 channels.

((
Ih + 2ph − fh + sh

sh

)
×
(
Iw + 2pw − fw + sw

sw

)
× nf

)
(2.50)

where nf is the number of filters.

2.3.2.3. Activation function

The feature map M derived from each convolution operation in every convolu-

tional layer is provided non-linearity with an activation function. The application

of ReLu in these layers is not different from how it is applied in an ANN. An ac-

tivation function thresholds each spatial location of the feature map M without

changing the spatial dimensions (Mh ×Mw) of the feature map, because it is a

simple one-to-one mapping of activation values. Early CNNs implemented dis-

tinct activation functions, such as sigmoid and tanh. Nevertheless, Krizhevsky

et al. (2012) demonstrated that employing the ReLu offers significant benefits

compared to other activation functions, showcasing superior speed and accuracy.
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The heightened speed is intricately linked to accuracy, as it enables the utilization

of deeper models and trains them for more epochs.

2.3.2.4. Pooling operation

The normalized feature map produced by both the convolution operation in

every convolutional layer is a concentration of extracted features from the input.

Since the feature maps are carried out by kernels, the architecture at this stage

knows the exact position of the features in the input. Then, pooling operation

congregate the features providing ”translation invariance”to the model. That is,

pooling gives the features that help the models to decide whether or not an object

is in the input and the convolution operation provides the spatial localization of

the object anywhere in the input.

The pooling operation works on small grid regions of size ph×pw over features

maps and produces pooled feature maps with the same depth (number of channels)

of the input feature maps. As the pooling grid window slides over the input feature

maps, it could return either the maximum value or the average, receiving the

name of max-pooling or average-pooling ; an instance of this operation is shown

in Figure 2.14. Therefore, the pooling operation drastically reduces the spatial

dimensions of the input feature maps. In this way, the dimensional size of the

output pooled feature map is defined as(
Mh − ph + sh

sh

)
×
(
Mw − pw + sw

sw

)
(2.51)

where Mh and Mw are the height and the width, respectively, of the input

feature maps, ph and pw are the height and the width of the pooling window

(usually of value 2) and sh and sw are the stride of the pooling window (usually

of value 2) in the vertical and horizontal direction.

2.3.2.5. Remarks of CNNs

So far, the basic operation involved in a convolutional layer has been explai-

ned. However, CNNs could be implemented in vision challenges such as classifica-

tion, segmentation, and detection. All these approaches use a set of strategically

stacked convolutional layers with the same purpose, for feature detection and
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Figure 2.14: Ilustration of max-pooling and average-pooling operation using a 2 × 2

window over a 4× 4 feature map.

learning (Murphy, 2022). Similar to ANNs, this can be achieved during the trai-

ning of the models. Training a convolutional layer means adapting the values of

the kernels and bias value (the parameters) of each convolutional layer to the

input dataset (Skansi, 2018).

In the case of classification architectures, such as the one represented in Fi-

gure 2.9, the deeper pooled feature maps are flattened and subsequently an ANN

classifies the features, either into binary or multiclass. For classification, it has

been developed a considerable number of architectures, and some of them were

already listed in Table 1.5 of section 1.1.3. Concerning segmentation networks,

they usually benefit principally from the convolutional layers, and further de-

convolution operations are performed to classify the pixels of the input into clas-

ses. Finally, detection architectures use convolutional neural layers complemented

with specialized architectures, such as Region proposal Networks (RPN) (Ren

et al., 2015) to localize objects in the feature maps, which are then separately

classified by ANN.

2.3.3. Transformers

Transformers are deep learning models proposed for the first time by Vaswa-

ni et al. (2017) for machine translation. Attention mechanisms are which cha-

racterize a transformer architecture; they allow the model to handle long-range

correlations between the input-sequence items.
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The original transformer (Vaswani et al., 2017) consists of two main building

blocks; an encoder and a decoder. An encoder module has two sub-layers; the first

one is a multihead self-attention mechanism, and the second is a position-wise

fully connected feed-forward network. The encoder generates an embedding vector

Z = (z1, ..., zn) from an input representation sequence (x1, ...,xn). On the other

hand, the decoder contains three sub-layers, in addition to the two sub-layers of

the encoder, it inserts a third sub-layer, which performs multi-head attention over

the embedding vector Z to generate an output sequence (y1, ...,yn).

Later transformers designed for processing images follow the same principle

as that proposed by Vaswani et al. (2017). That is, similar to text-based transfor-

mers, they also work with input representation sequences that are processed by

an encoder. Figure 2.15 visually illustrates a transformer encoder, which contains

two sub-layers within the block, preceded by an embedding patches block.

To clarify first the embedding patches block, let’s consider an input image

with heightH, widthW , and C channels. Then, pachifying the image into patches

height and width size both as p, the image is splitted into a sequence of m =
HW
p2

patches. Subsequently, each patch is flattened to a vector xi ∈ R1×Cp2 . In

this way, image patches can be treated similarly to tokens in text sequences

by transformer encoders. Then, the flattened vectors are grouped into a matrix

z0 = (x1, ...,xn) where z0 ∈ Rm×Cp2 . Following this, z0 is linearly transformed

by multiplying it with three distinct embedding matrices E ∈ RCp2×D. D is a

constant latent vector that keeps its size through the layer of the transformers,

and it is related to the number of parameters of the model and the performance.

Vision transformer (Dosovitskiy et al., 2021) uses D of size 768, 1024, and 1280.

Embedding results in the matrices Q ∈ Rm×D (query), K ∈ Rm×D (key), and

V ∈ Rm×D (value). Figure 2.16 shows the visual representation of embedding

four patches of an image to obtain the Q, K and V matrices.

Then, inside the encoder, the attention mechanism is performed. The attention

mechanism is expressed as follows

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (2.52)

57



2. THEORETICAL FRAMEWORK 2.3 Deep learning

Embedding
patches

Norm

Norm

Multi-Head
attention

Inputs

MLP

T
ra

ns
fo

rm
er

 e
nc

od
er

Figure 2.15: The schematic representation of a transformer encoder. Adapted from Do-

sovitskiy et al. (2021).

Figure 2.16: The embedding patching representation utilized by transformers designed

for processing images.

where Q, K, and V are the query, key, and value matrices, KT is the transpose of

matrix K and dk is the dimension of the vectors in query and key matrices. The

expression softmax
(

QKT
√
dk

)
is named the attention matrix, and gives the weights

of the values. The following Figure 2.17 represents a simple attention mechanism

operation in a transformer.
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Attention matrix

Figure 2.17: Representation of the attention mechanism in a typical transformer.

In practice, having the same Q ∈ Rm×D, K ∈ Rm×D, and V ∈ Rm×D, it is

better to use different subspaces representation of them for analyzing them in

parallel in a miltihead attention mechanism. Therefore, every subspace is repre-

sented as Q ∈ Rm/h×D, K ∈ Rm/h×D, and V ∈ Rm/h×D, where hi(i = 1, ..., h) is

the number of heads. Finally, each subspace of Q, K and V is anew multiplied

with distinct weight matrices Wi. The individual outputs from the sub-attention

are concatenated and then transformed using another learned linear projection

represented WO to produce a final output. In this way, multihead attention is

expressed as

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O

where headi = Attention(QWQ
i , KWK

i , V W V
i )

(2.53)

where WQ
i ∈ RD×m/h, WK

i ∈ RD×m/h, and W V
i ∈ RD×m/h and WO ∈ Rm×D.

Multihead attention gives models the ability to jointly attend multiple positions.

Finally, the encoder and decoder of transformers include MLP networks, as

described previously, applied to the multihead attention output. Typically, they

involve two linear transformations with a ReLU activation function, as follows

MLP (x) = max(0, xW1 + b1)W2 + b2 (2.54)

The training of a transformer network involves adjusting the parameters of

both the embedding matrices E and the weight matricesW in both the multihead

attention and the MLP network.
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2.4. Evaluation metrics

A performance metric serves to assess the model post-training, gauging its

ability to generalize to novel data and make precise predictions. These metrics

additionally facilitate comparisons among various models or configurations to

identify the most effective one. In this thesis, classification and segmentation

approaches were performed; therefore, the metrics accuracy, precision, recall, and

F1 score were implemented. Additionally, the metrics proper for segmentation

models DSC intersection over union, and mIoU were used to evaluate the models

for segmentation.

The confusion matrix is used to define the performance of a classification

algorithm. In this case, Figure 2.18 is a confusion matrix representation for a

binary classification model, supposing plant and non-plant in the case of this

thesis. Supposing the green circles are pixels of plants (foreground) and the red

circles are pixels of the non-plant class (background). In this way, the plant pixels

correctly classified are those that are in the green area, so they are the true

positives (TP), whereas the correctly classified pixels as non-plant are called true

negatives (TN) that are in the blue area. Since a classifier model also produces

miss-classifications, that is, false positives (FP) and false negatives (FN). FP are

those pixels that are predicted as plant pixels that actually belong to the class

non-plant. In contrast, FN are those pixels that are predicted as non-plant class

but actually, they belong to the class plant.

Figure 2.18: Confusion matrix representation from binary classification problem.

Accuracy is the ratio between the number of correct classified samples to

the total number of samples. This metric works well if the number of samples
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belonging to each class is equal. In terms of the confusion matrix can be expressed

as

Accuracy =
TP + TN

TP + TN + FP + FN
(2.55)

Precision measures the ability of the model to identify targets; that is, the

accuracy of positive predictions. A high precision indicates that the model pro-

duces few false positives, thereby ensuring the reliability of its predictions. This

metric is defined as

Precision =
TP

TP + FP
(2.56)

On the other hand, the recall metric, also known as sensitivity, assesses the

model’s ability to detect all positive instances within the dataset. A high recall

value suggests that the model has a reduced number of false negatives, signifying

its capacity to accurately identify a majority of positive instances. In terms of

confusion matrix, it can be formulated as

Recall =
TP

TP + FN
(2.57)

Respecting F1 score, it represents the overall performance of a model providing

a unique value by the combination of precision and recall. In other words, it is

the harmonic mean of the precision and recall. A superior F1 score suggests an

improved equilibrium between precision and recall, while a lower F1 score implies

that the model may have high precision or recall but not in both. This metric is

especially valuable in scenarios with imbalanced class distribution or when equal

importance is assigned to precision and recall (Terven et al., 2023). The expression

of this metric is

F1 score = 2× Precision×Recall

Precision+Recall
(2.58)

For evaluating the performance of segmentation models in this thesis the IoU,

mIoU and DSC were used. IoU serves as the fundamental metric to quantify the

overlap between predicted and ground truth regions in object detection and seg-

mentation. A higher IoU value indicates a better alignment between the predicted
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and actual regions, reflecting a more accurate model. This metric is visually re-

presented in Figure 2.19(a), and is expressed as follows

IoU =
TP

FP + TP + FN
(2.59)

(a) (b)

Figure 2.19: Graphical representation of the metrics IoU and DSC. (a) IoU and (b) DSC.

Therefore, the mIoU metrics give the average segmentation performance of a

model, quantifying the N number of classes. It is expressed as

mIoU =
1

N

N∑
i=1

IoUi (2.60)

Finally, DSC, also known as F1 score in classification tasks, is a measure of

the similarity between two sets, A and B. The coefficient ranges from 0 to 1,

where 1 indicates that the two sets are identical, and 0 indicates that the two

sets have no overlap. Figure 2.19(b) gives a visual representation of this metric.

Then, the following expression defines it in terms of the confusion matrix

DSC =
2TP

FP + 2TP + FN
(2.61)
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Chapter 3

Methodology

As stated, this thesis aims to develop a vision system based on DL models

to detect weeds in natural corn fields and implement it on a sprayer machine

for real-time herb control. Therefore, to achieve the goal, we first developed the

vision system for crop/weed detection. Subsequently, a mechatronic platform was

designed; which is commanded for the vision system, and finally, both components

were field-evaluated. Figure 3.1 provides a broad overview of the methods follow

in this thesis.

Any vision system for object recognition requires a dataset to utilize features

for subsequent classification. Consequently, for the development of the vision sys-

tem, a large dataset was created and annotated, which is detailed in Section 3.1.1.

Concerning crop/weed detection, it involves localizing single or multiple instances

of plant species in an image and classifying them into their respective categories.

In this study, the classes Crop, NLW, and BLW were proposed to group the plant

species found in a typical corn field. However, since weed localization could be

achieved using classical thresholding algorithms to isolate the plants in an image,

followed by classification using either shallow classifiers or ANNs, we first explo-

red a classification approach using classical descriptors, shallow classifiers, and

DL classifiers, as proposed in Section 3.1.2. Additionally, detection also could

be achieved by applying semantic segmentation of the plants with CNNs and

then localizing the ROIs separately. Therefore, Section 3.1.3 attacks the problem

using region-based CNNs and U-Net-like architectures. Section 3.1.4 addresses the
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3. METHODOLOGY 3.1 Vision system development

problem with the cooperation of segmentation CNNs and classification CNNs. Fi-

nally, in Section 3.1.5, another vision strategy addressing the problem using later

transformer architectures is covered.

At stage two of the methods, the mechatronic platform commanded by the

weed-vision system was developed, as detailed in Section 3.2. This development

involved mechanical, electrical, and hydraulic design, culminating with the vision

system release. In the final stage, the entire intelligent weed control system was

evaluated under an authentic cornfield, as described in Section 3.3.

Vision 
system  

Mechatronic 
platform  

Field
evaluation  

Dataset creation

Classification
based on shallow 
and deep learning

Segmentation based
 on deep learning

  

Mechanical design

Electrical and
hydraulic design

Vision system
release

Weed control

Figure 3.1: An overview of the general methodology used to achieve the thesis goal.

3.1. Vision system development

3.1.1. Dataset creation and description

The image dataset of plant species was collected considering natural field

conditions typical of a corn field. To capture diverse conditions, five corn plots of

0.5ha each were established in distinct locations throughout the state of Aguas-

calientes, Mexico. Two of these corn plots were established in 2020, two in 2021,

and one in 2022, during the spring-summer cycle. In the plots established in 2020

and 2021 RGB images were collected, and in the plot of 2022, it were captured
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both RGB and multispectral images. Figure 3.2 shows a sequence of a corn plot

used for image acquisition in this thesis, from soil preparation, sowing, and two

growth stages of the plants.

(a) (b) (c) (d)

Figure 3.2: Sequence images from a corn plot used for image acquisition. (a) Soil tillage,

(b) corn sowing, (b) early growth stage of plants and (d) high density of plants.

The process of obtaining images took place at intervals of five days, speci-

fically during the developmental phase when corn plants had between two and

seven leaves. Figure 3.3 displays the camera positions utilized for image capture.

Here, θ ∈ [0, 2π] represents the camera’s rotational position relative to the target

(Figure 3.3(a)), and β ∈ [−π/4, π/4] signifies the lateral orientation of the camera

(Figure 3.3(b)). When β = 0, the camera provides a top-down view. Additionally,

h denotes the distance between the camera and the target base, with a maximum

value of approximately 1.50m and a minimum value essential for capturing either

a corn plant or weed. For the RGB images, the devices used were a Canon Po-

werShot Sx60HS 16.1-megapixel camera with a resolution of 4608 × 3456, and

smartphones, which provided images of sizes 1600 × 720, and 2460 × 1080 pi-

xels. On the other hand, multispectral images were captured with a MicaSense

camera (RedEdge M), which gives an image resolution of 1280 × 960 pixels. In

Figure 3.3(c) a visualization of a capture is depicted.

Our dataset encompasses various forms of variability. Images contain single-

plant and, more prominently, multi-plant with different species of weeds and

several instances of the crop as a function of the zoom (distance h). The dataset

also includes sunlight variability as image captures were conducted under sunny

and cloudy conditions and at different times of the day, such as morning, noon,

and afternoon. Additionally, some captures were taken immediately after rainfall

events. Moreover, given the strategy followed to acquire images, occlusion and

overlap of foliage are introduced, especially in the late growth stages of the plants.
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(a) (b)

(c)

Figure 3.3: Camera configuration for capturing images and visualization of the scene. (a)

top view, (b) side view and (c) visualization of a capture.

Background variations encompass stones, soil attributes related to humidity levels

and texture, as well as remnants like straws from previous crops, among other

elements.

A sample of images that integrates the dataset is provided in Figure 3.4.

The first row, Figure 3.4(a), displays images of individual plants. Moving to the

second row (Figure 3.4(b)), there are images of multiple plants with overlapping

leaves, occlusion, and variations in soil appearance. The last row, Figure 3.4(c),

illustrates the representation of multiple small plants resulting from the maximum
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capture distance (h = 1.5m).

(a) Individual plants

(b) Multiple plants

(c) Multiple small plants

Figure 3.4: Sample of images that are in our dataset.

3.1.1.1. Annotation of RGB images

In total, it was captured 15, 885 RGB images. After carefully analyzing the

plant species in the images, it was found the following predominant plant species;

Crop plant (Zea mays); and the weeds, Cynodon dactylon, Eleusine indica, Digi-

taria sanguinalis, Cyperus esculentus, Portulaca oleracea, Tithonia tubaeformis,

Amarantus spinosus, and Malva parviflora. Images containing a sample of the

species are provided in the following Figure 3.5.

Subsequently, the plant species were manually annotated at the pixel level

using the tool VGG Image Annotator (Dutta and Zisserman, 2019). This invol-

ved tracing carefully a polygon around the contour of most plants in the image,
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Crop plant (Crop)

Zea mays

Narrow-leaf weeds (NLW)

Broad-leaf weeds (BLW)

Cynodon dactylon Eleusine indica Digitaria sanguinalis Cyperus esculentus

Portulaca oleracea Thithonia tubaeformis Amarantus spinosus Malva parviflora

(a)

(b)

(c)

Figure 3.5: Plant species that integrate the experimental dataset. (a) A crop plant sample,

(b) a sample plant of every NLW species, and (c) a sample plant of every BLW species.

ensuring that soil pixels were consistently excluded. The species name was then

assigned to the pixels within the polygon. Figure 3.6(a) shows a visualization of

polygons enclosing the plants in an image. Whereas Figure 3.6(a) illustrates the

image with a color assigned to specific pixels. In this case, green regions repre-

sent corn pixels, red regions belong to pixels of narrow-leaf weeds and blue pixels
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denote bread-leaf weed pixels.

Following this strategy, a total of 10, 575 images were annotated. t is worth

mentioning that the number of plant species labeled is known under this scenario,

and the soil pixels were indirectly annotated. Figure 3.7 summarizes the dataset

distribution. This graph depicts the number of plant species and their equivalent

percentage.

(a) (b)

Figure 3.6: Visualization of annotation polygons and image mask with labeled pixels. (a)

annotation polygons around the contour of the plants and (b) its corresponding mask in

which colors were provided to the regions.

3.1.1.2. Annotation of multispectral images

To annotate the multispectral images, we leverage the visual bands of the

camera (RGB). Visual images were obtained by concatenating the RGB bands to

distinguish the plants in the frames. Then, the annotation was done in two stages.

First, a coarse polygon was also traced in the tool VGG Image Annotator (Dutta

and Zisserman, 2019), as observed in Figure 3.8(a). A single polygon could enclose

multiple plant species of the same family: corn plants, narrow-leaf weeds and

broad-leaf weeds. This annotation includes additional species to that mentioned

above. Also, the polygons enclosed background pixels, concerning soil, stones and

straws of past crops.

Subsequently, digital image analysis strategies were performed on the coar-

se annotation images. For this, the annotated image was first split into three
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ZM

EI

CE
CD

DS

AS

MP

PO

TT

30.9% 
 (18,468)

8.6% 
 (5,133)

8.5% 
 (5,054) 8.5% 

(5,048)

5.7%
(3,400)

12.4% 
(7,388)

8.6% 
(5,107)

8.5% 
(5,099)

8.4% 
(5,026)

Plant species
Zea mays (ZM)
Eleusine indica (EI)
Cyperus esculentus (CE)
Cynodon dactylon (CD)
Digitaria sanguinalis (DS)
Amarantus spinosus (AS)
Malva parviflora (MP)
Potulaca oleracea (PO)
Tithonia tubaeformis (TT)

Figure 3.7: The dataset distribution based on plant species considered in this work. The

count, percentage, and respective names of annotated instances are observed.

sub-images of the same size as the original; one with all the coarse regions that

contain corn plants, another containing the regions of narrow-leaf weeds and the

last containing brad-leaf weed regions. For each of these sub-images, the back-

ground pixels were eliminated to leave just green foliage belonging to plants.

Background elimination

To explain the process of background elimination, let us define the sub-image

I ∈ Mm×n×p as a supermatrix with dimensions m × n × p, where the ijk-th

entry represents the ij-th color pixel for channel k, and Mm×n×p represent all

hypermatrices of this kind. Although the image is initially in the RGB color

space, it has been noted that RGB might not be the most effective choice for

distinguishing vegetation from soil (Cheng et al., 2001). Consequently, a color

space transformation from RGB to HSV was implemented.

Segmentation in this particular color space was noted to be effective due to the

lack of correlation between color (hue channel) and brightness (value channel).

This lack of correlation is advantageous for identifying greenness (Yang et al.,
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(a) (b) (c)

(d) (e)

Figure 3.8: Coarse annotation of plants. (a) Polygons enclosing the classes Crop, NLW,

and BLW, (b) binary mask of with pixels of the class Crop, (c) binary mask of with pixels

of the class NLW, (d) binary mask of with pixels of the class BLW, and (e) labeled image

at the pixel level: red regions correspond to the class Crop, red and blue regions correspond

to the classes NLW and BLW, respectively.

2015). The resultant image, Ihsv ∈Mm×n×p, is employed for background removal,

achieved through a thresholding function denoted as, B : Mm×n×p → Mm×n,

defined by Equation (3.1).

B(x, y) =

{
255 [Hl, Sl, Vl]− Ihsv(x, y) ≤ 0 and Ihsv(x, y)− [Hh, Sh, Vh] ≤ 0

0 otherwise

(3.1)

where B(x, y) ∈ Mm×n is the resulting binary image; Ihsv(x, y) = [Ihsv(x, y)h,

Ihsv(x, y)s, Ihsv(x, y)v] is the vector formed by hue, saturation and value channels

of the Ihsv sub-image; Hl, Sl, Vl ∈ Z+ and Hh, Sh, Vh ∈ Z+ are, respectively, the

lower and higher values for each of the hue, saturation, and value channels. The

threshold values were adjusted manually, and after numerous iterations on images

taken under various lighting conditions and natural background variations, the
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final threshold values were established as follows: Hl = 33, Hh = 95, Sl = 34,

Sh = 255, Vl = 60 and Vh = 250. However, the resultant image from this stage

contained noise scattered throughout, needing image enhancement.

Image Enhancement

The binary images acquired in the previous stage exhibited numerous gaps within

the white areas, which indicate vegetation regions. Also, numerous small regions

emerged in areas where theoretically no vegetation was present, signifying the

presence of noise. Therefore, the morphological operators opening and closing

were executed in the same order to enhance these images. The opening operation

serves to refine the contours of images and remove minor artifacts, while the clo-

sing operator assists in eliminating small holes and filling gaps in the regions (Le

et al., 2020b). But opening and closing are defined by erosion (Equation 3.2) and

dilation (Equation 3.3) morphological operators (González and Woods, 2018),

A⊖B = {z|(B)z ⊆ A ̸= ∅} (3.2)

A⊕B = {z|(B̂)z ∩ A} (3.3)

In the erosion operation, A represents all the objects in the binary image, and

B is the structuring element. Thus, the erosion of A by B is the set of all points

z, such that B translated by z with respect to the origin of B is contained in

A. This implies that all overlapping pixels of A and B are replaced by pixels of

value 0. Conversely, applying dilation to the binary image A using the structuring

element B involves setting pixels to a value of 1 when the center of B aligns with

the boundary of A. In this way, opening (Equation 3.4) comprises an erosion

operation followed by the dilation operation. Closing (Equation 3.5) operation is

defined as a dilation operation followed by an erosion operation.

A ◦B = (A⊖B)⊕B (3.4)

A •B = (A⊕B)⊖B (3.5)
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In this thesis a structuring element B of size 5 × 5 for both opening and

closing operations has been used. Subsequently, the connected component analysis

(CCA) (Haralick and Shapiro, 1992) was used to eliminate those white regions

from the binary image that were of less than 400 pixels. Figure 3.8(b), (c) and (d),

respectively, show the resulting binary image of corn plants, narrow-leaf weeds

and broad-leaf weeds after applying these morphological operations. Finally, the

white regions in the sub-images were assigned a particular pixel vale for corn

plants, NLW and BLW. Figure 3.8(e) is the final concatenated annotated image

at the pixel level under this procedure.

In total, 2, 312 multispectral images were annotated throughout this proce-

dure. The Figure 3.9 indicates the total instances and their corresponding per-

centage of plants annotated for the classes Crop plants, narrow-leaf weeds and

broad-leaf weeds. Therefore, we have the same number of instances of each class

for the bans NIR and Red-Edge. As aforementioned, these global classes could

include the plant species previously reported and additional ones that have not

been identified in this work.

Figure 3.10 provides an overview of the total number of instances in the global

classes Crop, BLW, and NLW that constitute our dataset. This count is the sum

of instances of the plant species reported above (Figure 3.7) and the multispectral

instances with unidentified plant species (Figure 3.9). Therefore, this dataset is

composed of 12, 887 images.

3.1.2. Crop/weed classification based on shallow and DL

It was proposed the classification of the known plant species of our dataset to

assess the performance of a shallow learning approach utilizing LBP+SVM and

CNN, to know the route the research should follow. The proposed classification

process considers five steps, as shown in Figure 3.11. First, images of the field

under natural conditions are acquired. Subsequently, these images undergo back-

ground elimination and enhancement using classic image processing techniques

(techniques described in Section 3.1.1.2) before advancing to the second stage.

In the second stage, regions of interest (ROI) are extracted from the segmented
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Crop

NLW

BLW

15.90% 
 (10,039)

36.70% 
 (23,160)

47.40% 
 (29,920)

Global classes
Crop (Crop)
Narrow-leaf weed (NLW)
Broad-leaf weed (BLW)

Figure 3.9: The multispectral dataset distribution enclosing multiple plant species. The

count and percentage of the annotated images are provided. The given numbers correspond

equally for RGB, NIR and RedEdge images captured with the multispectral camera.

image through Connected Component Analysis (CCA) (Haralick et al., 1973; Ha-

ralick and Shapiro, 1992). Subsequently, object classification is performed using

both LBP+SVM and CNN. For the implementation of classical ML algorithms,

the initial step involves extracting texture features through the LBP riu2
P,R opera-

tor, which has been described in Section 2.2.1. These extracted features are then

employed to train a SVM model. The suggested CNN models are derived from

established architectures, including VGG16, VGG19 (Simonyan and Zisserman,

2015), and Xception (Chollet, 2017), all of which were trained using our dataset.

In the final stage, the vision system reveals the respective class to which each of

these objects (plants) is assigned.

The evaluation focused on their effectiveness in classifying plant species, using

the carefully annotated dataset described in Figure 3.7. Therefore, the plant spe-

cies were extracted from the multi-plant images using CCA and manually classi-

fied into the classes Crop, NLW, and BLW to construct the experimental dataset

for training the models. Figure 3.12 shows a summary of the experimental dataset,
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Crop

NLW

BLW

23.22%
(28,507)

34.10%
(41,795)

42.77% 
(52,541)
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VNS

EI CE CD DS

VBS
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MP
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Plant species

Zea mays (ZM)
Varied narrow-leaf species (VNS)
Eleusine indica (EI)
Cyperus esculentus (CE)
Cynodon dactylon (CD)
Digitaria sanguinalis (DS)
Varied broad-leaf species (VBS)
Amarantus spinosus (AS)
Malva parviflora (MP)
Potulaca oleracea (PO)
Tithonia tubaeformis (TT)

Figure 3.10: The total number of instances annotated in the classes Crop, NLW and

BLW in the visible spectrum. This dataset encloses the plant species carefully annotated

and the multiple species captured with the multispectral camera. Notice that the main

classes NLW and BLW enclose a group with varied narrow-leaf species and another with

varied broad-leaf species of weeds.

Deep CNN
Convolutional layers Fully Connected layers

Classic machine learning
Input image ROI detection

CCA

Feature extraction ROI Classification Output image

LBP

Corn
BLW
NLW

SVM

Figure 3.11: A broad overview of the methodology employed for the classification of weeds

in real corn fields. Input images undergo background elimination and enhancement using

classic image processing techniques. Then the ROIs are extracted through CCA. In the

third stage the ROIs are classified with both LBP+SVM and CNNs. In the output image,

green box is Crop class, red boxes are the class NLW and blue boxes are the class BLW.

in which the number of instances that integrate each class is provided.
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Plant species
Zea mays (ZM)
Eleusine indica (EI)
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Digitaria sanguinalis (DS)
Amarantus spinosus (AS)
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Tithonia tubaeformis (TT)

Figure 3.12: Experimental dataset grouped into the classes Crop, NLW and BLW.

3.1.2.1. Classical machine learning approach

The proposed classical approach consists of three stages, as shown in Fi-

gure 3.13. In the initial stage, the RGB image is obtained and undergoes pre-

processing, involving a color space transformation from RGB to grayscale. Sub-

sequently, in the second and third stages, texture feature extraction and classi-

fication are performed, respectively. The rotation invariant local binary pattern

(LBP riu2
P,R ) was employed as texture descriptor, covered in Section 2.2.1. Whe-

reas for the classification of the descriptors, SVM models were used, which was

mathematically explained in Section 2.2.2.

3.1.2.2. Classification based on CNNs

In Section 2.3, the operational principles of ANNs and CNNs were discussed.

The architecture of CNNs comprises convolutional layers and fully connected
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Figure 3.13: Overview of the classification methodology utilizing traditional machine

learning. (a) Transformation of the input image into a different color space, (b) extraction of

texture features from the input image using LBP riu2
P,R , and (c) classification of the extracted

texture features through SVM.

layers. Convolutional layers function to extract and learn features from images,

while the fully connected layers, essentially an ANN, are responsible for classifying

the features extracted by the convolutional layers.

Under this classification approach, it was proposed the networks VGG16,

VGG19 (Simonyan and Zisserman, 2015) and Xception (Chollet, 2017) because

they have demonstrated outstanding efficacy in tasks related to plant classifica-

tion (Ahmad et al., 2021; Espejo-Garcia et al., 2020; Le et al., 2020a). Another

justification for utilizing the VGG networks is its ability to deliver strong perfor-

mance in terms of accuracy, even when trained on a dataset containing a limited

number of images (Theckedath and Sedamkar, 2020). Therefore, below are des-

cribed the main parameters of VGG16 and Xception.

VGG networks

The convolutional layers of the VGG architectures, also called Visual Geometry

Group, are clustered in blocks. Each of these blocks could perform two or three

consecutive convolutional operations and a ReLu normalization, followed by a

max-pooling operation, as shown in Figure 3.14. The convolutional operations use

kernels of size 3×3. This kernel size is smaller compared to those implemented in

other CNNs proposed before the epoch the networks were launched, which usually

use kernels of size 5× 5, 7× 7 and 11× 11. The kernel follows a stride of 1 and

zero padding in the convolutional operations to conserve the spatial resolution of
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the input feature map. The benefit of using small-size filters lies in their ability

to extract features as effectively as larger-size filters. Additionally, employing

smaller filters leads to a reduction in the number of parameters, consequently

lowering computational costs Alzubaidi et al. (2021). Regarding the max-pooling

operations in these networks, they utilize 2× 2 size kernels with a stride of 2.

Figure 3.14: Representation of the standard VGG architecture.

The FCL of these networks are composed of three layers. The first two layers

have 4096 channels with ReLu activation function. The last layer of the FCL

depends on the number of classes to be classified; for this reason, it comes with a

softmax activation function. The numbers 16 and 19 in VGG16 and VGG19 refer

to the number of layers with learnable parameters. Figure 3.14 shows the VGG16

standard architecture. In the case of VGG19, three more consecutive convolution

blocks followed by a max-pooling layer are added.

Xception network

Xception is a CNN that drew inspiration from Depthwise Separable Convolutions

(DSConv) and Inception modules (Chollet, 2017).

The initial documented DSConv (Szegedy et al., 2015) is structured with

Depthwise Convolutions (DC) preceding Pointwise Convolution (PC). In DC,

spatial convolution is performed individually by the filters over each input data

channel. Subsequently, the PC transforms the output feature map into another

channel dimension while preserving its spatial size through a 1×1 convolution. It

is noteworthy that DSConv does not incorporate any activation function between

DC and PC.

Regarding the Inception module (Szegedy et al., 2017), the DSConv is emplo-

yed in the reverse sequence. Initially, PC is applied to the input data, followed by
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DC. Additionally, unlike the original DSConv, an inception module introduces

an activation function between PC and DC. The concept behind an inception

module is to first capture cross-channel correlations through 1 × 1 convolutions

and then condense these correlations into a smaller channel dimension. Thus, a

typical inception module performs three 1×1 convolutional transformations (PC)

and a max-pooling operation concurrently. These are followed by 3× 3 and 5× 5

convolutions (DC). The outcomes of these operations are then consolidated into

a single feature map, maintaining the dimensions of the channels.

Regarding an Xception module, alike the Inception module, it initiates by

performing PC to capture cross-channel correlations, followed by mapping the

spatial correlation of each output channel through DC. However, the Xception

module incorporates a single PC. To illustrate this concept more clearly, a module

of the Xception network is depicted in Figure 3.15. Similar to the original DSConv,

Xception does not include any activation functions between PC and DC. The

core idea of Xception is to reduce computational cost and maintain the number

of parameters, like the approach in Inception.

Figure 3.15: Representation of Xception module. *Pointwise convolution; **Depthwise

convolution.

3.1.2.3. Experimental setup for shallow and DL classification

Classical machine learning approach

A series of experiments were conducted to assess the effectiveness of the suggested

traditional ML method in the task of classification. As previously stated, texture

features were extracted using the LBP riu2
P,R operator, and the SVM was employed
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for the classification of the resulting vector features. Regarding the LBP opera-

tor, three distinct combinations of spatial and angular resolutions (P,R) were

employed, specifically with values of (8, 1), (16, 2), and (24, 3). In addition, three

different image sizes have also been tested, 256 × 256, 128 × 128, and 64 × 64

pixels, and depending on this size, they were also divided into cells of size 8× 8,

16 × 16, 32 × 32, 64 × 64 and 128 × 128, as shown in stage two of Figure 3.13.

The following Table 3.1 lists the set of treatments.

Table 3.1: Arrangement of the experimental dataset for the extraction of texture features.

Cell Size

LBP riu2
P,R Image Size 8 × 8 16 × 16 32 × 32 64 × 64 128 × 128

256 × 256 ✓ ✓ ✓ ✓ ✓

P = 8, R = 1 128 × 128 ✓ ✓ ✓ ✓

64 × 64 ✓ ✓ ✓

256 × 256 ✓ ✓ ✓ ✓ ✓

P = 16, R = 2 128 × 128 ✓ ✓ ✓ ✓

64 × 64 ✓ ✓ ✓

256 × 256 ✓ ✓ ✓ ✓ ✓

P = 24, R = 3 128 × 128 ✓ ✓ ✓ ✓

64 × 64 ✓ ✓ ✓

The LBP riu2
P,R operator generate feature vectors of size “P + 2”. That is, the

operators LBP riu2
8,1 , LBP riu2

16,2 , and LBP riu2
24,3 generate output vectors containing

10, 18, and 26 elements, respectively. As a result, the overall length of the conca-

tenated feature vector for each configuration was determined by both the image

size and the number of cells in the images

SVM classifiers underwent previous parameter tuning. I was determined that

the most suitable kernel function for our data, based on accuracy, was linear,

indicating that weights were not transformed. The configuration for the C value,

which sets an upper limit on the Lagrangian optimization variables, was tuned

by initiating in 1 and gradually increasing by one unit. The optimal accuracy in
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tuning was achieved when C = 5. Concerning the dataset, it was partitioned into

70% for training, 20% for validation, and 10% for testing. The implementation

was performed using Python 3.8. The training process took place on a laptop

computer equipped with an Intel Core i7-8550U processor, Intel UHD Graphics

620, and 16 GB of RAM.

Classification based on CNNs

For each of the three CNN architectures, the convolutional layers were preserved

and their FCL were replaced for our proposal. In this regard, the configuration

of the FCL for each model was of two layers. The input layer of 512 channels,

followed by a ReLu activation function. The output layer consists of three neurons,

the same number as the classes of our dataset, followed by the softmax activation

function.

The training procedure took place on a desktop computer featuring a Core

i7 10700 processor, an NVIDIA Quadro P400 graphics processing unit (GPU),

and 8 GB of RAM. The implementation was carried out using Python 3.8 and

the Keras framework with a Tensorflow 2.5.0 backend. The experimental dataset

was divided into 70% for training, 20% for validation, and 10% for testing.

Additionally, the images were resized to 128× 128× 3 pixels for all three models.

The transfer learning strategy was applied to the convolutional layers, pre-

serving and retraining the weights initially tuned in the ImageNet dataset. A

dropout regularization of 0.5 was implemented in the fully connected layers. Gi-

ven our dataset’s three classes, training utilized the categorical crossentropy loss

function, and the Adam optimizer was employed with a learning rate of 0.0001.

All models underwent training for 100 epochs with a batch size of 16.

Evaluation of performance

The performance of the two approaches in classifying the plant species grouped

into the classes Crop, NLW and BLW was implemented with the metrics accuracy,

precision, recall and F1 score, whose mathematical expressions were given in

Section 2.4.
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3.1.3. Segmentation based on R-CNN and U-Net-like

The detection of crop plants, NLW and BLW within natural corn fields could

be addressed through supervised pixel-wise semantic segmentation. That is to

say, given an image acquired from a natural cornfield, denoted as Im×n×3 where

m × n refers to the spatial size of the image. Here, the problem is to classify

each pixel ([xi]r,c, r = 1, . . . ,m; c = 1, . . . , n) into the classes Crop, NLW, BLW,

or Soil. Therefore, this section covers the labeling of each pixel of input images

based on deep-learning models.

Figure 3.16 shows the strategy that was followed to address the problem of

pixel-wise semantic segmentation. In this process, the input images may contain

multiple plants, typical of an authentic field scenario, which have to be segmented

by deep CNNs. The studied segmentation CNNs were the well-known Mask R-

CNN and a proposed improvement of this network that we called Mask R-CNN-

ASPP and finally a U-Net-like architecture.

Output 
Image

Corn NLW
BLW Soil

Input 
Images

Dataset
Split

Training/
Validating

Sets

Testing
Set

Deep learning model

Training
the model

Refining 
the model

Validating
the model

Trained
model

Figure 3.16: Overview of the approach for semantic segmentation of crops and weeds in

natural corn fields. The image captured at ground level is displayed on the left. In the

center, the series of steps for training, validating, and testing the deep learning model is

depicted. On the right, the resulting segmented image is presented. The segmented crop

plant is highlighted in green, NLW are shown in red, and BLW are represented in blue.

The dataset used for training the three models was that summarized in Figu-

re 3.12. This dataset encloses all the plant species that were carefully annotated

and captured using RGB cameras. The plant species in this dataset have been

grouped into the classes Crop, NLW and BLW.
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3.1.3.1. Description of the convolutional networks

In this section, a brief explanation of the architectures Mask R-CNN, the

proposed Mask R-CNN-ASPP and the U-Net-like architecture is presented.

Mask R-CNN

The Mask R-CNN is specialized for object detection and instance segmenta-

tion He et al. (2017). Figure 3.17 depicts the Mask R-CNN model, where the

backbone is responsible for taking the input image and generating a feature map.

This feature map undergoes analysis by a Region Proposal Network (RPN), pro-

ducing rectangular region proposals. However, these proposed regions are misalig-

ned concerning the input image. Consequently, a ROI alignment process correctly

aligns these ROIs with respect to the input image. All these components collec-

tively form the mapping (fθ) of the input image into a fixed-size feature map.

On the other hand, the head of the architecture consists of two parallel bran-

ches. The first branch is a fully connected layer, fϕ for predicting a bounding

box for each ROI and further classification. The second branch is a FCN, fγ, for

predicting a binary mask for each class, which is independent of the classification

branch. The FCN comprises four consecutive 3× 3 convolutional layers, followed

by a 2× 2 deconvolutional layer with a stride of 2, and finally, a 1× 1 convolutio-

nal layer. All these hidden layers use the ReLu activation function. Consequently,

instance segmentation is performed over the objects. The overall process can be

summarized as follows: from each input image xi, a feature map F = fθ(xi) is

computed, serving as the input for both a fully connected layer for classification,

fϕ(fθ(xi)), and an FCN for instance segmentation fγ(fθ(xi)).

Mask R-CNN-ASPP

The Mask R-CNN network utilizes a segmentation branch composed solely of

convolutions and deconvolutions. However, this approach has limitations, as con-

volutions without additional operations fail to extract essential spatial context

information from the feature maps. This lack of spatial context information be-

comes particularly critical for improving segmentation, especially when dealing

with a high density of objects to be segmented, as observed in our study. To

83



3. METHODOLOGY 3.1 Vision system development

Input

Backbone Feature
map

Region Proposal Network
(RPN) 

ROIAlignROIs in
Feature

map

Fully connected
layers

Fully convolutional
network (FCN)

Box

Class

Mask

Fixed size
feature map

Figure 3.17: Representation of the Mask R-CNN used for semantic segmentation of herbs

and corn plants.

address this limitation, we propose a strategy for enhancing the segmentation of

corn and weed plants by implementing Atrous Spatial Pyramid Pooling (ASPP)

within the FCN branch of the Mask R-CNN architecture. The ASPP module

utilizes atrous convolutions, also known as dilated convolutions, which involve

convolutions incorporating pixels positioned at a specified distance from the cen-

tral pixel rather than solely using adjacent pixels. This distance is determined by

the dilatation rate (r). Through the utilization of atrous convolutions, the ASPP

module facilitates the enlargement of the filter’s field of view (Chen et al., 2017).

In this thesis, we integrate the ASPP module into the Mask R-CNN architecture,

as depicted in Figure 3.18.

The ASPP takes each fixed-sized feature map (ROI) calculated by the ROIA-

lign block as input. Subsequently, the ASPP block applies three dilated convolu-

tions and a pooling operation to each input ROI. The dilated convolutions utilize

dilatation rates of one (r = 1), three (r = 3), and six (r = 6). Following the atrous

convolutions, batch normalization is performed, succeeded by a ReLu activation
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Figure 3.18: The ASPP module joined the segmentation branch of the Mask R-CNN to

improve the segmentation of corn and weed plants.

function. Subsequently, an image pooling operation, specifically a 2 × 2 average

pooling, is applied to each input ROI, followed by upsampling by a factor of 2

using bilinear interpolation. The four resulting outputs are concatenated and then

convolved with a standard 1× 1 kernel, followed by a ReLU activation function.

This process yields a feature map of dimensions 14 × 14 × 256. The subsequent

operations are in line with the original FCN of the Mask-RCNN architecture.

U-Net-like architecture

The U-Net-like architecture comprises two primary components: an encoder, also

known as the backbone or contracting path, and a decoder, which is the expansive

path. The encoder executes convolutional operations to extract crucial features.

Conversely, the decoder utilizes transposed 2D convolutional layers to enlarge the

feature blocks until they align with the dimensions of the original input image.

In our implementation, we adopt the ResNet50 and ResNet101 architectures (He

et al., 2016) to function as the encoder component of our model. The U-Net-like

architecture is visually depicted in Figure 3.19.

Starting from the input image, the encoder operations initiate with a 7 × 7

padded convolution, followed by normalization and the application of a ReLu

activation function. These consecutive operations generate an initial feature map

with dimensions of 256×256×64. Following this, the said feature map serves as the
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input for the “ResNet, B1” block, and the output from this block is subsequently

forwarded to the next “ResNet, B2” block. This sequence persists until the final

output is derived from the “ResNet, B4” block. Each ResNet block reduces the

spatial dimension and increase the deep of the feature maps, resulting in halved

dimensions and twice the number of channels in comparison to the preceding

stage, as illustrated in Figure 3.19.
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Figure 3.19: The U-Net-like architecture representation for semantic segmentation of

weed plants and corn crops. ResNet50 and ResNet101 convolutional layers function as the

encoder of the models. Each ResNet block reduces the spatial dimension and increase the

deep of the feature maps.

In the decoder segment of our proposed network, we utilize 2× 2 transposed

convolutions to facilitate the up-sampling of feature maps at each stage. This ope-

ration effectively doubles the size of the feature maps while reducing the number

of channels by half. Subsequently, the up-sampled feature maps are concatenated

with the corresponding feature map obtained from the ResNet block at the same

level in the encoder. Following the concatenation, two 3× 3 padded convolutions

and the ReLu activation function are applied. Finally, at the concluding layer of
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the decoder, a 1× 1 convolution is employed to map each 64-dimensional feature

vector to a four-channel output. This number of output channels corresponds to

the classes present in our dataset.

3.1.3.2. Details of the ResNet backbone

The U-Net-like architecture is built upon the incorporation of ResNet50 and

ResNet101 models, chosen for their demonstrated effectiveness in plant classifi-

cation in natural environments, as evidenced by prior studies (Peng et al., 2022;

Picon et al., 2022; Quan et al., 2021; Zenkl et al., 2022). Both the ResNet50

and the ResNet101 architectures involve a 7 × 7 padded convolution layer with

a stride of 2, followed by a 3× 3 max pooling layer with the same stride. This is

succeeded by four consecutive main blocks, each housing residual blocks with pe-

culiar properties. These main blocks are linked to a fully connected layer, which,

in turn, connects to the output layer responsible for generating the final predic-

tions. Figure 3.20 provides an overview of the entire architecture, illustrating the

arrangement of the residual blocks.

The ResNet architecture is distinguished by the incorporation of residual buil-

ding blocks, utilizing two types: the identity block (illustrated in Figure 3.20(b))

and the convolutional block (shown in Figure 3.20(c)). The identity block is ap-

plied when the input feature map (m) and the output feature map of the block

(φ(m)) share identical dimensions.

As depicted in Figure 3.20(b), the identity block comprises three consecutive

convolutions (1× 1, 3× 3, and 1× 1), each followed by a normalization operation

and a ReLU activation function. The resulting output is then element-wise added

to the feature map (m) and directed into the residual block via a shortcut path.

This addition results in the output H(m), representing the underlying mapping.

Notably, the number of kernels utilized in the identity block, denoted as “C1” and

“C2” varies based on the specific main block (Block 1, Block 2, Block 3, or Block

4) within the ResNet architecture. For example, in the first main block (Block

1), C1 = 64 and C2 = 256, while in the second main block (Block 2), C1 = 128

and C2 = 512, and so forth. This variation allows the network to capture diverse

levels of complexity and abstraction.
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Figure 3.20: The ResNet architecture, which was adopted as the backbone for the pro-

posed U-Net-like architecture. (a) Configuration of the main blocks of both the ResNet50

and the ResNet101. (b) Inside structure of the identity residual block applied in both Res-

Net50 and ResNet101. This block is employed when the dimensions of the feature maps

remain unchanged. (c) The inside structure of a convolutional residual block employed for

transition steps. This block is used when there exists a reduction in the size of the feature

maps.

In contrast to traditional CNNs that stack convolutional layers to approxima-

te the input, the use of residual blocks offers an advantage by having the network
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learn the residual map, denoted as φ(m) = H(m) − m. This formulation helps

address the vanishing gradient problem, as when φ(m) tends toward zero during

backpropagation, the identity map m contributes to non-zero weights. Conse-

quently, gradients are propagated to the initial layers of the network, enabling

them to adjust their parameters, which facilitates the training of deeper networks.

In cases where the input and output possess different dimensions, the con-

volutional block is employed. Unlike the identity block, the convolutional block

includes a 1× 1 convolutional layer in the shortcut path, along with a variation

in the number of kernels. Specifically, for the convolutional block, the values of

(C1,C2) are selected from the set{(128, 512), (256, 1024), (512, 2048)}. It is note-
worthy that the convolutional block is not present in the first main block (Block

1). The inclusion of the 1× 1 convolutional layer in the shortcut path allows for

adjusting the dimensions of the feature maps to align with the desired output

size. This additional convolutional layer aids in incorporating richer spatial in-

formation and adapting the network’s capability to accommodate variations in

spatial resolution throughout the network. Nevertheless, in the first main block

(Block 1), where the initial feature maps are obtained, the convolutional block is

unnecessary since the dimensions of the input and output feature maps are the

same.

A notable difference between ResNet50 and ResNet101 lies in the quantity of

residual blocks within the main Block 3. Particularly, ResNet50 includes five resi-

dual blocks, whereas ResNet101 incorporates twenty-two residual blocks. taking

into account the common 7 × 7 convolutional and 3 × 3 max pooling layers in

both networks, ResNet50 has a total of 50 layers, while ResNet101 includes a to-

tal of 101 layers. The variation in the number of residual blocks between the two

architectures significantly influences their depth and capacity to capture complex

patterns and features in the input data. With a greater number of layers and

residual blocks, ResNet101 possesses a more extensive and expressive network

structure, enhancing its ability to represent increasingly complex relationships

and learn hierarchical features. However, it is important to note that the deeper

architecture of ResNet101 may pose challenges, including increased computatio-

nal requirements and a potential risk of overfitting, especially in scenarios with

limited training data. As a result, the decision between ResNet50 and ResNet101
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depends on the specific requirements of the task, requiring a balance between

model complexity and computational efficiency.

3.1.3.3. Experimental setup for segmenting crop and weeds based on

CNNs and RGB images

The following six experiments for pixel-wise semantic segmentation using our

dataset (Figure 3.12) in the visible spectrum were carried out:

Mask R-CNN-ResNet50

Mask R-CNN-ResNet101

Mask R-CNN-ASPP-ResNet50

Mask R-CNN-ASPP-ResNet101

U-Net-like-ResNet50

U-Net-like-ResNet101

ResNet50 and ResNet101 (He et al., 2016) have been used as backbones for

Mask R-CNN, Mask R-CNN-ASPP and U-Net-like. Furthermore, transfer lear-

ning was employed; therefore, the resulting weights after having trained the Res-

Net50 and ResNet101 networks in the well-known ImageNet dataset (Deng et al.,

2009) were used to start the training and then tuned to our dataset. Moreover, to

ensure equal representation of instances per plant class, the dataset was balanced,

equalizing the instances into the classes Crop, NLW and BLW in 22, 620 instances

per class to avoid overfitting and improve the performance of the models. Sub-

sequently, the dataset was split in into 70% for training, 20% for validation and

10% for testing the models.

It is worth mentioning that to train the models, a desktop computer with a

Core i7 processor, NVIDIA GPU GeForce GTX 1080Ti with 6 GB of VRAM, and

64 GB of RAM has been used. The implementation was carried out in Python

3.8 and Keras framework with Tensorflow 2.4.0 as a backend.
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Mask R-CNN and Mask R-CNN-ASPP training

Mask R-CNN and Mask R-CNN-ASPP are designed for the instance segmenta-

tion of objects. Consequently, we have associated each segmented object with its

respective class (corn, NLW, NLB) to provide a clear interpretation of the image.

In other words, if an image contains “n” objects, each object is labeled distinctly

as either corn, narrow-leaf weeds or broad-leaf weeds.

The two networks have been configured to support an input image (xi ∈ In×m),

with maximum dimensions of 1024× 1024. Furthermore, since some images from

the dataset have around 250 labels, the RPN was configured to train 500 anchor

boxes and ROIs per image.

The models were trained for 200 epochs with a batch size of 1. During this pro-

cess, the weight decay and the learning rate were set to 0.0001, and the stochastic

gradient descent (SGD) was used as optimizer.

To adjust network parameters to our dataset, the loss function proposed by

He et al. (2017), has been used. This loss function is defined as follows,

L = Lcls + Lbox + Lmask (3.6)

where L represent the total loss function of the model; Lcls is the classification

loss; Lbox is the bounding box regression loss; Lmask is the average binary cross-

entropy loss.

Particularly, the classification loss (Lcls) is computed according to,

Lcls =
1

Ncls

∑
i

−log[pip∗i + (1− p∗i )(1− pi)] (3.7)

where Ncls are the number of categories; pi is the probability that the i− th ROI

is predicted to be the target. Here, when the predicted ROI is foreground, p∗i = 1,

otherwise, p∗i = 0.

On the other hand, the bounding box regression (Lbox) loss is computed by

the following expression,

Lbox =
1

Nbox

∑
i

p∗iR(ti, t
∗
i ) (3.8)
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where Nbox is the number of pixels in the feature map; R(·) is a smooth function;

ti represents the four parameterized coordinate vector of the predicted ROIs; and

t∗i indicates the coordinate vector of the real label.

Finally, the computation of the mask loss (Lmask ) is given by,

Lmask = −
1

N

∑
i

[y∗i log(p(yi))− (1− y∗i )log(1− p(yi))] (3.9)

where N represents the number of pixels; y∗i is the predicted k − th class in that

location of the pixel; and p(yi) is the probability of the yi predicted category.

U-Net-like training

For training the U-Net-like model, the input image, xi ∈ In×m, was scaled to a

size of 512×512 (S : In×m → I512×512
s ), then, this image was mapped according to

L : I512×512
s → [0, 1]512×512 ∩ R512×512, i.e., the image was normalized in such a way

that each of its elements is in the range [0, 1] ∩ R.
Also, the model has been trained for 200 epochs with a batch size of one. The

SGD optimizer was used with a learning rate of 0.0001.

The dice loss function was implemented to calculate the error between the

ground truth image and the predicted mask image. On the other hand, the focal

loss function was used to compensate for the complicated finding of the NLW

class pixels, since it usually occupies a big area but a low number of pixels in

the image, due to the phenological appearance of the plant species. These loss

functions were mathematically expressed in Section 2.3.1.3.

Evaluation of performance

The performance of the semantic segmentation in classifying the pixels of plant

species grouped into the classes Crop, NLW and BLW was implemented with the

metrics DSC, IoU, and mIoU whose mathematical expressions were provided in

Section 2.4.

3.1.4. Segmentation and classification for detection

Based on the findings proposed in Section 3.1.3, we realized that the seg-

mentation of plants is effectively carried out by the U-Net-like model, utilizing
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ResNet101 as its encoder layer. However, a notable drawback is observed in the

misclassification of pixels within isolated ROIs. This leads the thesis to explore

other strategies for detecting corn plants (Crop), NLW, and BLW in real corn

fields.

To address this gap, we proposed a detection method based on deep lear-

ning segmentation and classification networks, as illustrated in Figure 3.21. The

algorithm comprises two main stages: segmentation and classification. In the seg-

mentation stage, an image featuring multiple plants is segmented using a U-

Net-like-ResNet101 architecture. The segmentation process is approached in two

ways. The first involves a simple step of resizing the input images by using the U-

Net-like-ResNet101 architecture, while the second step entails dividing the input

images into patches to prevent the loss of crucial features, followed by segmenting

each patch. To enhance the U-Net-like model’s performance in pixel classification

for the Crop, NLW, and BLW classes, a series of experiments were conducted

using both multispectral and visible spectrum datasets, as explained ahead in

Section 3.1.4.2.

Moving to the classification stage, the pixels corresponding to each class (Crop,

NLW, or BLW) in the segmented image are initially separated into single-class

images. Subsequently, each image undergoes a transformation into binary masks,

facilitating the easy extraction of ROIs in scenarios with a high plant density.

These ROIs are extracted using the well-known connected component analysis

(CCA) (Haralick et al., 1973; Haralick and Shapiro, 1992). For the classification

of the ROIs, the networks ResNet101, VGG16, Xception, and MobileNetV2 are

implemented and evaluated. Ultimately, the process yields an image in which the

plants are successfully detected.

3.1.4.1. Description of classification network

In classification networks, the convolutional layers are arranged in a down-

sampling configuration to derive a feature map from an input image. Subse-

quently, a set of FCL is employed to classify the pixels within the feature map.

On this regard, earlier in Section 3.1.2 a brief description of the classification

networks VGG and Xception was presented and the architecture ResNet101 was
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Figure 3.21: The suggested approach for identifying crop and weed plants in real corn

fields utilizing segmentation and classification networks. In the resulting image, the classes

Crop, NLW, and BLW are represented by the green box, red box, and blue box, respectively.

described in Section 3.1.3.2. Therefore, here a brief explanation of the classifica-

tion network MobileNetV2 implemented in this approach is presented.

MobileNetV2

The MobileNetV2 architecture (Sandler et al., 2018) is a learning model that uses

the common operations of convolutions, activation functions, and pooling. Figu-

re 3.22 depicts the architecture representation of this network. It was designed

for three channels images of size 224× 224 pixels, and its operation blocks start

with a common conv2d, which is followed by 17 consecutive Bottleneck Depthwise

Separable Convolution blocks (BDSC). Then, what follows the last BDSC block

is newly a common conv2d of filters of size (1× 1); whose output feature map is

applied an avgpool operation of a kernel of size (7× 7); finally, a conv2d ends the
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block operations of the network.
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Figure 3.22: Representation of MobileNetV2 architecture. The green blocks mean the

Bottleneck Depthwise Separable Convolution blocks (BDSC).

The BDSC blocks are who characterize this network from the other ones (Fi-

gure 3.22). A BDSC takes as input a bottleneck input tensor with k channels.

First, a pointwise convolution (1× 1Conv), followed by a ReLu6 activation fun-

ction is used to expand the bottleneck feature map to a higher dimensional space.

Then, to re-increase this feature map to a higher dimensional tensor, a depthwise

convolution is performed using filters of size 3×3 and followed by a ReLu6 activa-

tion function. Next, the output feature map is reduced to a low dimensional space

by applying a pointwise convolution. Nonetheless, to avoid the loss of information,

this last pointwise convolution is followed by a linear activation function. Finally,

the input bottleneck feature map and the final feature map are concatenated to

form an integrated output bottleneck feature map. This concatenation strategy

is important to avoid the vanishing gradient problem.

The advantage of implementing depthwise separable convolution (depthwise

convolutions and pointwise convolutions) is the reduction of trainable parameters,

which comes along with the reduction of computation costs. Sandler et al. (2018)

declared that the computation costs of MobileNetV2 network could be 8 to 9

times smaller than that of networks of standard convolutions.
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3.1.4.2. Experimental setup using segmentation and classification net-

works for detection

As previously stated, the suggested detection method comprised two phases:

the segmentation stage, relying on a U-Net-like-ResNet101, and the classifica-

tion stage, involving the implementation and evaluation of ResNet101, VGG16,

Xception, and MobileNetV2 networks.

All architectures were trained using a desktop computer equipped with a Core

i7 processor, 32 GB of RAM, and an NVIDIA GPU GeForce RTX 3070Ti (8GB).

The implementation was conducted in Python 3.8 using the Keras framework

with Tensorflow 2.5.0 as the backend.

U-Net-like training

Five set of experiments were conducted looking to derive a strong U-Net-like-

ResNet101 model capable of adapting to unseen images. Four experiments were

conducted using resized images, and one experiment involved dividing images

solely into patches, as detailed in Table 3.2. For this set of experiments, we utili-

zed the large dataset for the visible spectrum containing meticulously annotated

images, along with RGB images derived from the multispectral dataset (Figu-

re 3.10). Additionally, the NIR channel of the multispectral dataset was also used

(Figure 3.9). However, instances in the Crop and NLW classes in both the RGB

dataset and the NIR dataset were augmented to match the number of instances

in the BLW class. The splitting rates of both the of the visible spectrum dataset

and NIR dataset is also provided in Table 3.2.

Notice in Table 3.2 that the experiments for training the U-Net-like archi-

tecture, additional to the image configuration, involved the type of dataset and

its configuration. In all the cases, the trained models were tested in the visible

spectrum dataset. A transfer learning strategy was applied for all experiments,

importing the weights of the convolutional layers from ResNet101 (encoder) when

it was originally trained on the ImageNet dataset (Deng et al., 2009), and then

these weights were frozen. However, for experiment two, the ImageNet weights of

the encoder were used for initializing the training and syntonized with the NIR
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dataset. Subsequently, in experiment three, the weights were used for the encoder

(ResNet101) on the U-Net-like architecture.

Table 3.2: Set of experiments carried out for training the U-Net-like architecture.

NIR channels Visible spectrum dataset

Image Experiment Training Validation Training Validation Test Tranfer

configuration (90%) (10%) (80%) (10%) (10%) learning

Resized image

1 ✓ ✓ ✓ ImageNet

2 ✓ ✓ ✓ ImageNet*

3 ✓ ✓ ✓ NIR (Exp. 2)

4 ✓ ✓ ✓ ✓ ✓ ImageNet

Patched image 5 ✓ ✓ ✓ ImageNet

*The encoder weights of the U-Net-like architecture were syntonized.

For training the U-Net-like in the first four experiments, the input images were

resized to 512 × 512. On the other hand, for experiment five, when images were

divided in patches, the original size of the images was used. However, in this case,

image padding was implemented as a pre-processing step during the training and

then divided in patches of 512 × 512 pixels. This ensured that the original size

of input images remained unaltered, with pixels of value 0 added on two sides to

achieve fixed-size patches. The chosen loss function throughout was the dice loss,

known for its strictness in segmentation tasks as it penalizes predominant pixels

in specific classes. The calculation of the dice loss was specified in Section 2.3.1.3.

The fine-tuning of the hyperparameters consisted in adjusting the learning

rate, optimizer, and the number of epochs. In this way, it was noted that the Adam

optimizer with a learning rate of 0.0001 demonstrated better compatibility with

our dataset. The model was trained for a total of 100 epochs in the two methods.

The metrics DSC, IoU, and mIoU were used to evaluate the performance of

U-Net-like-ResNet101 architecture in this approach.

Training of the classification CNNs

We used the balanced dataset derived from the dataset which encloses all the

visible spectrum images (RGB images), which was given in Figure 3.10. As the
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detection strategy encompassed training a classification CNNs, a subset of data

was generated. This subset comprised isolated plant images extracted from the

original experimental dataset (images with multiple plants). For training both the

U-Net-like and classification networks, the dataset was split into 80% training,

10% validation and 10% test.

The convolutional layers of the classification networks retained their origi-

nal architectures, while the FCL were customized. Similar to the segmentation

network, the initial step involved configuring parameters and hyperparameters

of these architectures to suit our dataset. Initially, the weights of both the con-

volutional and FCL were initialized randomly and trained. Subsequently, the

convolutional layers’ weights were initialized with those from pre-training on the

ImageNet dataset and then retrained with our dataset. Finally, the convolutio-

nal layers’ weights were initialized with those from ImageNet and then frozen,

indicating that only the FCL underwent training.

Respecting the FCL, they were modified from two layers to three layers, with

the number of neurons ranging from 512 to 4,096, increasing by 512 for the first

and second layers. The ReLU activation function was consistently configured for

these initial two layers. The third layer (output) always consisted of three neurons

with a softmax activation function, aligning with the classes in our dataset (Crop,

NLW, and BLW). Throughout the fine-tuning process, the optimizer, learning ra-

te, loss function, and the number of epochs underwent variations. The dimensions

of the input images for all networks were consistently 224×224 pixels.

Evaluation of performance

The evaluation of semantic segmentation, which involves classifying pixels into

the classes Crop, NLW, and BLW for plant species, utilized metrics DSC, IoU,

mIoU. Whereas for evaluating the performance of the classification networks it

were used the metrics accuracy, precision, recall and F1 score. The mathematical

expressions of all these metrics were provided in Section 2.4.
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3.1.5. End-to-end segmentation based on transformers

In recent studies, the performance of transformer architectures has surpassed

that of CNNs for the classification, detection and segmentation of weeds and crop

plants. Reedha et al. (2022) reported a superior performance of the visual trans-

formers (ViT) (Vaswani et al., 2017) over that of the architectures EfficientNet

and ResNet in classifying herbs over beet, parsley, and spinach crops. Also, Wang

et al. (2023) found a superior performance of Swin Transformer (Liu et al., 2021)

concerning the well-known CNN VGG-16, ResNet-50, DenseNet-121, SE-ResNet-

50, and EfficientNetV2 on the classification of corn seedlings and seven weed

species. On the other hand, concerning detection, Zhou et al. (2022) found that

a Multi-Window Swin Transformer obtained a better mean Average Precision

(mAP) than that of the frameworks Faster R-CNN, Mask R-CNN, FCOS, ATSS,

SSD, CenterNet, and YOLOv3 for detecting wheat spikes. Finally, with regard to

segmentation, Jiang et al. (2023) evaluated the architectures Swin Transformer,

SegFormer, and Segmenter for segmenting ten weed species commonly found in

turfgrass fields. In a separate study, Xu et al. (2023) focused on segmenting va-

rious weed species in natural soybean fields. They reported higher mIoU for these

transformer-based architectures compared to common segmentation models that

rely solely on convolutions.

Therefore, in this thesis, realizing that practically no work has been carried

out on the segmentation of corn plants and weeds under natural conditions. We

explored the transformer architectures Swin-UNet (Cao et al., 2021), Segmen-

ter (Strudel et al., 2021) and SegFormer (Xie et al., 2021) of classifying the pixels

belonging to the plant species of the classes Crop, NLW and BLW.

3.1.5.1. Transformers architectures

This Section presents a brief description and functionality of the transformer

architectures Swin-UNet, Segmenter and SegFormer.

Swin-UNet

The Swin-UNet model is a fusion of two renowned architectures, namely the

Swin Transformer (Liu et al., 2021) and the U-Net (Ronneberger et al., 2015).
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The U-Net model is a CNN that specializes in segmentation. The architecture and

functionality seem to that provided previously for U-Net-like in section 3.1.3.1.

Whereas the Swin Transformer is an adapted version of the vision Transformer

(ViT) (Dosovitskiy et al., 2021), which is the first proposed transformer for image

classification.

The Swin-UNet, whose architecture is represented in Figure 3.23, consists

of an encoder, bottleneck, an encoder and skip connections. As observed, this

transformer is consolidated for the Swin Transformer blocks. Each of these blocks

contains two consecutive sub-blocks constructed with Layer Norm (LN), either

window multi-head self-attention module (W-MSA) module or shifted window-

based multi-head self-attention (SW-MSA) module, residual connections, Layer

Norm (LN), and an MLP with GELU non-linearity, defined as:

ẑl = W −MSA(LN(zl−1)) + zl−1 (3.10)

zl = MLP (LN(ẑl)) + ẑl (3.11)

ẑl+1 = SW −MSA(LN(zl)) + zl (3.12)

zl+1 = MLP (LN(ẑl+1)) + ẑl+1 (3.13)

where ẑl is the output features of either W −MSA or SW −MSA of module one

and zl is the output features of MLP of module one, of block l; W −MSA refers

to a regular window multi-head self-attention and SW −MSA is a multi-head

self-attention computed with shifted windows. The self attention is computed

using the Equation 2.52.

Segmenter

The Segmenter transformer is also an encoder-decoder architecture for semantic

segmentation, as shown in Figure 3.24. The encoder is inspired in the ViT trans-

former (Dosovitskiy et al., 2021) while the encoder is based-mask inspired in the

DEtection TRansformer (DETR) (Carion et al., 2020).
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Figure 3.23: Illustration of the Swin-UNet transformer architecture.

Figure 3.24: Representation of the segmenter transformer architecture.

The input image for this transformer I ∈ RH×W×C undergoes division into

N fixed-size patches, forming a sequence of patches x = [x1, ...xN ] ∈ RN×p2×C .

Here N = HW
p2

, p2 := (p, p) refers to the patch size, and C is the number of

channels. Subsequently, each patch in the sequence x is flattened into a 1D
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vector and linearly projected to a patch embedding to produce the sequence

x0 = [Ex1, ..., ExN ] ∈ RN×D where E ∈ RD×(p2C). Then position embedding

pos = [pos1, ..., posN ] ∈ RN×D is added to the patch embedding to get the input

sequence of tokens z0 = x0 + pos.

Each layer L of the transformer is applied token sequence z0 to produce a

sequence of contextualized encodings zL ∈ RN×D. Each transformer layer is com-

posed of a multi-head self-attention (MSA) block followed by a layer norm (LN),

then a point-wise MLP followed by a layer norm (LN) and residual connections,

expressed as,

ai−1 = MSA(LN(zi−1) + zi−1 (3.14)

zi = MLP (LN(ai−1) + ai−1 (3.15)

where i ∈ {1, ..., L}. The attention mechanism is computed also with Equa-

tion 2.52. Therefore, the purpose of the segmenter is to decode every patch em-

bedding zL into a segmentation map s ∈ RH×W×K , where K is the number of

classes.

SegFormer

The SegFormer transformer (Xie et al., 2021), designed for semantic segmentation

tasks, comprises an encoder and a decoder section, as illustrated in Figure 3.25.

The encoder of this network exhibits the capability to handle various image sizes

without compromising the overall performance of the architecture. This block

incorporates hierarchical transformers, that enable the creation of both high-

resolution fine feature maps and low-resolution coarse feature maps.

Conversely, the SegFormer encoder includes a lightweight MLP responsible for

processing high-resolution feature maps that capture local properties extracted by

the lower layers of the encoder. Simultaneously, the MLP processes low-resolution

coarse features containing global features extracted by the deeper layers of the en-

coder. Consequently, the MLP decoder combines both global and local attention

characteristics from input images, resulting in dominant segmented objects.
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Figure 3.25: Representation of the SegFormer transformer architecture.

Specifically, when the encoder is provided, for example, with an image of di-

mensions H×W ×3, it initially divides it into patches of size 4×4. Subsequently,

the hierarchical transformers generate hierarchical feature maps (Fi) with reso-

lutions H
2i+1 × W

2i+1 × Ci, where i ∈ {1, 2, 3, 4}. Put differently, the hierarchical

transformers of SegFormer produce feature maps with sizes 1
4
, 1
8
, 1
16

and 1
32
, res-

pecting the dimensions of the input image.

Each hierarchical transformer within the encoder consists of the sub-modules:

Overlapping Patch Merging, Efficient Self-Attention, and Mix-Feedforward Net-

work (Mix-FFN). The role of Overlapping Patch Merging is to reduce the hierar-

chical feature maps along the encoder. For example, it transforms F1(
H
4
×W

4
)×C1

to F2(
H
8
× W

8
) × C2. The Efficient Self-Attention mechanism conducts attention

operations using the heads (Q,K, and V ) through the utilization of Equation 2.52.

However, SegFormer introduces a sequence reduction process. In the original

multi-head self-attention, the dimensions of the heads (Q,K, and V ) are N ×
C (Vaswani et al., 2017), where N = H×W represents the length of the sequence.

This uniformity in dimensions complicates the analysis, especially for large-sized

images, due to a computational complexity of O(N2). To address this challenge,

103



3. METHODOLOGY 3.1 Vision system development

SegFormer employs a ratio R to reduce the length of the sequence K as follows,

K̂ = Reshape

(
N

R
,C ·R

)
(K) (3.16)

K = Linear(C ·R,C)(K̂) (3.17)

In this way, the reduced K has dimensions N
R
× C. Due to this strategy, the

complexity of the self-attention mechanism is reduced to O
(

N2

R

)
, instead of the

original complexity of O(N2).

Finally, within each hierarchical transformer of the encoder, the Mix-FFN sub-

module addresses data-driven positional encoding. To achieve this, a 3× 3Conv

integrates the Feed-Forward Network (FFN), imparting an effect of no padding

to escape location information. The calculation for Mix-FFN is as follows:

xout = MLP (GELU(Conv3×3(MLP (xin)))) + xin (3.18)

where, xout is the output feature from the Mix-FFN module, xin is the feature

from the self-attention module and GELU is the Gaussian Error Linear Units

activation function.

The decoder section exclusively consists of MLP layers, operating on featu-

res derived from the hierarchical transformer blocks of the encoder module. To

achieve the final segmentation, this decoder performs four primary steps. (1) The

multi-level features Fi from each transformer block of the encoder pass through

an MLP layer, unifying them in their channel dimension. (2) The resulting feature

maps are then upsampled to 1
4
of their resolution and concatenated together. (3)

An additional MLP layer concatenates the upsampled features F . (4) Finally, a

separate MLP processes this fused feature map to predict the ultimate segmen-

tation mask M , with dimensionsH
4
× W

4
×Ncls, where Ncls denotes the number of

classes in the training dataset.

3.1.5.2. Experimental setup for segmenting crop and weeds based on

transformers

For training the transformers Swin-UNet, Segmenter and SegFormer, the large

dataset shown in Figure 3.10, derived from the dataset that encloses all the visible
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spectrum images (RGB images), was used. This dataset grouped the classes Crop,

NLW and BLW. However, it was first augmented the instances of the classes Crop

and NLW to the number of instances of the class BLW to obtain a balanced

dataset. Then, it was split into 80% for training, 10% for validation and 10% for

testing the trained models.

To train the models, a desktop computer with Core i7 processor, NVIDIA

GPU GeForce GTX 1080Ti with 6 GB of VRAM, and 32 GB of RAM memory

has been used. The implementation was carried out in Python 3.8 and PyTorch

framework 1.13.1.

The images of the dataset for training the three transformers were resized to a

dimension of 512 × 512 and then their normalized pixels into the range [0, 1]. The

Swin-UNet architecture was trained using the Adam optimizer with a learning

rate of 0.00001, a batch size of one and categorical cross-entropy loss function.

For the Segmenter, the stochastic gradient descent (SGD) optimizer with 0.001

learning rate was used, also a batch size of one and categorical cross-entropy loss

function were used. Finally, the SegFormer architecture was trained using the

Adam optimizer with a learning rate of 0.00001, a batch size of one, and catego-

rical cross-entropy loss. The three models were trained for 100 epochs.

Evaluation of performance

The evaluation of the trained transformer models in classifying the pixels of the

classes Crop, NLW, and BLW of the dataset was carried out utilizing the metrics

DSC, IoU and mIoU.

3.2. Mechatronic platform development

In this thesis, DL models have been trained to detect crop plants, narrow-leaf

weeds, and broad-leaf weeds in authentic corn fields. As mentioned earlier in this

Chapter 3, the vision system would be evaluated for its ability to control weeds

by spraying herbicides. Therefore, we have the following problem to solve,

Problem 1. Given a vision system that detects corn plants (Crop), NLW, and

BLW, the problem is to develop a platform commanded for the vision system
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that could navigate in an authentic cornfield spraying herbicides to control NLW

and BLW in real-time.

At first, the platform should be experimental and low-cost, utilizing materials

and electronic components available in the Autonomous and Intelligent Systems

Laboratory of the Research Center in Optics. One notable constraint involves

navigation within natural cornfields; the device should be capable of adapting

to crop rows spaced between 0.70m to 0.80m apart from each other. Under this

premise, the conceptual design of the platform involves exclusively developing a

morphological chart that presents various alternatives for the systems, as illus-

trated in Table 3.3.

Table 3.3: Morphological chart with alternatives for the mechatronic platform.

Alternatives

Systems and sub-systems 1 2 3 4

Navegation

Type Autonomous Pulled by tractor – –

Mechanical design

Material Wood Aluminium Steel Plastic

Assembly Welded Screwed – –

Chemical tank Plastic – – –

Electrical and hydraulic design

Power supply Gasoline generator LiPo battery Supplied from tractor Car battery

Controller Arduino PIC Raspberry Pi –

Solenoid valve Hydraulic activation Pneumatic activation Electric activation

Nozless Flat fan Solid cone Hallow cone Adjustable

Pump Diaphragm (Mechanical) Diaphragm (Electrical) – –

Vision system release

Processing type insitu Remote

Camera type Smartphone Professional Webcam

After analyzing the alternatives and restrictions, the components of the sys-

tems were selected. Then, the platform was drawn in the software SolidWorks

2019, constructed, and instrumented. The weed detection model was carefully

linked to the actuators and also a Graphical User Interface (GUI) was designed

to facilitate the operation of the smart sprayer in the field. The redesign step was

also necessary after some tests in real field conditions.
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3.3. Field evaluation

The field evaluation of the intelligent sprayer was conducted at the Pabellon

Experimental Extension of the National Institute for Research in Forestry, Agri-

culture and Livestock (INIFAP, by its acronyms in Spanish) in Aguascalientes,

Mexico, located at 22° 11’ N and 102° 20’ W, at an elevation of 1912 meter over

sea level.

A corn crop field of size 50 × 60 meters was established on September 29,

2023. The soil was conventionally prepared on September 20, with a pass of a

disc plow and two cross passes of harrow. Due to the relatively dry soil condi-

tions, furrowing the field was necessary for subsequent gravity irrigation to ensure

the germination of corn seeds. On the day of sowing, the soil was disked again to

eliminate furrows and smooth the surface. The seeder was calibrated to obtain a

corn plant density of around 100, 000 plant ha−1 with distance among plant rows

of 0.77m. Subsequently, immediately after the sowing practice the pre-emergence

herbicide Acetochlor + Atrazine was sprayed at a rate of 310g + 123g i.a ha−1,

because the field area had a variety of mature weeds species disposed of in high

density, which had plenty of viable seeds. The objective was to prevent a high

density of weeds during the experimental stage and thereby observe the discri-

mination effect of our smart sprayer. Subsequent management practices involved

solely gravity irrigation to encourage the growth of both the crop and weeds.

The evaluated treatments were our SWS and a Swissmex conventional spra-

yer (Model 890006) (CWS), which served as the control treatment. The CWS is

equipped with 21 flat fan nozzles, a tank with a capacity of 600L, and an aspersion

width of 10.5m. The response variables measured were the herbicide expenditure

per hectare (Lha−1) and the effectiveness in controlling NLW and BLW in the ex-

perimental corn crop. The treatments were distributed in a randomized complete

block design with three replications. The experimental unit for the SWS compri-

sed three consecutive 50m long passes, while for CWS, it involved a single 50m

long pass. A broad-spectrum post-emergence herbicide, Mesotrione+Atrazine,

was sprayed once in rates for treatment as shown in Table 3.4. The experiment

took place on November 19, 2023.
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Table 3.4: Experimental treatments and pos-emergence herbicide rates.

Treatment Herbicide Rate (g i.a ha−1) Spray volume (Lha−1)

Conventional sprayer (CWS) Mesotrine + Atrazine 180 + 1, 151 600

Smart weed sprayer (SWS) Mesotrine + Atrazine
180 + 1, 151∗ RV

120 + 767+ RV

*Herbicide dose to control NLW weeds. +Herbicide dose to control BLW weeds. RV–

Response variable.

As observed in the previous Table 3.4, the SWS sprayed different doses of

the same herbicide. This variation is due to its dual-tank system, with one tank

storing chemicals for controlling NLW and the other for BLW. It’s worth no-

ting that the herbicide rate for the SWS treatment maintained the same diluted

concentration as the CWS treatment.

It is worth mentioning that, prior to the experimental practice, the weed

density per square meter (pltm−2) was quantified by tanking six samples along the

main diagonals of the cornfield. Additionally, the plant species in the experimental

cornfield also were registered.

To quantify the response variable of herbicide expenditure per hectare (Lha−1),

both the CWS and SWS tanks were carefully filled using 5L and 1L test tubes.

The same procedure was repeated after the spraying practice to measure the

remaining herbicide mixture.

Effectiveness in controlling NLW and BLW was assessed using image analysis

by estimating the reduction of weed cover respecting the time. For this variable,

the observation unit consisted of the two central rows of each treatment, which

were marked for subsequent analysis. Immediately after spraying, images with a

resolution of 4, 608 × 3, 456 were captured using a drone (DJI Parrot ANAFI)

flying at a height of 5m above the soil surface. Then, two subsequent captures

were conducted every five days to observe the chemical actions.

The individual images captured in each observation unit were combined to

generate an orthomosaic. This process was executed in Python 3.8, utilizing the

widely recognized scale-invariant vision transform (SIFT) descriptor (Lowe, 1999)

and the random sample consensus algorithm (RANSAC) (Fischler and Bolles,

1981) to ensure accurate image overlap. Nonetheless, the software Photoshop was
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also employed for this task, particularly for creating orthomosaics from images

with a limited overlap area. Subsequently, all the orthomosaics were adjusted in

size according to the crop row width using Python 3.8.

After configuring the orthomosaics, they were divided into smaller images

and the weeds were manually annotated through the tool VGG Image Anno-

tator (Dutta and Zisserman, 2019). This practice follows the broad annotation

procedure described in Section 3.1.1.2 to obtain weed masks for each observa-

tion unit. Finally, the number of pixels in each observation unit was transformed

into a percentage, with the observations obtained on the day of the experiment

considered as 100%.

3.3.1. Statistical analysis

The observed field observations, for both herbicide expenditure and effective-

ness in controlling weeds, were subjected to an analysis of variance under a ran-

domized complete block design and Tukey’s multiple comparison test (P ≤ 0.05).

For all the analysis, the R software (3.6.2) was used.
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Chapter 4

Results and discussion

As declared earlier, this thesis aimed to develop a real-time vision system for

detecting and controlling weeds in authentic corn fields.. To better order and

understand the finding, this Chapter is divided in results and discussion, pro-

vided in Section 4.1 and Section 4.2, respectively. Section 4.1.1 of the results

gives the findings obtained from each of the explored strategies for the vision sys-

tem development. Subsequently, Section 4.1.2 offers the outcomes of the designed

and instrumented intelligent platform for controlling weeds under authentic corn

fields. Finally, the experimental field evaluation of the smart sprayer is presented

in Section 4.1.3.

4.1. Results

4.1.1. Vision systems development

This section presents the strategies explored for developing the vision system.

Section 4.1.1.1 recapitulates the created dataset. Section 4.1.1.2 provides the re-

sults of the classification of plant species based on shallow and deep learning.

Section 4.1.1.3 shows the segmentation of our dataset based on R-CNN and U-

Net-like architectures. Subsequently, Section 4.1.1.4 offers the findings observed

in the strategy of combining segmentation and classification networks to achie-

ve detection. Finally, Section 4.1.1.5 shows the segmentation of species based on

pure transformers.
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4. RESULTS AND DISCUSSION 4.1 Results

4.1.1.1. Annotated dataset

To train a DL architecture, a vast quantity of images captured at different

scenarios and growing stages of the plants in real field conditions are needed so

that they can generalize to unseen data. The images of our dataset were captured

during the spring-summer agricultural cycle, as it was declared. In total 15, 885

RGB images were acquired using different camera devices. Meanwhile 2, 312 ima-

ges were acquired using a multispectral camera with five bands (R, G, B, NIR,

and RedEdge). Images were captured in different cornfield locations and different

growth stages of the plants. The sunlight variability and the natural background

in each image were also introduced.

A total of 10, 575 RGB images out of the 15, 885 were annotated at the pixel

level, following a careful annotation using polygons. The annotated plant species

were Crop plant (Zea mays); and the weeds, Cynodon dactylon, Eleusine indica,

Digitaria sanguinalis, Cyperus esculentus, Portulaca oleracea, Tithonia tubaefor-

mis, Amarantus spinosus and Malva parviflora. The total number of annotated

instances per plant species was provided in Figure 3.7. Subsequently, the 2, 312

multispectral images were also annotated at the pixel level, initially with a coar-

se annotation using polygons, followed by a post-treatment using digital image

analysis. The annotation of multispectral images included corn plants (Crop) and

multiple NLW or multiple BLW. The number of annotated instances in the group

classes Crop, NLW and BLW is shown in Figure 3.9.

Therefore, in total, by combining the RGB images acquired with visible ca-

meras and the multispectral camera, a dataset of 12, 887 annotated images is

obtained. Grouping the plant species from the two types of images into the clas-

ses Crop, NLW and BLW, a total number of 28, 507, 41, 795 and 52, 541 instances,

respectively, are obtained per class. Therefore, our dataset could give new models

the potential to be transferred to natural corn field applications once they are

trained on it. This dataset is depicted in Figure 3.10.

4.1.1.2. Classification based on shallow and DL

The results of classifying the plant species of our dataset in the classes Crop,

NLW and BLW by using the rotation-invariant uniform local binary pattern +
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4. RESULTS AND DISCUSSION 4.1 Results

support vector machine (LBP riu2
P,R , SVM) and classification CNN are presented

in this Subsection.

Classical machine learning approach

A series of experiments were conducted to assess the effectiveness of the pro-

posed classical ML approach (SVM), as depicted in Table 3.1. As illustrated, the

LBP operator was employed with three distinct spatial and angular resolutions,

denoted as (P,R), featuring values of (8, 1), (16, 2), and (24, 3). Moreover, three

varying image dimensions (256× 256, 128× 128, and 64× 64 pixels) underwent

testing. Depending on the size, these images were subsequently subdivided into

cells with dimensions of 8× 8, 16× 16, 32× 32, 64× 64, and 128× 128.

The performance of the classifiers is detailed in Table 4.1. Notably, the top

three SVM models were configured as follows: LBP riu2
8,1 / 256 × 256/32 × 32,

LBP riu2
24,3 /256 × 256/32 × 32, and LBP riu2

24,3 /128 × 128/32 × 32. These configu-

rations achieved corresponding accuracy rates of 83.04%, 82.76%, and 82.26%

over the test data, respectively. These percentage values indicate the proportion

of plant species correctly classified into their respective classes. Additionally, the-

se models exhibit consistent performance across the metrics of precision, recall,

and F1 score, with differences among these variables for each of the three models

being less than one order of magnitude, as shown in Table 4.1. Concerning the

test time of these three models, the configuration LBP riu2
24,3 /128 × 128/32 × 32

demonstrated a slightly shorter duration, with a 1.89ms difference compared to

the model with the highest accuracy.

Additionally, Figure 4.1 shows the mean accuracy for each of the LBP riu2
P,R

texture features. The accuracy value is practically consistent among the exact

image size for the three LBP riu2
P,R operators, with differences of less than a unit of

magnitude for this variable. Furthermore, the mean accuracy for the image size

256× 256 was slightly superior to the other two sizes for each LBP riu2
P,R operator.

The metrics precision, recall, and F1 score also showed the same behavior for the

image size 256× 256 in each computed image operator.
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Figure 4.1: The mean of the accuracy for each of the (P,R) defined parameters.

Classification based on CNNs

We utilized the VGG16, VGG19, and Xception architectures for this study.

The convolutional layers of these networks were retained, while their FCL were

customized to classify the plant species in our dataset. The configuration of the

FCL included an input layer and an output layer. The input layers were equipped

with 512 neurons and a ReLU activation function. A dropout regularization rate

of 0.5 was applied to this layer. Given our three classes, Crop, NLW and BLW,

the output layers consisted of three neurons, followed by the Softmax activation

function.

The performance trends of the accuracy and loss functions for VGG16, VGG19,

and Xception during the training stage are illustrated in Figure 4.2. As evident,

starting from epoch one, there is a noticeable rise in accuracy and a significant

drop in the error value for each of the three models. This pattern is attributed

to the implemented transfer learning, a technique known for inducing rapid con-

vergence in models (Espejo-Garcia et al., 2020). In transfer learning, the weights

of the convolutional layers, pre-trained on a different dataset, are retained, and

only the final layers are adapted to the new data.

VGG16 and VGG19 achieved stability in accuracy for both the training and

validation data at epochs 39 and 45, respectively. On the other hand, Xception’s
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4. RESULTS AND DISCUSSION 4.1 Results

accuracy exhibited fluctuations throughout the entire training process; however,

the magnitude of these fluctuations decreased, especially from epoch 48 onwards.

Regarding the cost function of each model depicted in Figure 4.2b, VGG16

exhibited the least error in the validation data from epoch 70, overcoming VGG19

and Xception. While the error of VGG19 displayed a smooth trajectory starting

from epoch 58, it exhibited an increasing trend until epoch 100, indicating over-

fitting. Similarly, the error of Xception fluctuated throughout the entire training

process, making it less conclusive for determining the optimal number of epochs

for our dataset. The fluctuations in Xception’s error, varying between maximum

and minimum values during training, were also noted by Peteinatos et al. (2020).

However, it outperformed the fluctuations observed in VGG16 and RestNet-50

when trained with twelve species of plants.

The average performance of VGG16, VGG19, and Xception on the validation

data, considering accuracy, precision, recall, F1 score, and test time, is presented

in Table 4.2. The mean values for these metrics ranged from 97% to 98%. Overall,

VGG16 emerged as the top-performing model with an accuracy of 97.83%. This

ranking was consistent across precision, recall, and F1 score metrics compared

to VGG19 and Xception, with differences consistently less than one order of

magnitude in all cases. Xception achieved the best test time, which was 50.18ms

faster than VGG16.

Table 4.2: Mean performance of the classification CNN models.

Model Accuracy

(%)

Precision

(%)

Recall

(%)

F1 Score

(%)

Test

Time

(ms)

VGG16 97.83 97.67 97.67 97.67 194.56

VGG19 97.44 97.33 97.33 97.33 226.96

Xception 97.24 97.33 97.00 97.00 144.38

Comparison of shallow learning and CNNs

A comparative analysis between the top three classical ML models and the

three CNN models is presented in this section. Let SVMA be the model trained
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4. RESULTS AND DISCUSSION 4.1 Results

(a)

(b)

Figure 4.2: Graphs illustrating the training dynamics of VGG16, VGG19, and Xception.

(a) Accuracy curves and (b) cost function.

with LBP riu2
8,1 /256× 256/32× 32, SVMB the model trained with LBP riu2

24,3 /256×
256/32× 32, and SVMC the model trained with LBP riu2

24,3 /128× 128/32× 32.

Figure 4.3 illustrates the comparison between the three best classic ML ap-

proaches and the three CNN models. The average performance of the CNN models

surpassed that of the SVM models. For instance, VGG16, the best CNN model,

exhibited a mean accuracy that exceeded SVMA, the best classical ML model,
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4. RESULTS AND DISCUSSION 4.1 Results

by 14.79%. Furthermore, VGG16 demonstrated a speed advantage, being 1.11x

faster than SVMA in analyzing an image.
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Figure 4.3: Comparison of classification approaches.

Moreover, confusion matrices were generated to assess each model’s perfor-

mance. Figure 4.4 displays the three confusion matrices corresponding to each of

the SVM models. The highest accuracy was achieved at 92.4% for BLW by SVMB

(Figure 4.4b). However, all models encounter challenges when attempting to dis-

tinguish between the classes “Crop” and “NLW”, often misclassifying instances

from one class as the other are exhibited. In the best-case scenario, there is ap-

proximately 15% confusion; in the worst-case scenario, misclassification reaches

up to 21%.

Crop NLW BLW
Predicted label

C
ro

p
N

LW
B

LW
Tr

ue
 la

be
l

75.03% 16.69% 8.28%

15.57% 82.32% 2.09%

6.86% 1.41% 91.72%

(a)

Crop NLW BLW
Predicted label

C
ro

p
N

LW
B

LW
Tr

ue
 la

be
l

74.71% 17.05% 8.23%

19.61% 77.8% 2.6%

5.33% 2.26% 92.4%

(b)

Crop NLW BLW
Predicted label

C
ro

p
N

LW
B

LW
Tr

ue
 la

be
l

70.64% 21.51% 7.84%

18.84% 78.63% 2.52%

7.09% 1.44% 91.46%

(c)

Figure 4.4: Confusion matrices of the three SVM models. (a) SVMA, (b) SVMB , and (c)

SVMC .
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The class with the most accurate identification across all models was BLW,

followed by NLW, while Crop consistently exhibited the lowest accuracy. SVMB

achieved the highest identification accuracy for BLW at 92.4%, as mentioned

earlier. In terms of NLW and Crop, both classes were most accurately identified

by SVMA, with accuracies of 82.32% and 75.03%, respectively. A possible expla-

nation for the confusion between the “Crop” and “NLW” classes is their common

membership in the monocot species, sharing numerous texture features.

On the contrary, Figure 4.5 displays the confusion matrices for the CNN mo-

dels. In this scenario, VGG19 achieved superior classification for Crop and NLW,

with 98.23% and 99.21% accuracy, respectively. Meanwhile, Xception excelled

in classifying BLW with an accuracy of 97.83%. The VGG16 CNN model, des-

pite having the highest mean accuracy, showcased a more balanced classification

across classes, with the maximum difference being only 0.79% between NLW and

BLW. Similar to the SVM models, the CNN models also tended to confuse Crop

with NLW and vice versa.

Xception misclassified Crop into NLW at 2.95%, compared to 1.57% by both

VGG16 and VGG19. VGG16 had the highest misclassification rate for NLW as

Crop at 1.57%, representing the most common misclassification of this class

among the models. Additionally, all three models predominantly misclassified

BLW more frequently as Crop than NLW. Based on the outcomes, the three

CNN models achieved superior performance compared to the results obtained by

the three SVM models.

4.1.1.3. Segmentation based on R-CNN and U-Net-like

This section presents the results obtained when our dataset was pixels-wise

segmented following two strategies. The first strategy uses RGB images to train

the architectures Mask R-CNN-ResNet50, Mask R-CNN-ResNet101,

Mask R-CNN-ASPP-ResNet50, Mask R-CNN-ASPP-ResNet101,

U-Net-like-ResNet50, and U-Net-like-ResNet101. It is worth noting that the Mask

R-CNN-ASPP-based networks were proposed in this thesis.
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Figure 4.5: Confusion matrices of the three CNN models. (a) VGG16, (b) VGG19 and

(c) Xception.

Behavior of loss functions and mIoU during training

The loss functions’ behavior, of the six architecture configurations through the

training and validation data at each epoch is shown in Figure 4.6. The plotted

loss curve for the Mask R-CNN and Mask R-CNN-ASPP architectures corres-

ponds to the average binary cross-entropy loss (Lmask), which is applied to the

segmentation branch of these networks.

The red and blue curves represent the Mask R-CNN-ResNet50 and

Mask R-CNN-ResNet101 networks. Conversely, the magenta and cyan curves be-

long to the Mask R-CNN-ASPP-ResNet50 and

Mask R-CNN-ASPP-ResNet101 networks. Lastly, the green and black curves de-

pict the training behavior of the U-Net-like-ResNet50 and

U-Net-like-ResNet101, respectively.

Examining Figure 4.6 reveals a consistent trend across all investigated net-

works, wherein the training and validation errors tend to decrease throughout the

training period, signifying effective learning. However, it is notable that the loss

curves for Mask R-CNN-based architectures exhibit some fluctuations during the

entire training process, while the error curves for U-Net-like models consistently

show a monotonically decreasing pattern.

As mentioned earlier, the segmentation result from Mask R-CNN-based mo-

dels depends on the ROIs detected by the Region Proposal Network (RPN) in

the image. At the same time, the U-Net-like model analyzes the entire image.
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Figure 4.6: The overall behavior of the loss functions for the four networks throughout

the training process.

Therefore, the oscillation in the error of Mask R-CNN-based models is attributed

to the mask loss function’s dependency on the class and box loss functions that

the networks operate during training. This concept was also supported by Liu

et al. (2020), demonstrating that deep learning detection networks often exhi-

bit high-magnitude detection errors due to the density of plants, as the detected

regions contain neighboring leaves or background pixels.

Additionally, as depicted in Figure 4.6, the overall exhibited error of the Mask

R-CNN-ASPP architectures is consistently lower during all the training steps

compared to the error magnitude of the original Mask R-CNN architectures.

Specifically, Mask R-CNN-ASPP-ResNet50 demonstrated the least loss behavior.

The IoU metric provides a direct assessment of the performance of a seg-

mentation model by indicating the overlap between the prediction mask and the

ground truth. Therefore, the value of this metric was recorded over the valida-

tion data at each epoch. Figure 4.7 illustrates the behavior of the mIoU metric

for the six networks. The highest value was achieved by U-Net-like-ResNet101
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during the training process, followed by U-Net-like-ResNet50. The mIoU of the

Mask R-CNN-ASPP networks consistently surpassed that of the original Mask

R-CNN architecture in all epochs. Furthermore, after epoch 75, Mask R-CNN-

ASPP-ResNet50 exhibited the highest mIoU, indicating superior performance. In

contrast, Mask R-CNN-ResNet101 consistently displayed lower values throughout

the training process.
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Figure 4.7: Mean intersection over union provided by the models of the four architectures

at every epoch during training on the validation data.

Performance of segmentation models over the classes

Table 4.3 presents the performance of the six models in classifying each pixel

of the images into the classes Crop, NLW, BLW, and Soil.

The evaluation of performance indicates that the Mask R-CNN-ASPP models

surpass those of the original Mask R-CNN models. However, it is noteworthy

that the metric values of the Mask R-CNN-ASPP models have been surpassed

by those achieved by the U-Net-like models.

Concerning the performance based on DSC metric, the two Mask R-CNN-

ASPP models have achieved higher DSC values than the Mask R-CNN models.
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Table 4.3: Performance of the networks in classifying pixels belonging to the studied

classes.

Mask R-CNN Mask R-CNN-ASPP U-Net-like

Class Metric ResNet50 ResNet101 ResNet50 ResNet101 ResNet50 ResNet101

Crop
DSC (%) 54.08 46.89 74.96 72.87 89.82 92.29

IoU (%) 37.06 30.62 59.94 57.32 81.52 85.67

NLW
DSC (%) 37.59 22.24 57.34 58.00 85.42 88.49

IoU (%) 23.15 12.51 40.19 40.85 74.55 79.35

BLW
DSC (%) 78.08 72.88 80.72 74.46 90.80 92.24

IoU (%) 64.04 57.34 67.67 59.31 83.15 85.60

Soil
DSC (%) 97.39 96.49 96.62 96.01 98.57 98.93

IoU (%) 94.91 93.22 93.47 92.34 97.18 97.88

Specifically, the DSC of Mask R-CNN-ASPP-ResNet50, superior to Mask-R-

CNN-ASPP-ResNet101, exhibited a superiority of 20.88%, 19.75%, and 2.64%

for the Crop, NLW, and BLW classes, respectively, compared to that obtained by

Mask R-CNN-ResNet50, which surpassed Mask R-CNN-ResNet101. Nevertheless,

U-Net-like-ResNet101, superior to U-Net-like-ResNet50, demonstrated a higher

DSC by 17.33%, 31.15%, and 17.78% for the Crop, NLW, and BLW classes,

respectively, compared to that of Mask R-CNN-ASPP-ResNet50.

With respect to IoU, the achieved magnitude by Mask R-CNN-ResNet50 was

superior to that obtained by Mask R-CNN-ResNet101 across all plant classes.

However, Mask R-CNN-ResNet50 was surpassed by both Mask R-CNN-ASPP-

ResNet50 and Mask R-CNN-ASPP-ResNet101 models. The IoU magnitude ob-

tained by Mask R-CNN-ASPP-ResNet50 was 22.88%, 17.04%, and 3.63% higher

for the Crop, NLW, and BLW classes, respectively, than that exhibited by Mask

R-CNN-ResNet50. Nevertheless, similar the DSC, the IoU of the U-Net-like mo-

dels outperformed that of the Mask R-CNN-ASPP-based models for all plant clas-

ses. Specifically, the IoU obtained by U-Net-like-ResNet101 was 25.73%, 39.16%,

and 17.93% better for the Crop, NLW, and BLW classes, respectively, than that

achieved by Mask R-CNN-ASPP-ResNet50.

In summary, the Mask R-CNN-ASPP models exhibit superior performance

compared to the Mask R-CNN models. However, the effectiveness of the Mask

R-CNN-ASPP-based models is surpassed by the U-Net-like models.
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Figure 4.8: Confusion matrices depicting the pixel classification for both Mask R-CNN

and U-Net configurations.
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We have computed the confusion matrices presented in Figure 4.8 to demons-

trate the accurate and misclassification of pixels in validation images for the

classes Soil, Crop, NLW, and BLW for each model. All models achieved a clas-

sification rate of over 97% for the soil class, which can be attributed to the

predominance of soil in the images.

Examining the pixel classification of Corn, NLW, and BLW, all models perfor-

med best in classifying pixels belonging to the BLW class. In contrast, the least

accurate classification was observed for pixels of the NLW class. The high accu-

racy in classifying BLW pixels can be attributed to the distinctive phenological

appearance of the plant species within this group, making it clearly distinguisha-

ble from the plant species in the Crop and NLW classes. In contrast, the low

classification accuracy of NLW pixels can also be attributed to the phenologi-

cal characteristics of the plants in this group, as they are narrow and occupy a

relatively small area in the images, often leading to misclassification as soil pixels.

Analyzing the pixel classification across model groups from Figure 4.8, Mask

R-CNN-ResNet50 demonstrated superior classification of pixels for the three

plant classes compared to Mask R-CNN-ResNet101. Conversely, the Mask R-

CNN-ASPP-ResNet50 model exhibited better classification of pixels for the Crop

and BLW classes than Mask R-CNN-ASPP-ResNet101, but not for the NLW

class. In the case of U-Net-like networks, U-Net-like-ResNet50 effectively clas-

sified pixels for the BLW class. However, U-Net-like-ResNet101 achieved better

classification for the Crop and NLW classes.

Comparing the top-performing model from each of the three groups in terms

of pixel classification, it is clear that Mask R-CNN-ASPP-ResNet50 exhibited a

5.83% higher accuracy in recognizing BLW pixels compared to Mask R-CNN-

ResNet50. However, U-Net-like-ResNet50 outperformed by 14.54% in classifying

BLW pixels compared to Mask R-CNN-ASPP-ResNet50. Mask R-CNN-ASPP-

ResNet50 demonstrated a 22.18% superiority in recognizing Crop pixels com-

pared to Mask R-CNN-ResNet50. Nevertheless, U-Net-like-ResNet101 surpassed

the recognition of Crop pixels by 23.28% compared to Mask R-CNN-ASPP-

ResNet50. Lastly, U-Net-like-ResNet101 achieved a 56.31% and 37.29% better

classification for the NLW class compared to Mask R-CNN-ResNet50 and Mask

R-CNN-ASPP-ResNet101, respectively
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In summary, as depicted in Figure 4.8, it is obvious that all models misclassi-

fied pixels of plant classes as soil. Additionally, there was a consistent confusion

between pixels of the Crop and NLW classes in all models, and vice versa; similar

to the classification model covered in previous Section 4.1.1.2. This behavior is

attributed to the phenological characteristics of the plants, as they are monocoty-

ledonous, potentially sharing certain features that lead to classification confusion.

Average performance of the models

The Figure 4.9 depicts the average performance of the Mask R-CNN, Mask

R-CNN-ASPP and U-Net-like based configurations.
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Figure 4.9: The average performance of the pixel-wise segmentation network configura-

tions.

The U-Net-like networks surpassed both Mask R-CNN-ASPP-based and Mask

R-CNN networks in semantic segmentation of the Soil, Crop, NLW, and BLW

classes in our dataset. However, the two Mask R-CNN-ASPP-based models out-

performed the Mask R-CNN-based models. Nevertheless, U-Net-ResNet101 achie-

ved the highest values of the metrics. Concerning the performance of Mask R-

CNN-based models, Mask R-CNN-ResNet50 demonstrated superior performance

compared to Mask R-CNN-ResNet101, which exhibited the lowest performance.
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Finally, Mask R-CNN-ASPP-ResNet50 demonstrated better segmentation of our

dataset compared to Mask R-CNN-ASPP-ResNet101, as indicated by the metric

values.

In terms of DSC, Mask R-CNN-ASPP-ResNet50 exceeded the achieved va-

lue of Mask R-CNN-ResNet50 by 10.63%. However, the DSC of U-Net-like-

ResNet101, the top-performing network model, was 15.37% higher than that of

Mask R-CNN-ASPP-ResNet50. Finally, the mIoU of U-Net-like-ResNet101 sur-

passed that of Mask R-CNN-ResNet50 and Mask R-CNN-ASPP-ResNet50, the

best in their categories, by 32.34% and 31.8%, respectively.

Visualization of segmented classes

Visualizing the segmentation output of any model enhances the understanding

of the numerical metrics. Hence, Figure 4.10 provides a qualitative comparison

of the segmentation output from Mask R-CNN-ResNet50, Mask R-CNN-ASPP-

ResNet50, and U-Net-like-ResNet101, which were the network architectures yiel-

ding the best results.

In the initial row, the input image is displayed (Figure 4.10a). The subsequent

row (Figure 4.10b) depicts the ground truth, with green representing the Corn

class, red for the NLW class, and blue for the BLW class. Following that, the

third row (Figure 4.10c) showcases the segmentation output of the Mask R-CNN-

ResNet50 model, while the fourth row (Figure 4.10d) exhibits the segmentation

results produced by the Mask R-CNN-ASPP-ResNet50 model. Finally, in the last

row (Figure 4.10d), the segmentation output of the U-Net-like-ResNet101 model

is presented.

All three models exhibit accurate segmentation when the plants are well-

separated, and the objects in the image are sufficiently large. These scenarios are

expected when the image is captured from a short distance, as illustrated in the

first column of Figure 4.10. Analyzing the segmentation performance of Mask

R-CNN-ResNet50 and Mask R-CNN-ASPP-ResNet50, it becomes apparent that

both models face challenges when there are more than two plant classes, when

plants are in close nearby, and when plants appear small in the images, as obser-

ved in the second, third, and fourth columns of Figure 4.10c and Figure 4.10d.

Additionally, these images reveal instances where Mask R-CNN-ResNet50 and
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Figure 4.10: A visual assessment comparing the segmentation outputs of the top three

models from each architectural configuration. The segmented crop plant is highlighted in

green, NLW are shown in red, and BLW are represented in blue.

Mask R-CNN-ASPP-ResNet50 models commonly misclassify pixels belonging to

the NLW class as the Soil class. However, in the image of the fourth column

from the Mask R-CNN-ASPP-ResNet50 model, the NLW class has been accura-

tely segmented, attributed to the ASPP module implemented in its segmentation

branch. This mosaic of images underscores that the U-Net-like-ResNet101 model

outperforms in segmenting all classes, with its segmentation output masks closely

aligning with the ground truth under these real field conditions.
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4.1.1.4. Segmentation and classification for detection

The performance of the networks involved in the proposed approach, combi-

ning segmentation and classification CNNs for plant detection, is presented in this

section. First, the segmentation results carried out by the U-Net-like-ResNet101

architecture are presented. Furthermore, the achievements of the classification

networks ResNet101, VGG16, Xception, and MobileNetV2 are also showcased,

as they were evaluated in classifying the segmented regions. Finally, a collection

of representative output images from the detection system is presented.

Performance of the U-Net-like model for segmentation

The segmentation stage has been conducted using two approaches. The first

involves segmenting the entire resized input images, while the second approach

entails dividing the input images into patches, followed by segmentation of each

patch. Five experiments were conducted using both the NIR images (Figure 3.9)

and the visible spectrum dataset (Figure 3.10).

Table 4.4: Performance of the U-Net-like-ResNet101 network when trained with RGB and

multispectral images.

Resized image Patched image

Class Metric Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5

Crop
DSC (%) 83.97 18.18 60.83 5.65 86.72

IoU (%) 72.36 8.21 43.71 2.91 77.18

NLW
DSC (%) 68.51 2.65 49.48 15.29 73.41

IoU (%) 52.1 1.34 32.87 8.28 58.03

BLW
DSC (%) 86.68 0.51 68.41 34.79 91.64

IoU (%) 76.69 0.26 55.29 21.06 81.14

Soil
DSC (%) 97.78 91.06 96.15 93.70 98.16

IoU (%) 95.66 83.59 92.58 88.14 96.32

Experiment 1: U-Net-like-ResNet101 trained with RGB images and tested in RGB images.

Experiment 2: U-Net-like-ResNet101 trained with NIR images and tested in RGB ima-

ges. Experiment 3: U-Net-like-ResNet101 trained with RGB images, transferring encoder

weights acquired during NIR training, and tested in RGB images. Experiment 4: U-Net-

like-ResNet101 trained with NIR and RGB images and tested in RGB images. Experiment

5: U-Net-like-ResNet101 trained with RGB images and tested in RGB images when images

were of original size and divided in patches.

In this way, Table 4.4, in each column, lists the performance of the model
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for the five carried-out experiments. Observations reveal that the U-Net-like-

ResNet101 model achieved better segmentation of the four classes in the dataset

when images were divided into patches (experiment 5). The second better model

was obtained when trained exclusively with resized RGB images (experiment

1). Fine-tuning the encoder weights with pure NIR images and subsequently

retraining the decoder using only RGB images (experiment 3), was also acceptable

but it did not achieved the performance obtained in experiment one and five.

However, combining NIR and RGB images for training did not yield improvement

in segmentation, as indicated by the metrics (experiment 4). Notably, training the

model solely with NIR images resulted in the poorest segmentation performance

(experiment 2).

Despite the superiority of training U-Net-like-ResNet101 with patched images

compared to other dataset configurations, its performance experienced a decline

in this experiment compared to that observed in Section 4.1.1.3. This decline can

be attributed to the new dataset’s size, which includes unknown plant species in

NLW and BLW groups, introducing a variety of features in these two classes.

Additionally, Table 4.4 indicates that the two better models performed more

effectively in segmenting the BLW class, followed by the Crop class, while the

NLW class exhibited the poorest segmentation. A closer analysis highlights that,

when images were divided into patches, the classes Crop, NLW, and BLW demons-

trated segmentation improvements of 2.75%, 4.90%, and 4.96%, respectively for

the DSC, compared to when resized RGB images were used for training.

The U-Net-like model exhibits a consistent behavior for the IoU metric across

both experiment one and experiment five. Specifically, the model performs more

effectively for all classes when images are divided into patches. The IoU analysis

reaffirms that the BLW class achieved the best segmentation, followed by the

Crop class, with the NLW class being the least effectively segmented. Segmenting

using patches increased 4.82%, 5.93%, and 4.45% in the IoU metric for the Crop,

NLW, and BLW classes, respectively, compared to the IoU values obtained when

RGB images were solely resized.

The percentage of pixels correctly classified or misclassified by the U-Net-like

model under the five experiments is illustrated in Figure 4.11 through confusion

matrices. In all cases, the model demonstrated improved pixel classification for
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Figure 4.11: Confusion matrices for U-Net-like-ResNet101 trained under distinct datasets

configuration. (a) Architecture trained with RGB images and tested in RGB images, (b)

architecture trained with NIR images and tested in RGB images, (c) network trained with

RGB images, transferring encoder weights acquired during NIR training, and tested in RGB

images, (d) architecture trained with NIR and RGB images and tested in RGB images,

and (e) network trained with RGB images and tested in RGB images when images were of

original size and divided in patches.
130



4. RESULTS AND DISCUSSION 4.1 Results

plant classes when images were divided into patches compared to the sole resizing

the RGB images, which was the second better model. The inferior model, as

indicated in Figure 4.11(b), was the model trained exclusively with NIR images

and tested on RGB images. Under the two superior segmentation approaches, the

classes Crop and BLW were better segmented than the class NLW. Additionally,

it is noteworthy that, under these two scenarios, the model tended to misclassify

pixels belonging to plant classes as soil to a greater magnitude.

The overall performance of the U-Net-like-ResNet101 architecture under the

five experiments is presented in Figure 4.12. The graph illustrates that the best-

performing model is the one trained with patched images, applying transfer

learning for the ResNet101 backbone from ImageNet. The second-best model

is achieved when resized RGB images were used for training. Conversely, the

worst-performing model is the one trained using NIR images and evaluated on

RGB images. The differences in DSC, and mIoU metrics between the model trai-

ned with patched images and the model trained with resized RGB images are

quantified as 3.21%, and 3.96%, respectively.
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Figure 4.12: Average performance of U-Net-like-ResNet101 under the different configu-

rations of the datasets and transfer learning strategies.

Performance of the classification networks

The fine-tuning process revealed that applying transfer learning led to impro-

ved classification performance for the networks. Consequently, only the weights of
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the FCL were adjusted to suit our dataset. The fully connected block consisted of

three layers, and it was observed that superior classification results were achieved

when both the first and second layers were equipped with 2,048 neurons. Addi-

tionally, during training, the Adam optimizer was employed with a learning rate

set to 0.0001. The use of the categorical cross-entropy loss function contributed

significantly to error reduction. The training process involved 50 epochs on the

entire dataset.

The macro performance of ResNet101, VGG16, Xception, and MobileNetV2 in

classifying ROIs extracted from segmented images is illustrated in Figure 4.13. As

observed, Xception exhibited the highest performance, followed by MobileNetV2,

ResNet101, and VGG16, as indicated by the metrics of Accuracy, Precision, Re-

call, and F1-score.
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Figure 4.13: Average performance of the studied classification networks.

In real-world applications, inference time plays a crucial role. Among the stu-

died classification networks, the computation cost of the MobileNetV2 network

stands out, being 8 to 9 times smaller than the other architectures. This effi-

ciency is attributed to its implementation of depthwise separable convolution,

which combines depthwise convolutions and pointwise convolutions, resulting in

a reduction of trainable parameters (Sandler et al., 2018).

Figure 4.14 highlights the performance of the MobileNetV2 model in classif-

ying plants belonging to the Crop, NLW, and BLW classes. Analyzing the Recall
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metric reveals that 100% of images from the Crop class were correctly classified,

along with 90% for NLW and 99% for BLW by the MobileNetV2 model. However,

the Precision for the Crop class is 90%, indicating a misclassification rate of 10%

of NLW plants as Crop. This is due to the 100% Precision for the NLW class,

implying that the model misclassifies some NLW plants as Crops. Consequently,

examining Precision, Recall, and F1 score for BLW, makes us realize that this

class is the best classification. Finally, the mean classification performance across

classes was 95%, 95%, and 99%, for Crop, NLW, and BLW, accordingly, which

is indicated by the F1-score.
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Figure 4.14: MobileNetV2 classification performance over the plant classes of our dataset.

Detection approach visualization

Identifying objects within an image and determining their corresponding class

is the essence of object detection. Figure 4.15 illustrates the detection of plant

classes through our proposed approach, showcasing a variety of images. The initial

two rows display images with sparse plant distribution and no foliage occlusion.

In contrast, the subsequent two rows feature images with high plant density and

persistent foliage occlusion. It is noteworthy that, in all samples, green boxes

correspond to the Crop class, red boxes to NLW, and blue boxes to BLW.
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Figure 4.15: Samples of output images generated by the proposed detection method,

utilizing both the segmentation and classification networks. The first two rows contain low-

density plant images. The last two rows contain high-density plant images. In all samples,

the green box is Crop, the red box is NLW, and the blue box is BLW.

A visual examination of images with a low plant density reveals that nearly all
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green regions have been successfully detected. However, the localization of plants

is somewhat influenced by the region provided by the segmentation model, often

resulting in multiple bounding boxes in a single image. In images with a high plant

density, most plant classes are detected, but due to the dense foliage, bounding

boxes sometimes encompass two or more plants of the same class, influenced by

the region extracted by the segmentation model. Furthermore, in high-density

plant images, some plants are not detected, primarily due to the segmentation

model’s confusion between pixels belonging to plant classes and those representing

the soil.

Although the detection in some cases covers only part of the foliage of the

plants, the implementation of this vision system for spraying herbicides in real

corn fields remains suitable. This is because systemic herbicides are absorbed by

the plants and gradually distributed throughout their vascular system, effectively

killing all their organs. Thus, spraying herbicides over just a portion of the plants’

foliage is sufficient for these herbicides to eliminate the plants. In instances where

the trained segmentation model identifies multiple plants in a region, this can be

addressed by subdividing the bounding box. This approach allows for the spraying

of a smaller area of foliage, optimizing the efficiency of herbicide application.

4.1.1.5. End-to-end segmentation based on transformers

This section presents the achievements of the transformer architectures Swin-

UNet, Segmenter, and SegFormer on pixel-wise segmentation of the Crop, NLW,

BLW, and Soil classes of our dataset. The obtained metrics of the architectures

over each class are listed in Table 4.5. Upon examining this table comprehensively,

it becomes apparent that SegFormer stands out as the superior transformer model

for every class. The second better was Segmenter and the worse performance was

reached by Swin-UNet.

Focusing solely on the plant classes, SegFormer demonstrated superiority for

the metric DSC. Specifically, it outperformed the Segmenter and Swin-UNet mo-

dels by 17.98% and 75.64%, respectively, for the class Crop; by 44.81% and

63.54%, respectively, for the class NLW; and by 12.55% and 19.69%, respecti-

vely, for the class BLW.
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Table 4.5: Performance of the transformers architectures on segmenting the classes of the

dataset.

Metric Classes Swin-UNet Segmenter SegFormer

DSC (%)

Soil 96.67 97.89 98.36

Crop 15.68 73.34 91.32

NLW 15.74 34.47 79.28

BLW 70.33 79.45 90.00

IoU (%)

Soil 93.55 95.88 96.77

Crop 8.51 57.91 84.02

NLW 8.54 20.82 65.67

BLW 54.24 65.91 85.18

Regarding the metric IoU, SegFormer surpassed Segmenter by 26.11%, 44.85%,

and 19.27% for the classes Crop, NLW, and BLW. Similarly, for the same me-

tric, SegFormer outperformed Swin-UNet by 75.51%, 57.13%, and 30.94% for

the classes Crop, NLW, and BLW, respectively.

The metrics DSC and IoU are closely associated with the quality of seg-

mentation performed by the models. Table 4.5 facilitates a comparison of model

performance across plant classes in the dataset. In this way, all models obtained a

superior magnitude of these metrics for the class BLW. Furthermore, it seems that

SegFormer and Segmenter excel in segmenting the Crop class compared to the

NLW class, as indicated by both IoU and DSC. In contrast, Swin-UNet appears to

achieve similar segmentation results for the NLW and Corn classes, according to

these metrics. The improved segmentation of the BLW class by all three models

may be attributed to the distinct leaf appearance of the plant species within this

class, which is entirely different from both Crop and species in the NLW class.

Additionally, BLW plants typically occupy substantial spatial areas.

The confusion matrices resulting from the evaluation of the transformers on

the testing dataset are depicted in Figure 4.16. These matrices provide insights

into the performance of correct classification and misclassification of pixels be-

longing to each class.

Analyzing Figure 4.16(a) with a focus on plant classes, Swin-UNet demonstra-
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ted superior classification of BLW class pixels compared to the NLW class, while

the worst performance was observed in classifying Crop pixels. Notably, this mo-

del exhibited significant confusion, misclassifying a considerable percentage of

BLW pixels as NLW and Crop. Additionally, Swin-UNet showed a misclassifica-

tion of NLW pixels, incorrectly identifying them as Crop. Moreover, the model

misclassified almost all pixels belonging to the Crop class as if they were other

classes.
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Figure 4.16: Confusion matrices of the three studied transformer architectures. (a) Swin-

UNet, (b) Segmenter and (c) SegFormer.

On the other hand, regarding the confusion matrix of the Segmenter transfor-

mer (Figure 4.16(b)), it also exhibited a high rate of classification accuracy for

pixels belonging to the BLW class, followed by those of the Crop class, and finally

the pixels of the NLW class. In contrast to Swin-UNet, this model did not exhibit

confusion among pixels of different plant classes; instead, it tended to misclassify

them as soil pixels.

Finally, SegFormer, being the superior model, demonstrated the most accurate

classification for pixels belonging to the BLW class, followed by pixels of the

Crop class. The least accurately classified were the pixels of the NLW class,

as illustrated in Figure 4.16(c). Similar to Segmenter, these models exhibited a

higher degree of confusion, misclassifying pixels of plant classes as if they belonged

to the soil class.

In general, Figure 4.17 indicates the macro performance of the evaluated trans-

formers with respect to DSC and mIoU. The graph reaffirms the superior per-
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formance of SegFormer, achieving the highest metrics. Subsequently, Segmenter

and Swin-UNet follow. The overall DSC obtained by SegFormer was 19.95% and

40.64% higher than that achieved by Segmenter and Swin-UNet, respectively.

Finally, in terms of mIoU, SegFormer surpassed Segmenter by 22.78% and Swin-

UNet by 41.7%.
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Figure 4.17: Average performance of the three studied transformers architectures.

Visualization of segmentation

A sample of images pixel-wise segmented by the trained transformer SegFor-

mer is shown in Figure 4.18. This architecture demonstrated superior performan-

ce on metrics Precision, DSC, and IoU for the segmentation of Crop, NLW, and

BLW. The first column (Figure 4.18(a)) represents the input image capture, while

the second column (Figure 4.18(b)) depicts the ground truth. The last column

displays the prediction image (Figure 4.18(c)).

From this set of sample images, the first three rows depict images captured

at a medium distance from the soil surface to the camera, while the last three

rows showcase images captured at a greater distance from the soil surface to the

camera. In this way, in the first and second rows, the segmentation of the classes

Crop and BLW is presented. It is observed that almost all pixels of the Crop class

were correctly classified. However, some pixels of the BLW class were misclassified

as Soil. Despite this minor misclassification, the model shows an inclination to
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(a) Image (b) Ground truth (c) Prediction

Figure 4.18: Samples of pixel-wise segmentation performed by SegFormer transformer

of the classes Crop, NLW, and BLW under natural cornfields. Green, red, and blue ROIs

belong to the classes Crop, NLW, and BLW, correspondingly.

139



4. RESULTS AND DISCUSSION 4.1 Results

enhance the segmentation of BLW ROIs by tracing a more defined profile over the

plants compared to the ground truth. The Corn and NLW classes in the third row

were correctly isolated, nonetheless, the pixels of the class BLW were misclassified

as Soil.

The pixels corresponding to the plants in the last three rows were accurately

classified, as the prediction closely resembles the ground truth. This observation

reinforces the model’s tendency to better recognize pixels belonging to the class

BLW, as evidenced by the isolation of nearly all pixels associated with small

plants.

4.1.2. Mechatronic platform

This section outlines the design of the three primary systems of the mecha-

tronic platform, referred to as the SWS. These systems encompass mechanical

design, electrical and hydraulic design, and vision release. However, the election

of the better concept, considering the problem and restrictions is first addressed.

4.1.2.1. Conceptual design: alternative election

Considering the platform should be experimental and low-cost, the elected

alternatives from the morphological chart for the mechanical, electrical and hy-

draulic, and vision systems are listed in Table 4.6. As observed, we chose to

develop an assisted navigation platform pulled by an agricultural tractor. This

alternative aligns with the main thesis objective, reduces implementation time

and fabrication costs, and could be a viable option for farmer adoption in a short

time.

Taking into account soil irregularity and the tractor engine, the platform

would be subjected to constant vibrations. Therefore, for the mechanical ele-

ments, it was decided to use steel profiles to fabricate the main chassis. The

chassis components would be joined by welding, and some other components

would be screwed into each other. Concerning chemical containers, we opted to

use plastic containers because herbicides are corrosive.

Concerning the electrical and hydraulic system, electrical solenoid valves were

chosen to control the herbicide flow to the sprayer nozzles. This type of valve has
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Table 4.6: Elected alternatives for the systems of the SWS.

Alternatives

Systems and sub-systems 1 2 3 4

Navegation

Type Autonomous Pulled by tractor – –

Mechanical design

Material Wood Aluminium Steel Plastic

Assembly Welded Screwed – –

Chemical tank Plastic – – –

Electrical and hydraulic design

Power supply Gasoline generator LiPo battery Supplied from tractor Car battery

Controller Arduino PIC Raspberry Pi –

Solenoid valve Hydraulic activation Pneumatic activation Electric activation

Nozless Flat fan Solid cone Hallow cone Adjustable

Pump Diaphragm (Mechanical) Diaphragm (Electrical) – –

Vision system release

Processing type insitu Remote

Camera type Smartphone Professional Webcam

a response time of 30 ms, which is suitable for the vision system. Additionally,

a solid cone nozzle was selected due to its cost-effectiveness and adaptability to

the task. Additionally, Arduino Mega was elected as the controller to relay the

electrical signal to the actuators. For sending the chemical mixture from the tanks

to the nozzles, it was decided to use electrical diaphragm pumps. The system was

powered by a LiPo battery and a Car battery to ensure a stable voltage and to

prevent current spikes.

Finally, for the vision system release, the decision was made to capture the

images from the actual field with a webcam and subsequently process them in

situ using a compact computer.

The following Table 4.7 lists the main components and their technical features

used for the fabrication and instrumentation of the mechatronic platform.
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Table 4.7: List of main components that integrate the SWS.

Materials Quantity Features Image

Density: 7.7− 8.3kg m−3

AISI 1013 Carbon – Poison’s Ratio: 0.27− 0.30

Steel Profiles Elastic modulus: 190− 210GPa

Yield Strength: 1034MPa

Herbicide tanks 2 Volumen: 38L

LiPo battery 1

Tension: 24VDC

Current: 17, 000mAh

Cells: 6

Car battery 1
Model: L-58-575

Tension: 12VDC

Arduino Mega 2560 1

Microcontroller: ATmega2560

Input voltage: 7-12 VDC

Digital input/output pins: 54

Clock speed: 16MHz

Pump

Model: –

Input voltage: 12VDC

Power: 60W

2 Max flow: 5Lmin−1
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Table 4.7: Continue.

Materials Quantity Features Image

Power Inverter

Model: –

Input voltage: 12-24 VDC

Output voltage: 110 VAC

1 Max power: 750 W

Nozzle

Model: VP-110-01

Pressure: 0.5MPa

FLow rate: 0.52Lmin−1

Connector: 8mm

12

Solenoid valve

Model: 2w-040-10

Input voltage: 12VDC

Orifice: 4 mm

12 Temp: −5− 80C◦

Pipe size: 3
8
in

Max pressure: 980.6kPa

Model: 7inch HDMI LCD (C)

Power supply: 5VDC

Touch screen 1 Screen size: 7 in

Resolution: 1024 × 600

Display interface: HDMI

Relay module

Model: SRD-12VDC-SL-C

Modules: 16

Input voltage: 12VDC

1 Coil voltage: 12VDC

Operating current: 10A

Activation current: 15-20 mA

GPU: 512-core NVIDIA Volta

NVIDIA Jetson with 64 Tensor Cores

AGX Xavier 1 GPU Max Frequency: 1377 MHz

CPU: 8-Core ARM v8.2 64-Bit Carmel

Memory: 32GB 256-Bit LPDDR4x—136.5GB/s
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Table 4.7: Continue.

Materials Quantity Features Image

Webcam

Model: ELP-USBFHD01M-SFV

Pixel size: 12.8× 11.6mm

Image size: 2.4Mp

1 Frames: 30fps

Lens parameters: 2.8-12mm CS

Connecting port: USB 2.0

Power supply: USB 5VDC

4.1.2.2. Detailed design of the smart weed sprayer

Mechanical system

The conceptualized idea was drawn in SolidWorks, whose result is shown in

Figure 4.19. As observed, the platform is composed of a main chassis with a three-

point hitch for its coupling to tractors. This hitch was standardized for category

II tractors, according to the norm ASAE S217.12 (ASABE, 2006), because they

are the most common in Mexico. The chassis’ main dimensions such as large,

width, and height are 1.85m, 0.80m, and 1.30m, correspondingly. As observed, the

chassis supports all the elements and actuators, such as a camera, herbicide tanks,

nozzles, solenoid valves, pumps, and also, this structure includes a protection case

for the electrical component of the systems.

The chassis includes a versatile frame for the camera that allows it to adjust its

vertical position, getting closer or moving away from the soil surface at intervals

of 10cm. Furthermore, the camera can be horizontally moved, either near or far

from the nozzles, with increments of 8cm. Also, the frame allows the camera

to rotate freely, as shown in Figure 4.19(b). This feature is quite important for

calibrating the captures in field practice.

As observed, the SWS was thought to contain two herbicide tanks. One of

them could be used to hold herbicides specially developed to control NLW and

the other to hold herbicides developed to control BLW. However, in case a broad-

spectrum herbicide is used, capable of controlling NLW and BLW, could be used

solely one of the tanks. Therefore, a sprinkler rail with six nozzles was included in
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the prototype for each herbicide tank. The sprinkler rails are separated by 11cm

from each other, and the nozzles are 20cm apart from each other.

Electrical and hydraulic system

The electric and hydraulic diagram of the SWS is shown in Figure 4.20. The

blue lines represent the hydraulic ducts for conducting the herbicides, whereas

the electrical connections are represented in black. Specifically, the energy signal

is shown in black dotted lines.

As aforementioned, the prototype includes two herbicide tanks; therefore, each

of them is connected to a pump to send the herbicide mixture to the nozzles. After

each pump, a relief valve was adapted to open at 689kPa. These relief valves are

used because the system operates in an “on” or “off” mode. This means that the

solenoid valves remain closed until the vision system detects weeds in the sprayer

zone of the nozzles, and then they open. If no weeds are detected, the solenoid

valves remain closed for an extended period, then the pressure could potentially

damage the hydraulic ducts, the pump, and the solenoid valves.

The principal electrical components include the NVIDIA PC, a camera, a

screen, an Arduino Mega as the controller, two pumps, 12 solenoid valves, and a

16-relay module to actuate the solenoid valves and pumps according to signals.

The basic diagram is also illustrated in Figure 4.20.

The 24VDC LiPo battery powered the NVIDIA PC, the screen, and the Ar-

duino Mega. However, for practicality, a 24VDC to 127VAC inverter was used

to plug these elements using its original cables. On the other hand, the 12VDC

car battery fed the power electronic equipment, including the two pumps, the

12 solenoid valves, and the 16-relay module. The camera received power from

the NVIDIA PC through its USB cable, and the Arduino Mega also provided a

tension of 5VDC to the pins of the relay module.

From the 16-relay module, 14 of them were utilized to activate the 12 solenoid

valves and the two pumps. Therefore, each of them was connected to an assigned

digital output of the Arduino Mega. This setup allows the relay to be activated,

opening the solenoid valve, in accordance with the vision detection algorithm,

when a weed is detected in the spraying zone of the nozzles.
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Figure 4.19: Isometric views of the mechatronic platform drawing. (a) front-view isometric

and (b) back-view isometric.
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Figure 4.20: Electrical and hydraulic diagram of the smart sprayer.

147



4. RESULTS AND DISCUSSION 4.1 Results

(a) (a)

Three-point hitch

DC-to-AC inverter

Herbicide tank

LiPo batteryScreen

Electrical
protection

case

Solenoid valve rail
Sprinkler rail

Camera

(b) (c)

Figure 4.21: Smart weed sprayer prototype. (a) Front view isometric, (b) back view

isometric, and (c) lateral view isometric.

148



4. RESULTS AND DISCUSSION 4.1 Results

After the drawing of the mechanical system and having designed the electrical

and hydraulic systems, the mechatronic platform was constructed and instrumen-

ted. These tasks were completed prior to the implementation of the vision system

system. The electrical system operates based on the instructions of the vision

system; hence, it needed to be installed first in the mechanical structure to cali-

brate the vision system efficiently in field environments. Figure 4.21 shows three

image samples, in which three views of the fabricated prototype are observed.

Some components have been highlighted in these images.

Vision system release

Once a trained deep learning model was available for detecting weeds under

natural cornfields and an instrumented mechatronic platform, the challenge was

correlating the vision system with the localization of the nozzles, which we named

vision calibration. To achieve this, the following four main actions were performed:

(a) computation of the nozzles’ coordinates spatially into the prediction image,

(b) computation of a spray factor for every nozzle, which helps determine the

moment each nozzle should spray, (c) divide the prediction image into stripes;

since each stripe is the aspersion width of the nozzles, and (d) release of the

vision system.

Actions (a), (b), and (c) for calibration are illustrated in Figure 4.22, with

four stages. However, previously to perform the calibration, a calibration rug was

fabricated with 12-circular red regions disposed equally to the nozzles arrays.

Subsequently, the calibration rug is carefully placed under the nozzle arrays,

aligning each circular region with the corresponding nozzle in the array. In stage

one of this process, the camera of the SWS, fixed in the working position, captures

an image of the calibration rug, covering the region of interest in front of the

nozzles.

Afterward, in stage two the calibration image is thresholded and binarized

according to the methodology aforementioned in Section 3.1.1.2. The thresholding

values were set manually until the correct isolation of the red circular regions.

Subsequently, the artifacts with an area of less than 400 pixels were deleted,

obtaining solely the 12 ROIs in the binary image, which correspond to the nozzles.
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The centroid of each ROI was computed using the 2D invariant moments of order

(p+ q) for an image f of size M ×N , as follows

mpq =
M−1∑
x=0

N−1∑
y=0

xpypf(x, y) (4.1)

where p, q ∈ Z+. Then, the centroid coordinates of the nozzle NCi are obtained

as

x̄i =
m10

m00

ȳi =
m01

m00

(4.2)

where x̄i and ȳi are the abscissa and ordinate, respectively.

Subsequently, the 12 centroids were grouped corresponding to the NLW nozzle

rail and BLW nozzle array and then ordered from left to right. The grouping into

nozzle classes was determined by the magnitude of their ordinates, whereas the

sorting was based on the magnitude of the abscissas. In this stage, also the spray

factor SF for each nozzle NCi is computed. The SF is a distance equivalent to
1
4
the diameter of the spraying area of the nozzles. Therefore, it is computing by

dividing the distance d
4
from the centroid NCi and NCi+1 in each nozzle array,

as follows

SF =
xi+1 − xi

4
(4.3)

where xi is the abscissa of the NCi nozzle. The SF for the nozzle NC6 in each

nozzle rail was the same computed for NC5.

In stage three of the process (Figure 4.22), the calibration image is divided

into stripes. The stripes correspond to the spraying width of the nozzles, meaning

that they will open for spraying the weeds that are inside the fringes. To compute

each stripe Si, first, the midpoint pi and p′i, between the nozzle NCi and nozzle

NCi+1 in the NLW nozzle array and BLW nozzle array, respectively, is computed,

as follows

pi, p
′
i =

xi+1 − xi

2
(4.4)
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Input image1 Nozzle centers and SF2

Image stripes 3Ouput image 4

NLW 
nozzle rail 

nozzle rail 
BLW 

Figure 4.22: General illustration for obtaining the centers of the nozzles, the spray factor

and spray stripes for the nozzles.

where xi is the abscissa of the NCi nozzle. Therefore, the coordinates of the

points Li and L′
i that represent the limits of each stripe are obtained by projecting

the line that passes through pi and p′i using the point-slope equation for a line

(x2 − x1)m = (y2 − y1). However, the lines L1 − L′
1 and L7 − L′

7 are parallels of

lines L2 − L′
2 and L6 − L′

6, respectively.

The fourth stage of the process involves visualizing the centers of each nozzle

and the stripes in the SWS. The coding of this process is indicated in Algorithm 1

of Appendix A.

The computed nozzle centers, spray factors, and coordinates for striping the

images are utilized in releasing the vision systems for weed detection in natural

cornfields. Figure 4.23 illustrates the general procedure followed for vision release.
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Figure 4.23: Illustration of the release process of the vision system for weed detection

and control.
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It is worth mentioning that, due to its outstanding performance, the Seg-

Former trained model was employed in this thesis for weed detection in natural

cornfields. The image shown in stage one of the process represents the prediction

mask generated by the model, where the red ROIs indicate plants of the class

NLW and the blue ones indicate plants of the class BLW.

Subsequently, the image is classified into the NLW and BLW classes, resulting

in a separate image for each class, as demonstrated in stage two. In stage three,

the images are divided into fringes using the coordinates computed during the

calibration stage. Additionally, the ordinate magnitude of the centroids for each

ROI within every fringe is calculated.

Finally, in stage four, the ordinate magnitudes of the ROIs are evaluated in

two cases to derive a binary vector [0, 1] for activating the solenoid valves to open

the nozzles at the precise time. The evaluation cases consider the ordinate of each

nozzle center (NC) assigned to spray each fringe and their corresponding spray

factor (SF). However, the ordinate values of the ROIs in each stripe are arranged

according to their magnitude, and those with magnitudes lower than the nozzle’s

ordinate are removed to obtain a debugged list of ordinates. This is necessary

because they lie outside the spraying zone of the nozzles and due to the forward

direction the SWS follows in practice. Therefore, the cases are defined as shown

below.

Case 1. The ordinate value C1 of the closest ROI to the nozzle center (NC) in

each stripe is compared with each ordinate Ci of the remaining ROIs in the same

stripe. If for all i, the condition Ci − C1 > SF is true, then the distance S is

defined as S = C1 − CN .

Case 2. The ordinate value C1 of the closest ROI to the nozzle center (NC) in

each stripe is compared with each ordinate Ci of the remaining ROIs in the same

stripe. If for at least one i, the condition Ci−C1 < SF is true, then the distance

S is defined as S = P̄ −CN , where P̄ is the average of the ordinates participating

in the condition.

In this way, the nozzles will spray if the condition SF ≥ S ≥ 0 is true.

The Algorithm 2 of Appendix A represents the code for the release of the vision

system.
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For the practical operation of the SWS in fields, a graphical user interface

(GUI) was designed. This GUI consists of three main windows, as indicated in

Figure 4.24. The main window, shown in Figure 4.24(a), is displayed upon the

launching of the GUI. This main window directs the user to a calibration window

and a spray window.

Concerning the calibration window (Figures 4.24(b) and (c)), the “Start” but-

ton initializes the webcam. Subsequently, the “Take picture” button allows users

to capture an image of the calibration rug. After taking the picture, the “Cali-

brate” button becomes active. Pressing it activates the bottom sliding horizontal

bars, which represent the upper and lower threshold values of the hue, saturation,

and value channels. The values are used because the RGB image is transformed

into the HSV color space. Internally, the image undergoes binarization and the

small artifacts are removed, as explained previously. This process is done to isola-

te just the red circular regions, which are aligned with the nozzles. The real-time

display of the updated masked RGB image is shown in the window, as illustrated

in Figure 4.24(c). By pressing the “Save” button, the nozzle centroids, the spray

factors of every nozzle, and the coordinates for splitting the predicted images are

stored in a “txt” file. In case the user wants to re-calibrate the SWS, the “Reset”

button initiates the process anew. Finally, the “Main menu” button directs the

user back to the main window.

On the other hand, the spray window (Figure 4.24(a)) facilitates real-time

visualization of predictions made by the model and enables observation of nozzle

actions. In this way, the “Start” button initiates the release system explained in

Algorithm 2, along with the electrical system. When the SWS reaches the border

of the crop rows, the “Stop” button suspends both predictions and spraying.

Subsequently, when the SWS is realigned with the next row objectives, pressing

the ’Start’ button resumes the practice. Finally, the ’Main menu’ button directs

the user back to the main window.

4.1.3. Field evaluation

This section presents the characterization of the experimental cornfield where

the treatments, the SWS and the CWS, were evaluated. Also, the behavior of the
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(a) (b)

(c) (d)

Figure 4.24: Graphical user interface for operation of the SWS.

response variables, herbicide expenditure per hectare (Lha−1) and effectiveness

in controlling weeds, attributed to each treatment are provided and compared.

Figure 4.25 is an image sample of the experimental cornfield. Concerning the

characterization of this land area, the weed density was quantified as 59 pltm−2.

Additionally, it was found the 17 weed species listed in Table 4.8. Out of these, 13

species belong to the class BLW and four belong to the class NLW. Note that only

two weed species of the BLW class from this list, namely Amaranthus spinosus

and Malva parviflora, correspond to our original dataset on which the models

were trained. However, all four NLW weed species from the training dataset were

also found in the cornfield.

4.1.3.1. Herbicide expenditure per hectare

The spraying width of the SWS was measured to be 1.60m. Consequently, the

area of each experimental unit for the SWS is approximately 240m2, while the

area of the experimental unit for the CWS is approximately 525m2. Therefore,
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Figure 4.25: A sample orthomosaic captured from the experimental cornfield.

for the statistical analysis, the measured expenditure registered in the CWS was

proportionally adjusted to match the area of the SWS’s experimental unit for

each replication.

As a result, significant differences (P ≤ 0.05) were found among the treat-

ments concerning the response variable “herbicide expenditure”, which is the mix-

ture of water and herbicide. The CWS exhibited a mean expenditure of 14.4712L

whereas the SWS presented an expenditure of 7.8667L.

Figure 4.26 shows the extrapolated herbicide wastage for each treatment per

hectare. These counts indicate that the SWS has the potential to reduce the

herbicide mixture usage by 45.64%. This percentage reflects also both the savings

in terms of active ingredient per hectare and the associated cost reduction related

to herbicide purchasing through the use of the SWS.

4.1.3.2. Effectiveness in controlling weeds

A weed plant that has been sprayed with a systematic herbicide turns its

color appearance from green to brown in a few days. This is because the sap flow
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Table 4.8: Weed species in the experimental cornfield.

Class Species

BLW

Amaranthus spinosus

Argemone mexicana L.

Bindes pilosa L.

Chenopodium album L.

Galinsoga parviflora Cav

Glebionis coronaria L.

Lysimachia arvensis L.

Malva parviflora

Sigesbeckia orientalis L.

Sisymbrium irio L.

Solanum elaeagnifolium

Solanum rostratum Dunal

Tribulus terrestris L.

NLW

Cynodon dactylon

Cyperus esculentus

Digitaria sanguinalis

Eleusine indica

stops gradually, and also the sun rays evaporate the remaining water in the plant.

Therefore, the color change helps to evaluate the effectiveness of herbicides.

In this thesis, as was mentioned earlier, the green color of weeds was used to

evaluate the effectiveness of the treatments, CSW and SWS, in controlling the

herbs. In this regard, Figure 4.27 shows the mean weed cover reduction observed

during the days as the response to the treatments.

On November 19, the day the experiment was implemented, the weed cover

represented 100%. It is noteworthy that the weed cover decreased by 34.25% in

the area treated with CWS, while in the area treated with SWS, this variable

was reduced by 44.08%, five days after the spraying practice. The additional 10%

reduction in weed cover observed in the treated area with SWS at this stage is

attributed to factors that were not blocks, since CWS performed a total cover of
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Figure 4.26: Extrapolated herbicide volume expenditure by the treatments per hectare.

the area. Finally, on November 29, ten days after the practice, both the CWS and

the SWS exhibited a similar weed cover reduction within their respective treated

areas, averaging 88.55%. This data suggests that the effectiveness of both the

CWS and SWS on controlling weeds is similar.
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Figure 4.27: Weed cover reduction in the sprayed area by the treatments.

Finally, a sample of images showing the reduction of weed cover over the same

area for each treatment during the day sequence is shown in Figure 4.28.
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Figure 4.28: Image sample illustrating the reduction of weed cover for each treatment

throughout the day sequence.

The first column corresponds to the sample images for the CWS and the

second column for the SWS. On the other hand, the images in the first row from
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top to dawn depict the weed cover on the day the experiment was implemented.

As observed, the weed plants are of green color. Following that, in the second row,

the green tone of the herbs has undergone a slight change, indicating the action

of the herbicide. In the third-row images, the weeds have practically transformed

their appearance to brown, especially noticed in the area treated with the SWS.

Nonetheless, it is observed that, due to the soil moisture, the area treated with

CWS still exhibits some small regions with green color corresponding to weeds.

4.2. Discussion

This section presents a discussion of the findings related to the development

of the vision system. It encompasses classification methods based on both shallow

and DL, as well as segmentation techniques based on DL.

4.2.1. Crop/weed classification based on shallow and DL

Concerning the classification of the classes Crop, NLW and BLW of our da-

taset using LBP riu2
P,R + SVM we considered that our best SVM model gave an

acceptable accuracy (83.04%). In this scenario, the SVM model had to learn the

complexity of the features associated with each distinct plant species and effec-

tively relate them into a single class, rendering the classification task inherently

complex.

Janahiraman et al. (2019) conducted an assessment of the models LBP riu2
8,1 /SVM

and LBP riu2
16,2 /SVM for BLW classification using the Flavia dataset (Wu et al.,

2007), yielding mean accuracies of 64.22% and 75.49%, respectively. When the-

se same models were evaluated in the Swedich dataset (Söderkvist, 2001), another

BLW dataset, the mean accuracy increased to 78.44% and 85.56% for LBP riu2
8,1 /SVM

and LBP riu2
16,2 /SVM , correspondingly. It is essential to note that both datasets

were acquired under controlled light conditions, and the images exhibit uniform

backgrounds. On the other hand, in the study presented by Chen et al. (2021),

the authors documented a mean accuracy of 90.60% for an SVM model trai-

ned with texture features of corn and weeds. This model was configured as

LBP riu2
8,1 /256 × 256/64 × 64. Despite the dataset in Chen et al. (2021) being
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generated in actual field environments, consisting of 2000 images and encompas-

sing the classes crop and weeds, there are some limitations. The weed class is

further divided into two categories: NLW and BLW plant species. This compo-

sition reduces the model’s ability to generalize effectively to unseen species of

plants.

Conversely, the majority of literature works have predominantly focused on

classifying individual plant species using CNNs. Under this scenarios, exceptional

performances exceeding 97% have been reported for VGG16 and VGG19 when

classifying individual species. For instance, Le et al. (2020a) and Ahmad et al.

(2021) classified four plant species, while Jiang et al. (2020) classified five species,

achieving the mean performance with a relatively limited number of images for

each species during model training. Contrastingly, the literature indicates that

performance often degrades when training CNN models with a diverse set of

plant species (Dyrmann et al., 2016; Olsen et al., 2019). Only some reported

works in the literature on integrating weeds into classes NLW and BLW were

found.

Yu et al. (2019b) noted that VGG16 achieved a mean accuracy of 99% for

classifying more than five broad-leaf weed species integrated into a single class

over Dormant Bermuda grass. owever, this high accuracy was attributed to the

uniform environment since the Dorman Bermuda grass appearance differed from

the BLW appearance, triggering an easy weed differentiation. Conversely, in dos

Santos Ferreira et al. (2019) study, VGG16 exhibited a mean accuracy of 83.4%

when trained with plants of soja, soil, and grass-broadleaf weeds, with the latter

class including multiple plant species. This cause makes our work interesting since

scarce information was found when CNN was trained with classes Crop, NLW,

and BLW in real environments of cornfields.

As summary, utilizing a CNN-based approach has proven to outperform the

classical ML approach consistently across all scenarios. Therefore, for the task of

weed classification in early growth stages and natural environments, such as the

one demonstrated in this study, achieving an average accuracy of 97.50% implies

that the CNN-based approach stands as the superior alternative for carrying out

this task.
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4.2.2. Semantic segmentation based on DL

In this thesis, convolutional neural networks (CNNs) and transformers were

explored for semantic segmentation of the classes Crop, NLW, and BLW, ai-

ming to implement further spatial localization of plants in cornfields. Both Mask

R-CNN and Mask R-CNN-ASPP networks, specialized for localization and seg-

mentation, were studied, along with U-Net-like networks. All of these models

were equipped with ResNet50 and ResNet101 as the main CNN for feature ex-

traction. Additionally, transformer architectures were investigated for segmenting

our dataset.

The Mask R-CNN-ASPP models proposed in this work surpassed the per-

formance of the original Mask R-CNN models. However, the segmentation task

carried out for the two network configurations was not enough to adapt to our

complex dataset. These networks initially identify potential ROIs in the image

before proceeding with segmentation. What has been observed in this study is

that the plant density and leaf occlusion present challenges in extracting ROIs

belonging to the same plant species. In certain instances, foliage from other spe-

cies is erroneously included in the same ROI, a phenomenon also noted by Liu

et al. (2020). Additionally, plants that occupy a significant area in the image but

have a low pixel count, such as the NLW class, often lead to segmentation failu-

res in the model. Consequently, these factors are attributed to the lower average

performance of the Mask R-CNN and Mask R-CNN-ASPP models.

The U-Net-like architecture were trained with solely RGB images and NIR

images. It were found that the U-Net-like model performed better using solely

RGB images. Indicating that this solution could be an economical alternative,

as it only requires cameras that operate in the visible spectrum. In contrast, ex-

periments involving NIR images showed the lowest performance, suggesting that

NIR channels do not provide sufficiently distinguishable features for the model to

correlate them effectively with RGB images. However, when the architecture was

trained with a combination of NIR and RGB images, a slight performance im-

provement was observed. This enhancement is attributed to the sharing features

among the portion of the training dataset with the testing portion, which exclu-

sively includes RGB images. It is noteworthy that in the literature, the effects of
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multispectral channels on image segmentation have been studied in works such

as Fawakherji et al. (2021); Lottes et al. (2020, 2018, 2016, 2017); Sahin et al.

(2023). However, testing images in these studies also contain multispectral chan-

nels. The adoption of multispectral cameras, though explored in the literature, is

not considered cost-effective at the time of developing this thesis due to the still

high prices of such cameras.

Contrasting transformers and CNNs for segmentation using solely RGB ima-

ges, we observed in this work that the transformer SegFormer performed better

in segmenting our dataset. Subsequently, the U-Net-like-ResNet101 model ran-

ked second when the images were divided into patches. Segmenting the patches

extracted from the input images, without altering the original size, may aid in

preserving essential class features. Finally, the U-Net-like-ResNet101 model, when

trained exclusively with resized RGB images, achieved acceptable performance,

as shown in Figure 4.29. In summary, SegFormer obtained a DSC and mIoU of

5.97% and 8.7%, respectively, higher than those achieved by the U-Net-like model

when the images were resized. Comparing SegFormer with the U-Net-like model

when images were divided into patches, it was 2.76% and 4.74% superior in DSC

and mIoU, respectively. Notably, these metrics’ magnitudes are acceptable, sur-

passing the performance of other works reported in the literature that focused

on segmenting corn and weed plants in natural environments. For instance, Quan

et al. (2021) achieved a mIoU of 64.2% when segmenting Solanum nigrum, Echi-

nochloa crus-galli, and Abutilon theophrasti. In the work of Picon et al. (2022),

a DSC of 25.32% has been reported when segmenting six weed species and corn

plants.

Detecting common weeds in corn fields poses challenges, therefore, few stu-

dies have addressed this issue in natural conditions with high-density plants using

semantic segmentation approaches. In the research by Fawakherji et al. (2020),

they evaluated the original U-Net architecture (Ronneberger et al., 2015) and

U-Net with VGG16 network (Simonyan and Zisserman, 2015) as a backbone (U-

Net-VGG16). The reported mIoU for U-Net and U-Net-VGG16 was 62% and

64%, respectively, when trained with a Sunflower dataset and tested on combi-

ned datasets Carrots and SugarBeets. The classes included soil, crop, and weed.
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Figure 4.29: Average performance of the better three models for corn plants and weeds

segmentation under natural environments.

They further evaluated U-Net-VGG16 on individual datasets SugarBeets, Stutt-

gart, Carrots, and Sunflower, reporting mIoU values of 71%, 45%, 35%, and

39%, respectively. Although their study did not focus on corn crops, the data-

bases were generated under natural conditions. In comparison, the mIoU of our

best model, SegFormer, is 18.91% higher than the U-Net-VGG16 model reported

by Fawakherji et al. (2020).

Furthermore, it’s worth noting that our trained model exhibits potential for

segmenting other monocotyledon and dicotyledon plant species. The classes NLW

and BLW, for which the architecture was trained, encompass four species from

each group, each at distinct growth stages, and also a group of unknown spe-

cies into these classes. Additionally, the field variability was sufficiently diverse,

enhancing the model’s adaptability.

Other related works on semantic segmentation of crop plants and weeds are

presented in Table 4.9. Even though the crops and trained architectures differ

from ours, they also share the complexity of training the deep learning models

using datasets acquired in natural environments. Therefore, the parameters da-

taset size, number of plant species in the dataset, DSC, and the mIoU have been

highlighted to contrast them with our work. In this case, our work stands out

164



4. RESULTS AND DISCUSSION 4.2 Discussion

Table 4.9: Performance of related works upon semantic segmentation of crop/weed in

natural environments.

Plant species DS Model mIoU DSC Reference

Rice seedling

28

SegNet-VGG16 91.80% –

Ma et al. (2019)Sagittaria trifolia FCN 53.80% –

UNet 53.00% –

224

UNet 59.67% 74.74%

Khan et al. (2020)

Rice seedling SegNet 67.41% 80.53%

Sagittaria trifolia FCN-8s 54.78% 70.78%

DeepLabV3 67.60% 80.67%

CED-Net 71.05% 83.08%

Rice

1690

PSPNet-ResNet50 62.44% –

Kamath et al. (2022)Broadleaf weeds and UNet-ResNet50 51.35% –

narrowleaf weeds. SegNet-VGG16 31.88% –

Species are not specified

Wheat crop
190

DeepLabV3+ - ResNet50 77.50% 86.30% Zenkl et al. (2022)

Not included

Corn,

1679
Picon et al. (2022)

Setaria verticillata,

Digitaria sanguinalis, PSPNet-ResNet50 – 45.33%

Echinochloa crus-galli, Dual PSPNet-ReSNet50 – 47.97%

Abutilon theophrasti,

Chenopodium albums and

Amaranthus retroflexus

Grass

1006 Jiang et al. (2023)

Trifolium repens,

Ambrosia artemisiifolia,

Digitaria,

Taraxacum, Swin Transformer 65.41% –

Glechoma hederacea, SegFormer 65.74% –

Chenopodium album, Segmenter 59.24% –

Amaranthus,

Plantago asiatica L.,

Festuca arundinacea and

Unknown weeds

DS - dataset size in number of images; mIoU - mean intersection over union; DSC - dice

similarity coefficient.

from the others because a large dataset has been used, which contains nine plant

species and 12,887 images. Additionally, the metrics DSC and mIoU are also

better compared with the rest of the works presented in this table.
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Chapter 5

Conclusions and

Recommendations

5.1. Conclusions

In this thesis, the development of a vision system powered by deep learning

techniques to detect weeds in natural cornfields is proposed. This system is later

implemented on a mechatronic platform to enable real-time weed control via

the application of herbicides. The system’s effectiveness is evaluated through an

experiment that measures herbicide expenditure and its efficacy in combating

weeds.

To train deep learning models, a dataset of 12,887 images was created. The

images consist of corn plants (Crop), four NLW species (NLW), and four BLW

species, all of which were captured in natural cornfield environments at various

growth stages. The plant species depicted in the images were manually annota-

ted at the pixel level. The dataset includes 10,575 images captured using a visual

spectrum camera and 2,312 images taken with a multispectral camera with NIR

and Red Edge channels. The dataset comprises 28,507, 41,795, and 52,541 plant

instances in the Crop, NLW, and BLW classes, respectively. The multispectral

channels contain 10,039 instances of the Crop class and 23,160 and 29,920 ins-

tances of various species in the NLW and BLW classes, respectively.

Throughout the development of our vision, we have explored four distinct

approaches. Initially, we investigated the potential of classification options by
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utilizing classical descriptors and shallow classifiers while also studying DL clas-

sifiers. Subsequently, we addressed the issue by exclusively utilizing segmentation

CNNs trained with both RGB and multispectral images. Moreover, we have exa-

mined the possible synergy between segmentation CNNs and classification CNNs.

Lastly, we have employed an alternative vision strategy utilizing transformer ar-

chitectures to tackle the problem at hand.

Experimental results indicate that the better approach for weed classification

using shallow learning (LBP+SVM) achieved an accuracy rate of 83.04%. Howe-

ver, the best deep learning approach, which utilized the VGG16 network, yielded

a significantly higher accuracy rate of 97.93%, suggesting that deep learning is

more effective than shallow learning. It is worth noting, however, that relying

solely on classification is insufficient for weed control, as it fails to provide spatial

information about the location of the weeds.

An approach based on semantic segmentation has been implemented to ad-

dress the spatial localization of plants. The evaluation study of the performance

of the U-Net-like-ResNet101 model using NIR images was conducted. First, the

model was trained with NIR images and evaluated on RGB images. Next, the mo-

del was trained with NIR images, and then transfer learning was used to retrain

it with RGB images. Finally, the model was trained with a combination of NIR

and RGB images. However, experimental results show that these approaches per-

formed below the performance achieved by solely training the model with RGB

images.

Multiple models have been tested using exclusively RGB images, and the

U-Net-based network has shown superior performance over the others. Specifi-

cally, the U-Net-like-ResNet101 model achieved a DSC of 84.27% and a mIoU of

74.21%. Nonetheless, the transformer SegFormer surpassed U-Net-like-ResNet101

evaluated under the same conditions, which obtained 90.24% of DSC and 82.91%

of mIoU.

The SWS mechatronic platform has been designed and built to incorporate

the crop/weed identification system. The SWS includes two herbicide tanks, one

formulated explicitly for controlling narrow-leaf weeds and the other for broad-

leaf weeds control. The SWS also features a sprinkler rail with six nozzles for

each herbicide tank, each controlled by solenoid valves, which can open or close

167



5. CONCLUSIONS AND RECOMMENDATIONS5.2 Recommendations

depending on the need. Thus, if the vision system detects weeds within the spatial

regions corresponding to the nozzles, the solenoid valves open, allowing herbicide

flow for precise spraying of the targets.

The SWS was tested in authentic cornfield conditions and compared to a

CWS. The results demonstrated a statistically significant difference with a p −
value ≤ 0.05 in relation to herbicide expenditure per hectare (L/ha). These

findings suggest that the SWS has the potential to reduce herbicide mixture

usage by 45.64%. In terms of effectiveness in weed control, the area treated with

the CWS experienced a reduction of 34.25% based on weed cover observed on

the day of the practice, while the SWS-treated area exhibited a higher reduction

of 44.08% five days post-spraying.

In future work, we plan to expand the dataset by incorporating more plant

species per class, all captured in authentic cornfields. Additionally, we aim to

assess the effectiveness of the SWS by introducing controlled weed densities with

more replication per treatment across diverse cornfield locations within the state

of Aguascalientes.

5.2. Recommendations

Deep learning architectures typically require extensive datasets to train mo-

dels capable of generalizing to unseen data. Therefore, our recommendations go

in this direction.

It is advisable to augment the crop and weeds dataset by increasing the num-

ber of instances per plant species and the number of plant species per class, in-

cluding Crop, NLW, and BLW. Furthermore, capturing images in real cornfields

is essential to introduce the greatest possible variability to the dataset.

Also, to reduce the annotation time, it is better to grow control weed areas

exclusively with with NLW or BLW multi-plant species. Then, during the anno-

tation stage, all green regions in the image will correspond solely to one of these

big classes.

Images captured in a single shot exhibit superior quality and do not suffer

from the blurriness often associated with frames extracted from videos. However,

in the deployment of a vision system, video images are commonly encountered.
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Consequently, it is advisable to record videos in cornfields and subsequently ex-

tract images from them for the annotation of plant species. This approach allows

the model to learn essential features and improves the likelihood of accurate plant

recognition during the deployment stage.
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Champ, J., Mora-Fallas, A., Goëau, H., Mata-Montero, E., Bonnet, P., and Joly, A.

(2020). Instance segmentation for the fine detection of crop and weed plants by

precision agricultural robots. Applications in Plant Sciences, 8(7):e11373. 19

171



REFERENCES REFERENCES

Chebrolu, N., Lottes, P., Schaefer, A., Winterhalter, W., Burgard, W., and Stachniss, C.

(2017). Agricultural robot dataset for plant classification, localization and mapping

on sugar beet fields. Int. J. Robot. Res., 36(10):1045–1052. 19, 20, 21

Chen, J., Wang, H., Zhang, H., Luo, T., Wei, D., Long, T., and Wang, Z. (2022). Weed

detection in sesame fields using a yolo model with an enhanced attention mechanism

and feature fusion. Computer and Electronics in Agriculture, 202:107412. 25

Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L. (2017). Dee-

plab: Semantic image segmentation with deep convolutional nets, atrous convolution,

and fully connected crfs. In IEEE Transactions on Pattern Analysis and Machine

Intelligence, pages 834–848. 84

Chen, Y., Wu, Z., Zhao, B., Fan, C., and Shi, S. (2021). Weed and corn seedling

detection in field based on multi feature fusion and support vector machine. Sensors,

21:212. 8, 9, 14, 15, 160

Chen, Y., Zhao, B., Li, S., Liu, L., Yuan, Y., and Zhang, Y. (2015). Weed reverse

positioning method and experiment based on multi-feature. Trans. Chin. Soc. Agric.

Mach., 46:257–262. 11

Cheng, H., Jiang, X., Sun, Y., andWang, J. (2001). Color image segmentation: advances

and prospects. Pattern Recognition, 34(12):2259–2281. 70

Che’Ya, N. N. (2016). Site-Specific Weed Management Using Remote Sensing. PhD

thesis, The University of Queensland. 5

Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). 74, 77, 78

Christensen, S., Heisel, T., Walter, A. M., and Graglia, E. (2003). A decision algorithm

for patch spraying. Weed Res., 43:276–284. 3

Dadashzadeh, M., Abbaspour-Gilandeh, Y., Mesri-Gundoshmian, T., Sabzi, S.,

Hernández-Hernández, J. L., Hernández-Hernández, M., and Arribas, J. I. (2020).

Weed classification for site-specific weed management using an automated stereo

computer-vision machine-learning system in rice fields. Plants, 9:559. 14

Das, M. and Bais, A. (2021). Deepveg: Deep learning model for segmentation of weed,

canola, and canola flea beetle damage. IEEE Access, 9:119367–119380. 26

172



REFERENCES REFERENCES

De Rainville, F. M., Durand, A., Fortin, F. A., Tanguy, K., Maldague, X., Panneton,

B., and Simard, M. J. (2014). Bayesian classification and unsupervised learning for

isolating weeds in row crops. Pattern Anal Applic, 17:401–414. 14

de Souza, M. F., do Amaral, L. R., de Medeiros Oliveira, S. R., Coutinho, M. A. N.,

and Netto, C. F. (2020). Spectral differentiation of sugarcane from weeds. Biosyst.

Eng., 190:41–46. 6

Deng, J., Dong, W., Socher, R., Li, L., Li, K., and Fei-Fei, L. (2009). Imagenet: A

large-scale hierarchical image database. In IEEE Conference on Computer Vision

and Pattern Recognition, pages 248–255. Miami, FL, USA. 16, 90, 96

Deng, W., Huang, Y., Zhao, C., Chen, L., and Wang, X. (2016). Bayesian discrimi-

nant analysis of plant leaf hyperspectral reflectance for identification of weeds from

cabbages. Afr. J. Agric. Res., 11:551–562. 6

Deng, W., Huang, Y., Zhao, C., and Wang, X. (2014). Discrimination of crop and

weeds on visible and visible/near-infrared spectrums using support vector machine,

artificial neural network and decision tree. Sens. Transducers, 26:26–34. 6, 14

dos Santos Ferreira, A., Freitas, D. M., da Silva, G. G., Pistori, H., and Folhes, M. T.

(2019). Unsupervised deep learning and semi-automatic data labeling in weed dis-

crimination. Computers and Electronics in Agriculture, 165:104963. 161

dos Santos Ferreira, A., Matte Freitas, D., Gonçalves da Silva, G., Pistori, H., and
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Genze, N., Ajekwe, R., Güreli, Z., Haselbeck, F., Grieb, M., and Grimm, D. G. (2022).

Deep learning-based early weed segmentation using motion blurred uav images of

sorghum fields. Computer and Electronics in Agriculture, 202:107388. 17

Giselsson, T. M., Jørgensen, R. N., Jensen, P. K., Dyrmann, M., and Midtiby, H. S.

(2017). A public image database for benchmark of plant seedling classification algo-

rithms. arXiv, page arXiv:1711.05458. 19

González, C. R. and Woods, E. R. (2018). Digital Image Processing. Pearson: New

York, NY, USA. 72

Guerrero, J. M., Pajares, G., Montalvo, M., Romeo, J., and Guijarro, M. (2012). Sup-

port vector machines for crop/weeds identification in maize fields. Expert Syst. Appl.,

39:11149–11155. 9

Hamouchene, I., Aouat, S., and Lacheheb, H. (2014). Texture segmentation and mat-

ching using lbp and glcm matrix. In Intelligent Systems for Science and Information:

Extended and Selected Results from the Science and Information Conference 2013,

pages 389–407. Cham, Switzerland. 12, 32, 33

Hamuda, E., Glavin, M., and Jones, E. (2016). A survey of image processing techniques

for plant extraction and segmentation in the field. Computer and Electronics in

Agriculture, 125:184–199. 2, 8

Haralick, R. M., Shanmugam, K., and Dinstein, I. (1973). Textural features for image

classification. In IEEE Transactions on Systems, Man, and Cybernetics, pages 610–

621. 12, 74, 93

Haralick, R. M. and Shapiro, L. G. (1992). Computer and Robot Vision. Addison-

Wesley Publishing Company, Inc.: Boston, MA, USA. 73, 74, 93

Haug, S. and Ostermann, J. (2015). A crop/weed field image dataset for the evaluation

of computer vision based precision agriculture tasks. In Computer Vision - ECCV

2014. Lecture Notes in Computer Science (LNCS). 19

He, K., Gkioxari, G., Dollar, P., and Girshick, R. (2017). Mask r-cnn. In IEEE In

International Conference on Computer Vision (ICCV), pages 2980–2988. December,

Venice, Italy. 83, 91

175



REFERENCES REFERENCES

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image

recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). 85, 90

Hecht-Nielsen (1989). Theory of the backpropagation neural network. In International

1989 Joint Conference on Neural Networks, pages 593–605. Washington, DC, USA.

42
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Pulido-Rojas, C. A., Solaque-Guzman, L. E., and Velasco-Toledo, N. F. (2016b). A

comparative analysis of weed images classification approaches in vegetables crops.

Engineering Journal, 21(2):81–98. 14, 15

Pérez-Ortiz, M., Peña, J. M., Gutiérrez, P. A., and J. Torres-Sánchez, C. H. (2015). A

semi-supervised system for weed mapping in sunflower crops using unmanned aerial

vehicles and a crop row detection method. Applied Soft Computing, 37:553–544. 6,

14

Quan, L., Wu, B., Mao, S., Yang, C., and Li, H. (2021). An instance segmentation-

based method to obtain the leaf age and plant centre of weeds in complex field

environments. Sensors, 21:3389. 2, 87, 163

Rabab, S., Breen, E., Gebremedhin, A., Shi, F., Badenhorst, P., Chen, Y. P., and

Daetwyler, H. D. (2021). A new method for extracting individual plant bio-

characteristics from high-resolution digital images. Remote Sens., 13:1212. 1

183



REFERENCES REFERENCES

Raja, R., Nguyen, T. T., Slaughter, D. C., and Fennimore, S. A. (2020). Real-time

weed-crop classification and localisation technique for robotic weed control in lettuce.

Biosystems Engineering, 192:257–274. 1

Rakhmatulin, I. (2020). Artificial intelligence in weed recognition tasks. Asian Journal

of Applied Science and Technology, 4(2):70–81. 8

Reedha, R., Dericquebourg, E., Canals, R., and Hafiane, A. (2022). Transformer neural

network for weed and crop classification of high resolution uav images. Remote Sens.,

14:592. 20, 23, 99

Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster r-cnn: Towards real-time object

detection with region proposal networks. arXiv, page arXiv:1506.01497. 56

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks

for biomedical image segmentation. In MICCAI 2015. Lecture Notes in Computer

Science. 99, 163

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage

and organization in the brain. Psychological Review, 65(6):386–408. 37

Sa, I., Chen, Z., Popovic, M., Khanna, R., Liebisch, F., Nieto, J., and Siegwart, R.

(2018). weednet: Dense semantic weed classification using multispectral images and

mav for smart farming. IEEE Robotics and Automation Letters, 3(1):588–595. 19

Sabottke, C. F. and Spiele, B. M. (2020). The effect of image resolution on deep learning

in radiography. Radiology: Artificial Intelligence, 2:e190015. 20

Sabzi, S., Abbaspour-Gilandeh, Y., and Arribas, J. I. (2020). An automatic visible-

range video weed detection, segmentation and classification prototype in potato fiel.

Heliyon, 6:e03685. 2

Sahin, H. M., Miftahushudur, T., Grieve, B., and Yin, H. (2023). Segmentation of

weeds and crops using multispectral imaging and crf-enhanced u-net. Computer and

Electronics in Agriculture, 211:107956. 20, 163

Sandler, M., Howard, A. G., Zhu, M., Zhmoginov, A., and Chen, L.-C. (2018). Mobi-

lenetv2: Inverted residuals and linear bottlenecks. 2018 IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 4510–4520. 94, 95, 132

184



REFERENCES REFERENCES

Santosh, K., Das, N., and Ghosh, S. (2022). Deep Learning Models for Medical Imaging,

chapter Deep learning: a review, pages 29–63. Academic Press. 22

Sapkota, B. B., Hu, C., and Bagavathiannan, M. V. (2022). Evaluating cross-

applicability of weed detection models across different crops in similar production

environments. Front. Plant. Sci., 13:837726. 25

Shorten, C. and Khoshgoftaar, T. M. (2019). A survey on image data augmentation

for deep learning. J. Big Data, 6:60. 18

Siddiqi, M. H., Lee, S., and Me, A. (2014). Developing and a machine vision system

for weed detection during both of off-season and in-season in broadacre no.tillage

cropping lands. Journal of Information Science and Engineering, 30:1253–1270. 8

Simonyan, K. and Zisserman, A. (2015). Very deep convolutional networks for large-

scale image recognition. In In Proceedings of the 3rd International Conference on

Learning Representations. 74, 77, 163

Skansi, S. (2018). Introduction to Deep Learning from Logical Calculus to Artificial

Intelligence. Springer. 22, 56

Skovsen, S., Dyrmann, M., Mortensen, A. K., Laursen, M. S., Gislum, R., Eriksen,

J., Farkhani, S., Karstoft, H., and Jorgensen, R. N. (2019). The grassclover image

dataset for semantic and hierarchical species understanding in agriculture. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR) Workshops. 19
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Appendix A

A.1. Code for calibration

Algorithm 1 Computation of the centers of the sprayer nozzles, split image

coordinates and spray factor

Input: Calibration RGB image IRGB

Output: NCN ∈ R6, NCB ∈ R6 Center coordinates for NLW and BLW nozzles;

SI ∈ R7 Coordinates to split the predicted image; SfN ∈ R6, SfB ∈ R6 Spray

factors for NLW and BLW nozzles

Step1 Thresholding and binarization

IHSV ← Color space transformation from IRGB to IHSV

t← Thresholding(IHSV ) ▷ Thresholding using Equation 3.1

Ib ← Binarization(IHSV , t) ▷ IHSV binarization according to t

Step2 Centroid coordinates estimation

C ← ContourExtraction(Ib) ▷ Contours extraction using CCA

x = ∅
y = ∅
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A. APPENDIX A A.1 Code for calibration

Algorithm 1 Continue.

for i in range len(C) do

a← ContourArea(Ci) ▷ Pixel area computation of Ci

if a ≥ 400 then

M ←Moments(Ci) ▷ Compute the moments of Ci

x← append(Mx)

y ← append(My)

end if

end for

Step3 Center coordinates of NLW and BLW nozzles

ys ← sort(y)

yN ← ys[0 : 6]

yB ← ys[6 : len(ys)]

NCN = ∅
for i in yN do

xNi ← The coordinate in x list according to i position in y list

NCN ← append(xNi, Y Ni)

end for

NCB = ∅
for i in yB do

xBi ← The coordinate in x list according to i position in y list

NCB ← append(xBi, Y Bi)

end for

NCN ← Sort coordinates for NLW nozzles concerning the abscissas

NCB ← Sort coordinates for BLW nozzles concerning the abscissas

Step4 Computation of coordinates to split predicted image and spray factors

H ← Height of IRGB

xN ← Abscissas in NCN

yN ← Ordinates in NCN

xB ← Abscissas in NCB

yB ← Ordinates in NCB
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A. APPENDIX A A.1 Code for calibration

Algorithm 1 Continue.

SI = ∅
SfN = ∅
SfB = ∅
for i in range (len(xN)− 1) do

Step4.1 Computation spray factors for NLW and BLW nozzles

SfNi ← append((xN [i+ 1]− xN [i])/4) ▷ Spray factor for NLW nozzles

SfBi ← append((xB[i+ 1]− xB[i])/4) ▷ Spray factor for BLW nozzles

Step4.2 Computation coordinates to split predicted image

aNi ← (xN [i+ 1]− xN [i])/2 + xN [i] ▷ Midpoint among two consecutive

abscissas

oNi ← (yN [i+1]+ yN [i])/2 ▷ The mean among two consecutive ordinates

aBi ← (xB[i+ 1]− xB[i])/2 + xB[i] ▷ Midpoint among two consecutive

abscissas

oBi ← (yB[i+1]+ yB[i])/2 ▷ The mean among two consecutive ordinates

mi ← Slope computation using m = y2−y1
x2−x1

ytopi = 0 ▷ Line starts in H = 0

xtopi ← Computation using point-slope equation form of a line

ybtni = H ▷ Line ends in image height

xbtni ← Computation using point-slope equation form of a line

SI ← append([(xtopi, ytopi), (xbtni, ybtni)])

if i = 0 then

aNi ← xN [i]− (xN [i+ 1]− xN [i])/2

oNi ← (yN [i+ 1] + yN [i])/2

aBi ← xB[i]− (xB[i+ 1]− xB[i])/2

oBi ← (yB[i+ 1] + yB[i])/2

mi ← Slope computation

ytopi = 0 ▷ Line starts in H = 0

xtopi ← Computation using point-slope equation form of a line

ybtni = H ▷ Line ends in image height

xbtni ← Computation using point-slope equation form of a line

SI ← append([(xtopi, ytopi), (xbtni, ybtni)]) ▷ Append in index 0 of SI

end if

end for
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A. APPENDIX A A.1 Code for calibration

Algorithm 1 Continue.

if i = len(xN)− 1 then

Step4.1 Continue... ▷ Spray factor for the last nozzles

SfNi ← append((xN [i+ 1]− xN [i])/4)

SfBi ← append((xB[i+ 1]− xB[i])/4)

Step4.2 Continue...

aNi ← xN [i+ 1] + (xN [i+ 1]− xN [i])/2

oNi ← (yN [i+ 1] + yN [i])/2

aBi ← xB[i+ 1]− (xB[i+ 1]− xB[i])/2

oBi ← (yB[i+ 1] + yB[i])/2

mi ← Slope computation

ytopi = 0 ▷ Line starts in H = 0

xtopi ← Computation using point-slope equation form of a line

ybtni = H ▷ Line ends in image height

xbtni ← Computation using point-slope equation form of a line

SI ← append([(xtopi, ytopi), (xbtni, ybtni)]) ▷ Append in last index of SI

end if
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A. APPENDIX A A.2 Smart spraying algorithm

A.2. Smart spraying algorithm

Algorithm 2 Smart spraying algorithm under authentic cornfields

Input: RGB image captured in authentic cornfield IRGB; Center coordinates of

nozzles NCN and NCB; Coordinates to split predicted images SI ∈ R7; Spray

factors SfN ∈ R6 and SfB ∈ R6 for NLW and BLW nozzles

Output: SPNLW ∈ R6; SPBLW ∈ R6 ▷ Binary signals [1, 0] to open or close

each nozzle

yN ← Ordinates in NCN

yB ← Ordinates in NCB

SfN ← Spray factors for NLW nozzles

SfB ← Spray factors for BLW nozzles

Step1 Smart segmentation of input image

IS ← Segmentation of IRGB using SegFormer model

Step2 Extraction of NLW and BLW masks

PNLW = ∅ ▷ List of the predicted NLW weeds

PBLW = ∅ ▷ List of the predicted BLW weeds

for i in range len(6) do

Ri ← The ith split region of the predicted image using respective coordi-

nates in SI

Cati ← Categorizing Ri with respect the number of classes

PNLW ← append(mask,NLW ) ▷ Append the NLW prediction mask

region

PBLW ← append(mask,BLW ) ▷ Append the BLW prediction mask region

end for
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Algorithm 2 Continue.

Step3 Ordinates of each region inside each NLW mask slice

YNLW = ∅
for mask in PNLW do

C ← ContourExtraction(mask)

ypred = ∅ ▷ Ordinates of regions inside maski

for i in rage len(C) do

a← ContourArea(Ci) ▷ Pixel area computation of contour i

if a ≥ 150 then

IRGB ← BoundRect(Ci) ▷ Bounding box around contour i in IRGB

M ←Moments(Ci) ▷ Compute the moments of contour i

Myi ← Ordinate of centroid of contour i

ypred ← append(Myi)

end if

end for

YNLW ← append(ypred)

end for

Step4 Ordinates of each region inside each BLW mask slice

YBLW = ∅ ▷ Ordinates of each region inside each BLW mask slice

for mask in PBLW do

C ← ContourExtraction(mask)

ypred = ∅ ▷ Ordinates of regions inside maski

for i in rage len(C) do

a← ContourArea(Ci) ▷ Pixel area computation of contour i

if a ≥ 300 then

IRGB ← BoundRect(Ci) ▷ Bounding box around contour i in IRGB

M ←Moments(Ci) ▷ Compute the moments of contour i

Myi ← Ordinate of centroid of contour i

ypred ← append(Myi)

end if

end for

YBLW ← append(ypred)

end for
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Algorithm 2 Continue.

Step5 Deriving the SPNLW and SPBLW vectors for turning “On” or “Off” the

nozzles

SP = ∅ ▷ SP could be either SPNLW or SPBLW

for i in range len(Y ) do ▷ Y could be either YNLW or YBLW

ord = sort(Yi) ▷ ord is the i list of ordinates in either YNLW or YBLW

ynozz = yi ▷ ynozz is the i ordinate of nozzles in either yN or yB

Sf = Sfi ▷ Sf is the i spray factor for the i in either SfN or SfB

close = ∅
ordact← Actualized ord list with solely the yi ≥ ynozz

for j in rage len(ordact) do

if ordact[j]− ordact[0] ≤ Sf then

close← append(ordact[j])

end if

end for

if len(close)! = 0 then

yfore = mean(close)

S ← yfore − ynozz

if 0 ≤ S ≤ Sf then ▷ Spray condition

SP ← append(1)

else

SP ← append(0)

end if

else

SP ← append(0)

end if

end for
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