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Abstract

Through the manipulation of the intensity, polarization and phase on a light field

is how we can obtain structured light. There are several techniques for structuring

light in the high spatial coherent regime but only few in partially coherent even when

it is the nature of light. Studies have shown that partially coherent beams have the

same applications that their reciprocal scalar beams, but they are more resilient to

atmospheric fluctuations. However, the generation and characterization of partially

coherent beams are still lacking and even more their vector form. In this thesis

we present the mathematical model, the computational generation of the Partially

Coherent Vector Beam (PCVB) and two experimental setups to generate them

with the aid of a Digital Micro Mirror Device (DMD). The expected theoretical results

agree with our simulations and pave the way for further theoretical and experimental

results, which are left as a future work.
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Introduction

Polarization and coherence are both inherent characteristics of an electromagnetic

wave and they are the main focus in this manuscript. Coherence is, in essence, a

consequence of correlations between two or more fluctuating electric fields, and there

are two types: temporal and spatial. Temporal coherence refers to the correlation

between waves that are observed at two different instants, whilst the spatial coherence

describes the correlation between waves at different points in space. The theory of

coherence has been extensively explored. In this thesis, we are only to explore the

transverse spatial coherence, that is, the correlation between different points of a

beam at two different location in space or, in other words, the capability that two

separate points in space at the same z-plane have to interfere [1, 2, 3].

Polarization is a remarkable feature of light and it plays a significant role in a

variety of applications. Polarization is the manifestation of correlations involving

transverse components of the fluctuating electric field at a single point [4, 5]. In

1852, George Stokes defined a mathematic alternative to describe the fully polarized,

partially polarized and unpolarized light in terms of its total intensity, degree of

polarization and the shape parameters of the polarization ellipse [6]. The degrees of

coherence and polarization of light are the fundamental features of any light field and

have been treated separately until two decades ago. For many years, the study of the

state of polarization of a light beam was assumed invariant as the beam propagates

just as an idealized model to simplify the mathematics [5, 4]. The same occurs to the

state of polarization and the degree of polarization of partially coherent light but in

1994, James showed that the degree of polarization of a partially coherent beams may

in general change on propagation in free space [7]. In 1998, Gori [8] and in 2003, Wolf

[9] introduced the unified theory of coherence and polarization for Partially Coherent

Beams (PCBs) in time and frequency domains, respectively. They conclude that both

properties are interrelated. This knowledge supports the vector beams because they

refer to those beams in which the spatial mode and polarization cannot be separated.

Efforts have been made on characterization, generation, propagation and detec-
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tion of PCBs due to their applications in free-space optical communications, remote

sensing, optical imaging, particle trapping, particle scattering, and material thermal

processing because it is known that the combination of polarization and partial co-

herence has led to the discovery of novel effects. For example these kind of beams are

more robust toward scintillation caused by atmospheric turbulence [10, 11, 12, 13, 14].

The purpose of this thesis is to present a way to generate partially spatial co-

herent vector beams by numerical simulation and experimentally. The technique

involves the knowledge of some concepts of wave theory, programming, and beam

profile measurements. After this Introduction, in Chapter 1 we present the under-

lying electromagnetic theory and mathematical techniques applicable to structured

light. The Helmholtz equation and the approach to its paraxial form are fundamen-

tal to arrive at the families of solutions studied in this work. The main concepts of

polarization, coherence lead us to the unified theory of polarization and coherence,

basis of partially coherent vector beams. DMD and Spatial Light Modulator (SLM)

are presented as tools to generate vector beams. In Chapter 2 the generalities about

vector beams, how to generate them using two different experimental set-ups and

some examples of theoretical and experimental vector beams of the three families

mainly studied in this thesis are presented.

Finally, in Chapter 3 my contributions to the are of structured ligh are presented:

the generation of partially coherent vector beams. In previous works we can find

that there are many ways to generate partially coherent light like using a spiral

plate and broadband white light passing through it to generate optical vortices[15],

focusing a laser light onto a rotating ground-glass disk and a SLM showing a digital

hologram [3, 16, 17, 18] and previous techniques are also noninterferometric [19]. In

those techniques controlling the coherence is not a straightforward task because they

implies moving optical elements. Our proposal does not involve the movement of any

physical element in the experimental set-up because this was migrated to the DMD

digitally so that it allows more control of coherence.



Chapter 1

Preliminaries

In this Chapter we describe the basic theory to supports our proposal. In Section

1.1 the derivation of the Helmholtz paraxial wave equation using the wave theory

is presented. In Section 1.2 some of the solutions to the Helmholtz equation in

different coordinate systems are presented. A brief explanation of polarization, its

mathematical description and the techniques to measure it are presented in Section

1.4 while in Section 1.5 coherence is discussed, the other main property studied in

this thesis. Finally, in Section 1.6 some of the instruments used to structure light

known as spatial light modulators are described.

1.1 Helmholtz paraxial wave equation.

The wave theory postulates that light propagates in the form of waves that can be

described by a mathematical function calledwave function u(r, t) where r = (x, y, z)

is a real function of position and t is time. This wave function satisfies a partial

differential equation called wave equation

∇2u− 1

c2
∂2u

∂t2
= 0 (1.1)

where ∇2 is the Laplacian operator in Cartesian coordinates

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(1.2)

Any function that satisfies 1.1 represents a possible optical wave and, since it is linear,

the principle of superposition applies: if u1(r, t) and u2(r, t) represent possible

optical waves, then u(r, t) = u1(r, t) + u2(r, t) also represents a possible optical wave

3



CHAPTER 1. PRELIMINARIES 4

[20]. We are going to explore some of the main parameters of the light waves that we

are going to use in the future pages of this work.

1.1.1 Some light wave parameters

The optical intensity I(r, t) also called irradiance is the optical power per unit

area, this means that is transmitted through an imagined surface perpendicular to

the propagation direction, the units are W/m2

I(r, t) = ϵ0c⟨u2(r, t)⟩ (1.3)

where c is the light speed (c = 2.9979× 108m/s2) and ϵ0 the electric permittivity of

free space, (ϵ0 = 8.8542 × 10−12C2/N · m2). The optical intensity and the power,

which is going to be explored subsequently, are averaged over at least one oscillation

cycle and the operation ⟨.⟩ denotes averaging over a time interval. The optical power

P (t) is the energy per unit time transported by a light wave that is flowing into an

area A normal to the direction of propagation of light is the integrated intensity, this

means that units are watts, W [21, 20].

P (t) =

∫
A

I(r, t)dA (1.4)

The optical energy E collected in a specific time is the integral of the optical power

over this time interval.

E(t) =

∫
P (t)dt (1.5)

Now that we know those parameters about light waves, we can continue the analysis.

1.1.2 Hemholtz equation

In order to obtain the Helmholtz equation we must star with the time-independent

wave equation. We proposed a well known solution which is a wave function with

harmonic time dependence.

u(r, t) = a(r) cos[2πνt+ φ(r)] (1.6)

where a(r) is the amplitude, φ(r) is the phase, ν is the frequency (Hz), ω = 2πν is

the angular frequency (radians/s) and T = 1/ν is the period (s). As we can see,

the amplitude and the phase are both position dependent but the wave function is a
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harmonic function of time with frequency ν at all positions.

In a homogeneous medium in regions free of currents and charges, each rectangular

component U(r, t) of the field vectors satisfies the homogeneous wave equation It is

very common to represent the real wave function u(r, t) in eq. 1.6 as a complex

function

U(r, t) = a(r) exp[jφ(r)] exp(j2πνt) (1.7)

so that

u(r, t) = Re{U(r, t)} = 1

2
[U(r, t) + U∗(r, t)] (1.8)

where the ∗ stands for the complex conjugated. The function U(r, t) is known as the

complex wave function and satisfies the wave equation

∇2U − 1

c2
∂2U

∂t2
= 0 (1.9)

If we referred U(r) = a(r) exp[jφ(r)] as the complex amplitude of the wave and,

since it is now a separable function, then eq. 1.7 may be rewritten as

U(r, t) = U(r) exp(j2πνt) (1.10)

the wave function u(r, t) is related to the complex amplitude by

u(r, t) = Re{U(r) exp(j2πνt)} = 1

2

[
U(r) exp(j2πνt) + U∗(r) exp(−j2πνt)

]
(1.11)

Now we can derive the Helmholtz equation by substituting eq. 1.10 into the wave

equation eq. 1.9 leads to a differential equation for the complex amplitude U(r)

∇2U + k2U = 0 (1.12)

which is known as the Helmholtz equation where

k =
2πν

c
=

ω

c
(1.13)

is the wavenumber. The Helmholtz equation as we can see throughout its develop-

ment, describes the propagation of a monochromatic wavelight no paraxial in a uni-

form space and admits solutions using the separation of variables method generating

14 beams in 4 coordinate systems [20, 22]. The optical intensity of a monochromatic

wave can be obtained putting eq. 1.6 into eq. 1.3.
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I(r, t) = 2a2(r) cos2[2πνt+ φ(r)]

= |U(r)|2{1 + cos(2[2πνt+ φ(r)])}
(1.14)

If we average the last expression over a time longer than an optical period, T = 1/ν

vanishes the second term

I(r) = |U(r)|2 (1.15)

This means that, theoretically, the intensity of a monochromatic wave does not vary

with time.

1.1.3 Elementary waves

The plane wave

The plane wave has a complex amplitude

U(r) = A exp(−jk · r) = A exp[−j(kxx+ kyy + kzz)] (1.16)

where A is the complex envelope that represents the strenght of the wave and

k = (kx, ky, kz) is the wavevector. Substituting eq. 1.16 into Helmholtz equation,

eq. 1.12

∇2U + (k2
x + k2

y + k2
z)U = 0 (1.17)

yields the relation (k2
x+k2

y+k2
z) = k2 so that the magnitude of the wavevector k is the

wavenumber k. Since the phase of the wave is arg{U(r)} = arg{A}−k · r. Neglecting
the constant phase term arg{A}, the surfaces of constant phase (wavefronts) obey

k · r = kxx+ kyy+ kzz = 2πq with q integer. This is the equation describing parallel

planes perpendicular to the wavevector k. Consecutive planes are separated by a

distance λ = 2π/k so that

λ =
c

ν
(1.18)

where λ is called wavelength. The plane wave has a constant intensity I(r) = |A|2

everywhere in space so that it carries infinite power. This is clearly an idealization

since it exist everywhere and at all times. If a monochromatic wave propagates

through media of different refractive indices, its frequency will remains the same but

its velocity, wavelength and wavenumber will be altered

c =
c0
n
, λ =

λ0

n
, k = nk0 (1.19)
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A wave is said to be paraxial if its wavefront normals are paraxial rays, in this

way, we can construct a paraxial wave of a plane wave which is propagating parallel

to z-axis using eq. 1.16

U(r) = A(r) exp(−jkz) (1.20)

The paraxial waves

To satisfy the Helmholtz equation for the paraxial wave, the complex envelope A(r)

must satisfy another partial differential equation that is obtained by substituting eq.

1.20 into eq. 1.12. Here it is important to take some important assumptions, A(r)

varies very slow with respect to z which means that a distance ∆z = λ, the change

∆A is much smaller than A itself.

∆A =
(∂A
∂z

)
∆z =

(∂A
∂z

)
λ

∴
∂A

∂z
≪ A

λ
=

Ak

2π
∂A

∂z
≪ kA

(1.21)

The derivative ∂A/∂z also vary slowly within the distance λ so

∂2A

∂z2
≪ k

∂A

∂z
(1.22a)

∂2A

∂z2
≪ k2A (1.22b)

using eq. 1.20 into eq. 1.12

∇2U + k2U = 0 (1.23a)

A(r) exp(−jkz)∂
2A

∂x2
+ A(r) exp(−jkz)∂

2A

∂y2
+ A(r) exp(−jkz)∂

2A

∂z2
... (1.23b)

+k2A(r) exp(−jkz) = 0 (1.23c)

(1.23d)

Neglecting ∂2A/∂z2 in comparison with k∂A/∂z or k2A,

∇2
TA− j2k

∂A

∂z
= 0 (1.24)

where ∇2
T = ∂2/∂x2 + ∂2/∂y2 is the transverse Laplacian operator. This equation is

called paraxial Helmholtz equation. This equation has multiple solutions for dif-
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ferent coordinate systems, for example, Laguerre-, Ince- and Mathieu-Gaussian

modes.

1.2 Solutions to the Helmholtz equation

1.2.1 Laguerre-Gaussian Modes

The Laguerre-Gaussian (LG) modes are a complete set of exact solution to the

paraxial Helmholtz equation in cylindrical coordinates (ρ, ϕ, z)(
1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1

ρ2
∂2

∂ϕ2
− 2ik

∂

∂z

)
u(ρ, ϕ, z) = 0 (1.25)

and using separation-of-variable technique in ρ and ϕ, the complex amplitude of the

LG beam, LGlm can be expressed as [20]

LGe,o
l,m(ρ, ϕ, z) =Al,m

[
W0

W (z)

](
cos lϕ

sin lϕ

)(
ρ

W (z)

)l

Ll
m

(
2ρ2

W 2(z)

)
exp

(
− ρ2

W 2(z)

)
...

... exp
[
− jkz − jk

ρ

2R(z)
∓ jlϕ+ j(l + 2m+ 1)ζ(z)

]
(1.26)

where the Ll
m(·) represent generalized Laguerre polynomials and W (z), R(z), ζ(z) and

W0 are given by

W (z) = W0

√
1 +

( z

z0

)2
(1.27a)

R(z) = z
[
1 +

(z0
z

)2]
(1.27b)

ζ(z) = arctan
z

z0
(1.27c)

W0 =

√
λz0
π

(1.27d)

Here

Ll
m(x) = (m+ l)!

m∑
i=0

(−x)i

i!(m− i)!(l + i)!
(1.28)

are the generalized Laguerre polynomials. The set of beams of complex amplitude

generated by the eq. 1.26 are known as Laguerre-Gaussian Beams even (e) and

odd (o) due to the cosine and sine functions in the solution. The integers l = 0, 1, 2, ...

andm = 0, 1, 2, ... are azimuthal and radial indices. The LG modes are optical vortices
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Figure 1.1: Helical Laguerre-Gaussian modes with different value of l. Some trans-
verse intensities and phase distributions with the characteristic wavefront which is
a helical surface A) LG(−2, 0), B) LG(−1, 0), C) LG(0, 0), or gaussian mode, D)
LG(1, 0) and E) LG(2, 0).

due to the helical phase exp(jlϕ) which change with the azimuthal angle ϕ along the

optical axis. This dependence on ϕ results in a spiraling phase front, while the

intensity pattern will always show unbroken concentric rings. These modes are also

called Helical Laguerre-Gaussian (HLG) modes because of their phase structure

[23]. This properties can be observed in Figure 1.1 where we have some transverse

intensity distributions that take the form of a toroid because it is proportional to

the absolute square of eq. 1.26 which is a function of ρ, z but not of ϕ, so that is

azimuthally symmetric. The number of torsion that a LG mode can have over a

wavelength λ received the name of topological charge (l) and it takes positive and

negative numbers. In Figure 1.1 we can see that beams with l ̸= 0 have zero intensity

at the beam center and with l = 0, we obtain a Gaussian fundamental mode. In the

phase distribution is important to remark how the direction of rotation changes with

the sign of l and this is more obvious with the wavefront graphic where the helical

behavior is evident all this while the intensity distribution remains the same. The

number number of rings in a LG mode is given by the relation (m + 1) for m ̸= 0.

This can be clearly seen in Figure 1.2 where the parameter m is changing and how

multiple rings are added.
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Figure 1.2: Laguerre Gaussian modes with different value of m. Transverse inten-
sity (top) and phase (bottom) distributions.

1.2.2 Ince-Gaussian Modes

The Ince-Gaussian (IG) modes are a complete set of exact solutions in elliptic

coordinates to the paraxial Helmholtz equation. The complex amplitude of these

beams is characterized by Ince polynomials. The paraxial Helmholtz equation in

elliptic coordinates is given by

1

f 2(cosh2 ϵ− cos2 η)

[
∂2Ψ(r)

∂ξ2
+

∂2Ψ(r)

∂η2

]
+ 2ik

∂Ψ(r)

∂z
= 0 (1.29)

where f(z) = f0W (z)/W0 is the semi-focal distance (eccentricity) of the coordinate

system with f0 as the initial separation in z = 0. The solution of the paraxial

Helmholtz equation is a pair of beams modulated by an gaussian envelope known as

Ince-Gaussian modes given by

IGe
p,m;ϵ(r) = C

W0

W (z)
Cm

p (ıξ; ϵ)Cm
p (η; ϵ) exp

{[
−ρ2

W 2(z)

]}
× · · ·

· · · × exp

[
ı

(
kz +

kρ2

2R(z)
− (p+ 1)ζ(z)

)] (1.30)

IGo
p,m;ϵ(r) = S

W0

W (z)
Sm
p (ıξ; ϵ)Sm

p (η; ϵ) exp

{[
−ρ2

W 2(z)

]}
× · · ·

· · · × exp

{[
ı

(
kz +

kρ2

2R(z)
− (p+ 1)ζ(z)

)]}
,

(1.31)
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where Cm
p and Sm

p are the even and odd Ince polynomials with 0 ≤ m ≤ p to even

functions and 1 ≤ m ≤ p to odd function; the indices p,m always have the same parity,

p indicates the order and m the degree and C and S are normalization constants. The

complex amplitude of the Ince-Gaussian beam, IGe
pm can be expressed as

U e
p,m(ρ, phi, z) = D2 W 2

0

W 2(z)
[Dn

m(iξ; ϵ)]
2[Dn

m(η; ϵ)]
2 exp

[
−2ρ2

W 2(z)

]
(1.32)

where D can be C or S depending on whether the solution is even or odd, respectively.

The Laguerre-Gaussian and Hermite-Gaussian are limiting forms of IG beams when

the ellipticity parameter is 0 and ∞, respectively [20, 24].

Helical Ince-Gaussian Modes.

The Helical Ince-Gaussian (HIG) modes are built by a linear combination of the

even and odd IG beams [25, 26]

HIG+
p,m,e(ξ, η) = IGe

p,m,ϵ(ξ, η, ϵ) + iIGo
p,m,ϵ(ξ, η, ϵ) (1.33a)

HIG−
p,m,e(ξ, η) = IGe

p,m,ϵ(ξ, η, ϵ)− iIGo
p,m,ϵ(ξ, η, ϵ) (1.33b)

where m > 0 because IGo
p,m,ϵ is not defined for m = 0.

1.2.3 Mathieu-Gaussian Modes

The Mathieu-Gaussian (MG) modes are a set of solution of the Helmholtz equa-

tion in elliptical cylindrical coordinates where the solution are divided in two func-

tions, one of them longitudinal and the other, transversal. The cartesian cordinates

(x, y, z) are related to the elliptical coordinates (ξ, η, z) as (x = f cosh ξ cos η) and

(y = sinh ξ sin η) and (z = z). The Helmholtz equation in elliptical cylindrical coor-

dinates is given by

∂2U

∂ξ2
+

∂2U

∂η2
+

f 2k2
t

2
(cosh 2ξ − cos 2η)U = 0 (1.34)

where U(ξ, η). In this coordinates, ξ ∈ [0,∞) is the radial coordinate, η ∈ [0, 2π)

is the angular coordinate and z ∈ (−∞,∞) is the propagation one. The major and

minor axis, a and b, respectively, defines the parameter f which is the semi-focal

distance f 2 = a2 − b2 and is related to the eccentricity e by e = f/a. The wave

vector k satisfies the relation k2 = k2
t + k2

z where kt and kz are the transverse and
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the longitudinal components of the wave vector respectively. The solutions of the eq.

1.34 are the radial and angular Mathieu functions

Me
m(ξ, η; q) = CmJe(ξ, q)cem(η, q) (1.35a)

Mo
m(ξ, η; q) = SmJo(ξ, q)sem(η, q) (1.35b)

where Cm and Sm are normalization constants. The angular even and odd Mathieu

function are cem and sem respectively where the sub-index m indicates the order of

the function, m = 0, 1, 2, 3... for even modes and m = 1, 2, 3, ... for odd modes. The

mth−order functions Jem and Jom are even and odd radial Mathieu functions. The

modes described by the eq. 1.35 are the non-diffracting Mathieu beams, this means

that carry an infinite amount of energy and cannot be realised experimentally. To

avoid the infinite energy, we can introduce a gaussian envelope to generate MG beams

which retain the non-diffracting properties over a finite propagation distance.

MGe
m(ξ̃, η̃, z; q) = exp

(
−ik2

t

2k

z

µ

)
GB(r)Me

m(ξ̃, η̃; q), (1.36a)

MGo
m(ξ̃, η̃, z; q) = exp

(
−ik2

t

2k

z

µ

)
GB(r)Mo

m(ξ̃, η̃; q), (1.36b)

where the Cartesian coordinates (x, y) are redefined in terms of the complex elliptic

variables (ξ, η) as x = f0(1 + iz/zR) cosh ξ cos η and y = f0(1 + iz/zR sinh ξ sin η)

with f0 the semi-focal distance at z=0 and GB(r) is the fundamental Gaussian beam

defined as

GB(r) = exp

(
− r2

µω2
0

)
exp(ikz)

µ
(1.37)

The parameter µ = µ(z) is defined as µ = 1+iz/zR with zR = kω2
0 being the Rayleigh

range of a Gaussian beam with waist radius ω0 [27].

Helical Mathieu-Gaussian modes

The Helical Mathieu Gaussian (HMG) modes can be obtained by a linear combination

given by the odd and even modes

HMG+
m(ξ̃, η̃, z; q) = MGe

m(ξ̃, η̃, z; q) + iMGo
m(ξ̃, η̃, z; q) (1.38a)

HMG−
m(ξ̃, η̃, z; q) = MGe

m(ξ̃, η̃, z; q)− iMGo
m(ξ̃, η̃, z; q) (1.38b)
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1.3 Interference of Light

Optical interference corresponds to the superposition of two or more individual waves

that, under certain conditions produce a resultant irradiance pattern, known com-

monly as an interference pattern, that deviates from the sum of the irradiances of the

individual waves.

I(r, t) ̸=
∑
i

Ii(r, t), (1.39)

The necessary conditions for a well-defined interference pattern are that the waves

have the same or nearly the same wavelength, the amplitudes of the waves must be

the same or nearly equal and they must be in phase with each other and propagate

in the same homogeneous medium in the same direction or with a very small angle.

For polarized light, the interfering waves must have the same state of polarization.

The first conditions can be achieved if the interacting waves originate from the same

monochromatic source and with this, it can also be ensured that the interference pat-

tern of maximums and minimums will be stationary. If the source is polychromatic,

such as white light, then the different interference patterns produced by the inter-

action between waves of the same wavelength will overlap each other. On the other

hand, if the waves travel at very large angles before interacting with each other, the

interference phenomenon will still be present. However, the space between the bright

and dark fringes will be small so the fringes may become indistinguishable [1, 28, 29].

Let’s assume a monochromatic linearly polarized emitting source from which, by

two holes separated by a distance a much greater than the wavelength λ, two point

sources S1 and S2 are obtained and they propagate in a homogeneous medium. On

an observation plane that is far enough away so that the wavefronts of the waves are

planes, point P is located as shown in Figure 1.3. The waves have the form of eq.

1.6.

u1(r, t) = a1(r) cos[k1 · r− ωt+ ϕ1] (1.40a)

u2(r, t) = a2(r) cos[k2 · r− ωt+ ϕ2] (1.40b)

The irradiance is given by eq. 1.3 so, then we have

I = ϵ0c⟨u1 · u2⟩ (1.41)

We are going to neglect the constants since we are concerned only with relative
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Figure 1.3: Waves from two point sources, S1 and S2 separated by a distance a
overlapping in space at point P .

irradiances. Thus the irradiance at P is given by

I = ⟨u2
1 + u2

2 + 2u1u2⟩ (1.42)

In eq. 1.42, the first two terms corresponds to the irradiances of the individual waves,

I1 and I2. The last term is the result of the interaction of the waves and is called

interference term, I12. Then, eq. 1.42 may be written as

I = I1 + I2 + I12 (1.43)

The presence of the interference term is due to the wave behaviour of light and it

can produces enhancement or diminution of the irradiance through interference [29].

When the wavefields are orthogonal, then the dot product vanishes so there is not

interference results but when the wavefields are parallel, the interference term is

maximum. Consider the interference term

I12 = 2⟨u1 · u2⟩ (1.44a)

= 2⟨a1(r) · a2(r) cos[k1 · r− ωt+ ϕ1]× cos[k2 · r− ωt+ ϕ2]⟩ (1.44b)

and it can be simplified using trigonometric identity 2 cos(A) cos(B) = cos(A+B) +
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cos(B − A). We define α = k1 · r+ ϕ1 and β = k2 · r+ ϕ2.

I12 = 2a1(r) · a2(r) cos(α− ωt)× cos(β − ω) (1.45a)

= 2a1(r) · a2(r)[⟨cos(α + β − 2ωt)⟩+ ⟨cos(β − α)⟩] (1.45b)

The first time average in this relation is taken over a rapidly oscillating cosine function

and so is zero. Thus

I12 = 2a1(r) · a2(r)⟨cos(β − α)⟩ (1.46a)

= 2a1(r) · a2(r)⟨cos δ⟩ (1.46b)

where δ = k2 · r − k1 · r + ϕ2 − ϕ1 is the phase difference arising from a combined

path lenght and initial phase-angle difference. For purely monochromatic fields, δ is

time-dependent, in which case ⟨cos δ⟩ = cos δ. The eq. 1.42 can be written in a more

convenient way by noticing that

I1 = ⟨u2
1⟩ =

1

2
a1(r)

2 (1.47a)

I2 = ⟨u2
2⟩ =

1

2
a2(r)

2 (1.47b)

The interference term becomes

I12 = 2
√
I1I2⟨cos δ⟩ (1.48)

and eq. 1.42 is

I = I1 + I2 + 2
√

I1 + I2⟨cos δ⟩ (1.49)

1.3.1 Interference of mutually incoherent fields

In practice, u1 and u2 are not originated from the same source, this implies that the

time average in eq. 1.49 is zero since no source is perfectly monochromatic. For real

sources, we must allow the phases ϕ1 and ϕ2 to be functions of time. The interference

term I12 takes the form

I12 = 2
√

I1I2⟨cos(k2 · r− k1 · r+ ϕ2(t)− ϕ1(t))⟩ (1.50)

The time average in the preceding relation will be zero unless for laser sources with

state-of-the-art frequency stability [1, 29]. In such case, the sources are mutually
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incoherent and the detected irradiance will be

I = I1 + I2 (1.51)

It is often said, that light beams from independent sources, even if both sources are

the same kind of laser, do not interfere with each other. In fact, these fields do

interfere but the interference term averages to zero over the averaging times of most

real detectors [29].

1.3.2 Interference of mutually coherent fields

If light of the same source is split and then recombined at a detector, the time average

in eq. 1.49 need not be zero. Since both waves are from the same source, they are

correlated. The phases ϕ1 and ϕ2 are equal in magnitude if the waves travel paths of

equal duration before being recombined so the interference term takes the form [29],

I12 = 2
√
I1I2⟨cos(k2 · r− k1 · r)⟩ (1.52a)

= 2
√

I1I2 cos(k2 · r− k1 · r) (1.52b)

Even if the waves travel different paths that differ in duration by a time δt, the

phase difference from the departure from monochromaticity ϕ2(t)−ϕ1(t+ δt) will be

zero o nearly zero so long as δt is less than the coherence time, τ0, of the source

which is the time interval where the departures from monochromaticity are small

and negligible. We have also the coherence length which is the distance that the

electric field travels in a coherence time lc = cτ0. The coherence length in sources

like lasers is from centimeters to kilometers. The concept of coherence will be soon

studied. For waves generated by the same source, the difference between the paths of

the interferring waves is much smaller than the coherence length. The interference is

given by

I = I1 + I2 + 2
√

I1I2 cos δ (1.53)

The fields that satisfies the equation above are said to be mutually coherent. At

various points in space, the resultant irradiance can be greater, less than, or equal

to I1I2 that is depending on δ. The maximum irradiance is obtained when cos δ = 1

that implies δ = 0,±2π,±4π, ..., 2mπ where m is any integer. This phenomena is

also called total constructive interference

Imax = I1 + I2 + 2
√

I1I2 (1.54)
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Figure 1.4: Simulation of the interference pattern of a double slit experiment with
different Gaussian sources. A) High coherent interference: we can see a sharpness
interference pattern, B) and C) partially coherent interference: the interference pat-
tern is blurry, and D) incoherent interference: the interference pattern is null.

We have constructive interference when 0 < cos δ < 1, and I1 + I2 < I < Imax. At

δ = π/2, cos δ = 0 which means that the optical waves are 90 deg out-of-phase, and

I = I1+I2. The minimum irradiance, also known as total destructive interference

results when the waves are 180 deg out-of-phase,troughs overlap crest, cos δ = −1,
this means that δ = ±π,±3π,±5π, ..., 2(m+ 1)π

Imin = I1 + I2 − 2
√

I1I2 (1.55)

The destructive interference occurs for −1 < cos δ < 0, and Imin < I < I1 + I2. If

both waves have the same amplitude, then Imax = 4I0 and Imin = 0.

The visibility of the interference pattern between of two monochromatic waves of

equal amplitudes have 0 as minimum interference and 1 as maximum value. The

visibility is given by

visibility =
Imax − Imin

Imax + Imin

(1.56)

In Figure 1.4 are shown some examples of interference patterns with different visibil-

ity. In Section 1.5, coherence will be detailed but basically the fringes are expected

to be very sharp for a spatially coherent source and, as coherence is lost, these fringes

will soften and little by little they will disappear until they lost.

1.3.3 Interference and polarization: Fresnel-Arago Laws

Previously it was assumed that the two overlapping optical vector waves were linearly

polarized and parallel and the experiment was easy but when the interfering waves

have different states of polarization, we need to add this condition to the analysis.

Fresnel and Arago studied the phenomena of interference with different states of

polarization and conclude their work with four useful laws known as Fresnel-Arago

laws:
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1. Two parallel, coherent linear polarized waves can interfere.

2. Two orthogonal, coherent linearly polarized waves cannot interfere in the sense

that I12 = 0 and no fringe pattern result.

3. Two waves, linearly polarized with orthogonal polarizations, if derived from

perpendicular components of unpolarized light and subsequently brought into

the same plane, cannot interfere to form a readily observable fringe pattern

because these orthogonal polarizations are mutually incoherent.

4. Two waves, linearly polarized with orthogonal polarizations, if derived from the

same linearly polarized wave and subsequently brought into the same plane, can

interfere.

To appreciate easily the laws, we are going to suppose, for the moment and cover it in

the next Section, that any polarization state can be synthesized out of two orthogonal

linear polarized states. For example, u∥ and u⊥ are orthogonal states of polarization

so any plane wave, whether polarized or not, can be written as (u∥ + u⊥). So the

analysis can be start with a wave (u∥1 + u⊥1) and (u∥2 + u⊥2) emitted from two

identical coherent sources superimpose in some region of space. The resulting flux-

density distribution will consist of two independent, precisely overlapping interference

patterns ⟨(u∥1 + u∥2)
2⟩ and ⟨(u⊥1 + u⊥2)

2⟩. Even though u⊥1 and u⊥2 are parallel to

each other, u∥1 and u∥2, which are in the reference plane, need not be and they will

be parallel only when k1 = k2 [1, 29, 30].

1.4 Polarization

The state of polarization is one of the properties of the light associated to its wave

behavior because it is the result of the oscillations of the electric field. Basically, the

polarization describes the vector nature of light and refers to the variation in time

of the direction of the electric field E(r, t) in a determined point r in the perpen-

dicular plane to wave propagation. Mathematically, the electric wave E(z, t) can be

represented as

Ex(z, t) = E0x cos (ωt− kz − δx(t))x̂ (1.57a)

Ey(z, t) = E0y cos (ωt− kz − δy(t))ŷ (1.57b)
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where E0x, E0y are the amplitudes, both with the same angular frequency ω , k is

the wavenumber, z is the direction of propagation and δx, δy are arbitrary phases.

Those components are perpendicular between them and propagates in z− direction.

A simple way to describe the polarization of light is the Jones vectors, which are

two element complex vectors that describe the polarization states of light through its

amplitude and phase

J(t) =

(
Ex(z, t)

Ey(z, t)

)
(1.58)

We can write the eq. 1.57 in a complex way and if we suppressed the propagator

τ = ωt− kz, then

Ex(z, t) = E0x exp(iδx) (1.59a)

Ey(z, t) = E0y exp(iδy) (1.59b)

These two equations can be arranged in a 2× 1 column matrix E so that

E =

(
Ex(z, t)

Ey(z, t)

)
=

(
E0x exp(iδx)

E0y exp(iδy)

)
(1.60)

To normalize the Jones vector we can use that the total intensity can be obtained by

eq. 1.3. In our construction this is

I = ExE
∗
x + EyEy∗ (1.61)

This expression can also be obtained by the multiplication of two vectors expressed

as

I =
(
E∗

x E∗
y

) (
Ex

Ey

)
= E2

0x + E2
0y = E2

0 (1.62)

If we define the row matrix
(
E∗

x E∗
y

)
as the complex conjugate transpose E† of the

Jones vector E so we have

I = E† · E (1.63)

It is customary to set E2
0 = 1, so we can say that the Jones vector is normalized

E† · E = 1 (1.64)

Here is important to say that the Jones vector can only be used to describe completely

polarized light.
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1.4.1 Jones vectors of typical polarized light

Using the Jones vectors is possible to describe the states of polarization of light. For

example, to describe the horizontal polarized light, we have that Ey = 0 so we can

rewrite eq. 1.60 as

E =

(
E0x exp(iδx)

0

)
(1.65)

Considering the normalization of the electric field, we have that E2
0x = 1 and due to

exp(iδx) is unimodular, the normalized Jones vector is

E =

(
1

0

)
(1.66)

In a similar way. for the vertical polarized light we have that Ex = 0 this means

thatE2
0y = 1, so we have

E =

(
0

1

)
(1.67)

The light polarized at +45◦ implies that Ex = Ey, then 2E2
0x = 1 so we obtain

E =

√
2

2

(
1

1

)
(1.68)

The same occurs with light polarized at −45◦ where Ex = −Ey so 2E2
0x = 1, the

normalized Jones vector is

E =

√
2

2

(
1

−1

)
(1.69)

For the case of right-hand circularly polarized light, E0x = E0y and δy−δx = +90◦,

then 2E2
0x = 1 and we have

E =

√
2

2

(
1

i

)
(1.70)

Left-hand circularly polarized light has E0x = E0y and δy − δx = −90◦. The normal-

ization conditions gives 2E2
0x = 1 and we obtain

E =

√
2

2

(
1

−i

)
(1.71)
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1.4.2 Polarization ellipse

The polarization ellipse is a way to visualize the polarization state. To construct this

representation we use the arguments described previously and summarized in eqs.

1.57 where the propagator τ = ωt− kz is preserved. As the electric field propagates

in z-direction, the components Ex(z, t), Ey(z, t) generate a resultant vector describing

a locus of points in space. The polarization ellipse is then, the curve generated by

the set of points that describes the electric field. To find that curve, we have the next

equations

Ex(z, t) = E0x cos(τ + δx) (1.72a)

Ey(z, t) = E0y cos(τ + δy) (1.72b)

that can be rewritten as

Ex

E0x

= cos(τ + δx) (1.73a)

Ey

E0y

= cos(τ + δy) (1.73b)

Using the trigonometric identity cos(A+B) = cosA cosB − sinA sinB

Ex

E0x

= cos τ cos δx − sin τ sin δx (1.74a)

Ey

E0y

= cos τ cos δy − sin τ sin δy (1.74b)

Multiplying by sin δy and sin δx, respectively, we have

Ex

E0x

sin δy = cos τ cos δx sin δy − sin τ sin δx sin δy (1.75a)

Ey

E0y

sin δx = cos τ cos δy sin δx − sin τ sin δy sin δx (1.75b)

Subtracting those equations

Ex

E0x

sin δy −
Ey

E0y

sin δx = cos τ cos δx sin δy −(((((((((
sin τ sin δx sin δy

− cos τ cos δy sin δx +(((((((((
sin τ sin δy sin δx

Ex

E0x

sin δy −
Ey

E0y

sin δx = cos τ cos δx sin δy − cos τ cos δy sin δx

(1.76)
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Figure 1.5: The polarization ellipse rotated.

Using the trigonometric identity sin(A−B) = sinA cosB − cosA sinB, we have

Ex

E0x

sin δy −
Ey

E0y

sin δx = cos τ sin(δy − δx) (1.77)

Going back to eqs. 1.74, we repeat the same procedure but this time multiplying by

cos δx and cos δy to get

Ex

E0x

cos δy −
Ey

E0y

cos δx = sin τ sin(δy − δx) (1.78)

Squaring eq. 1.77 and eq. 1.78 and adding them together, we obtain

E2
x

E2
0x

+
E2

y

E2
0y

− 2
Ex

E0x

Ey

E0y

cos δ = sin2 δ (1.79)

where δ = δy − δx. Finally, this expression is the ellipse equation. This ellipse is

called polarization ellipse and it is rotated because it is not coincident with the

coordinate axes, we know that due to the cross term ExEy.

Let x y y the initial unrotated axes and let x′ and y′ be the new set of rotated

axes as in Figure 1.5. Futhermore, let Ψ(0 ≤ Ψ ≤ π) be the angle between x and the

direction x′ of the major axis. The components E ′
x y E ′

y are [2](
E ′

x

E ′
y

)
=

(
cosΨ sinΨ

− sinΨ cosΨ

)(
Ex

Ey

)
(1.80)
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So we have

E ′
x = Ex cosΨ + Ey sinΨ (1.81a)

E ′
y = −Ex sinΨ + Ey cosΨ (1.81b)

Considering the standard form of the ellipse

E
′2
x

a2
+

E
′2
y

b2
= 1 (1.82)

with

E ′
x = a cos(τ + δ′) (1.83a)

E ′
y = ±b sin(τ + δ′) (1.83b)

where a is the semimajor and b semiminor axes of the polarization ellipse and δ′ an

arbitrary phase. If we substitute the equations 1.74 and 1.83 into eq. 1.81 we have

a(cos τ cos δ′ − sin τ sin δ′) = E0x(cos τ cos δx − sin τ sin δx) cosΨ...

...+ E0y(cos τ cos δy − sin τ sin δy) sinΨ
(1.84)

and

±b(sin τ sin δ′ + cos τ sin δ′) = −E0x(cos τ cos δx − sin τ sin δx) sinΨ...

...+ E0y(cos τ cos δy − sin τ sin δy) cosΨ
(1.85)

Expanding the products and equating the coefficients we have that

a cos δ′ = E0x cos δx cosΨ + E0y cos δy sinΨ (1.86a)

a sin δ′ = E0x sin δx cosΨ + E0y sin δy sinΨ (1.86b)

±b cos δ′ = E0x sin δx sinΨ− E0y sin δy cosΨ (1.86c)

±b sin δ′ = E0x cos δx sinΨ− E0y cos δy cosΨ (1.86d)

Squaring the previous equations we obtain

a2 = E2
0x cos

2Ψ+ E2
0y sin

2Ψ+ 2E0xE0y cosΨ sinΨ cos δ (1.87a)

b2 = E2
0x sin

2Ψ+ E2
0y cos

2Ψ− 2E0xE0y cosΨ sinΨ cos δ (1.87b)
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Adding both equations, we have

a2 + b2 = E2
0x + E2

0y (1.88)

Dividing the equation 1.86 by each other,

(E2
0x + E2

0y) sin 2Ψ = 2E0xE0y cos δ cos 2Ψ (1.89)

or

tan 2Ψ =
2E0xE0y cos δ

E2
0x − E2

0y

(1.90)

In this way it has been possible to relate the angle of rotation Ψ with E0x, E0y and

δ. If we introduce an auxiliary angle α defined as

tanα =
E0y

E0x

(1.91)

the eq. 1.90 can be rewritten as

tan 2Ψ = 2
tanα

1− tan2 α
cos δ (1.92)

this leads to

tan 2Ψ = tan 2α cos δ (1.93)

Now, if we multiply the equations 1.86 between them, we have

±ab = E0xE0y sin δ (1.94)

The ellipticity χ is another important parameter defined as

tanχ =
±b
a

(1.95)

where χ(−π/4 ≤ χ ≤ π/4). Using the auxiliary angle

sin 2χ =
2E0xE0y sin δ

E2
0x + E2

0y

= sin 2α sin δ (1.96)

1.4.3 Stokes polarization parameters

Unlike the Jones vectors, the Stokes parameters allow describing polarized, partially

polarized and unpolarized light, so it can be said that they are complementary. The
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Stokes parameters are a way to describe the polarization behavior in terms of ob-

servables because they do not involve the amplitude but the intensity which, if we

remember from subsection 1.1.1 is the time average of the square of the amplitude.

To derive the Stokes parameters it is required to make use of the wave theory [2].

Since the polarization ellipse is valid only at an instant of time, the eq. 1.79 can be

written as
E2

x(t)

E2
0x(t)

+
E2

y(t)

E2
0y(t)

− 2
Ex(t)Ey(t)

E0x(t)E0y(t)
cos δ(t) = sin2 δ(t) (1.97)

where δ(t) = δy(t) − δx(t). If we considered monochromatic radiation, theoretically,

the amplitudes and phases are constant all time [2], so the expression 1.97 is now

E2
x(t)

E2
0x

+
E2

y(t)

E2
0y

− 2
Ex(t)Ey(t)

E0xE0y

cos δ = sin2 δ (1.98)

in this way, E0x, E0y remain constant while Ex, Ey change in time. In order to work

in terms of observable of the optical field, the observation is averaged over time, so

that
⟨E2

x(t)⟩
E2

0x

+
⟨E2

y(t)⟩
E2

0y

− 2
⟨Ex(t)Ey(t)⟩

E0xE0y

cos δ = sin2 δ (1.99)

where

⟨Ei(t)Ej(t)⟩ = lim
t→∞

1

T

∫ T

0

Ei(t)Ej(t)dt i, j = x, y (1.100)

Multiplying this equation by 4E2
0xE

2
0y we see that

4E2
0y⟨E2

x(t)⟩+ 4E2
0x⟨E2

y(t)⟩ − 8E0xE0y⟨Ex(t)Ey(t)⟩ cos δ = (2E0xE0y sin δ)
2 (1.101)

The average values are

⟨E2
x(t)⟩ =

1

2
E2

0x (1.102a)

⟨E2
y(t)⟩ =

1

2
E2

0y (1.102b)

⟨Ex(t)Ey(t)⟩ =
1

2
E0xE0y cos δ (1.102c)

Substituting equations 1.102 into 1.101 yields

2E2
0xE

2
0y + 2E2

0xE0y − (2E0xE0y cos δ)
2 = (2E0xE0y sin δ)

2 (1.103)
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Completing the square to have the expression in terms of intensity,

(E2
0x + E2

0y)
2 − (E2

0x − E2
0y)

2 − (2E0xE0y cos δ)
2 = (2E0xE0y sin δ)

2 (1.104)

Now, the quantities inside the parentheses will be the Stokes parameters, so that

S0 = E2
0x + E2

0y (1.105a)

S1 = E2
0x − E2

0y (1.105b)

S2 = 2E0xE0y cos δ (1.105c)

S3 = 2E0xE0y sin δ (1.105d)

The expression 1.104 can be rewritten as

S2
0 = S2

1 + S2
2 + S2

3 (1.106)

This is how the Stokes parameters are obtained, where each of them represents real

observable quantities of the optical field. The total intensity is found in the parameter

S0. The parameter S1 describes the amount of linear polarization, either vertical or

horizontal; S2 contains information about linear polarization at +45◦ or −45◦. Finally
the parameter S3 tells us how much light is circularly polarized to the right or left.

The Stokes parameters satisfy the relation

S2
0 ≥ S2

1 + S2
2 + S2

3 (1.107)

If the light is completely polarized, then it is an equality, while for cases of partially

polarized or unpolarized light it holds as an inequality. Another advantage of using

of the Stokes parameters is to describe the degree of polarization P for any state of

polarization

P =
Ipol
Itot

=

√
S2
1 + S2

2 + S2
3

S0

(1.108)

where Ipol is the intensity of the sum of the components of polarization and Itot is the

intensity of the beam, in addition 0 ≤ P ≤ 1. The value of P = 1 is for the light

completely polarized, P = 0 for light unpolarized and 0 < P < 1 for light partially
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polarized. The Stokes parameters can be arranged in a column vector written as

S =


S0

S1

S2

S3

 =


E2

0x + E2
0y

E2
0x − E2

0y

2E0xE0y cos δ

2E0xE0y sin δ

 (1.109)

This four-element column matrix is known as the Stokes vector, and although it is

not a vector mathematically, this representation is useful. For example, the Stokes

vector for unpolarized light is

Sun =


S0 −

√
S2
1 + S2

2 + S2
3

0

0

0

 . (1.110)

and for polarized light it is

Sp =


S0 −

√
S2
1 + S2

2 + S2
3

S1

S2

S3

 (1.111)

To represent partially polarized light, a superposition of completely polarized and

unpolarized light is then considered, so that the associated Stokes vector is

S =


S0

S1

S2

S3

 = (1− P )S0


1

0

0

0

+ PS0


1

S1/PS0

S2/PS0

S3/PS0

 (1.112)

where 0 ≤ P ≤ 1. Another representation of partially polarized light consists of

decomposing the beam into two fully polarized beams with orthogonal polarizations,

that is 
S0

S1

S2

S3

 =
1 + P

2P


PS0

S1

S2

S3

+
1− P

2P


PS0

−S1

−S2

−S3

 (1.113)
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where 0 < P ≤ 1 y PS0 =
√

S2
1 + S2

2 + S2
3 . The intensity of these two beams would

be given by

S1
0 =

1

2
S0 +

1

2

√
S2
1 + S2

2 + S2
3 (1.114a)

S2
0 =

1

2
S0 −

1

2

√
S2
1 + S2

2 + S2
3 (1.114b)

(1.114c)

Note that the intensities would be equal only when unpolarized light is considered,

that is S1 = S2 = S3 = 0

Stokes parameters and their relationship with the polarization ellipse

In this work it is of interest to find the relationship between the ellipse parameters

and the Stokes parameters. The Stokes parameters describe a polarization state by

relating the amplitudes and relative phases of the x and y electric field components

according to eq. 1.105. To more conveniently describe the polarization state of a

vector beam, the Stokes parameter equations can be used as Cartesian coordinates

of a point on the Poincaré sphere.

S0 =
√

S2
1 + S2

2 + S2
3 (1.115a)

S1 = S0 cos 2θ cos 2δ (1.115b)

S2 = S0 cos 2θ sin 2δ (1.115c)

S3 = S0 sin 2θ (1.115d)

Here 2δ ∈ [0, 2π] is the azimuthal spherical coordinate, and 2θ ∈ [0, π] is the radial

spherical coordinate; these have a parallelism with the orientation and ellipticity angle

of polarization which also happen to be twice the angles. The relationship between

the Poincaré sphere coordinates and the polarization ellipse properties is shown in

Figure 1.6. The linear polarization states lie on the equator of the sphere while the

right and left circular polarization states on the north and south poles, respectively,

and elliptical states are located in between the equator and the poles surface.
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Figure 1.6: Relationship between the Poincaré sphere and the polarization el-
lipse. Diagram showing the relationship between the Cartesian coordinates of the
Poincaré sphere and the ellipticity and orientation angles of the polarization ellipse.

Rearranging the Eqs. 1.115 b) and c) as

S1

S0 cos 2θ cos 2δ
=

S2

S0 cos 2θ sin 2δ

δ =
1

2
arctan

(
S2

S1

) (1.116)

Now, taking the sum in the quadrature of Eqs.1.115 b) and c) and equating to Eq.

d) we obtain √
S2
1 + S2

2 =
√

S0 cos2 2θ(cos2 δ + sin2 2δ)

θ =
1

2
arctan

S3√
S2
1 + S2

2

(1.117)

If we consider that S3 = IR−IL where IR andIL are the intensity distribution in right

and left polarization state, we can see the handedness HCP of any dominant circular

polarization.

HCP =

R for S3 > 0

L for S3 < 0
(1.118)

Using θ(x, y) as orientation, δ(x, y) as ellipticity and, HCP (x, y) as handedness we

can determined the polarization ellipse at every point in a given field using the Stokes

parameters [31].
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Stokes polarimetry

The science that is responsible for measuring polarization is known as polarimetry.

Various techniques exist to measure Stokes parameters. However, one of the most

efficient is to measure four intensities. This method consists of a Polarization State

Analyzer (PSA) composed of a phase retarder and a polarizer as well as a Charge-

Coupled Device (CCD) camera. The intensity images obtained contain the necessary

information to make the reconstruction of all the Stokes parameters and the state of

polarization of the optical field. For a minimum of four intensity measurements, the

associated Stokes parameters can be determined as

S0 = IR + IL (1.119a)

S1 = 2IH − S0 (1.119b)

S2 = 2ID − S0 (1.119c)

S3 = IR − IL (1.119d)

where IH , ID, IL y IR represent two-dimensional intensity profiles of the horizontal,

diagonal, right circular, and left circular polarization components, respectively. In

order to carry out the polarimetry using only these four intensity images, it is neces-

sary to carry out projections in each of the polarization states. This is achieved by

using a phase retarder: Half-Wave plate retarder (HWP) for linear, horizontal

and diagonal measurements; Quarter-Wave plate retarder (QWP) for circular

polarization, while the Linear polarizer (LP) is fixed in front of the CCD camera.

The transmission axis of the retarder plate must be accommodated accordingly, for

example, to obtain the horizontal polarization intensity image, the HWP is required

to be at 0◦ while the diagonal measurement requires rotate to 22.5◦. In the case of

circular intensities, the QWP is required to be at ±45◦, as appropriate to the left

and right. Once these four images are obtained, using code, it is possible to recon-

struct the Stokes parameters, the intensity profile for each of them, as well as the

polarization distribution along the intensity profile of the beam.

1.5 Coherence

The optical property of coherence is a way of measuring the degree of correlation

between the complex amplitudes that exist between the vibrations of the electro-

magnetic field in different places and times. A source is coherent if this degree of
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correlation is fixed or constant. There is temporal coherence which measures how

monochromatic the light is and spatial coherence which measures how stationary

the phase is maintained along the optical wavefront. A monochromatic continuous

wave source is coherent in time because it is composed of only one frequency, and

it is coherent spatially because, all over the wavefront, the fluctuations between the

relative phases of the field are zero. A laser can be considered as a highly coherent

source because the spectral line width is narrow that is, they are quasimonochromatic

and in their gain medium, the light produced maintains a correlated phase so it is

coherent in space and time.

To study coherence, the Young’s experiment shown in Figure 1.3 is relevant where

a primary monochromatic source S illuminates two pinholes in a opaque screen that

turn into two secondary point sources S1 and S2. Interference fringes can be observed

on a distant screen Σ0. At this point we already know that if S is an idealized source,

the wavefronts from S1 and S2 are going to maintain a constant relative phase so they

will be correlated and it is said that they are coherent. The interference pattern of

stable fringes observed will be well-defined. On the other hand, if we use two different

sources to illuminate the pinholes, no correlation exist between the wavefronts gen-

erated and then, no fringes will be observed even when the sources have very narrow

bandwidths, so it is said that S1 and S2 are incoherent. For this reason, a way of

knowing the coherence degree of a light source is through the sharpness or visibility of

the interference fringes produced by the superposition of the vibrations emitted from

two secondary point sources on the wavefront. The fringes are expected to be very

sharp for a spatially coherent source because the correlation between the oscillating

field amplitudes is high. As coherence is lost, these fringes will soften and little by

little they will disappear until the correlation is null, it is there where the source is

said to be incoherent. It is important to note that a real source is not completely

coherent or incoherent, which is why the term partially coherent appears [28, 1, 29].

1.5.1 Extended source

Let’s consider the double slit Young’s experiment set up shown in Figure 1.7. An

extended quasi-monochromatic light source S of diameter L and wavelength λ is

located at a distance d from a opaque screen and illuminates two tiny apertures S1

and S2 separated by a distance a, and symmetrically located with respect to the

optical axis. An observation plane perpendicular to the optical axis and parallel to

the opaque screen with the apertures is placed where the interference fringes can be
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observed [5]. When the light source is a monochromatic point source, the two holes

become two coherent sources of light and interference fringes centered about the z-

axis can be observed on the screen where the separation between them is proportional

both to wavelength and screen distance and inversely proportional to the hole spacing

[29].

Figure 1.7: Interference experiment with an extended source.

If we take a secondary point source that is slightly shifted from the optical axis in

the transverse plane like S ′ or S” in Figure 1.7, the effect on the interference fringes

will be a shift of the on-axis maximum. Therefore, an extended source is made up of a

large number of point sources which are mutually incoherent due to the random phase

fluctuation from each point source and this means that the intensity at any point in

the wave-field is then the sum of the intensities from the individual point sources

[5, 32]. The pattern observed of interference fringes will become more diffused as the

transverse extent of the source increases, the spatial coherence of the source can be

approximate by the condition aL/d ≤ λ/2 however a more precise characterization

require the study correlations between light coming from apertures S1 and S2.

1.6 Light modulators

In recent years, various technologies have been used to structure light. However, those

that allow, through computer-controlled devices, to modify light at will in almost any

way possible, have been of particular interest. Examples of these devices are Digital

Micro-Mirror Device (DMD) and Spatial Light Modulators (SLM).
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1.6.1 Digital Micro-Mirror Device

A Digital Micro-Mirror Device (DMD) is a device composed of a two-dimensional

array of small mirrors that can be treated as pixels. Each mirror can be controlled

individually and binary, that is, the mirror can only take one of two positions. These

positions depend on the angle at which a mirror can be moved, and it varies depending

on the model, but is generally between ±12 and ±17 degrees, with + being the on

position and - being the off position [33, 34]. The Figure 1.8 is a DMD without the

optical body and the black rectangles in the matrix represent the off pixels.

Figure 1.8: A Digital Micro-Mirror Device (DMD) without the optical body. The
black rectangles in the matrix represent the off pixels.

As they are mirrors, a DMD is insensitive to incident wavelength and polarization

and can only encode amplitude information and not phase information. It is known

that modulating light requires confining both amplitude and phase in a computer

generated hologram. Fortunately there are various holographic methods that use

only amplitude modulation to structure light. In this work the method described by

Arrizón ”Complex amplitude modulation” and by Lee holograms are used. The rate

of change at which a DMD connected to a computer is capable of displaying patterns is
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60Hz but this can be improved by understanding how Digital Light Processing (DLP)

projector works and how it creates a color image [35, 34]. Some considerations when

working with DMDs is that the position in which it is placed will affect efficiency

and fidelity, that is, the amount of light that first order diffraction receives and how

identical the reflected modes are with the encoded modes. The most optimal way is

to orient the DMD so that having all the mirrors turned off they are normal to the

incident beam. However, it is important to note that efficiency is one of the main

disadvantages of these devices because it only reaches close to 9% [35, 34]. Another

consideration is that DMDs are not completely flat so they can introduce unwanted

phases due to aberrations. One way to get rid of them is to encode a small beam,

although this reduces efficiency and limits fidelity because fewer pixels are available.

A better way to do it, although not easy, would be to counteract the added phases

using the corresponding Zernike polynomial [34].

1.6.2 Spatial Light Modulator

Spatial Light Modulators SLMs can modulate light properties such as amplitude,

polarization, and phase. Its operating principle consists of a two-dimensional array

of pixels filled with liquid crystal. Each pixel can be controlled independently using

voltage. The device is calibrated so that, at a certain voltage, the molecules rotate

a predetermined angle, resulting in a kind of birefringent material for a specific ori-

entation of input polarized light. Unlike DMDs, SLMs are polarization sensitive and

can only modulate a single polarization of light, generally horizontal [36, 34]. A SLM

is shown in Figure 1.9
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Figure 1.9: A Spatial Light Modulator. The tiny screen is the array of pixels filled
with liquid crystal.

The voltage, as well as the phase shift, can be controlled using a grayscale image

that takes 256 colors where 0 is black and 2π is white keeping the gray diversity inter-

mediate on a linear scale [36, 37]. One of the problems we have to face when we are

working with SLMs is that a considerable part of the light is not modulated because

it falls on the edges between the pixels so that this unmodulated light mixes with

the modulated light. This problem can be solved by adding a blazed grid to spatially

separate the modulated from the non-modulated light. This also causes the orders

to propagate at different angles, which is why in the experimental arrangements we

rely on spatial filters to isolate the desired one . SLMs usually present disadvantages

in optical communication systems because they depend on the state of polarization,

wavelength, low frame rate and high scattering [36, 37, 38].
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Vector beams

A Vector Beam (VB) is a spatial mode which is a spatial pattern of light that lies

in the transversal plane tot the direction of propagation of the light beam [39] and it

is a solution to the wave equation. A scalar beam is characterized by the fact that its

polarization states are homogeneous, that is, they are the same at all point along the

transverse plane of the light beam. On the other side, a VB have polarization states

that are not spatially homogeneous.

Previously, it used to be believed that it was important that the VBs were solutions

to the Helmholtz equation because, since this is a partial differential equation of time

and space, this implies that the spatial pattern of the spatial mode is a solution to

the wave equation and, as space and time change, that is, as the beam propagates,

the spatial pattern does not change [39]. However, in recent years, beams whose

modes change in space and even destroy and self-heal have been generated [40], as

well as beams whose modes are not a solution to the Helmholtz equation, such as

helico-conical beams [41].

The VBs that are discussed in this work are solutions to the Helmholtz vector wave

equation in different coordinate systems. However, commonly they are generated as

coaxial superposition of orthogonal scalar fields with scalar polarization as [42]

U(r) = exp(iδ1)êR + exp(iδ2)êL (2.1)

where the unit vectors êR y êL represent the right and left circular polarization with

their respective amplitudes uR(r) and uL(r). Other way to represent a vector beam

is

U(r) = uR(r) cos θêR + uL sin θ exp(iδ)êL (2.2)

Here cos θ y sin θ are weighting factors while exp(iδ) is the intermodal phase.

36
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2.1 Weighting factors

In the equation 2.2, cos θ y sin θ are weighting factors or amplitude. By modify-

ing the values of the angle θ, the orthogonal components acquire different values so

different vector beams are obtained. By the variation of θ one of the polarization

components can even be eliminated and then a scalar beam will be produced. The

values that θ can take range from 0 to π/2.

Figure 2.1: Beams with different values of θ: A) 0, B) π/16, C) π/8, D) 3π/8, E)
π/4, F) 5π/16, G) 3π/8, H) π/2. Note that all of them are vector beams except A
and H. The right circular polarization is represented with orange circles while the
left one with green ones. The linear polarization is represented with white lines.
Other intermediate polarization states are represented with orange and green el-
lipses

In Figure 2.1 we can see different beams for different values of θ and how they pass

from an scalar beam who has a homogeneous distribution of right circular polarization

when θ = 0) which is represented with orange circles to scalar beam with left circular

polarization which occurs when θ = π/2 and we have green circles to represent them.

In this transition, vector beams are present. We can notice a transition from circles

to ellipses and a reorganization of each polarization ellipse into a radial orientation

and, just in the middle of the way, when θ = π/4, we have the radial mode where we

have linear polarization represented with those white lines pointing to the center of

the vector mode.
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2.1.1 Intramodal and intermodal phase

The intramodal and intermodal phase of a beam are two different concepts that are

often confused and interchanged with each other as if they were synonymous. How-

ever, they are two different ideas that start from the conception of intrasystems and

intersystems in entanglement [43]. A intrasystem entanglement is when different

degrees of freedom of a single system are entangled. A intersystem entanglement

is entaglement between physically distinct systems. In this way, we can define that

the intramodal phase is a phase between the two components of the helical mode,

the even and the odd [44]. The intermodal phase is a difference or a delay between

both polarization components of the spatial modes[42, 45]. The difference is inside

the exponential term as δ in equation 2.2 and goes from 0 to π.

Figure 2.2: Vector beams with different values of δ. The intermodal phase can be
geometrically interpreted as the rotation of each one of the polarization ellipses.

In Figure 2.2 we can see the transition of a radial mode in A) to an azimuthal

polarization E) passing through spiral clockwise polarization and then, from F) to

H), we have a spiral vector beams again but counter-clockwise this time.
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2.2 High Order Poincaré sphere

Figure 2.3: High Order Poincaré Sphere (HOPS) with some polarization states rep-
resented on it according to coordinates (2θ, 2δ). Those states located in the same
parallel or meridian are indicated with the same square color number.

As observed in the previous subsections, if the weight factors or the intermodal phase

are modified, various types of polarization distributions are obtained. Then, if both

angles are modified simultaneously, an infinite number of vector beams with very

different polarization distributions can be obtained, and one way of visualizing them
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is through the High Order Poincaré Sphere (HOPS).

Resuming, by varying the value of the angle θ or by modulating the weight fac-

tors, the polarization can be transformed along the longitudes on the HOPS for the

northern hemisphere to the southern hemispher, going from beams circularly polar-

ized scalars, passing through elliptical states until reaching the equator where linearly

polarized beams meet. On the other hand, if the intermodal phase is modified, each

of the polarization ellipses distributed in the beam polarization profile rotates in such

a way that it can be said that by changing the angle δ, an azimuthal displacement

(or parallel to the equator of the sphere) is obtained.

Some polarization states are represented in Figure 2.3 and how they change as one

moves in the HOPS. For example, it can be seen in the poles of the sphere the the

states of polarization 1) scalar right circular and 6) scalar left circular polarization. In

the equator, the HOPS contain the linear polarization states represented with black

square numbers: 3) azimutal, 5) clockwise spiral, 8) radial and 10) counterclockwise

spiral polarized states. At other points on the sphere we have states of intermediate

polarization with elliptical polarization in different orientations: 2) azimuthal right

elliptical , 4) clockwise spiral left elliptical 7) radial left elliptical, 9) counterclockwise

spiral right elliptical.

2.3 Helical Vector Beams

2.3.1 Helical Laguerre-Gauss Vector Beam

A Helical Laguerre-Gaussian Vector Beam (HLGVB) is built of two scalar

modes HLG, one of them is even and the other is odd as shown in subsection 1.2.1

and which are mathematically described in equation 1.26.

HLGVB±
l1,l2;m1,m2

(ρ, ϕ, z) = cos θLG+
l1,m1

êR + sin θ exp(iδ)LG−
l2,m2

êL (2.3)
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Figure 2.4: Example of a generation of an Helical Laguerre-Gaussian Vector Beam
(HLGVB).

A graphic representation of the equation 2.3 is shown in Figure 2.4 where a sym-

metrical HLGVB is represented (l1 = l2 = 2) and (m1 = m2 = 1). The way to

indicate the symmetry in the beam in this work will be using only a parenthesis with

the two indices in order, in this case, HLGVB (2,1). The weighted factor, θ = π/2

and the intermodal phase is δ = π/4.



CHAPTER 2. VECTOR BEAMS 42

Figure 2.5: Helical Laguerre-Gaussian Vector Beams (HLGVBs). An intensity and
polarization profile are represented with capital letters while with lowercase letters
are used to name a projection of the intensity profile in the horizontal direction of
the linear polarizer. In Figure, Aa. (1,0) Bb. (1,1), Cc. (1,2), Dd. (2,0), Ee. (2,1),
Ff. (2,2) Gg. (3,0), Hh. (3,1), Ii. (3,2), Jj. (4,0), Kk. (4,1) and Ll. (4,2) where
(l,m)

In Figure 2.5, different symmetrical HLGVBs are represented. The numbers in

parenthesis, as it was previously discussed in 1.2.1, represent the number of petals

(2l) and the number of rings (m+ 1).

2.3.2 Helical Ince-Gauss Vector modes

The Helical Ince-Gaussian Vector Beam (HIGVB) are built by a linear com-

bination of the even and odd HIG beams

HIGVB±
p,m,e(ξ, η) = cos θHIGe

p,m,ϵêR + sin θ exp(iδ)HIGo
p,m,ϵêL (2.4)

where θϵ[0, π/2] is the associated angle to the weighted factors and δϵ[0, π] is related

to the intermodal phase.
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Figure 2.6: Example of a generation of an Helical Ince-Gaussian Vector Beams
(HIGVBs).

A graphic representation of the equation 2.4 is shown in Figure 2.6 where an

HIGVB is represented with m = 1, p = 3 and eccentricity of 0.4. The weighted

factor, θ = π/4 and the intermodal phase is δ = 0 this is the reason of why the factor

exp(iδ) is equal to one and does not appear.

Figure 2.7: Helical Ince-Gaussian Vector Beams (HLGVBs) from A) to E) an
even mode HIGVB(2, 4) with different eccentricity and, from F) to J) an odd
HIGVB(3, 4). An intensity and polarization profile is shown. Under it, the hori-
zontal and vertical projections of the intensity profile of the linear polarizer.

In Figure 2.7, two different symmetrical HIGVBs are represented. In the first

row, a even HIGVB and in the second one, a odd mode. Both cases with different

eccentricities. Under the distribution of polarization, there are the two projections in
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the linear polarizer of the intensity profile, the horizontal and the vertical one. Notice

how the sum of both generates the complete intensity mode.

2.3.3 Helical Mathieu Gauss Vector Beams

The Helical Mathieu-Gaussian Vector Beam (HMGVB) are generates as a

non-separable superposition of the polarization and spatial degrees of freedom en-

coded in the HMG beams [27].

HMGVBm1,m2 = cos θHMG+
m1

êR + sin θ exp(iδ)HMG−
m2

êL (2.5)

where we omit the explicit depedence on (ξ, η, z; q). The functions HMG±
m represent

the HMG modes given by equations 1.38.

Figure 2.8: Helical Mathieu-Gaussian Vector Beams (HMGVBs) from A) to D) an
odd mode HMGVB(3, 3) with different eccentricity and, from E) to H) an even
HMGVB(4, 4). An intensity and polarization profile is shown. Under it, the hori-
zontal and diagonal projections of the intensity profile of the linear polarizer.

In Figure 2.8, two different symmetrical HMGVBs are represented. In the first

row, a odd HMGVB and in the second one, an even mode. Both cases with different

eccentricities. Under the distribution of polarization, there are the two projections in
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the linear polarizer of the intensity profile, the horizontal and the diagonal one.

2.4 Generation of vector beams

Once we understand the main parameters of vector beams, we can generate them

experimentally. We used two experimental setup with a DMD (DLCR4710EVM-G2

with pixel size 5.4µm from Texas Instruments) one of them with a common-path

interferometer, known to be highly stable [46] and the other using only a polarizing

beam splitter to generate the vector beam [27, 47]. Next, each of the experimental

setups will be described precisely and the vector beams generated with each of them

will be shown.

2.4.1 Generation of vector beams through a common-path

interferometer

The technique consists of a continuous wave laser beam (λ = 633nm) with horizontal

polarization that is expanded and collimated by a Microscope Objective (MO) and

lens L1. The wavefront then passes through a Spatial Filter (SF) to approximate a

flat wavefront and is sent through a HWP oriented at 22.5◦ to convert its horizontal

polarization to diagonal polarization, +45◦. The lens system made up of L2 and L3

form a telescope to image the flat wavefront onto the DMD. In the DMD screen are

displayed two multiplexed binary holograms, which contain the amplitude and phase

information of the constituting orthogonal modes. Each hologram has a unique linear

phase grating to separate each orthogonal mode through different propagation direc-

tions so that when the flat wave front impinges the screen of the DMD, two orthogonal

modes with diagonal polarization travel along different paths in the first diffraction

order which is filtered from the higher diffraction orders by a SF. Both orthogonal

modes fed a Sagnac interferometer made up by a Polarizer Beam Splitter (PBS) and

two mirrors (M1,M2). The PBS divides both beams with diagonal polarization in

the two components: horizontal and vertical which travels along different directions

but in the same optical path. The mirrors are orientated to overlap the order that

carry both orthogonal polarization components and the other two modes are filtered

with a SF so, at the output of the Sagnac interferometer, we have a vector beam in

the linear basis polarization. A QWP is used to change the polarisation from the

linear basis to the circular polarisation basis. To do this, the QWP must be oriented

with its fast axis at +45◦. The lens L3 and L4 conform a 4f optical system between
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the DMD and the charged couple device (CCD DCX Thorlabs, 4.65µm pixel size)

which is used to observe and characterize the vector modes. A LP, a QWP and a

HWP are used to the characterization of the beam. The method used to do this is to

reconstruct the Stokes parameters with four intensity measurements associated to left

and right circular polarization, horizontal and diagonal polarization. A LP orientated

at 0◦ before the CCD camera is necessary and, to take the intensity associated with

horizontal and diagonal polarization is used a HWP with its axis orientated at 0◦ and

22.5◦ respectively. The circular polarization left and right are measured with the aim

of a QWP with its fast axis at +45◦ and −45◦ to obtain right and left polarization,

respectively.

Figure 2.9: Schematic representation of the experimental setup with common-path
interferometer.

The vector beams obtained using this technique are shown in Figure 2.10 where

a comparison between the results obtained experimentally and the numerical simu-

lations of beams from various families are presented. In Figure 2.10 we observe the

example of a) LGVB(1, 0) with θ = π/4, δ = 0 and W0 = 0.5, b) LGVB(1, 0) with

θ = π/4, δ = π/2 and W0 = 0.5, c) HIGVB(3, 5) with θ = π/4,δ = π, W0 = 0.5 and

e = 2 d) HMGVB(4, 4) with θ = π/4,δ = 0, W0 = 1.0, e = 0.5,a = 1,kt = 6, z = 0.

The intensity distributions in the theoretical right (R) and left (L) circular polariza-

tion and horizontal (H) and, diagonal (D) polarization projections are displayed at

the left side of the experimentally extracted intensity profiles for the vector beam of

interest measured by the technique previously described in Subsection 1.4.3.
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Figure 2.10: Vector Beam intensity distributions in its polarization projections. A
theoretical intensity distributions in its polarization projections of a) LGVB(1, 0)
with θ = π/4, δ = 0 and W0 = 0.5, b) LGVB(1, 0) with θ = π/4, δ = π/2
and W0 = 0.5, c) HIGVB(3, 5) with θ = π/4,δ = π, W0 = 0.5 and e = 2 d)
HMGVB(4, 4) with θ = π/4,δ = 0, W0 = 1.0, e = 0.5,a = 1,kt = 6, z = 0 with
its experimental measurements. R and L represent the intensity distribution in its
right and left circular polarization projection, respectively. H and D are the inten-
sity distributions in its horizontal and diagonal projection. (λ = 633 nm)

The Stokes parameters were calculated using the intensity profiles in Figure 2.10

according to the Eqs. 1.119. It is evident that there is very good agreement between

the experimentally extracted Stokes parameters and those predicted theoretically as

we can see in Figure 2.11. The same occurs to the state of Polarization reconstruction

(PR) with its simulated prediction.
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Figure 2.11: Stokes parameters of Vector Beams. A contrast between a theoretical
a) LGVB(1, 0) with θ = π/4, δ = 0 and W0 = 0.5, b) LGVB(1, 0) with θ = π/4,
δ = π/2 and W0 = 0.5, c) HIGVB(3, 5) with θ = π/4,δ = π, W0 = 0.5 and e = 2
d) HMGVB(4, 4) with θ = π/4,δ = 0, W0 = 1.0, e = 0.5,a = 1,kt = 6, z = 0 and
its experimental Stokes polarization reconstruction. I0 represent the intensity of the
vector mode, S0, S1, S2 and S3 represent the intensity for each Stokes parameter
and PR is the polarization reconstruction of the vector beam. (λ = 633nm)
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2.4.2 Generation of vector beams through a polarizing beam

splitter

The experimental setup consists of a continuous wave laser beam (λ = 633nm) with

diagonal polarization that is expanded and collimated by a MO and lens L1. The

beam passes through a SF to approximate a flat wavefront. The lenses L2 and L3

conform a telescope that will make image of the flat wavefront into the DMD screen

but before that, the beam is separated into its vertical and horizontal polarization

components by a PBS. Both polarization components are directed toward the DMD

where they spatially overlap but impinge under slightly different angles. The DMD

shape phase and amplitude of both polarization by a multiplexed hologram. The first

diffraction order, which contain both polarization states, propagates along a common

axis. The SF removes the higher orders of diffraction. The lenses L4 and L5 formed a

4f optical system to relay the plane of the DMD into the detector’s plane (CCD DCX

Thorlabs, 4.65µm pixel size) which is also the observation plane. A QWP oriented

at +45◦ is placed afterwards to convert the linear polarization basis into circular one.

Here,the optical train of generation of a vector beam is over. The analyzer part is

formed by a LP, HWP and a QWP that is going to used to obtain the intensity profile

of each one of the four measurements needed to characterize the vector beam. The LP

is fixed in front of the CCD camera while the transmission axis of the retarder plate

must be accommodated accordingly, for example, to obtain the horizontal polariza-

tion intensity image, the HWP is required to be at 0◦ while the diagonal measurement

requires rotate to 22.5◦. In the case of circular intensities, the QWP is required to be

at ±45◦, as appropriate to the left and right.
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Figure 2.12: Schematic representation of the experimental setup with a polarizing
beam splitter.

Vector beams of different families were generated with this experimental set-up.

In Figure 2.13 the corresponding intensity profiles (R, L, H and D) were captured

and contrasted with the simulated predictions for a) LGVB(1, 0) with θ = π/4 and

δ = π/2, b) LGVB(1, 0) with θ = π/4 and δ = 0, c) HIGVB(3, 5) with θ = π/4 and

δ = π d) MGVB(4, 4) with θ = π/4 and δ = 0.
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Figure 2.13: Vector Beam intensity distributions in its polarization projections. A
theoretical intensity distributions in its polarization projections of a) LGVB(1, 0)
with θ = π/4, δ = 0 and W0 = 0.5, b) LGVB(1, 0) with θ = π/4, δ = π/2
and W0 = 0.5, c) HIGVB(3, 5) with θ = π/4,δ = π, W0 = 0.5 and e = 2 d)
HMGVB(6, 6) with θ = π/4,δ = 0, W0 = 1.0, e = 0.8,a = 1,kt = 10, z = 0 with
its experimental measurements. R and L represent the intensity distribution in its
right and left circular polarization projection, respectively. H and D are the inten-
sity distributions in its horizontal and diagonal projection. (λ = 633 nm)
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Figure 2.14: Stokes parameters of Vector Beams. A contrast between a theoretical
a) LGVB(1, 0) with θ = π/4, δ = 0 and W0 = 0.5, b) LGVB(1, 0) with θ = π/4,
δ = π/2 and W0 = 0.5, c) HIGVB(3, 5) with θ = π/4,δ = π, W0 = 0.5 and e = 2
d) HMGVB(6, 6) with θ = π/4,δ = 0, W0 = 1.0, e = 0.8,a = 1,kt = 10, z = 0 and
its experimental Stokes polarization reconstruction. I0 represent the intensity of the
vector mode, S0, S1, S2 and S3 represent the intensity for each Stokes parameter
and PR is the polarization reconstruction of the vector beam. (λ = 633nm)

Their corresponding Stokes parameters calculated with this intensity profiles were
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determined and are presented in Figure 2.14. As we can see there is a very good

agreement with theoretical predictions given by the numerical simulations. Also, the

state of PR has a high fidelity between the calculated and the theoretical expected.
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Partially Coherent Vector Beams

In this section we present a generalization of the work proposed in [3, 14] where

the authors discuss the generation of scalar partially coherent beam by a incoherent

superposition of multiple displaced beams in a given region. These works are relevant

since they are the first to show an experimental technique that provides control over

the beam transversal coherence length unlike other experimental designs. In addition

to that, they study their cross-correlation function which shows very good agreement

with the numerical simulations. That is why, for the purposes of this work, his

proposal for the generation of partially coherent scalar beams has been taken and

has been generalized for vector beams. In order to generate a partial spatial coherent

beam, the concept of partial coherence should be understand as the deterioration of

interference fringe visibility because of the effects of an extended source size where

each point on the source produce an interference pattern which is shifted with respect

to the others and they are incoherently superimposed.

3.1 Description of a partially coherent vector beam

In this work we generalize the proposed in some articles [3, 14] but for vector beams.

In this way, to describe a spatially partially coherent beam we require to generate

a incoherent superposition of N randomly displaced vector beams u⃗l(x, y) on the

xy plane with random phases across the transversal plane. The location of each

individual beam is arranged such that the beams are uniformly distributed at random

positions given by coordinates (aj, bj) that are random numbers uniformly distributed

within a circular region of radius c. An schematic representation of the superposition

54
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is on Figure 3.1. The general expression for a vector beam is then

E⃗k(x, y) =
N∑
j=0

u⃗l(x− aj, x− bj) exp(iϕj) (3.1)

where u⃗l(x, y) can be any vector beam mode but only in the appropriate coordinate

system. As we can see in equation 3.1, each vector beam is multiplied by a random

phase term exp(iϕj) in which ϕj is randomly distributed between 0 and 2π. The loca-

tions inside the circle obtained using the Algorithm 1. This new part of algorithm

is going to be added to the previous ones to generate the partially coherent vector

beams.

Figure 3.1: Schematic representation of the intensity resulting from the coherent
superposition of N -vector beams with centers randomly displaced within a circular
region of radius c to create a partially coherent vector beam.

In Algorithm 1

(a) Line 2: N is the number of positions desired inside the circle

(b) Line 3: c is the radius of the circle

(c) Line 4: Usually, the coordinates of the center of the circle are chosen in the

origin, (0, 0). However, experimentally this could change depending on where

the beam hits the light modulator, which is why they are left free to choose.

(d) Line 5: rand(1,N) returns a 1×N array of uniformly distributed random num-

bers.
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Algorithm 1 Random positions in a circle. The function receives N number of de-
sired positions inside a circle of radius c with origin 0(h, k) and generates N points
random uniformly distributed inside it.

1: procedure RandomPositionCircle(N, c, h, k)
2: N ▷ Number of positions in a circle
3: c ▷ Radius
4: O(h, k) ▷ Coordinates of the center
5: θ ← 2πrand(1, N)
6: r ← c

√
rand(1, N)

7: x0 ← h+ r cos θ
8: y0 ← k + r sin θ
9: end procedure

(e) Line 7 and Line 8: The new coordinates correspond to each point generated and

they are calculated by adding the original center (h, k) plus the correspondent

component of the vector, r.

3.2 Partial degree of polarization in a vector beam

As we see in Section 2, a general vector mode can be written as

E(r, θ) = αV (r, θ)−êL + βV (r, θ)+êR (3.2)

where ER and EL are the orthogonal components of the field and |a|2 + |β|2 = 1. In

particular a displaced version of a vector vortex mode can be expressed as

E(r, θ) = α[r exp(−iθ)− ρ exp(−iϕ)]êL + β[r exp(iθ)− ρ exp(iϕ)]êR (3.3)

The average of the Stokes parameters over many realizations is

S0(r, θ) = ⟨|ER(r, θ)|2 + |EL(r, θ)|2⟩ (3.4a)

S1(r, θ) = ⟨2Re{E∗
R(r, θ)EL(r, θ)}⟩ (3.4b)

S2(r, θ) = ⟨2 Im{E∗
R(r, θ)EL(r, θ)}⟩ (3.4c)

S3(r, θ) = ⟨|ER(r, θ)|2⟨−⟩|EL(r, θ)|2⟩ (3.4d)



CHAPTER 3. PARTIALLY COHERENT VECTOR BEAMS 57

The term ⟨|EL|2⟩ present in the previous equations is

⟨|EL|2⟩ = |α|⟨r2 + ρ2 − 2rρ cos θ cosϕ+ 2rρ sin θ sinϕ⟩, (3.5a)

= |α|2(r + ⟨ρ2⟩ − 2r cos θ⟨ρ cosϕ⟩ − 2r sin θ⟨ρ sinϕ⟩) (3.5b)

Consider the random variables W Uniform(0, 1) and Φ Uniform(0, 2π), then we

perform the following transformation

R = c
√
W (3.6)

so that ρ R. By applying the mapping in eq. 3.6, we obtain

⟨|EL(r, θ)|2⟩ = |α|2(r2 +
1

2
c2) (3.7)

where c > 0 represents the radius of a circular region where many randomly displaced

vortices are located. Following the same procedure we can find ER

⟨|ER(r, θ)|2⟩ = |β|2(r2 +
1

2
c2) (3.8)

With eqs. 3.7 and 3.8 we can calculate S0(r, θ) and S3(r, θ). Now, obtaining S1

S1(r, θ) = ⟨2Re{E∗
R(r, θ)EL(r, θ)}⟩, (3.9a)

= 2αβ∗⟨Re
{
r2 exp(−i2θ)− 2rρ exp(−i(θ + ϕ)) + ρ2 exp(−i2ρ)

}
⟩, (3.9b)

= 2αβ∗(r2 cos 2θ + 4⟨ρ2 cos 2ϕ⟩ − 2r⟨cos(θ − ϕ)⟩) (3.9c)

= 2αβ∗r2 cos 2θ (3.9d)

In the same way, S2(r, θ) can be obtained

S2(r, θ) = −2αβ∗r2 sin 2θ (3.10)

Summarizing the results of the Stokes parameters

S0(r, θ) = r2 +
1

2
c2 (3.11a)

S1(r, θ) = 2αβ∗r2 cos 2θ (3.11b)

S2(r, θ) = −2αβ∗r2 sin 2θ (3.11c)

S3(r, θ) = (|α|2 − |β|2)(r2 + 1

2
c2) (3.11d)



CHAPTER 3. PARTIALLY COHERENT VECTOR BEAMS 58

The degree of polarization is then calculate as

P (r, θ) =

√
S2
1 + S2

2 + S2
3

S0

(3.12a)

=

√
4(αβ∗)2r4

(r2 + 1
2
c2)2

+ (|α|2 − |β|2)2 (3.12b)

In the eq. 3.12, as c approaches to zero, the degree of polarization tends to 1. On

the other hand, as c increases, the degree of polarization is not uniform across the

transverse plane. when c > 0, the degree of polarization also tends to 1 as the readial

coordinate increases. The lowest degree of polarization is |α|2 − |β|2 which is in the

central point of the vector vortex beam.

3.3 Generation of partially coherent vector beam

To generate a PCVB, we employed the experimental set-up shown in Figure 2.9 and

Figure 2.12 both with a DMD displaying a movie at 60Hz. Each frame of the movie

contains a different multiplexed hologram slightly displace from the center generated

in a previous process before sending them to the DMD. Unfortunately, the experi-

mental generation cannot be completed due to diverse technical limitations. At the

beginning we start working with the experimental set-up that has a common-path

interferometer shown in Figure 2.9 but we notice that, when the beam is divided by

the PBS. each of the orthogonal components of the vector beam acquired different

phases that we associate with factors such as atmospherical turbulence, temperature,

suspended particles, among other, so that the associated electric fields oscillated with

an unknown phase shift and, when both orthogonal components are multiplexed at

the end of the interferometer,they turned out to be relevant when generating partially

coherent vector beams. With this analysis we proceed to use the technique shown in

Figure 2.12. This experimental set-up has the property that the division of the beam

in its orthogonal polarization components is before it is modulated by the DMD so at

the output of the DMD we already have a vector beam on axis so the problem with the

extra phase shifts does not exist. However, some technical problems persisted such as

the camera’s frames per second capture speed that did not allow real-time capture of

the partially coherent vector beam, the loss of speed due to communication between

the computer, the DMD and the camera mainly with the number of frames per second

sent in the video by the computer, received by the DMD and captured by the camera.
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However, numerical simulations of PCVBs could be carried out. As we mention

previously, we add the Algorithm 1 to the Algorithm 2 in order to be able to do

the coherent sum and generate the intensity profile of partially coherent vector beam.

Basically, at the end of the Algorithm 5 we are going to have N + 1 images

but we only considered two main images: The N-Stokes parameters image and the

intensity and polarization distribution image as we can see in Figure 3.2.

Figure 3.2: Example of two images obtained by the Algorithm 5. A 250 LG(1, 0)

vectorial beams superposed in a circle of radius, c = 0.4.

Some particular cases will be shown for each of the families of interest in this

work: Laguerre-, Helical Ince- and Helical Mathieu-Gaussian. In the examples, we

are going to set the number of superposed beams to 200 so we are only to change the

radius, c.
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Figure 3.3: LG Fully Coherent Vector Beam vs LG Partially Coherent Vector
Beam. A) LG(1, 0) with α = π/4 and θ = 0. B) LG(1, 0) with α = π/4, θ = 0
with radius c = 0.5. I0 represent the intensity of the vector mode, S0, S1, S2 and S3

represent the intensity for each Stokes parameter and PR is the polarization recon-
struction of the vectorial beam. (λ = 633nm, W0 = 0.6, z = 0.1)

In Figure 3.3 a comparison between a fully HLG coherent vector beam and a

Partially Coherent Helical Laguerre-Gaussian Vector Beam (PCHLGVB)

is presented with the Stokes parameters include. We can see in the distribution

of intensity in PCHLGVB, the dark core in the center of the beams is filled with

diffused light and it becomes difficult to distinguish it. The distribution of polarization

remains the same but the polarization states at each point of the intensity profile

changes. Instead of having only linear polarization, circular and elliptical states of

polarization are observed as result of the average of the multiple linear directions of

the superimposed beams.
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Figure 3.4: HIG Fully Coherent Vector Beam vs. HIG Partially Coherent Vector
Beam. A) HIG(3, 5) with α = π/4 and θ = 0. B) HIG(3, 5) with α = π/4, θ = 0
and radius c = 0.5. I0 represent the intensity of the vector mode, S0, S1, S2 and
S3 represent the intensity for each Stokes parameter and PR is the polarization
reconstruction of the vectorial beam. (λ = 633nm, W0 = 0.6, e = 2

Partially Coherent Helical Ince-Gaussian Vector Beam (PCHIGVB) is

shown at the bottom of Figure 3.4. In comparison with its fully coherent version, the

dark holes and the structure of the beam in general becomes diffused. In contrast

with PCLGVB, in the PCHIGVB the distribution of polarization does not remain the

same and the presence of linear, elliptical and circular states of polarization appears

for the same reason.

Finally, for Partially Coherent Helical Mathieu-Gaussian Vector Beam

(PCHMGVB) in Figure 3.5, the dark structures also are filled with diffused light

and the borders becomes less sharp. Like the PCHIGVB, the PCHMGVB do not

maintain their polarization distribution and they present linear, elliptical and circular

polarization states in their profile.
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Figure 3.5: HMG Fully Coherent Vector Beam vs. HMG Partially Coherent Vector
Beam. A) HMG(4, 4) with θ = π/4 and δ = π. B) HIG(3, 5) with θ = π/4, δ =
π and radius c = 5. I0 represent the intensity of the vector mode, S0, S1, S2 and
S3 represent the intensity for each Stokes parameter and PR is the polarization
reconstruction of the vectorial beam. (λ = 633nm, kt = 1, e = 0.2,a = 1
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Figure 3.6: Comparison between different families of beams in partially coherent
regime.

In Figure 3.6 we can see the three families studied in this thesis: HLG, HIG and

HMG. The coherence of these beams degrades as the radius c changes, starting from
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complete coherence when c = 0. It can be seen that for the PCHLGVB, the coherence

is easily lost with radii that are not very large in comparison with PCHIGVB and

PCHMGVB. In the case of PCHIGVB, the spatial mode is more preserved compared

to the other two families even when the value of the radius is increased and the

polarization distribution as well as the polarization states present undergo barely

noticeable changes.



Chapter 4

Conclusion

The versatility of structured light promises a future where it has multiple applications.

This versatility is due to the manipulation of its properties and degrees of freedom:

spatial, polarization, temporal, wavelength, and others. In this thesis we have also

explored the partial spatial coherence of a structured beam with the intention of

contributing to the generation of partially coherent vector beams. In Chapter 1 we

discuss the basis theory that supports structured light. We started by deriving the

Helmholtz paraxial wave equation by assuming that a paraxial light beam is formed

mainly of plane waves that are paraxial to the propagation direction of the beam so

the wave vector k lies along the propagation axis. A partial differential equation for

the amplitude distribution can be found where if the profile is slowly varying with the

propagation axis, the second derivative is much smaller than the first one multiplied by

the wave number and simultaneously, the transverse variation is larger than the second

derivative. This paraxial approximation can hold solutions in different coordinate

system some of which are presented in this thesis, namely,as Laguerre-Gaussian in

cylindrical coordinates and Ince-Gaussian in elliptic coordinates. We also present

Mathieu-Gaussian which is a solution but to the Helmholtz equation in elliptical

cylindrical coordinates. We outlined a description of polarisation, a manifestation of

the vector nature of light. We also outlined its matricial formalism in terms of Jones

matrices. Finally, we also described its geometrical representation in the so-called

Poincaré sphere. The Stokes parameters are also presented in this chapter because

unlike the ellipse of polarization, they allow to describe polarized, partially polarized

and unpolarized light so it can be said they are more general. More importantly,

Stokes parameters provide a way to measure experimentally the different states of

polarisation. Here is shown the conventional technique to do Stokes polarimetry

measuring only four intensities with the aim of a polarization state analyzer and a

65
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CCD camera. As we mention previously, the coherence is one of the main topics in

this thesis so in this chapter the unified theory of coherence and polarization where

we redefine the polarization properties of a partially coherent vector beam with the

generalized Stokes parameters and the spectral degree of polarization. Finally, at the

end of this chapter, we reviewed the Spatial Light Modulator and the Digital Micro-

Mirror Device as a techniques in which structured light beams can be generated.

In Chapter 2 we delved into the main features of vector beams: the weighting

factors and the intermodal and intramodal phase. The weighting factors or amplitude

modify the polarization ellipses in the polarization distribution passing from scalar

beams with homogeneous circular polarization to vector beams with elliptical and

liner polarization. The intramodal phase is associated with the components of the

helical mode and the intermodal phase is the difference between the polarization

components of the spatial modes. These properties generate different vector beams

that can be organized in the High Order Poincaré Sphere where if we vary the value

of θ or by modulating the weight factors, the polarization can be transformed along

the longitudes on the HOPS for the northern hemisphere to the southern hemisphere,

going from beams circularly polarized scalars, passing through elliptical states until

reaching the equator where linearly polarized beams meet. On the other hand, if the

intermodal phase is modified, each of the polarization ellipses distributed in the beam

polarization profile rotates in such a way that it can be said that by changing the

angle δ, an azimuth displacement is obtained. In this chapter we discuss the condition

that converts the solution families previously shown into to helical that is basically

a linear combination of even and odd beams. We demonstrated this helical vector

beams experimentally using two different setup and reinforced our observation with

theoretical simulations that shows very good agreement in both cases.

In Chapter 3 we have introduced partially coherent vector beams (PCVBs) as a

generalization of the scalar case [3, 14]. The proposal consists in generate a coherent

superposition of N randomly uniform displaced vector beams on the xy plane with

random phases across the transversal plane. We carried out two experiments to show

the generation of spatially partially coherent vector beams using only a DMD as a

digital means for their construction with this technique the aim was to have control

over the degree of coherence. Unfortunately, due to technical limitations we cannot

be able to generate them. The incorporation of high-speed digital cameras and spatial

light phase modulators as well as electromechanical devices for wave plate retarders

rotation to take the four intensity measurements to do Stokes polarimetry in the

discussed experimental set-ups will further increase the benefits of these techniques.
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However, numerical simulations of PCVBs could be carried out to show the behaviour

of these kind of beams. We observe that the dark holes and the structure of the

beam in general becomes diffuse as the radius c increases, the ellipses of polarization

distributed in the profile of polarization changes so we have the presence of different

types of ellipses in the same vector beam. For Partially Coherent Helical Laguerre-

Gaussian Vector Beams the polarization distribution persists and this is only observed

in vortex beams.

As future work, it remains to improve the technique of experimental generation

of PCVBs as well as their formal characterization. The stability of the beams is a

general problem in structured light, which is why work has been carried out on the

proposal to generate on-axis vector beams, that is, in the experiment the beam is not

split into two to manipulate them independently, rather, we take advantage of the

polarisation-sensitive of SLMs to manipulate both degrees of freedom in an on-axis

configuration. This proposal includes the combination of two techniques: complex

amplitude modulation to obtain scalar beams and on-axis modulation to generate

vector beams. This work can is in the final stage prior to its publication in Journal of

Optics and is entitled ”Generation of super-stable vector modes using on-axis complex-

amplitude modulation”. As a final comment, to improve the speed of communication

between the computer and the DMD, it is proposed to consider recording the hologram

movie in the internal memory of the DMD or using techniques such as high speed,

complex wavefront shaping [48]. On the other hand, the characterization of the

PCVBs obtained includes advanced knowledge in statistical optics that allows them

to be modelled and thus, to find useful parameters such as determining the number of

superimposed vector beams that are required for a certain degree of partial coherence.



Appendix A

Algorithms

In this section we present a general algorithms to generate a vector beam and to

characterize them using the Stokes parameters.

Some comments about the algorithm 2 are

(a) Line 2 and Line 3: H and V are considered to be equal magnitude in order

to obtain a square image and prevent the intensity of the mode from being

distorted.

(b) Line 6: pxSize is considered 5.4 × 10−6m because it is the size of the pixel in

the Light modulator that we are planning to use in the experimental phase of

future work

(c) Line 13 and Line 14: p and m are only examples of indices and degrees of the

polynomial, some families are going to have more parameters

(d) Line 17 and Line 18: The function BeamFunction corresponds to the family

of beams to be generated. In general, the function has at least exposed input

values. However, it might require more depending on the complexity of the

family polynomial it describes.

(e) Line 19 and Line 20: The two orthogonal scalar fields with scalar polarization

from equation 2.2 are described here.

The algorithm 2 generates two images that are shown in Figure A.1, the first one is

the intensity of the mode and the second one is a mosaic that includes the projections

in each one of the directions. To visualize the intensity profile in Stokes parameters,

the algorithm 3 must be implemented. About the algorithm 3

(a) Line 2 to Line 5:The division by max(I0) is in order to normalize the values.

68
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Algorithm 2 Generation of a vector mode.

1: procedure IntensityVectorMode(H,V, pxSize, λ,W0,m, p, α, δ)
2: H ▷ Horizontal image size in pixels
3: V ▷ Vertical image size in pixels
4: x← linspace(−(H/2), (H/2)− 1, H)
5: y ← linspace(−(V/2), (V/2)− 1, V )
6: pxSize ▷ Pixel size to scale the image
7: x← x · pxSize
8: y ← y · pxSize
9: [X, Y ]← meshgrid(x, y)
10: λ ▷ Wavelenght
11: W0 ▷ Waist radius
12: z ▷ Direction of wave traveling
13: m ▷ Indice
14: p ▷ Indice
15: α ▷ Weight factor (0 to π/2)
16: δ ▷ Intermodal phase (0 to π)
17: u1 ← BeamFunction(H,V, x, y, even,m, p,W0, λ, z)
18: u2 ← BeamFunction(H,V, x, y, odd,m, p,W0, λ, z)
19: ER = cosα · u1

20: EL = exp(iδ) sinα · u2

21: EH = (EL + ER)/
√
2

22: ED = (EH + EV )/2
23: IL = EL · E∗

L

24: IR = ER · E∗
R

25: IH = EH · E∗
H

26: ID = ED · E∗
D

27: I0 = IL + IR
28: return IL, IR, IH , ID, I0
29: end procedure
30: figure
31: image(I0), title(

′Intensity′)
32: figure
33: subplot(2, 2, 1), image(IL), title(IL)
34: subplot(2, 2, 2), image(IR), title(IR)
35: subplot(2, 2, 3), image(IH), title(IH)
36: subplot(2, 2, 4), image(ID), title(ID)
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Figure A.1: The figures generated by the algorithm 2. On the left we have the in-
tensity of the vector mode of a LG(1, 0) with α = π/4 and theta = π/2 and the
figure at the right is a mosaic with the projections of intensity in each direction

Algorithm 3 Stokes Parameters

1: procedure StokesParameters(IL, IR, IH , ID, I0)
2: S0 ← I0/max(I0)
3: S1 ← (2IH − S0)/max(I0)
4: S2 ← (2ID − S0)/max(I0)
5: S3 ← (2IR − S0)/max(I0)
6: return S0, S1, S2, S3

7: end procedure
8: figure
9: subplot(2, 2, 1), image(S0, [−1, 1]), title(S0)
10: subplot(2, 2, 2), image(S1, [−1, 1]), title(S1)
11: subplot(2, 2, 3), image(S2, [−1, 1]), title(S2)
12: subplot(2, 2, 4), image(S3, [−1, 1]), title(S3)
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Figure A.2: Figure generated by the algorithm 3 which is a mosaic that includes all
the four Stokes parameters of a LG(1,0) with α = π/4 and theta = π/2

(b) Line 9 to Line 12: The values [−1, 1] are the range of values admitted in the

scaled image because are only those who had a physical meaning.

With the Stokes Parameters algorithm we obtain a mosaic image like shown in Figure

A.2 with the four Stokes parameters that help us to know the characteristics of the

beam. The first image in the mosaic, which is S0 describes the total intensity of

the optical beam; the second image is S1 which tells us the preponderance of light

horizontally polarized over light vertically polarized; the third image and parameter S2

shows us the preponderance of light polarized at +45 deg over light polarized −45 deg
and, finally, S3 describes the preponderance of right circularly polarized light over

left circularly polarized light [49].

To visualize the distribution of the polarization over the intensity profile, we must

add to the sequence the algorithm 4. The algorithm uses the previous values returned

in the algorithm 3 to, basically calculate the polarization ellipse at each point on the
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Algorithm 4 Stokes

1: procedure StokesEllipses(S0, S1, S2, S3, n, le, cmap)
2: N ▷ Image resolution
3: le ▷ Ellipse size
4: cmap ▷ Matrix of colors for different orientation polarization ellipses
5: S0 ←

√
S2
1 + S2

2 + S2
3

6: samp← N/10
7: L←

√
S2
1 + S2

2

8: a← Re
{√

S0+L
2

}
▷ Semi major axis

9: b← Re
{√

S0−L
2

}
▷ Semi minor axis

10: ϕ← angle(S1 + i · S2)/2 ▷ Rotation angle
11: h← sign(S3) ▷ Handedness
12: ip← round(linspace(1, length(S0), samp))
13: a1 ← a(ip, ip) · le
14: b1 ← b(ip, ip) · le
15: hp1 ← h(ip, ip)
16: ϕ1 ← ϕ(ip, ip)
17: S01 ← S0(ip, ip)
18: smp = b1/a1
19: image(I0)
20: colormap(cmap)
21: divs← size(a1)
22: pp← 0.01
23: for i=1:divs(1) do
24: for j=1:divs(2) do
25: if S01(i, j) > pp then
26: if smp(i, j) > pp and hp1(i, h) < 0 then
27: ecolor← orange ▷ Circular right
28: else if smp(i, j) > pp and hp1(i, h) > 0 then
29: ecolor← green ▷ Circular left
30: else if smp(i, j) ≤ pp then
31: ecolor← white ▷ Linear
32: end if
33: ϕ2 ← mod(ϕ1(i, j), 2π) · 180◦/π + 90◦

34: drawellipse(′Center′, [ip(j), ip(i)],′ SemiAxes′, [b1(i, j), a1(i, j)],
′RotationAngle′, ϕ2,

′ color′, ecolor)
35: end if
36: end for
37: end for
38: end procedure
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beam intensity and draw it with the color assigned: orange to circular right, green

to circular left and, white to linear polarization ellipse. To do this, in the for loop

we have two conditions: the first one to determine if it is linear or circular and the

second one to assign the handedness. Some note about the Algorithm 4

(a) Line 5: The total intensity, S0 is given by the square root of sum of the square

of the other Stokes parameters as we developed in equation 1.106.

(b) Line 7: The complex intensity of linear polarization had been described previ-

ously in equation 1.117.

(c) Line 8 to Line 11: The theory was presented in subsection 1.4.3 Stokes param-

eters and their relationship with polarization ellipse.

(d) Line 12: The command round round to the nearest integer all the entries in the

vector of length samp.

(e) Line 13 and Line 14: Delimits the sampling area and resizes it by a scale factor,

le.

(f) Line 15 to Line 17: Delimits the sampling area in a matrix of size ip× ip

(g) Line 18: Divides the semi-minor axis by the semi-major axis to obtain informa-

tion about the eccentricity of the ellipse.

(h) Line 21: Determine the number of divisions in the image once a1 is given.

(i) Line 22: The value of pp is selected because it gives a suitable size and number

of the drawn ellipses

(j) Line 33: Calculate the rotation angle of the ellipse

(k) Line 34: Draw a colored ellipse in each section analyzed where the center is

given by the coordinates O(ipj, ipi) with semi-axes a1(i, j) and b1(i, j) rotated

by an angle ϕ2

An example of what type of figure generates the Algorithm 4 is shown in Figure

A.3 where we can see the intensity profile, which is a vortex, with linear polarization

distributed azimuthally. Here, the algorithm to generate the mosaic with the intensity

for each Stokes parameter is the same

———– Some notes about Algorithm 5 are
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Algorithm 5 Partially Coherent Vector Beam Intensity

1: procedure PCVB-Part I(H,V, pxSize, λ,W0,m, p, α, δ, RandomPositionCircle.)
2: H ▷ Horizontal image size in pixels
3: V ▷ Vertical image size in pixels
4: x← linspace(−(H/2), (H/2)− 1, H)
5: y ← linspace(−(V/2), (V/2)− 1, V )
6: pxSize ▷ Pixel size to scale the image
7: x← x · pxSize
8: y ← y · pxSize
9: [X, Y ]← meshgrid(x, y)
10: λ ▷ Wavelength
11: W0 ▷ Waist radius
12: z ▷ Direction of wave traveling
13: m ▷ Indice
14: p ▷ Indice
15: α ▷ Weight factor (0 to π/2)
16: δ ▷ Intermodal phase (0 to π)
17: R0 ← zeros(H,V )
18: L0 ← zeros(H,V )
19: H0 ← zeros(H, V )
20: D0 ← zeros(H,V )
21: RandomPositionCircle(N, c, h, k)
22: for i=1 → N do
23: X = X0 − x0(i);
24: Y = Y0 − y0(i);
25: u1 ← BeamFunction(H,V, x, y, even,m, p,W0, λ, z)
26: u2 ← BeamFunction(H,V, x, y, odd,m, p,W0, λ, z)
27: ER = cosα · u1

28: EL = exp(iδ) sinα · u2

29: EH = (EL + ER)/
√
2

30: ED = (EH + EV )/2
31: IL = EL · E∗

L

32: IR = ER · E∗
R

33: IH = EH · E∗
H

34: ID = ED · E∗
D

35: L0 = L0 + IL
36: R0 = R0 + IR
37: H0 = H0 + IH
38: D0 = D0 + ID
39: S00 = R0 + L0 ▷ Total intensity
40: StokesParameters(S00, R0, L0, H0, D0)
41: end for
42: return L0, R0, H0, D0, S00, S1, S2, S3S0, S1, S2, S3
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Figure A.3: Intensity profile with polarization distribution of a LG(1,0) vector
beam with with α = π/4 and θ = π/2

Algorithm 6 PCVB-Part II

43: le
44: N
45: StokesEllipses(S0, S1, S2, S3, n, le, cmap)
46: end procedure
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(a) Line 17 to Line 20: A H × V matrix full of zeros was create for each variable:

R0 is for right, L0 for left, H0 is for horizontal and D0 is for diagonal.

(b) Line 21: RandomPositionCircle is used to generate the N random positions of

the center of the beams.

(c) Line 22: The for loop is used to compute and do the superposition of the N

beams

(d) Line 23 and Line 24: The new center of each beam X, Y is defined by the

subtraction of the original position (X0, Y0 minus the coordinates generated by

the function RandomPositionCircle, x0, y0.

(e) Line 35 to Line 38: The previous defined matrix full of zeros now is going to be

filled with an accumulative sum of each component of the intensity in each one

of the components.

(f) Line 40: The Algorithm 3 is going to be used to calculate the Stokes param-

eters and generate a figure with four images, one for each parameter. Since it

is inside the for loop, N -images will be generated that will allow us to see how

the intensity of each Stokes parameter changes as the number of superposed

beams increases.

(g) Line 45: The Algorithm 4 is added to generate the intensity and polarization

distribution image.
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[5] Benjamin Perez-Garćıa, Adad Yepiz, and Raul Hernandez. Structured light in

the spatial coherence regime. J. Opt., 24(044003):8pp, 2022.

[6] George Gabriel Stokes. On the composition and resolution of streams of polarized

light from different sources. Mathematical and Physical Papers, page 233–258,

2009.

[7] Daniel F. James. Change of polarization of light beams on propagation in free

space. Journal of the Optical Society of America A, 11(5):1641, 1994.

[8] Franco Gori. Matrix treatment for partially polarized, partially coherent beams.

Optics Letters, 23(4):241, 1998.

[9] Emil Wolf. Unified theory of coherence and polarization of random electromag-

netic beams. Phys. Lett. A, 312:263–267, 2003.

[10] Olga Korotkova. Scintillation index of a stochastic electromagnetic beam propa-

gating in random media. Optics Communications, 281(9):2342–2348, Dec 2008.

[11] Fei Wang, Xianlong Liu, and Yangjian Cai. Propagation of partially coherent

beam in turbulent atmosphere: A review (invited review). Progress In Electro-

magnetics Research, 150:123–143, Feb 2015.

77



BIBLIOGRAPHY 78

[12] Tatiana Alieva, Alejandro Camara, and Jose A. Rodrigo. Synthesis and

characterization of complex partially coherent beams. Proc. of SPIE,

9369(93690K):8pp, 2015.

[13] Xianlong Liu, Jun Zeng, and Yangjian Cai. Review on vortex beams with low

spatial coherence. Advances in Physics: X, 4(1):1626766, 2019.

[14] Hao Zhang, Haiyun Wang, Xingyuan Lu, Xuechun Zhao, Bernhard J. Hoenders,

Chengliang Zhao, and Yangjian Cai. Statistical properties of a partially coherent

vector beam with controllable spatial coherence, vortex phase, and polarization.

Optics Express, 30(17):29923, 2022.

[15] D. M. Palacios, I. D. Maleev, A. S. Marathay, and G. A. Swartzlander. Spatial

correlation singularity of a vortex field. Physical Review Letters, 92(14), 2004.

[16] Yahong Chen, Fei Wang, Chengliang Zhao, and Yangjian Cai. Experimental

demonstration of a laguerre-gaussian correlated schell-model statistical proper-

ties beam. Optics Express, 22(5):5826, 2014.

[17] Stuti Joshi, Saba N. Khan, P. Senthilkumaran, and Bhaskar Kanseri. Statistical

properties of partially coherent polarization singular vector beams. Physical

Review A, 103(5), 2021.

[18] Haidan Mao, Yahong Chen, Chunhao Liang, Linfei Chen, Yangjian Cai, and

Sergey A. Ponomarenko. Self-steering partially coherent vector beams. Optics

Express, 27(10):14353, 2019.
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[21] Rüdiger Paschotta. Optical intensity, Apr 2023.

[22] Uri Levy, Stanislav Derevyanko, and Yaron Silberberg. Chapter four - light

modes of free space. volume 61 of Progress in Optics, pages 237–281. Elsevier,

2016.

[23] Andreas Freise and Kenneth Strain. Interferometer techniques for gravitational-

wave detection. Living Reviews in Relativity, 13 (1):5–48, 2010.



BIBLIOGRAPHY 79

[24] Miguel A. Bandres and Julio C. Gutiérrez-Vega. Ince–gaussian beams. Optics

Letters, 29(2):144–146, 2004.

[25] Joel B. Bentley, Jeffrey A. Davis, Miguel A. Bandres, and Julio C. Gutiérrez-

Vega. Generation of helical ince-gaussian beams with a liquid-crystal display.

Optics Letters, 31(5):649, 2006.
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