
 

 

 

“IMPLEMENTATION OF A PHOTON PAIRS 

SPECTRAL CHARACTERIZATION SYSTEM” 
 

 

 

 

 
 

 

 

Tesis que para obtener el grado de Maestro en Ciencias (Óptica) 
Presenta:   Oscar Alejandro Ramírez Espinosa 

 

Director de Tesis:   Dr. Roberto Ramírez Alarcón 
 

 

 

León · Guanajuato · México 

Noviembre de 2023 



Acknowledgment

This work would not have been possible without the knowledge and patience of Dr.
Roberto Ramı́rez Alarcón, for which I am extremely grateful. I’d also like to extend
my thanks to my colleague, Juan Samuel S. Durán Gómez, for generously sharing his
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Abstract

In this study, a comprehensive setup for the spectral characterization of photon pairs is
presented, enabling the determination of the degree of correlation between them, with
the purpose of studying the correlation between the frequencies of photon pairs gener-
ated by non-linear processes. The characterization system used consist of two Avalanche
Photodiodes (APD), that count the number of photons that arrive, a IDQ800 that reg-
ister the number of photons pairs that arrive in a window of time, and two monochro-
mators that help to select the spectral components that arrive to the APDs. The
intention of building the spectral characterization system is to measure the intriguing
process of Counter-Propagation Four-Wave Mixing, where the theory gives a configura-
tion in which the factorability of the state is always satisfied, and the phase-matching
condition is consistently satisfied, due to technical problems this process could not be
measured. The system was also calibrated with the Spontaneous Four-Wave Mixing
Cross-Polarized case in a birefringence fiber model (HB800G). For this case, measure-
ments of the spectral correlations were performed, which show a high correlation be-
tween the photon pair. Simulations of both cases of SFWM were made, in order to
compare with the experimental measurements. For the Counter-Polarized process, the
simulations have an excellent agreement with the experimental results and there is no
factorizable state. However, for the Counter-Propagation one, there is a factorizable
state.



Chapter 1

Introduction

The field of quantum photonics has witnessed significant advancement in recent years,
leading to the integration of quantum technologies in various applications worldwide.
Notable examples of these applications include quantum computing [1, 2], quantum
encryption [3], and quantum teleportation [4]. The ongoing development in quantum
photonics [5–7] have been instrumental in driving the second quantum revolution, with
resources such as entanglement and non-locality .

The area of interest for this work is photonics, with a specific focus on the photons
generated by nonlinear processes. Nonlinear optical phenomena were first observed ap-
proximately four years after the invention of the laser [8]. These processes typically re-
quire optical fields with high-energy density to stimulate the generation of new photons.
The first reported nonlinear process was Second Harmonic Generation (SHG), where
two photons with frequency ω are absorbed, resulting in the generation of a photon with
frequency 2ω [9]. Other processes of high relevance include Spontaneous Parametric
Down Conversion (SPDC) [10, 11], Spontaneous Four Wave Mixing (SFWM) [12], and
Two-Photon Absorption (TPA) [13]. In these processes, the generated photons have
correlations. These correlations can include various degrees of freedom, such as prop-
agation modes [14], orbital angular momentum (OAM) [15], or frequency [16]. In this
work the focus will be the spectral correlation, meaning the correlations on frequency.

These non-lineal processes can be conducted in various media, including crystals,
optical fibers, and waveguides, among others. They often exhibit spectral correlations
due to the inherent nature of generation from the same physical process. This spectral
correlation can be tailored or modified based on the specific conditions and properties
of the medium used. A prime example of such a medium is Photonic Crystal Fiber
(PCF) [17], which contains an array of micro-structured holes that can significantly
alter the propagation and dispersion properties of light. This capability allows for the
customization of photons generated by processes like Spontaneous Four Wave Mix-
ing (SFWM), enabling the production of either factorizable states or highly correlated
states as required for specific quantum applications [18].

In integrated photonics [19], the commonly used non-linear process for generating
photon pairs is SFWM, which is a third-order process where two pump photons are
annihilated in order to generate a pair of photons known as signal and idler. While
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other non-linear processes like Spontaneous Parametric Down Conversion (SPDC) also
generate photon pairs, they are typically produced in crystals and may incur in cou-
pling losses when connected to integrated systems. SFWM can be generated inside
an optical fiber or a waveguide and can be tailored by modifying the fiber structure
[17, 20] or by adjusting the pump characteristics [21]. Some of the most intriguing prop-
erties of SFWM in fibers are its quadratic photon pairs flux dependence with the pump
power [22]. Depending on the fiber length, it is possible to achieve a large interaction
length, enhancing photon pairs production flux. Additionally, SFWM exhibits an ef-
fective non-linearity that can be scaled down by reducing the transverse mode area [19].

The particular case of co-polarized Counter-Propagation Spontaneous Four-Wave
Mixing (CP-SFWM) presents an intriguing scenario where any single-mode fiber can
be employed to produce photon pairs characterized by factorable states. In this case of
SFWM the factorability of the state is consistently maintained, and the phase-matching
condition is always met, as long as all the waves involved are within the same disper-
sion regimen. For CP-SFWM, the optical fiber is pumped from both ends, resulting in
generated photons that share the same wavelengths as the pumps but which propagates
in opposite directions [23].

Nevertheless, as far as we know, experimental implementation of CP-SFWM pro-
cess in an optical fiber has not been reported, since the original scheme considered laser
pumps and produced photons wavelengths in the Si detection range, making extremely
hard to discriminate the photon’s signal in the detection system from the noise pro-
duced by residual pumps, even when extremely efficient spectral filters are employed. A
viable scenario which could allow for the demonstration of such an interesting scheme is
the production of one photon in the Si detection and the other in the InGaAs detection
range. Since current available detectors based in Si are insensible to radiation in the
spectral range of detection of an InGaAs detector, and viceversa, the residual noise
produced by the pumps can be effectively discriminated by the use of efficient spectral
filters aid by the insensibility of the detectors.

A particularly interesting feature of CP-SFWM is when one of the pumps is pulsed
while the other is a continuous-wave (CW). In this configuration, the photon generated
with the wavelength of the CW pump exhibits a narrow spectral width which narrows as
the fiber’s interaction lenght increases. This feature is of special interest for the interac-
tion with atomic transitions in applications for quantum memories [24, 25], simplifying
greatly the photon pairs source design which typically require the implementation of
SFMW sources in elaborated integrated or bulk resonator configurations. Specifically,
within our research group, the creation of a quantum memory integrated full on fiber
is in mind, for this a transition of interest is around 1532 nm to interact with the
4I15/2 →4 I13/2 transition of erbium doped fiber. Then, in this work we extended the
reported model of CP-SFWM, considering a pulsed pump in the 800 nm range and a
CW pump around 1532 nm, in order to produce one photon to match the wavelength
and the spectral bandwidth of Erbium ions in a quantum memory application [25].

In order to experimentally demonstrate the elusive process of CP-SFWM, we need
to build and characterize an optimized SFWM detection system, which allows for the
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efficient detection and spectral characterizarion of the produced photons, including the
hard to achieve measurement of the Joint Spectral Intensity (JSI) function which, as
will be explained in the sections ahead, essentially defines all the properties of the pho-
ton pair’s quantum state. Then, as the experimental section of this thesis we present
the design and implementation of a SFWM measurement system.

To validate the system’s functionality, we implemented a well-understood SFMW
scheme, which is the co-propagating Cross-Polarized Spontaneous Four-Wave Mixing
(XP-SFMW) configuration. The advantage of this case lies in its simplicity to mitigate
noise in measurements due to the orthogonal polarization of the pumps compared to
the generated photon pairs. Additionally, since this process has been previously stud-
ied, it facilitates a comparison of the obtained results with those presented in existing
literature [26, 27].

The characterization system functions by detecting each photon using Avalanche
Photodiodes (APDs) and counting the time coincidence between them with an IDQ800.
This coincidence arises because photons generated by SFWM travel the same distance
and arrive at approximately the same time, indicating the generation of a photon pair.
Utilizing two monochromators, a spectral component is selected on each side to check
if, at certain wavelengths, there is the generation of photon pairs. This allows the
recreation of the correlation between the two photons. The objective is to understand
the properties of the quantum states generated. Understanding the correlation between
the two photons is crucial in various applications, such as spectroscopy [18], where fac-
torizable states are required. This enables the use of both photons to interact with the
material being analyzed without the limitations imposed by high correlations between
them.

In the following sections, we will delve into the theory of Spontaneous Four Wave
Mixing in optical fibers for the cases of Counter-Propagated co-polarized and co-
propagating Cross-Polarized. This theoretical foundation serves as a crucial backdrop
for understanding the subsequent simulations. Moving forward, it will unveil the ex-
tensive experimental work carried out. This includes the meticulous measurements of
spectral and coincidence counts, essential for extracting the correlation structure of
photon pairs generated within a HB800G bow-tie fiber. Additionally, it will be explor-
ing the assembly of the characterization system and some alternative methods to realize
the measurement of the Joint Spectral Intensity.

The culmination of this work will involve a thorough comparison of theoretical
results with experimental measurements. We will also engage in a brief but insightful
discussion of the system, future research possibilities, and potential avenues for system
improvement.
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Chapter 2

Theoretical fundamentals

This chapter introduces the theory of Spontaneous Four Wave Mixing (SFWM) in op-
tical fiber, with a focus on two specific cases: Cross-Polarized and Counter-Propagated.
The discussion begins with the propagation of light inside an optical fiber, followed by
an exploration of non-linear optics and the phenomenon of Four Wave Mixing. The
chapter then delves into the quantum analysis of the Cross-Polarized and Counter-
Propagated cases, aiming to derive the Joint Spectral Intensity, a quantum parameter
that brings information of the correlation between the frequencies of the photons gen-
erated.

2.1 Optical Fiber

To understand the non-linear process of SFWM it is necessary to understand the prop-
agation of light in the medium. This section focuses on conducting a mathematical
analysis of the electromagnetic fields inside an optical fiber.

An optical fiber is essentially a cylindrical structure composed of glass, typically
Fused Silica. It comprises an inner region known as the core, which is encircled by an
outer region referred to as the cladding [28]. The specific type of fiber under analysis
here is a step index fiber, and its structure can be observed in Figure 2.1. There are
other types of optic fibers designed for different applications [29].

Maxwell’s equations in media without sources are the starting point in the analysis
of the propagation properties of the light inside the optic fiber:

∇⃗ × E⃗(r⃗, t) = −∂B⃗(r⃗, t)

∂t
,

∇⃗ × H⃗(r⃗, t) =
∂D⃗(r⃗, t)

∂t
,

∇⃗ · H⃗(r⃗, t) = 0,

∇⃗ · D⃗(r⃗, t) = 0,

(2.1)

where E⃗ is the electric field, H⃗ is the magnetic field, D⃗ = ϵ0E⃗ + P⃗ = ϵE⃗ is the electric
displacement, B⃗ = µ0H⃗ + M⃗ is the magnetic flux density, where for non magnetic

4



Figure 2.1: Structure of a Step Index Fiber.Where a is the core radius, b is the cladding
radius, nc is the refractive index of the core and ncl is the refractive index of the cladding.

mediums the magnetism is M⃗ = 0. Applying the curl operator to the first equation
yields:

∇⃗ × ∇⃗ × E⃗(r⃗, t) = −∇⃗ × ∂B⃗(r⃗, t)

∂t
·

This equation can be rearrange as follows:

∇⃗(∇⃗ · E⃗)− ∇⃗2E⃗ = −µ0
∂

∂t
(∇⃗ × H⃗),

next by using that ∇⃗ · E⃗ = 0 y ∇⃗ × H⃗ = ∂ϵE⃗
∂t

one obtains:

∇⃗2E⃗(r⃗, t) = µ0ϵ
∂2E⃗(r⃗, t)

∂t2
. (2.2)

This wave differential equation can be rewritten in the frequency domain to simplify
the analysis

∇⃗2Ẽ(r⃗, ω) = µ0ϵω
2Ẽ(r⃗, ω), (2.3)

with

E⃗(r⃗, ω) =
1

2π

∫ ∞

−∞
Ẽ(r⃗, t)e−iωtdt.

Due to geometrical structure of the waveguide, cylindrical coordinates are utilized. By
expanding the Laplacian operator in those coordinates, Eq. 2.3 can be expressed as:

∂2Ẽ(r⃗, ω)

∂r2
+

1

r

∂Ẽ(r⃗, ω)

∂r
+

1

r2
∂2Ẽ(r⃗, ω)

∂ϕ2
+
∂2Ẽ(r⃗, ω)

∂z2
+ n2k20Ẽ(r⃗, ω) = 0, (2.4)

where n2k20 = ω2/v2. Similarly, for magnetic field one gets the following equation:

∂2H̃(r⃗, ω)

∂r2
+

1

r

∂H̃(r⃗, ω)

∂r
+

1

r2
∂2H̃(r⃗, ω)

∂ϕ2
+
∂2H̃(r⃗, ω)

∂z2
+ n2k20H̃(r⃗, ω) = 0· (2.5)

The two vectorial differential equations 2.4 and 2.5 have six components, three of electric
field and the other three in the magnetic field. However, the fields are subject to
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Maxwell’s equations, which restrict the system to only two degrees of freedom. To solve
for the fields, a separable solution is proposed for the components in the propagation
direction z:

Ẽz(r, ϕ, z, ω) = W (ω)R(r)ei(mϕ+ψ)eiβz, (2.6)

where β is the propagation constant, m is a integer, and ψ is a functional form because
of the cylindrical symmetry. By using the electric field with this form in Eq. 2.4 gives:

d2R(r)

dr2
+

1

r

dR(r)

dr
+

(
n2k20 − β2 − m2

r2

)
R(r) = 0· (2.7)

The differential equation derived for the electric field has the same structure as the
Bessel differential equation, indicating that the solutions are Bessel functions. Specifi-
cally, in the core of the waveguide, Bessel functions of the first kind Jm are used, while in
the cladding, modified Bessel functions of the second kind Km are used. Consequently,
the electric and magnetic fields can be expressed as follows:

Ẽz =

{
C1W (ω)Jm(pr)e

i(mϕ+ψ)eiβz , r < a

C2W (ω)Km(qr)e
i(mϕ+ψ)eiβz , r > a

H̃z =

{
C3Wh(ω)Jm(pr)e

i(mϕ+ψ)eiβz , r < a

C4Wh(ω)Km(qr)e
i(mϕ+ψ)eiβz , r > a

(2.8)

where p =
√
n2
ck

2
0 − β2 y q =

√
β2 − n2

clk
2
0. By substituting the z component into Eqs.

2.1, we obtain the radial and angular components in the following forms:

Ẽr =

{
− iW (ω)

p2

[
C1βpJ

′
m(pr) + C3ωµ0

m
r
Jm(pr)

]
cos(mθ + ψ) , r < a

iW (ω)
q2

[
C1βqK

′
m(qr) + C3ωµ0

m
r
Km(qr)

] Jm(u)
Km(w)

cos(mθ + ψ) , r > a

Ẽθ =

{
− iW (ω)

p2

[
−C1β

m
r
Jm(pr)− C3ωµ0pJ

′
m(pr)

]
sin(mθ + ψ) r < a

iW (ω)
q2

[
−C1β

m
r
Km(qr)− C3ωµ0K

′
m(qr)

] Jm(u)
Km(w)

sin(mθ + ψ) , r > a

(2.9)

H̃r =

{
− iW (ω)

p2

[
C1ωϵ0n

2
c
m
a
Jm(pr) + C3βpJ

′
m(pr)

]
sin(mθ + ψ) , r < a

iW (ω)
q2

[
C1ωϵ0n

2
cl
m
r
Km(qr) + C3βqK

′
m(qr)

] Jm(u)
Km(w)

sin(mθ + ϕ) , r > a

H̃θ =

{
− iW (ω)

p2

[
C1ωϵ0n

2
cpJ

′
m(pr) + C3β

m
r
Jm(pr)

]
cos(mθ + ψ) , r < a

iW (ω)
q

[
C1ωϵ0n

2
clqK

′
m(qr) + C3β

m
r
Km(qr)

] Jm(u)
Km(qr)

cos(mθ + ψ) , r < a

(2.10)

Taking into consideration the boundary conditions for the angular coordinates of
the two fields at r = a, two equalities are obtain:

C1β

[
1

u2
+

1

w2

]
= −C3µ

[
J ′
m(U)

uJm(U)
+

K ′
m(W )

wKm(W )

]
,

−C1wϵ0

[
n2
c

J ′
m(U)

uJm(U)
+ n2

cl

K ′
m(W )

wJm(W )

]
= C3βm

(
1

u2
+

1

w2

)
.

Where U = pr, W = wr. On performing the product of those two equations[
J ′
m(U)

uJm(U)
+

K ′
m(U)

uKm(W )

] [
n2
c l
J ′
m(U)

uJm(U)
+ nc

K ′
m(W )

wKm(W )

]
= m2

(
n2
c

u2
+
n2
cl

w2

)
.
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By rearranging the equation given in [30], is obtain:[
J ′
m(U)

UJm(U)
+

K ′
m(W )

WKm(W )

] [
J ′
m(U)

UJm(U)
+
n2
c

n2
cl

K ′
m(W )

WKm(W )

]
=

(
mβ

nck0

)2(
V

UW

)4

, (2.11)

where V =
√
p2 + q2. The parameter V , also known as normalized frequency, indicates

the number of modes that can propagate in the fiber [30]. This equation is known as the
characteristic equation of the optical fiber, and when solved, it gives the propagation
constant β of the fiber.

2.2 Non-linear processes

Non-linear optical phenomenon refers to the effects that occur when light interacts with
a material, and the response of the material is not proportional to the intensity of the
light [31]. This interaction occurs because the atomic elements of the material are ex-
cited by the photons that impinge upon them, leading to a change in the material’s
properties.

Non-linear effects in optics are commonly expressed in terms of polarization. In
linear circumstances, polarization is directly proportional to the electric field, and the
proportion constants are the electric susceptibility of the medium χ(1) and the electric
permeability in a vacuum ϵ0. However, in non-linear optics, this linear relationship is
just the first term of a potential series. Each element of this series is the polarization
of a different order, and it represents a higher order response of the material to the
incident light. This is express as [31]:

P⃗ (t) = ϵ0(χ
(1) · E⃗(t) + χ(2) : E⃗(t)E⃗(t) + χ(3)...E⃗(t)E⃗(t)E⃗(t) + · · ·),

P⃗ (t) = P⃗ (1)(t) + P⃗ (2)(t) + P⃗ (3)(t) + · · ·,
(2.12)

In isotropic media, such as the fused silica used in this study, the second-order suscep-
tibility can typically be neglected in comparison to third-order processes [22]. In most
cases, the energy density of the incident light is not sufficient to induce higher-order
processes, and therefore, only third-order processes need to be considered. As a result,
the polarization can be expressed as:

P⃗ (t) = P⃗ (1) + P⃗ (3) = P⃗L + P⃗NL. (2.13)

To analyze third-order non-linear phenomena, let us start by writing the electric field
and polarization as:

E⃗ =
1

2
x̂

4∑
j=1

Eje
i(βjz−ωjt) + c.c. (2.14)

P⃗NL =
1

2
x̂

4∑
j=1

Pje
i(βjz−ωjt) + c.c. (2.15)

The terms Pj consist of a great amount of terms due to the product of three electrical
fields as is imply in Eq. 2.12, giving terms as:
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P4 =
3ϵ0
4
χ(3)
xxxx[|E4|2E4 + 2(|E1|2 + |E2|2 + |E3|2 + |E3|2)E4

+2E1E2E3e
i[(β1+β2+β3−β4)z−(ω1+ω2+ω3−ω4)t]

+2E1E2E
∗
3e
i[(β1+β2−β3−β4)z−(ω1+ω2−ω3−ω4)t]] + · · ·,

(2.16)

Each term in the polarization expansion represents a different kind of process. For
example, the first term represents Self-Phase Modulation, while the second term repre-
sents Cross-Self Modulation, which are interactions between a field with itself or with
other fields [32]. The remaining terms represent different kinds of FWM, and the ef-
ficiency of these processes depends on the phase relation between the fields. In all
these processes, energy conservation must be satisfied, leaving the phase term with the
propagation constant. This is denote as phase-matching, and only the processes with
a phase-matching close to zero are typically observed, while the rest are inefficient and
disregarded [31].

2.3 Four-Wave Mixing

As mention earlier, Four Wave Mixing is a third-order process in which four waves
interact [22, 32]. The particular case of interest is when two waves are absorbed, and
two different waves are created. The analysis begins by using Maxwell’s equations,
taking into consideration the non-linear polarization PNL.

∇2E⃗ − n2

c2
∂2E⃗

∂t2
= µ0

∂2PNL
∂t2

. (2.17)

Next, the fields are rewritten by using the expressions given in Eq. 2.14 and 2.15 to
express them in terms of the electric field. A separable solution is used in the form
of Ej = Fj(x, y)Aj(z). Working out the wave equation leads to a set of four coupled
equations, which can be integrated over the spatial mode profiles to obtain:

dA1

dz
=
in2ω1

c

[(
f11|A1|2 + 2

∑
k ̸=1

f1k|Ak|2
)
A1 + 2f1234A

∗
2A3A4e

i∆kz

]
,

dA2

dz
=
in2ω2

c

[(
f22|A2|2 + 2

∑
k ̸=2

f2k|Ak|2
)
A2 + 2f2134A

∗
1A3A4e

i∆kz

]
,

dA3

dz
=
in2ω3

c

[(
f33|A3|2 + 2

∑
k ̸=3

f3k|Ak|2
)
A3 + 2f3412A1A2A

∗
4e

−i∆kz

]
,

dA4

dz
=
in2ω4

c

[(
f44|A4|2 + 2

∑
k ̸=4

f4k|Ak|2
)
A4 + 2f4312A1A2A

∗
3e

−i∆kz

]
,

(2.18)

where ∆k = β1 + β2 − β3 − β4 is the wave-vector mismatch,

fjk =

∫∫∞
−∞ |Fj(x, y)|2|Fk(x, y)|2dxdy

(
∫∫∞

−∞ |Fj(x, y)|2dxdy)(
∫∫∞

−∞ |Fk(x, y)|2dxdy)
,
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and

fijkl =

∫∫∞
−∞ |Fi(x, y)|2|Fj(x, y)|2|Fk(x, y)|2|Fl(x, y)|2dxdy

(
∫∫∞

−∞ |Fi)|2dxdy)(
∫∫∞

−∞ |Fj|2dxdy)(
∫∫∞

−∞ |Fk|2dxdy)(
∫∫∞

−∞ |Flk|2dxdy)
,

in Eq. 2.18, the terms that are considered are only the ones that are nearly phase-
matched, and the dependence of χ(3) on the frequency is neglected. The parameter n2

represents the nonlinear coefficient [33].

To simplify the analysis, it is assumed that the pump waves are much more intense
than the other waves and that the overlap integrals are nearly the same, i.e.,

fijkl ≈ fij ≈ 1/Aeff ,

with this assumption, it is possible to obtain the solution for A1 and A2:

A1(z) = A1(0)e
iγ(P1+2P2)z,

A2(z) = A2(0)e
iγ(P2+2P1)z,

(2.19)

where γj = n2ωj/(cAeff ) ≈ γ is the non-linear parameter, Pj = |Aj(0)|2 are the incident
pumps power at z=0. It is clear that the solution of the incident fields is not dependent
of the created fields, as expected. Substituting these solutions in the other coupled
equations, one obtains:

dA3

dz
= 2iγ[(P1 + P2)A3 + A1(0)A2(0)e

−i[∆k−3γ(P1+P2)]zA∗
4],

dA∗
4

dz
= −2iγ[(P1 + P2)A

∗
4 + A∗

1(0)A
∗
2(0)e

i[∆k−3γ(P1+P2)]A3].

(2.20)

To solve those equations, the following solutions are proposed:

dB3

dz
= 2iγA1(0)A2(0)e

−iκzB∗
4 ,

dB∗
4

dz
= −2iγA∗

1(0)A
∗
2(0)e

iκzB3,

(2.21)

where κ = β1 + β2 − β3 − β4 + γ(P1 + P2). Differentianting B3 twice and eliminating
B∗

4 yields:
d2B3

dz2
+ iκ

dB3

dz
− (4γ2P1P2)B3 = 0, (2.22)

a similar equation is obtained for B∗
4 , Thus, the solutions are:

B3(z) = (a3e
gz + b3e

−gz)e−iκz/2,

B4(z) = (a4e
gz + b4e

−gz)eκz/2,
(2.23)

where a3,a4,b3,b4 are determined by boundary conditions, and g =
√

(γPoρ)2 − (κ/2)2

is the parametric gain. The fields generated are usually labeled as signal and idler.
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2.4 Cross-Polarized

To generate Cross-Polarized Spontaneous Four-Wave Mixing (XP-SFWM), the presence
of birefringence in the fiber is essential. Birefringence alters the way light interacts with
the media, resulting in photon pairs with a polarization different from that of the pump.
This section details the incorporation of this parameter into the analysis. Furthermore,
a quantum framework study is presented to obtain a crucial parameter known as the
Joint Spectral Intensity, providing insights into frequency correlations.

Figure 2.2: Energy diagram of the degenerated FWM

Taking birefringence into consideration in the phase matching can be accomplished
by expressing the β terms in terms of the effective refractive indices:

βj =
njωj
c

,

with j = 1, 2, 3, 4, and ensuring perfect phase matching as in the original condition,

1

c
(n1ω1 + n2ω2 − n3ω3 − n4ω4)− γ(P1 + P2) = 0,

and by defining a secondary refractive index in which changes in the refractive index
are represented as n′

i = ni +∆ni, it can derive the effective phase matching as follows:

κ =
1

c
(n1ω1 + n2ω2 − n3ω3 − n4ω4) +

1

c
(∆n1ω1 +∆n2ω2 −∆n3ω3 −∆n4ω4),

−γ(P1 + P2).
(2.24)

The refractive index exhibits variations depending on the orientation of light. The
impact of birefringence becomes evident when observing the difference in refractive
indices along these two orientations:

δn = ∆nx −∆ny.

In the scenario where the two pump waves travel along the same axis with a refractive
index difference of ∆nx, while the signal and idler propagate along another axis with
a difference of ∆ny, the component of the phase-matching with the refractive index
difference is expressed as [22]
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1

c
[∆ny(ω3 + ω4)− 2∆nxω1)] =

1

c
[∆ny(2ω1)− 2∆nxω1)]

= −2ω1

c
(∆nx −∆ny) = −2ω1δn

c
.

With this reduced birefringence term, and when considering degenerate pump condi-
tions, the phase matching condition can be expressed as follows [20]:

κ =
1

c
(2n1ω1 − n3ω3 − n4ω4)− 2

ω1δn

c
− 2γP1. (2.25)

The condition of ideal phase-matching (κ = 0) and the conservation of energy are em-
ployed to identify the permissible frequencies (wavelengths) that satisfy both criteria.

In photonic applications, understanding the state of the photons being utilized is
crucial. To ascertain the state of the generated photon pairs, it is essential to analyze
the process of four-wave mixing through the lens of quantum optics. The initial step
involves deriving the Hamiltonian of the process, which is given by:

Ĥ = Ĥ0 + Ĥint, (2.26)

where the Hamiltonian of the medium can be described by two possible transitions,
each corresponding to the frequencies of the signal and idler:

Ĥ0 = h̄[ωs(â
†
sâs + 1/2) + ωi(â

†
i âi + 1/2)]. (2.27)

And the interaction Hamiltonian is given by:

Ĥint =

∫
V

ÛdV. (2.28)

Where V is the volume in witch the FWM occurs, and U is the is the energy density
given by [34]:

Û = ϵ0χ
(3)Êp1Êp2ÊsÊi, (2.29)

where the pump fields (Ep1 , Ep2) are considered as monochromatic Gaussian beams. In
the degenerate case, these are equal (Ep1 = Ep2 = Ep) and have the following form:

Êp =
Êp0
2
e−ω

2/2σ2 (
e−i[(Ωp+ω)t−(kp−γPp)z] + ei[(Ωp+ω)t−(kp−γPp)z]

)
s(r⃗), (2.30)

where s(r⃗) is the normalization factor, σ is the Full-Width at Half Maximum, Ωp is
central frequency of the pump ,and Ep0 is the vector with the magnitude and direction
of the wave. The fields of the two generated photons are quantum fields described by
the annihilation and creation operators [35]:

Êl =

√
ωlh̄

2ϵl

1√
L3

∑
kl

(
â†l e

−iklz + âle
iklz
)
sl(r⃗), l = s, i (2.31)

where âl is the annihilation operator, â†l is the creation operator, L3 is the quantized
volume, and ϵl is the electric susceptibility at the frequency ωl of the field. Substituting
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the field in Equation 2.29 and considering the case where the pump, the signal, and the
idler are co-propagating, the energy density is:

Û =
ϵ0χ

(3)h̄

8L

√
ωsωi
ϵsϵi

e−ω
2/σ2

∑
ks,ki

[â†sâ
†
ie

−i[2(Ωp+ωp)t−(2kp−ki−ks−2γPp)z]

+âsâie
i[2(Ωp+ωp)t−(2kp−ki−ks−2γPp)z]]s2p(r⃗)ss(r⃗)si(r⃗).

(2.32)

To account for birefringence, the equations can be written similarly to what was
previously shown. Grouping the terms, we have

Û = Se−ω
2/σ2

∑
ks,ki

[â†sâ
†
ie

−i[2(Ωp+ωp)t−κz] + âsâie
i[2(Ωp+ωp)t−κz]]s2p(r⃗)ss(r⃗)si(r⃗),

where S = ϵ0χ(3)

8

√
ωsωi

(ϵs+∆ϵs)(ϵi+∆ϵi)
≈ ϵ0χ(3)

8

√
ωsωi

ϵsϵi
if ∆ϵl ≪ ϵl represents the gain factor,

and κ = 2kp − ki − ks − 2δnkp
n
− 2γPp the phase matching condition. Due to the

symmetry of the fiber, cylindrical coordinates are more suitable. The Hamiltonian of
interaction is as follows:

Ĥint =
Sh̄

L3
e−ω

2/σ2
∑
ks,ki

∫ r

0

∫ 2π

0

∫ L/2

−L/2

[â†sâ
†
ie

−i[2(Ωp+ωp)t−κz]

+âsâie
i[2(Ωp+ωp)t−κz]]s2p(r⃗)ss(r⃗)si(r⃗)rdrdθdz·

(2.33)

Defining I =
∫∫

s2p(r⃗)ss(r⃗)si(r⃗)rdrdθ as the normalization factor. Integrating over
the z coordinate:∫ L/2

−L/2
eiκzdz =

eiκz

iκ
|L/2−L/2 =

eiκL/2 − e−iκL/2

iκ
=

2

κ

eiκL/2 − e−iκL/2

2i

=
2

κ
sin

(
κL

2

)
L

L
= L

sin
(
κL
2

)
κL/2

= Lsinc

(
κL

2

)
· (2.34)

The hamiltonian then can be written as:

Ĥint =
SIh̄

L
e−ω

2/σ2
∑
ks,ki

[
â†sâ

†
ie

−2i(Ωp+ωp)tLsinc

(
κL

2

)
+ h.c.

]
. (2.35)

With the two components of the Hamiltonian of the system, we can employ the Heisen-
berg equation to determine the temporal evolution of an operator:

dÂ

dt
= − i

h̄
[Â, Ĥ].

This is use to calculate the evolution of the creation operator, allowing to predict the
behavior of the photons generated in the signal and idler. In this case, the Heisenberg
equation for the creation operator of the signal is as follows:

dâ†s
dt

= − i

h̄
[â†s, Ĥ] = − i

h̄
[â†s, Ĥ0 + Ĥint] = − i

h̄

(
[â†s, Ĥ0] + [â†s, Hint]

)
, (2.36)
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working on the first term:

[â†s, Ĥ0] = [â†s, h̄[ωs(â
†
sâs + 1/2)] + ωi(â

†
i âi + 1/2)]

= h̄(ωs[â
†
s, â

†
sâs + 1/2] + ωi[â

†
s, â

†
i âi + 1/2])

= h̄ωs([â
†
s, â

†
sâs] + [â†s, 1/2]) + h̄ωi([â

†
s, â

†
i âi] + [â†s, 1/2])

= h̄ωs[â
†
s, â

†
sâs] + h̄ωi[â

†
s, â

†
i âi]

= h̄ωs(â
†
sâ

†
sâs − â†sâsâ

†
s) + h̄ωi(â

†
sâ

†
i âi − â†i âiâ

†
s)

= h̄ωs(â
†
sâ

†
sâs − â†sâsâ

†
s) + h̄ωi(â

†
sâ

†
i âi − â†sâ

†
i âi)

= h̄ωs(â
†
sâ

†
sâs − â†s(â

†
sâs + 1))

[â†s, Ĥ0] = h̄ωsâ
†
s, (2.37)

Similarly for the second term:

[â†s, Ĥint] =
SIh̄

L
e−ω

2/σ2
∑
ks,ki

Lsinc

(
κL

2

)
([â†s, a

†
sâ

†
i ]e

−2i(Ωp+ωp)t + [â†s, âsâi]e
2i(Ωp+ωp)t),

(2.38)
where sinc(x) = sin(x)/x. On evaluating the commutators one gets:

[â†s, â
†
sâ

†
i ] = â†sâ

†
sâ

†
i − â†sâ

†
i â

†
s = â†sâ

†
sâ

†
i − â†sâ

†
sâ

†
i = 0,

[â†s, âsâi] = â†sâsâi − âsâiâ
†
s = â†sâsâi − âsâ

†
sâi = (1− âsâ

†
s)âi − âsâ

†
sâi = âi,

Applying these commutation relations to the commutator of the creation operator and
the interaction Hamiltonian:

[â†s, Ĥint] =
SIh̄

L
e−ω

2
p/σ

2
∑
ks,ki

âie
2i(Ωp+ωp)tLsinc

(
κL

2

)
. (2.39)

with the commutators of both Hamiltonians, the Heisenberg equation (2.36) takes the
form:

dâ†s
dt

= −i

(
ωsâ

†
s +

SI

L
e−ω

2
p/σ

2
∑
ks,ki

âie
2i(Ωp+ωp)tLsinc

(
κL

2

))
. (2.40)

Solving this equation as times tends to infinity [34]:

â†s(∞) = â†s(0)− i
SIL

2
√
L

√
π

σ

∑
ki

e−
[∆ωks

+∆ωki
]2σ2

4σ2 âi(0)sinc

(
κL

2

)
. (2.41)

The same procedure can be done to the creation operator for the idle. With this
two operators applied to some state and in the limit when the summations became
integrals [12]:

|ψ⟩ = |0⟩s |0⟩i + s

∫∫
F (ωs, ωi) |ωs⟩ |ωi⟩ dωsdωi, (2.42)

where s is the generation efficiency, and F (ωs, ωi) is the Joint Spectral Amplitude (JSA),
which describe the spectral entanglement properties of the photons generate, the form
is [17]:

F (ωs, ωi) = α(ωs, ωi)× ϕ(ωs, ωi), (2.43)
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with

α(ωs, ωi) = e
− (ωs+ωi−2ωp)

2

4σ2
p ,

been the pump evelope function, where σp =
∆ω
2
√
2
is the bandwidth, and ∆ω is the pump

spectral width. While

ϕ(ωs, ωi) = sinc

(
κL

2

)
, (2.44)

is the phase matching component. Usually one considers the Joint Spectral Intensity
(JSI), which is the modulus square of the JSA.:

JSI = |F (ωs, ωi)|2· (2.45)

The JSI brings information of the correlation between the frequencies of the signal
with the idler. The entanglement of the states can be seen in the form and orientation
of the JSI, if this is close to a line with angle of 45°, it is the case where they are
more correlated. On the contrary when is close to a circle, or to an irregular form, the
correlations are minimal. Both cases have utility, the case where the two photons are
not correlated is usually used as a source of correlated photons [36], where one of them
is detected to mark the existence of the other and this is use as a single photon.

2.5 Counter-Propagation

In Counter-Propagation Spontaneous Four-Wave Mixing (CP-FWM), non-degenerate
pumps are used, each directed towards one side of the optical fiber. The generated
photons will share the same wavelengths as the pumps but with opposite propagation
directions. This configuration is particularly interesting since phase-matching is auto-
matically achieved in a single-mode medium such as optical fiber or a waveguide [23].

Figure 2.3: Scheme of Counter-Propagated Four Wave Mixing
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Figure 2.4: Energy diagram of the Counter-Propagated Four Wave Mixing

The quantum analysis starts in a similar way to the previous case, with the Hamil-
tonian:

Ĥ =
3

4
ϵ0χ

(0)

∫
d3r⃗Ê

(+)
1 (r⃗, t)Ê

(−)
2 (r⃗, t)Ê

(−)
1 (r⃗, t)Ê

(+)
i (r⃗, t). (2.46)

The integration is done in the section of the fiber where the fields are temporally and
spatially overlapped. The subscripts (+)/(-) refer to the positive/negative propagation
direction of the electric fields. The pump fields are describe as classical fields:

E(±
ν (r⃗, t) = Aνfν(x, y)

∫
dωαν(ω)e

±i(kνz−ωt), (2.47)

with ν = 1, 2 for the pumps fields, Aν is the amplitude of the fields, αν(ω) is the spectral
envelope of the pump, fν(x, y) is the transversal distribution of the guided mode and
is normalized as

∫∫
|fν(x, y)|2dxdy = 1. The Signal and Idler fields are considered

quantum fields with the form:

Ê(±)
µ (r⃗, t) = i

√
δkfµ(x, y)

∑
k

ei(kµz∓ωt)l(ω)â†µ(k), (2.48)

with µ = s, i, δk = 2π/LQ is the mode spacing, LQ is the quantization length, â†µ(k)
the creation operator,and l(ω) is given as

l(ω) =

√
h̄ω

πϵ0n2(ω)
.

The fields are then introduced in the Hamiltonian:

Ĥ =
3

4
ϵ0χ

(3)

∫
dr⃗

[
A1f(x, y)

∫
dω1α1(ω1)e

i(k1z−ω1t)

]
×[

A∗
2f

∗(x, y)

∫
dω2α2(ω2)e

−i(k2z−ω2t)

][
i
√
δkf ∗

s (x, y)
∑
ks

e−i(ksz−ωst)l(ωs)

]
×[

i
√
δkfi(x, y)

∑
ki

ei(kiz−ωit)l(ωi)

]
.

(2.49)

Grouping similar terms, the Hamiltonian takes the form of:

Ĥ = −3

4
ϵ0χ

(3)A1A
∗
2δk

[∫∫
f1f

∗
2 f

∗
s fidxdy

]∑
ks

∑
ki

l(ωs)l(ωi)∫∫
dω1dω2α1(ω1)α2(ω2)e

−i(ω1+ω2−ωs−ωi)tâ†sâ
†
i

∫ L

0

ei(k1−k2−ks+ki)zdz.

(2.50)
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Defining

feff =

∫∫
f1f

∗
2 f

∗
s fidxdy,

as the spacial overlap integral between the four fields, the phase-matching condition as
∆k = k1 − k2 − ks + ki and the difference on the frequencies ∆ω = ω1 + ω2 − ωs − ωi.
And the integral with respect of z can be develop as:

∫ L

0

ei∆kzdz =
1

i∆k
ei∆kz

∣∣∣∣L
0

=
1

i∆k
[ei∆kL − 1]

=
2

∆k
ei∆kL/2

1

2i

(
ei∆kL/2 − e−i∆kL/2

)
= Lei∆kL/2

2

∆kL
sin

(
∆kL

2

)
= Lei∆kL/2sinc

(
∆kL

2

)
,

with all this consideration the Hamiltonian take the form of

Ĥ = −3

4
ϵ0χ

(3)A1A
∗
2δkfeffL

∑
ks

∑
ki

l(ωs)l(ωi)∫∫
dω1dω2α1(ω1)α2(ω2)e

−∆ωtei∆kL/2sinc

(
∆kL

2

)
â†sâ

†
i

(2.51)

Using the first-order perturbative method, it is possible to express the state of the
generated photons as:

|ψ⟩ = |0⟩s |0⟩i +
1

ih̄

∫ t

0

Ĥ(t′)dt′ |0⟩s |0⟩i . (2.52)

If the time interval between the emission of the photon pair is much larger than the
characteristic duration of such an event, the integral limits can be extended to∫ t

0

→
∫ ∞

−∞

The state can be expressed as

|ψ⟩ = |0⟩s |0⟩i −
3L

4ih̄
ϵ0χ

(3)A1A
∗
2δkfeff

∑
ks

∑
ki

l(ωs)l(ωi)∫∫
dω1dω2α1(ω1)α2(ω2)e

i∆kL/2sinc

(
∆kL

2

)
â†sâ

†
i

∫ ∞

−∞
e−∆ωtdt′ |0⟩s |0⟩i .

(2.53)

The temporal integral is related to the dirac delta with the relation:∫ ∞

−∞
e−∆ωtdt = 2πδ(∆ω).

Using the properties of the Dirac delta, the state is:

|ψ⟩ = |0⟩s |0⟩i −
L

4ih̄
ϵ0χ

(3)A1A
∗
2δkfeff

∑
ks

∑
ki

l(ωs)l(ωi)∫
dω1α1(ω1)α2(ωi + ωs − ω1)e

i∆kL/2sinc

(
∆kL

2

)
â†sâ

†
i |0⟩s |0⟩i .

(2.54)
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To continue the analysis, the pumps are considered Gaussian waves, and have an enve-
lope with the form:

αν(ω) ∝ e
− (ω−ω0

ν )2

σ2
ν ,

been ω0
ν the central frequency of the pump ν and σν the pump bandwidth. for the

scenario where one of the pumps is a continuous wave, the bandwidth tends to zero,
and the Gaussian envelope tends to a Dirac delta, α2(ωs+ωi−ω1) → δ(ω−ωs−ωi+ω1).
With these considerations, the state takes the following form:

|ψ⟩ = |0⟩s |0⟩i −
L

4ih̄
ϵ0χ

(3)A1A
∗
2δkfeff

∑
ks

∑
ki

l(ωs)l(ωi)

α1(ωs + ωi − ω2)e
i∆kL/2sinc

(
∆kL

2

)
â†sâ

†
i |0⟩s |0⟩i .

(2.55)

Looking at the state, it is seen that the correlation between the two frequencies is given
by the elements of the envelope of the pump and the phase-matching condition, the
product of those is known as the Joint Spectral Amplitude (JSA), this is define as

F (ωs, ωi) = α1(ωs + ωi − ω2)e
i∆kL/2sinc

(
∆kL

2

)
. (2.56)

And the Joint Spectal Amplitude for the Counter-Propagated FWM is

JSI = |F (ωs, ωi)|2 = α2
1(ωs + ωi − ω2)sinc

2

(
∆kL

2

)
. (2.57)

With the JSI is possible to know the correlation between the two photons, and see if
the states are in a pure state or not, the simulation of this is shown in the next chapter.
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Chapter 3

Simulation

In this chapter, we present the results of the simulations based on the theoretical frame-
work of the two cases of SFWM on fiber, in the case of the XP-SFWM a bow-tie fiber
the HB800, and in the CP-SFWM a conventional telecommunication fiber the SFM-
28. We start with a numerical analysis of the propagation constant, denoted as β.
This analysis serves as a fundamental step in determining the phase-matching curves.
Following the theoretical groundwork, we proceed to simulate both cases of FWM to
obtain the JSI.

The optical fiber model employed in this study for the Cross-Polarized FWM is the
HB800G, specifically designed as a polarization-maintaining fiber with a bowtie struc-
ture. The fiber’s producer provides specifications including a numerical aperture (NA)
of 0.18 and a core radius (r) of 4.45 µm.

In the case of the Counter-Propagated SFWM the fiber model employed was the
SMF28, characterized by an 8.2 µm core diameter and a Numerical Aperture of 0.14.

3.1 Propagation constant

The initial phase involves the determination of the refractive indices for both the core
and cladding of the optical fiber. To accomplish this, the Sellmeier equation for Fused
Silica, as documented in [37], is employed. The specific coefficients relevant to the
material are presented in Table 3.1:

1 2 3
ai 0.6961663 0.4079426 0.8974794
bi (µm) 0.0684043 0.1162414 9.896161

Table 3.1: Coefficients of the Fused Silica used in this work.

The Sellmeier equation has the following form:

n(λ) = 1 +
3∑
i=1

aiλ
2

λ2 − b2i
· (3.1)
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With the parameters of the optical fiber and Equation 2.11, the propagation constant
β is calculated. By using the relationship neff = βλ

2π
, we can determine whether the

result corresponds to a mode that propagates inside the core. This is the case if
ncladding < neffective < ncore. Figure 3.1 shows the refractive indexes of the XP-SFWM,
and in Figure 3.2 the refractive indexes of the CP-SFWM are shown.

Figure 3.1: Refractive indexes of the core, cladding and the theoretical effective index
of the propagated mode of the HB800.

Figure 3.2: Refractive indexes of the core, cladding and the theoretical effective index
of the propagated mode of the SMF28.

3.2 Cross-Polarized

To account for the effects of birefringence, an initial estimate of the difference in re-
fractive index was obtained from Ref. [27], which suggested a value of approximately
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3.7× 10−4. Subsequently, through a meticulous analysis of the generated photon spec-
tra, this value was fine-tuned to approximately 3.74× 10−4 to ensure a more accurate
representation of the system’s behavior.

Once the propagation constants are known, it is possible to determine the phase-
matching condition using Equation 2.25. For these simulations, a pump power of 15
mW and a non-linear parameter of γ = 37× 10−9, (mW · µm)−1 were considered. The
curves depicting perfect phase matching, which were obtained using the calculated β
values, are shown in Figure 3.3. With a pump wavelength of 725 nm, the signal and
idler wavelengths are 628 nm and 856 nm, respectively.

Figure 3.3: Phase matching theoretical curves for the HB800 fiber, with a range of
frequency difference of 0.38-0.41 PHz in the region of interest.

With knowledge of the phase-matching condition, we can now describe the theoreti-
cal correlations between the signal and idler frequencies by simulating the Joint Spectral
Intensity (JSI) and its components α and ϕ. Figure 3.4 displays both components of the
JSI as well as the JSI itself, all based on a pump wavelength of 725 nm and a spectral
width of 5 nm. The theoretical JSI indicates a high-frequency correlation between the
two photons, this is seen by the orientation of the JSI, the structure is close to a line
where a frequency of the Signal correspond to a frequency of the Idler.

20



(a) α(ωs, ωi) (b) ϕ(ωs, ωi)

(c) JSI(ωs, ωi) (d) JSI(λs, λi)

Figure 3.4: JSI and his components to the pump wavelength used in the experiment
725 nm, the (d) figure shows the JSI in terms of the wavelengths and in the range were
the experimental measurements were made.

Projecting the Joint Spectral Intensity (JSI) or obtaining a marginal JSI for one of
the frequencies allows us to compare the measured spectra of the generated photons.
These spectra, captured with a pump wavelength of 725 nm, are depicted in Figure 3.5.
In the Results section, there is a comparison between the theoretical marginal JSI and
the experimentally measured spectrum.

The JSI was also calculated for various pump wavelengths, as shown in Figure 3.6.
It can be seen that the JSI do not have a significant difference when changing the wave-
length, in the phase-matching condition the term with more weight is the birefringence,
because of this, changes in the wavelength do not alter the JSI in a significant way.
Also in Figure 3.7 the marginal JSI for those wavelengths are shown.
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(a) Signal (b) Idlers

Figure 3.5: Theoretical spectrum of the signal and idler expected when the fiber is
pump at 725 nm.

(a) 705 nm (b) 710 nm

(c) 715 nm (d) 720 nm

Figure 3.6: JSIs for different pump wavelengths.
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(a) Signals (b) Idlers

Figure 3.7: Theoretical spectrum of the signal and idler for different pump wavelength.

3.3 Counter-propagation

As mention for the XP-SFWM is considered a case where it can interact with the
quantum memory reported in [25], where it require a photon generated at 1532 nm
with a bandwidth of 150 MHz. The lasers that are considered were the Chameleon
Vision II that is a tunable pulsed laser with a emission range of 680-1080 nm and the
TLB-6728 Velocity, that is a CW tunable laser with a range of emission of 1520-1570
nm. The optical fiber chosen for this study was SMF28, characterized by an 8.2 µm
core diameter and a Numerical Aperture of 0.14. The phase matching curves were
calculated for a scenario in which the CW lasers operated at a fixed wavelength of 1532
nm, while the pulsed laser’s wavelength varied.The results are depicted in Figure 3.8. It
is evident from the figure that the Idler photon consistently maintains a wavelength of
1532 nm, regardless of the second laser’s wavelength. Furthermore, the Signal photon
exhibits the same wavelength as the varying laser.

Figure 3.8: Phase-Matching for a continuum laser at 1550 nm, it can be seen that the
idler will maintain the wavelength of this laser.

In Figure 3.9, the Joint Spectral Intensity (JSI) is depicted for the mixed case with
a pulsed pump and a CW pump. The JSI reveals an ultra-narrow structure, primarily
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oriented along the direction of the λi axis.

(a) α (b) ϕ (c) JSI

Figure 3.9: JSI of the counter-propagation case, it can be seeing that very narrow in
comparison with the cross-polarization case.

The transition of interest have a bandwidth of 150 MHz, to predict the bandwidth
that the photon will have depending on the length of the fiber it is possible to use the
expression:

σi =
2√

ΓL(k′p + k′cw

The required length of the fiber for a bandwidth of 150 MHz is 1.65 m. In Figure
3.10 the bandwidth with respect of the fiber length is represented.

Figure 3.10: Bandwidth of the idler photon respect the fiber length.
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Chapter 4

Experimental development

In this chapter the setup for generation of photon pair and correlation measurement is
presented, and is utilized to measure the photons that are generated by the XP-SFWM
on a bow-tie fiber model HB800. The first section will provide an overview of the entire
system set up for generating the photon pair, filtering and separating the signal and
idler, and measuring both spectra using the ICCD (Intensified Charge-Coupled Device)
camera.

In the second section it will be present the assemble of the characterization system
to measure the correlations between the two photons generated in the fiber, with the
use of two monochromators and two Avalanche Photodiodes(APD).

4.1 Fiber emission

The laser employed in this study was a Coherence Chameleon Vision II, which is a
pulsed and tunable Ti:Sapphire laser. It delivered a peak power of 3 W at 800 nm and
offered tunability across a range from 680 nm to 1080 nm. For most of the experiments,
a wavelength of 725 nm was used. All mirrors utilized in the experiment were Thorlabs
broadband dielectric mirrors (BB1-E02) designed for optimal reflection in the 400-750
nm range.

The optical setup employed prior to the collection of laser light into the fiber is
illustrated in Figure 4.1. The initial component utilized, in addition to the mirrors,
was a Faraday Isolator (IO-5-NIR-LP). This isolator induced polarization in the non-
polarized laser beam and featured a polarizing filter to prevent any reflected light from
returning to the laser source.

To regulate the power within the system, a half-wave plate (model WPH05M-808
∅1) and a polarized beam splitter (PBS102) were employed. The wave plate served to
fine-tune the laser beam’s polarization and adjust the power transmitted through the
beam splitter, it can be seen in Figure 4.2.

In the experiment, precise control over the spectral width was crucial to tailor
the form of the JSI. Narrower spectral widths were desired to produce photons with
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Figure 4.1: Setup to detect and measure the Signal and Idler photons, the filters before
the monochromator are to measure the Signal photon, those are change for a FELH800
and a LP830 to measure the Idler photon.

Figure 4.2: Half-Wave plate with Polarized beam splitter to control the power of the
system.

factorizable states, or an entangled pair of photons with tightly defined spectra. For
this work, a 5 nm spectral width was selected to generate a correlated state. To achieve
this level of control, a 4f filter setup was constructed. This setup involved a lens with a
20 mm focal length (AC254-200-B), a prism (PS859), a mirror, a half-wave plate, and
a frame with two razors, as it can be seen in Figure 4.3.

The focal point of the lens served as the Fourier plane, where the razors were posi-
tioned within the frame. By adjusting the frame, it was possible to control the distance
between the razors, effectively cutting specific components of the light beam. Behind
the razors, a mirror was placed, ensuring that the rest of the 4f setup maintained the
same lens and prism used. To separate the filtered beam, a half-wave plate was in-
troduced to induce a 45° polarization rotation. This rotation caused the beam to be
reflected rather than transmitted when it reached the beam splitter.

The light reflected by the beam splitter was aligned with a mirror to ensure it fol-
lowed the path leading to the HB800G fiber. For precise alignment, the mirror within
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Figure 4.3: 4f filter, with a half-wave plate to rotate the polarization of the light to
make it reflect in the beam splitter.

the 4f filter was used for fine-tuning. The HB800G fiber used in the experiment is a
Bow-Tie Polarization-Maintaining Fiber designed for a wavelength of 830 nm, with a
cut-off range of 600-800 nm, and a numerical aperture of 0.14-0.18. The specific fiber
used had a length of 15 cm.

Figure 4.4: Bow-tie structure of the HB800G fiber, it was illuminated with a white
light on the other face.

To orient the fiber correctly, two fiber rotators (HFR007) were employed, positioning
the slow axis perpendicular to the surface of the table. Achieving the proper orienta-
tion involved using a white lamp and a CCD camera. The light illuminated the fiber,
allowing the internal structure to be observed as in the Figure 4.4. The fiber rotators,
along with the fiber, were mounted on multi-axis stages, this is shown in Figure 4.5.

The laser beam was coupled into the fiber using a microscope objective with a nu-
merical aperture of 0.2 and a focal distance of 3 mm. An identical objective was placed
on the other side of the fiber. The fiber was pumped with a 25 mW laser, and after
optimizing the coupling, the output power was measured at 18.5 mW, representing a
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Figure 4.5: HB800G Fiber mounted in the NanoMax Stages.

collection efficiency of 74%.

Once the fiber was in place, a half-wave plate was positioned before the fiber and
rotated to achieve a 45-degree rotation of polarization. Another polarized beam splitter
was then introduced. A technique similar to the one reported in [20] was employed,
where light travels between the two polarization axes within the fiber, creating inter-
ference upon interaction with the beam splitter. This interference results in a fringe
pattern, with the spacing between the curves indicating the birefringence.
Measurements were taken using a spectrometer (CSS200) and are displayed in Figure

Figure 4.6: Spectrum of the laser at 800 nm, which corresponds to the optimal wave-
length for the laser’s operation. Additionally, two additional curves are visible, which
were originally part of the laser’s emission but were cut off with the 4f filter.

4.6. However, it became apparent that the spectrometer lacked the necessary resolution
to fully resolve the interference structure. Consequently, the value of birefringence was
obtained from the article [27], which reported a value of 3.7 ± 0.1.

The next step involved measuring the signal and idler spectrum, as these could
not be observed using the spectrometer. To perform these measurements, an ICCD
was used. However, before proceeding, it was essential to filter out the signal and
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idler from the pump. This initial filtering process employed a half-wave plate and a
Glan-Thompson Polarizer, specifically a GTH5M model. The Glan-Thompson polarizer
was positioned to block light polarized horizontally, and this orientation was achieved
with the assistance of a polarized beam splitter. This filter was implemented to take
advantage of the fact that the signal and idler are cross-polarized to the pump wave.
The filter can be seen in Figure 4.7

Figure 4.7: Polarization filter to extinguish the majority the pump power that transmit
on the fiber.

To collect the signal and idler, a single-mode polarization maintainer fiber was
employed, which was securely placed in a 3-Axis NanoMax Flexure Stage. This setup
also featured a similar microscope objective to the one used with the HB800 fiber. The
polarization maintainer fiber had an impressive light collection efficiency of 80%. To
measure the signal and idler, various spectral filters were utilized. For the signal, the
FESH700 and the FESH650 filters were used, while the idler was measured with the
FELH800 and the LP830 filters, this can be seen in Figure 4.8. With the appropriate
filters in place, the fiber was connected to a monochromator, specifically the Shamrock
500i model, with the ICCD camera attached to it. This setup facilitated precise spectral
measurements.

The ICCD camera was used to capture the spectra of the signal and idler. The
system was configured to operate in Step and Glue mode, where it recorded the pho-
ton counts within selected wavelength regions. The measurements were performed in
smaller wavelength ranges of 5 nm. The ICCD camera was set with an exposure time
of 5 seconds and a gain of 500. The measured spectrum of the signal and idler can be
observed in Figure 4.9.

In addition to the 725 nm pump wavelength, measurements were also taken at five
closely spaced wavelengths: 695 nm, 700 nm, 705 nm, 715 nm, and 735 nm. These
spectrum are presented in Figure 4.10. To optimize the measurements, the exposure
time was reduced to 0.5 seconds, and the system was adjusted using video mode. It’s
important to note that the idler was expected to have fewer counts than the signal
due to the presence of additional light generated by other processes, such as Raman
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Figure 4.8: The dichroic mirror divides the Signal and Idler and both are filtered to
eliminate any possible pump remaining.

scattering.

To enhance the measurement of both the Signal and Idler, two APDs (SPCM-
AQRH-13-FC) and an IDQ800 were employed. A dichroic mirror (DMSP805) with a
cutoff wavelength of 805 nm was used to separate the Signal and Idler. Additionally,
another 3-Axis NanoMax Flexure Stage was employed, featuring a microscope objec-
tive and a fiber of the same model used in the other path. In this configuration, the
Signal photons passed through the dichroic mirror (DM), while the Idler photons were
reflected. The Signal path was equipped with the FESH650 and the FESH700 filters,
while the Idler path featured the FELH800 and LP830 filters.

The IDQ800 is an 8-channel time-to-digital converter, coincidence counter, and time
interval analyzer that receives the pulses from the APDs. The program of the IDQ800
provides the count numbers from the APDs, as well as the coincidences of the two
signals. A coincidence window of 62 bins (1 bin = 81 ps) was used. The obtained
counts for various pump powers at 725 nm are listed in table 4.1. The Coincidence
Percentage is taken with respect to the signal counts. It is evident that the range of
coincidence falls between 15-20%. To confirm that the counted photons are indeed
generated by SFWM, it is expected that there should be more than 10% coincidence
between the two photons.

Subsequently, coincidences were measured at other wavelengths to observe the count
behavior and assess if noise from other processes was reduced. The results are presented
in Table 4.2, it can be seen that usually the Idler counts are the double of the Signals,
the extra counts presented in the Idler came for another processes that were generated
in the infrared region, that were not possible to filter. Count optimization was achieved
by fine-tuning the screws in the recollection fiber stages and adjusting the objective
focus following the HB800.

Upon optimizing the coincidence counts, the fibers were reconnected to the monochro-
mator and the ICCD. The new spectra, as shown in Figure 4.11, exhibited noticeable
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(a) Signal (b) Idler

Figure 4.9: Counts of the Signal and Idler emission, it can be seen that contrary to the
expected form for the Figure 3.5 the idler have higher counts that the signal.

Power (mW) Counts Signal Count Idler Coincidence Coincidence
Percentage

10 14995 42992 2974 20%
15 37817 97145 5814 15%
20 61049 141113 9755 16%
25 98666 183316 16064 16%
30 153972 314754 27544 18%
35 242167 431072 43254 18%

Table 4.1: Coincidence table for different pump powers. As it can be seen all of the
coincidence ratio is higher than 15%

differences compared to those presented in Figure 4.9. Specifically, the signal peak was
taller, and the idler peak was broader.

The same procedure was done to the wavelengths that are in the Table 4.2, those
can been seen in the Figure 4.12. Of this figure it is possible to see that the idler became
more wider as the wavelength increase.
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(a) Signal (b) Idler

Figure 4.10: Counts of the Signal and Idler for five different wavelengths around the
central wavelength of 725 nm.

Wavelength(nm) Counts Signal Count Idler Coincidence Coincidence
Percentage

705 165947 344950 30097 18%
710 156422 386545 29322 19%
715 98666 183316 16064 16%
720 167890 224557 27386 16%
730 159955 183746 25367 16%

Table 4.2: Counts at different wavelength, the pump power used was of 25 mW.

(a) Signal (b) Idler

Figure 4.12: Spectra of four different wavelengths, it can be seen that the larger pump
wavelength the Idler became wider.
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(a) Signal (b) Idler

Figure 4.11: Spectra for Signal and Idler one the coincidence were optimized, the form
of both emissions have a big difference to the seen without this optimization.

4.2 Spectral Characterization

Now that the system has optimized the coincidence of the photons generated in the
FWM process, the next step is to determine the correlation relation between them, ul-
timately obtaining the JSI. To accomplish this objective, a dedicated characterization
system was essential. This system facilitated the scanning of signal and idler wave-
lengths and allowed the measurement of coincidence at each point in the spectral do-
main. The implementation of this system hinged on the utilization of two monochroma-
tors to precisely select the wavelengths of interest, two Avalanche Photodiodes (APDs)
to measure photon counts in both signal and idler paths, and the IDQ800 to quantify
the amount of coincidence between these photons. The scheme of the array is show in
Figure 4.13

Figure 4.13: Array of the complete system of characterization, with the PC controlling
the monochromators, and receiving the counts and coincidence of the IDQ800.
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The initial step involved determining the efficiency of the monochromators. By re-
moving the filters in the transmitted path, the pump light was collected and directed
into the entrance of a monochromator. At the exit, a multimode fiber with a 105 µm
radius was placed. The entrance fiber received 4.60±0.05 mW of collected power, while
the exit fiber had 0.12 mW±0.05 and 0.13 mW±0.05 in each one, indicating a 2%
efficiency for both monochromators.

Subsequently, the fibers were reconnected to the APDs, and both paths were ad-
justed to achieve one million counts with one second of exposure. The recollection fibers
were then connected to the monochromators, and at the exit ports of both monochro-
mators, multimode fibers were attached, connecting them to the APDs.

Figure 4.14: Monochromators withe APDs connected, the cardboard box around was
needed because there was a big amount of the laser light entering the APDs.

The multimode fiber was recollecting a big amount of noise due to the light of the
laser that was been dispersed with almost nine thousand extra counts, to prevent it a
box was built with cardboard, reducing to just one thousands of noise with one second
of exposition time. Most of the light was entering on the multimode fibers due to their
jacket letting transmission window. The setup of the system is show in the Figure 4.14

With the system in these conditions, counts were measured in both paths, and the
data is presented in Figure 4.15. It’s evident that the signal is taller than the idler,
which is wider, consistent with what is expected based on Figure 3.5.

Then measurements of coincidence were conducted to obtain the JSI. The measure-
ment range extended from 617 nm to 643 nm for the Signal and from 845 nm to 871 nm
for the Idler, with a step size of 0.5 nm. The time exposure was set to 30 seconds, and
the system was controlled by a LabVIEW program. The results of these measurements
are displayed in Figure 4.16. The next section will discuss all the results obtained and
compare them with the theoretical expectations.
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(a) Signal (b) Idler

Figure 4.15: Counts taken with the APDs step by step with the monochromator, as it
can be seen have less noise to those taken with the ICCD.

Figure 4.16: Experimental JSI obtained, it present an orientation of 56.30°.

The software program employed to control and automate the measurements was
originally crafted by Hector Cruz Ramirez, a colleague from the Universidad Nacional
Autonoma de Mexico. This program served as the basis and was subsequently modified
to seamlessly interface with the specific models of monochromators utilized within the
institution.
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4.3 ICCD measurement

Another approach that was attempted involves using the ICCD camera triggering the
gain when an APD detects a photon. This method still requires some improvements,
and a result has not been obtained yet.

In this section, an alternative technique for measuring the coincidence of the photon
pair will be presented. This method involves the use of monochromators, an APD, the
ICCD, and some Phillips modules that modify electrical signals. The objective is to
introduce a time delay between the signal of the arriving of the Idler photons at the
APD to activate the photocathode of the ICCD when the Signal photons arrives. With
this technique, it is possible to measure a full wavelength in a small amount of time
compared to the technique used in the previous section.

The same setup was used up to the connection of the recollection fibers. However,
for this case the fiber of the Signal path was connected to 20 meters of single-mode fiber,
introducing one hundred second of delay in the arrival of the photons to the ICCD. In
the Idler path the recollection fiber was connected to the APD, and the BNC cable was
disconnected of the IDQ800 and connected to some Phillips modules to convert it to
a TTL signal. All the modules accept negative voltage, so the first element connected
was a Phillips model 760 to change the polarization of the signal. Then signal was
connected to the module 704 which change the pulse to a NIM pulse, the module can
change the width of the pulse with a screw. Then the signal was connected to the
module 792 which is two section delay, with steps of 0.5 ns, with a total delay of 127
ns, 63.5 ns in each delay. The coaxial cables use to interconnect the modules introduce
a time delay in the signal of 3.5 ns.

The output signal was connected to a BNC cable with a Phillips model 760 to trans-
form the signal to a TTL. This cable was connected to the Direct Gate of the ICCD.
For the ICCD, a coaxial cable was connected to the Gate monitor, which was then
connected to an oscilloscope to monitor the activation of the photocathode. Addition-
ally, a BNC was connected to another output of the module 704 and connected to the
oscilloscope. This was done with the objective of observing the time delay presented
between the NIM pulse and the photocathode activation.

The ICCD was configured to be in internal trigger with gain triggered by the direct
gate. The objective was to activate the gain when the Signal photon arrives, capturing
all the wavelength correlations. To achieve this, it was necessary for the Idler signal to
arrive 20 ns before the Signal, which is the response time of the ICCD. The exposure
time was set to 30 seconds, and the acquisition was set in video mode. The time delay
was increased with the modules to find the optimal time delay, determined to be 20
ns with a width in the TTL pulse of 50 ns. The spectra taken can be seen in Figure 4.18.
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Figure 4.17: Phillips modules, with 704 726,792

As can be observed, the spectra are barely distinguishable from the noise level. This
was with four hundred thousand counts in the Idler APD, just below the recommended
frequency on the Photocathode of five hundred thousand. Subsequently, attempts were
made to reduce the width of the TTL pulse, but even with a 40 ns width, it became
exceedingly challenging to differentiate the spectra from the noise. The target width
was 10 ns but achieving this within the required time frame proved to be impossible.

Figure 4.18: Spectra of the signal with a width of 50 ns, the width of the pulse determine
the time window in which the gain is active.
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Chapter 5

Discussion and conclusions

With all the data of the simulation and the experimental measurements, it is time to
perform a comparative analysis and evaluate the effectiveness of the spectral charac-
terization system for the XP-SFMW. As previously mentioned, the birefringence value
was calibrated using the experimental data derived from the ICCD spectra. This cali-
bration process involved determining the highest point of each curve as shown in Figure
3.3. Utilizing this adjusted birefringence data, the phase-matching curve was modified,
as clearly demonstrated in Figure 5.1. There is an excellent agreement between the
experimental data and the phase-matching curve.

Figure 5.1: Phase-Matching curve compare to the central wavelengths measured.

The projection of the JSI over the Signal and Idler wavelengths can be directly
compared with the counts obtained with the APDs and monochromators. As shown in
Figure 5.2, it’s worth noting that both the experimental data and the simulation were
normalized based on their respective highest values to ensure a clear comparison. These
curves exhibit a good agreement with the data. Once again, the central wavelength of
the Idler photon exhibits a slight variation, while the width of both curves is nearly
identical. This further validates the alignment between the experimental results and
the simulation.
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(a) Signal (b) Idler

Figure 5.2: Counts measured with the APDS, against theoretical marginals JSI.

It is evident that the model employed for simulating the fiber yields results that
closely align with those obtained in the experimental measurements. This congruence
between the model and the real data is a positive indication, especially for comparing
the theoretical JSI with the experimental coincidence measurements and evaluating the
effectiveness of the characterization system. Both aspects are illustrated side by side in
Figure 5.3.

(a) Theoretical (b) Experimental

Figure 5.3: Theoretical and Experimental JSI, both were plotted in the same range for
easy comparison.

The experimental measurements appear truncated in comparison to the theoretical
JSI. This truncation could be attributed to an insufficient exposure time for captur-
ing the entire coincidence structure. However, it is noteworthy that the orientation
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of the coincidence pattern is akin to that observed in the experimental data. As men-
tioned in the experimental section, the presented orientation is approximately 56.3°±2°,
whereas the theoretical orientation is approximately 51.88°. This theoretical value was
determined using Equation 5.1.

θ = − arctan

(
τs
τi

)
(5.1)

where τµ = L[β′
p−β′

µ] [19].The discrepancy between the measured JSI an the theoretical
result, could be assing to the length of the fiber, that was reduced when this was cut
and the amount of counts that were obtained with the exposition time used.

The characterization system has demonstrated its capability to perform accurate
measurements of the correlations between Signal and Idler photons, seen that the JSI
obtained is similar to the theoretical obtained. This confirmation of the system’s effec-
tiveness opens the door for its application in various other experiments as it will be the
CP-SFWM, and future experiment with SPDC.

The main challenge encountered in the characterization system was the substantial
losses in the monochromators. Even with a narrow spectral width of 5 nm and the
pump power reduced by the 4f filter, only 4% of the power was captured. This was
particularly evident in the coincidence measurements, where the peak value recorded
with a 30-second exposure time was only 236.

A potential future enhancement for the system could involve replacing the monochro-
mators with diffraction elements controlled by rotating mounts. This change could
serve a dual purpose: reducing losses and creating a more compact system for easier
integration into other experiments. By improving the power transmission through the
characterization system, it would be possible to reduce the data acquisition time or
maintain the same exposure time for more precise measurements. With appropriate
characterization of the rotatory mounts, a higher resolution can be achieved, allowing
for smaller measurement steps.

Regarding the ICCD measurements, there is room for improvement in the imple-
mentation of the technique. The use of two monochromators can potentially reduce
the count rate, allowing for an increase in the power introduced to the fiber and, con-
sequently, more photons in the Signal path for detection. However, additional work is
needed to determine the optimal width of the TTL pulse for JSI measurements. A pulse
that is too wide may introduce counts unrelated to the measurement, while a pulse that
is too short may not provide sufficient counts to distinguish from noise. Exploring these
alternatives and finding better solutions will be part of future research efforts.

Due to technical malfunctions with the laser, the measurement of the Joint Spectral
Intensity (JSI) for the Counter-Propagating case could not be completed within the
timeframe of this study. This aspect will be addressed promptly. Nonetheless, even
with this component pending, this work marks the initial phase in constructing a fully
integrated quantum memory. Since a quantum memory will require a factorizable pho-
ton pair state, to compare the store photon, with the other. The subsequent phase
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involves implementing CP-SFWM and characterizing the photon pair spectral correla-
tions. Once achieved, this photon pair can serve as the source for the quantum memory
in an erbium-doped optical fiber, as detailed in [25].

In conclusion, in this work spectral characterization system that meets the require-
ments for precise measurement of photon correlations has been successfully developed
(implemented and characterized). It has been demonstrated that this system provides
results that closely align with theoretical expectations. This accomplishment repre-
sent the first step into the construction of a complex system of a quantum memory in
erbium-doped fiber with a photon source with factorizable states generated by Counter-
Polarized Spontaneous Four Wave Mixing.
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