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Abstract

by Gloria Elizabeth Rodríguez García

Structured light is a well-established concept in optics and computer vision for sev-
eral decades, but it has been just over a decade ago that the concept re-emerged
as a topic of interest. It involves manipulating light properties like amplitude, po-
larization, phase, frequency, spin angular momentum (SAM), and orbital angular
momentum (OAM) by combining spatial or temporal degrees of freedom (DoFs). In
the broader context of optical research, vector beams have emerged as a fascinat-
ing and versatile class of structured light. They are characterized by their spatially
varying polarization states, which distinguish them from traditional scalar beams.
This multifaceted approach to light has led to remarkable applications across fields
such as optical tweezers, high-resolution microscopy, and both classical and quan-
tum communications.

This master’s degree thesis presents a pioneering technique for generating vector
beams using complex amplitude modulation in an on-axis configuration, where the
holograms are displayed in a reflective spatial light modulator. The primary focus
of this research is to address a critical issue in the field: the stability of vector beams
during their generation and propagation. In addition to proposing a novel vector
beam generation method, this work introduces a quantitative approach to assess
their stability.

As a proof-of-concept and a central part of study reported on this work is the creation
of Laguerre-Gaussian (LG) vector beams with the proposed experimental set up.
The experimental results presented in this thesis demonstrate the effectiveness of
the proposed technique in generating vector beams for which the stability is ensure
by the fact that the light that superimposes to generate the beams is following always
the same optical path. The holograms used to generate the beams were computed
using the Mathlab software. To fully characterize the vector beams generated, the
Stoke’s polarimetry was used.
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Chapter 1

Introduction

Although the idea of controlling the properties of light dates back many centuries, it
has been only a little more than two decades ago [1, 2, 3] when the terms structured
light, tailored light, shaped light, sculpted light were coined to refer to a beam in which
the degrees of freedom (DoFs) either in the spatial or temporal domain have been
manipulated: amplitude, polarization, phase, frequency, spin angular momentum
(SAM), orbital angular momentum (OAM), among others [4, 5]. Structured light is
the most generalized form of light and it arises from the non-separable superposi-
tion of one or more DoFs [6]. In the consecutive, the terms "structured light", "struc-
tured field" and "structured beam" will be used indistinctly to refer light beams that
have been intentionally tailored, nevertheless it is worth mentioning that a broad
characterization of structured light differentiates between scalar and vector beams
depending on the distribution of polarization along the plane transverse to its prop-
agation: homogeneous along the whole plane for the first case, and inhomogenous
for the second case [7].

The great interest that has arisen around structured light has contributed to unveil
properties, behaviors and applications that may seem impossible several years ago,
such as the self-healing property [8] or its orbital angular momentum [9]. In the
same manner, thanks to the interest and efforts dedicated to the study of structured
light, the field has had an important development [10]. Structured light has found
applications in several fields including optical trapping [11], optical metrology [12],
high-resolution microscopy [13], as well as classical and quantum communications
[14, 15].

Particularly, due to the versatility and potential applications that structured light
may have, there has been a great effort in the generation and characterization of
structured fields [16]. In this realm, computer-controlled devices such as Spatial
light Modulators (SLMs) and Digital Micro-mirror Devices (DMDs) are quite pop-
ular partly due to its flexibility to generate light beams with almost any desired
shape [5]. In order to codify the shape of the desired field it is important to have
a mathematical representation for it, in this context the choice of a coordinate sys-
tem is relevant when generating structured beams since it allows to specify how
polarization and spatial information are going to be manipulated: depending on
the coordinate system used to solve the wave equation, the solutions take different
forms. Additionally, having a mathematical representation for the beams, allows
to describe, characterize, and analyze them in a convenient way. For the case of
the beams generated, reported and described in this work, the selected coordinate
system was cylindrical, which give raise to Laguerre-like solutions; these solutions
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correspond to Laguerre-Gaussian beams. It is deserving of mention that the manip-
ulation of light when using DMDs or SLMs mainly depends on complex amplitude
modulation (CAM) which is primarily an optical technique that involves controlling
the phase and amplitude of light independently at different points within a two-
dimensional space to create complex spatial patterns of light [17].

Finally, but not less important, it should be mentioned that the characterization
of the vector beams is crucial to devise the potential applications of the generated
beams, among the quantities to characterize, their ’purity’ and ’stability’ are out-
standed as important parameters to consider. Concerning the purity, there has been
a relatively recent but robust formulation that includes the work of McLaren et al
[18], Ndgano [19], and Selyem et al [20]; with regard to the stability, the approaches
are commonly based on qualitative descriptions but the proposal of Perez-Garcia
and collaborators [21] is an attempt of quantifying this property using the root mean
squared error.

This thesis is structured into seven chapters to systematically explore this subject as
follows:

1. First of all, in chapter 2, the main concepts related with vector beams are shown
and a brief explanation about how they differ from scalar beams is provided. In
this chapter the paraxial Helmholtz equation as well as its solution in cylindri-
cal coordinates is introduced, followed by the description of the most common
vector beam generation techniques, finalizing with the explanation of Stokes
formalism and how it can be used to characterize the quality and stability of
vector beams.

2. Chapter 3 contains the main information concerning liquid-crystals properties
and spatial light modulators characteristics. In the same manner, some tech-
niques that use one or two SLMs to modulate phase, amplitude and polariza-
tion, are presented and explained.

3. Afterwards, in chapter 4, the core idea of complex amplitude modulation is
presented as well as the variety of approaches that use this method. Special
attention is devoted to the approximation proposed by Arrizon et al, which is
the one implemented in this work.

4. In chapter 5 the experimental setup used to develop a novel technique that
allows LG-vector beams generation using a SLM in an on-axis configuration
is detailed. In this chapter the calculations needed to generate the holograms
and to perform the polarization reconstruction are explained.

5. Chapter 6 show the results obtained: representative examples of the generated
LG vector beams are provided, together with a characterization of their state
of polarization and a quantitative analysis of their purity and stability.

6. Finally, on chapter 7 the main conclusions are highlighted together with the
most relevant information concerning the technique implemented. Some ideas
about possible improvements are suggested.
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Chapter 2

Vector beams

On this chapter the main concepts related with vector beams are shown. First of all,
the wave equation is presented; afterwards the approximations needed to deduce
the paraxial Helmholtz equation are introduced and the solution in cylindrical coor-
dinates is deduced. The deduction is followed by a description of scalar and vector
modes considering the DoFs associated with the spatial form and polarization. Next,
some of the generation techniques are summarized. Finally the Stokes polarimetry
formalism, which is the base for the characterization of vector beams, is explained.

Once assumed that a feasible description of light is as an electromagnetic wave, it
is possible to demonstrate with the help of Maxwell’s equations that light is in fact
described as a wave function that satisfies the second-order differential equation
known as wave equation, which involves the reduced speed of light (the rate between
the speed of light in free space and the refractive index of the medium by which it is
traveling) c = c0

n ; n ≥ 1. Let us consider the wave equation given by:

∇2E(r, t)− 1
c2

∂2E(r, t)
∂t2 = 0, (2.1)

∇2 corresponds to the Laplacian operator and is defined in cartesian coordinates by
∇2 = ∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 . Any function satisfying this equation, represents a possible
optical field. Notice that only the real part of such function has a physical meaning.

By assuming that the complex wave function satisfying equation 2.1 may be ex-
pressed as:

E(r, t) = E(r) exp [i(k · r − 2πνt)] , (2.2)

and after substitution of 2.2 in 2.1, one gets the Helmholtz equation [22]:

(∇2 + k2)E(r) = 0, (2.3)

where k = ω/c is the wavenumber and is the magnitude of the wave vector k =
kxx̂ + kyŷ + kzẑ. For a wave traveling along the z direction, the transverse Lapla-
cian, defined as ∇2

T = ∂2

∂x2 +
∂2

∂y2 , is introduced. Therefore ∇2 = ∇2
T + ∂2

∂z2 and the
Helmholtz equation may be written as:(

∇2
T +

∂2

∂z2 + k2
)

E(r) = 0. (2.4)

It is known that a field propagating along z is given by:

Ẽ(r) = E(r) exp(−ikz). (2.5)
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Substitution of 2.5 in 2.4 gives:(
∇2

T +
∂2

∂z2 − 2ik
∂

∂z

)
E(r) = 0. (2.6)

If the field is varying slowly along the propagation direction compared with the
wavelength, that is if ∆E(r) ≪ E(r) for ∆z = λ, then the factor ∂2E(r)

∂z2 ≪ k ∂E(r)
∂z and

also ∂2E(r)
∂z2 ≪ k∇2

TE(r) therefore it may be neglected and the previous equation may
be reduced to the paraxial Helmholtz equation (PHE):(

∇2
T − 2ik

∂

∂z

)
E(r) = 0. (2.7)

The simplest solutions for these equations are the well known plane and spheri-
cal waves, nevertheless one of the most important solutions for this equation is the
Gaussian function, which has unique characteristics, such as: its power is mainly
located within a small cylinder surrounding the beam axis, the wavefronts are ap-
proximately planar near the beam waist and nearly spherical far from it. Also the
emission of many types of lasers take the form of a Gaussian beam. More general
families of optical solutions include the Hermite-Gauss for cartesian coordinates,
the Ince- and Mathieu-Gauss for elliptical coordinates, and the Laguerre-Gauss for
cylindrical coordinates.

2.1 Laguerre-Gauss modes

A given set of solutions for the PHE is often referred as beam mode. Those solutions
depend on several factors such as the boundary conditions and the coordinate sys-
tem selected to solve the equation. For a given system, once selected the coordinate
system and considering the boundary conditions, one commonly obtain a set of sev-
eral solutions. The set of solutions form a complete orthogonal basis, which implies
that all possible electric fields in the system can be expressed in terms of the set [23,
24]. We will next consider the fundamental case of Gaussian modes, followed by the
case of Laguerre-Gaussian modes which correspond to the solution of the PHE in
cylindrical coordinates.

2.1.1 Gaussian modes

As stated before, Gaussian beams are relevant because they represent the lowest
order that a cavity can support. Additionally, these Gaussian beams are not limited
to their own family of solutions but also are included in other families of solutions,
because of their versatility and prevalence, their study provide valuable insights
that contribute significantly to our understanding of the behavior of other types of
beams.

To derive the Gaussian modes, a solution of the form [22]

U(r) =
A0

r
exp(−ikr), (2.8)

is proposed: a spherical wave. At points that satisfy
√

x2 + y2 ≪ z, that is at points
far from the origin and close to the z axis it is true that r =

√
x2 + y2 + z2 can be
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expanded in a Taylor series as:

r = z
√

1 + θ2 = z
(

1 − θ2

2
+

θ4

8
+ ...

)
; θ =

x2 + y2

z2 . (2.9)

Up to the second order:

r ≈ z
(

1 +
θ2

2

)
= z +

x2 + y2

2z
. (2.10)

By replacing the Taylor expansion of r on equation 2.8, the Fresnel approximation of
a spherical wave is obtained:

U(r) =
A0

z
exp(−ikz) exp

(
−ik

x2 + y2

2z

)
. (2.11)

This wave may be seen as a plane wave modulated by the factor (1/z) exp
(
−ik x2+y2

2z

)
.

As can be seen on figure 2.1, points near the origin are spherical and represent a
spherical wave front, while for intermediate points one have a paraboidal form, and
for points far from the origin, the phase factor approaches to zero and the wave
approaches to a planar wave [22].

FIGURE 2.1: Graphical representation of Fresnel approximation.

Since a paraboidal wave given by 2.11 is solution of the paraxial Helmholtz equation,
one may shift the function an it will also be a solution. Then, by introducing the
parameter q(z) = z + izR, with zR being the Rayleigh range, equation 2.11 may be
expressed as:

U(r) =
A0

q(z)
exp[−ikz] exp

[
−ik

x2 + y2

2q(z)

]
, (2.12)

and given the definition for q(z), we may calculate:

1
q(z)

=
1

z + izR
=

1
R(z)

− i
λ

πω2(z)
, (2.13)

for appropriate definitions of R(z) and ω(z), which will be given later on this chap-
ter. Considering the alternative representation of a complex number in the form
C = X exp(−iξ(z)) it is possible to rewrite equation 2.13 as:

1
q(z)

=
ω0

zRω(z)
exp[ξ(z)]. (2.14)
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Considering the expressions 2.13 and 2.14 in equation 2.12, one gets the Gaussian
beam given by:

U(r) =
A0ω0

ω(z)
exp

[
− x2 + y2

ω2(z)

]
exp

[
−ikz − ik

x2 + y2

2R(z)
+ iξ(z)

]
, (2.15)

where A0 is a constant and some important parameters, that can be observed on
figure 2.2 have been introduced and are defined as follows:

1. Beam waist ω0 is the value of the spot size in z = 0 and it corresponds to the
minimum value of the beam width.

2. Beam width: Refers to a measurement of how the transversal dimension of the
beam increases as it propagates:

ω(z) = ω0

√
1 +

(
z

zR

)2

(2.16)

3. Beam radius: This parameter indicates how much the plane wave-front bends
in the plane transverse to propagation.

R(z) = z

[
1 +

(
z

zR

)2
]

(2.17)

4. Gouy phase: Indicates the measurement of how much the phase of a wave has
increased due to its propagation.

ξ(z) = arctan
( zR

z

)
(2.18)

5. Rayleigh range: Distance from the beam waist, in the direction of propagation,
where the beam radius is increased by a factor of

√
2:

zR =
πω2

0
λ

(2.19)

2.1.2 Laguerre-Gauss scalar modes

Scalar modes are solutions to the PHE [25] and their main feature is that they have
spatially homogeneous states of polarization in the transverse plane perpendicular
to the direction of propagation, this means that for these beams, the trajectory of
oscillation for the electric field remains unaffected, regardless of the position of the
observation points within the cross-sectional area of the beam [26]; experimentally
one finds that when passing it through a linear polariser, a pattern that changes only
in intensity but not in distribution as the polariser rotates, is found.

The Laguerre-Gaussian scalar modes are obtained by considering cylindrical coor-
dinates (ρ, ϕ, z), in which the Laplacian operator is defined as:

∇2 =
1
ρ

∂

∂ρ

(
ρ

∂

ρ

)
+

1
ρ2

∂2

∂ϕ2 +
∂2

∂z2 . (2.20)
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FIGURE 2.2: Graphical representation of the main parameters that
describe a Gaussian beam.

Therefore the paraxial Helmholtz equation changes to:[
1
ρ

∂

∂ρ

(
ρ

∂

ρ

)
+

1
ρ2

∂2

∂ϕ2 − 2ik
∂

∂z

]
U(ρ, ϕ, z) = 0. (2.21)

It is possible to show that 2.21 takes the form of the standard differential equation
for the Laguerre polynomials, which has the Laguerre polynomials LGl

p, with radial
index p and axial index l, as solutions and are determined by [22, 23, 27]:

LGl
p(ρ, ϕ, z) =

ω0

ω(z)

[
ρ

ω(z)

]l

Ll
p

(
2ρ2

ω2(z)

)
exp

(
−ρ2

ω2(z)

)
× exp

[
−ikz − ik

ρ2

2R(z)
− ilϕ + i(l + 2p + 1)ξ(z)

]
. (2.22)

Where Ll
p are the Laguerre polynomials; l ∈ Z is also known as the topological

charge; p ∈ N is associated to the generation of (p + 1) intensity rings along the ra-
dial direction; and ω0, ω(z), R(z), ξ(z) have the same definitions as for the Gaussian
modes, as described above. The function given by 2.22 is a solution for 2.7 and is the
mathematical representation of the Laguerre-Gauss modes, which form a complete
set of solutions [22]. Note that the lowest order LG beam, that is for l = p = 0,
corresponds to the Gaussian beam.

The Laguerre-Gaussian modes have been widely studied [28, 29] due to its proper-
ties (its circular symmetry, the quantized OAM of photons, and self-similar propaga-
tion, among others) and potential applications, mainly in optical trapping [30] and as
a valuable tool for manipulating cold atoms [31]. These modes have doughnut-like
transverse intensity profiles [32] with bright rings whose radii and OAM contents
increase with l , they carry a well defined orbital angular momentum equal to h̄l per
photon [33]. On figure 2.3 a numerical simulation of LG1

0 scalar modes is shown: In
all cases the transverse plane perpendicular to the propagation is shown together
with the ellipses and lines indicating its polarization state along the whole profile,
nevertheless each beam is different since each beam has a particular polarization
state as indicated on the caption of the figure.
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FIGURE 2.3: Numerical simulation of the polarization distribution
for three different scalar beams. a) circular-left handed polarization;

b) linear polarization; c) circular right-handed polarization.

2.1.3 Laguerre-Gauss vector modes

Any superposition of solutions to the PHE is also a solution of it. If the superposi-
tion of two scalar modes that are orthogonal and which have orthogonal polarization
states is considered, then a vector beam is obtained. Vector beams are fully polarized
but, contrary to the scalar beams, they manifest inhomogeneous distribution of po-
larization along the plane transverse to its propagation [7]. This is equivalent to state
that "the spatial mode and polarisation are non-separable and should be described as
such" [6]. The inhomogeneities in polarization may be observed by placing a linear
polariser between the intensity profile and the detector, then a different distribution
will be seen depending on the orientation of the polariser. Vector beams, and par-
ticularly Laguerre-Gauss vector modes, are widely used in applications that include
STED microscopy [34].

Vector beams are mathematically described as [35]:

U(r) = u1(r) cos θR̂ + u2(r) sin θeiα L̂, (2.23)

where u1(r) and u2(r) are two orthogonal spatial modes; cos θ and sin θ with θ ∈
[0, π/2] are weighting factors that allow the transition between a purely scalar mode
(when α = 0, π/2) to a purely vector mode (when α = π/4) [6]; R̂ and L̂ are unitary
polarization vectors for right and left circular polarization, respectively; finally, α ∈
[0, π] is a phase difference between both fields, known as the intermodal phase.

A schematic representation of three different vector beams may be seen on figure 2.4,
where the green ellipses correspond to circular-left handed polarization; the white
lines to linear polarization and the orange ellipses to circular right-handed polar-
ization. Notice that b) has only linear polarization but the direction at each point
changes; whereas a) and c) have not only different orientation of the polarization at
each point but also the type of polarization changes.

It is worth mentioning a few words about the intermodal phase because it deter-
mines the temporal stability of the beam: variations of α permit the transition be-
tween different vector beams, for example if α = 0 then a radially polarized beam
is obtained, while for α = π, one have an azimuthal polarized beam; and values
in between give place to spirally polarized beams [35]. Theoretically the intermodal
phase is a constant value, but for some cases of the experimental generation of vector
beams, fluctuations due to differences in the optical path of the scalar beams that are
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FIGURE 2.4: Numerical simulation of the polarization distribution for
three different vector beams: a) web-like polarized beam; b) spirally

polarized beam; c) spider-like polarized beam.

superimposed to form the vector beam introduce an additional intermodal phase
that is not constant.As a result of the later, the vector beams generated are not stable
and manifest random oscillations between beams with several polarization states: if
the intermodal phase changes, the beam is not stable.

For the case of Laguerre-Gauss vector modes, equation 2.23 takes the form [36]:

U(r) =
√

2
2

[
LGl1

p1
(r) cos θR̂ + LGl2

p2
(r) sin θeiα L̂

]
, (2.24)

the modes generated and reported in this work are limited, due to the technical
implementation, for cases where l1 = −l2 and p1 = p2.

2.2 Vector beam generation techniques

Because of the versatility of its potential applications in areas such as optical trap-
ping and manipulation [11], quantum communications [14], microscopy [34], among
others; and thanks to the technological advances, the generation and characteriza-
tion of vector beams has been a topic with high activity in the last years (see for
example [16, 37, 38] and references therein). Concerning generation techniques, it
is possible to classify them in two categories: geometric [39, 40] and dynamic phase
modulation [41, 42].

The geometric phase techniques "involve a direct conversion of optical angular mo-
mentum from the spin to the orbital form" [43], and refer to those techniques that are
based on the use of "spatially patterned retarders where the orientation of the prin-
cipal axis has a spatial variation" [37]. The canonical example of geometric phase
optical elements is the q-plate, invented in 2006 and characterized by the topological
charge of the central singularity [44]; and its more generalized alternative, the J-plate
(introduced in 2017 as an alternative to overcome the drawbacks of the q-plates, and
based on the use of nano-structures [45]).

In spite of such techniques being highly efficient and straightforward techniques that
do not demand for complicated optical arrangements, there are some disadvantages
when using these elements, being of great relevance the fact that they have a limited
performance and are useful only for the generation of a particular optical field with
specific characteristics [37, 38].
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Dynamic phase modulation techniques imply a change in the optical path and in-
clude those techniques that rely on the use of diffractive elements, lithographically
produced sub-wavelength polarization gratings, or interferometers to split a beam
in two beams that propagate through different paths, which allows the independent
manipulation of the polarization, amplitude and phase of each beam before their
superposition [46]. Among interferometric approaches SLMs provide "a more flex-
ible way to generate the desired fields" [24, 47] and has been pointed out as one of
the most commonly used techniques because of the advantages it offers, specially
the rapid creation of nearly any vector beam and the display of unconventional,
intricate patters in spatial and polarization distributions. More details about some
generation techniques based on the use of SLMs is provided on chapter 3.

2.3 Characterization of vector beams

The polarization of a beam is a fundamental quantity that arises from and illustrates
the vector nature of light [48]. Polarization determines the direction in which the
electric field oscillates as it propagates and evidences its variation in time. In this
section, the general formalism to describe and represent the state of polarization of
light, which allows for the characterization of vector beams, is provided.

For a given optical field propagating along the z-direction in free space, its state of
polarization along the transverse plane can be represented by:

Ex = E0x cos(τ + δx)î
Ey = E0y cos(τ + δy) ĵ, (2.25)

where E0x and E0y are the x− and y− amplitude components of the field; the term
δ = δy − δx determines the phase delay between both components; τ = ωt − kz is
called space-time propagator, with ω being the frequency of a light beam assumed
to be monochromatic.

By eliminating the propagator in equations 2.25 and the appropriate algebra, it is
possible to arrive to an expression called the polarization ellipse, which describes a
behavior that "is spoken of as optical polarization" [49]:(

Ex

E0x

)2

+

(
Ey

E0y

)2

− 2
ExEy

E0xE0y
cos δ = sin δ2. (2.26)

For special considerations, equation 2.26 leads to forms that are known as degener-
ate states (or scalar modes) and which correspond to: linear horizontally or vertically
polarized light, for the cases when E0y = 0 or E0x = 0, respectively; linear ±45◦ po-
larized light if Ey = ±Ex and δ = 0, π; finally, for E0x = E0y one have right circularly
polarized light if δ = π/2 and left circular polarized light if δ = 3π/2.

Another important consideration to be made is how the parameters E0x, E0y and δ
in equation 2.26 can be related to the parameters that conventionally represent an
ellipse: the angle of rotation (which is measured relative to the x−axis), ψ ∈ [0, π];
and the ellipticity angle, χ ∈ [−π/4, π/4]. By geometrical considerations, in [50] the
deduction of the following expressions for both parameters is detailed:

tan 2ψ =
2E0xE0y

E2
0x − E2

0y
cos δ,



2.3. Characterization of vector beams 11

tan 2χ =
2E0xE0y

E2
0x + E2

0y
sin δ. (2.27)

It is important to recall that by determining those quantities, the polarization of a
beam may be fully described. As will be shown in the next section, with the aid of
Stokes parameters, that can be expressed in terms of intensities, which are measur-
able quantities. In figure 2.5 a geometrical representation of the polarization ellipse
is shown.

FIGURE 2.5: Polarization ellipse, where Ψ is the angle of rotation, χ
is the ellipticity angle, E0x is the semi-major axis and E0y is the semi-

minor axis.

2.3.1 Stokes polarimetry

Notwithstanding its usefulness to represent several states of polarization in a sin-
gle equation, the polarization ellipse does not result practical for several reasons,
among them: the impossibility to observe it directly due to the quick variations it
has in time, and the fact that it can describe only completely polarized light and not
unpolarized or partially polarized light. A more useful and versatile approximation,
given in terms of observable quantities, was proposed for the first time around 1852
by Sir George Gabriel Stokes: the Stokes polarization parameters, which can be di-
rectly related to the polarization ellipse and its orientation [51], are determined by
intensity measurements as:

S0 = I0 = E2
0x + E2

0y,

S1 = IH − IV = E2
0x − E2

0y,
S2 = ID − IA = 2E0xE0y cos δ,
S3 = IR − IL = 2E0xE0y sin δ. (2.28)
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In equation 2.28 I0 stands for the total intensity of the given field and it satisfies:

I0 = IH + IV = ID + IA = IR + IL. (2.29)

The intensities IH, IV , ID, IA, IR and IL are the measured intensities when the beam is
passed through a linear horizontal polarizer (LHP), a linear vertical polarizer (LVP),
a linear +45◦ polarizer, a linear −45◦ polarizer, a right circular polarizer, and left-
circular polarizer, respectively [50]. Each Stokes parameter has a physical meaning:
S0 indicates the total intensity of the optical field, while S1, S2 and S3 refer to the
tendency of the beam (that is, how close is the beam’s polarization state) to have
linear horizontal or vertical polarization, +45◦ (diagonal) or −45◦ (anti-diagonal),
and right or left circular polarization, respectively.

Even more, the degree of polarization may be defined in terms of Stokes parameters
as:

P =

√
S2

1 + S2
2 + S2

3

S0
, (2.30)

and this quantity provides the required information to determine if light is totally
polarized (P = 1), partially polarized (0 < P < 1) or unpolarized (P = 0). For the
cases that will be produced and analyzed in this work, we are restricted to a laser
beam, which is closely approximated to a monochromatic totally polarized field.

Using 2.28 in 2.27 it is possible to express the ellipse parameters in terms of Stokes
parameters as:

tan 2ψ =
S2

S1
,

tan 2χ =
S3

S0
. (2.31)

And considering 2.29, Stokes parameters may be written as:

S0 = IR + IL,
S1 = 2IH − S0,
S2 = 2ID − S0,
S1 = 2IR − S0, (2.32)

it can be clearly seen that in order to determine the state of polarization of a beam,
it is sufficient to perform the four intensity measurements for IR, IL, IH and ID. The
experimental details about how these measurements are performed in the laboratory
are provided in chapter 5.

2.3.2 Purity analysis

The vector purity is a measure of the degree to which a beam is non-separable in
polarization and spatial degree of freedom [52]. Traditionally, the experimental dif-
ferentiation between vector and scalar beams is performed only by a qualitative ap-
proach: a linear polarizer is placed after the beam and then it is rotated, if a change
in the intensity distribution is seen, then a vector mode is confirmed, otherwise the
mode is scalar [6]. Nevertheless, as stated previously, an important characteristic of
vector beams is that their spatial and polarization DoFs are non-separable.
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If 2.23 is written using Dirac notation from quantum mechanics, one obtains the
expression [53]:

|Ψl⟩ = cos θ |l⟩ |R̂⟩+ sin θe−iα |−l⟩ |L̂⟩ , (2.33)

which resembles the expression of a entangled two-particle quantum system. Be-
sides that, as stated by Nape and collaborators [18], since "non-separability is not
unique to quantum mechanics, many of the tools for measuring this must be ap-
plicable to vector beams too". For example it was shown by McLaren et al in 2015
[18] that a Bell-like inequality measurement [54] indicates if a given field is scalar or
vector; and concurrence measurement [55] provides information about the degree
to which the field is vectorial, assigning a number between 0, which corresponds to
a fully scalar field, and 1 in the case of fully vector field (values in between refer to
"non pure" states; that is states in which one of the components is weighted higher
than the other).

A year later, in 2016, Ndagano et al [19] emphasise that in spite of the agreement
about the fact that the purity of scalar beams can be measured by the beam quality
factor M2, there is a lack of a quantitative measurement to determine the "purity"
of vector modes and clearly differentiate them from scalar modes; further they in-
troduce the vector quality factor (VQF) in terms of the concurrence, as expressed by
McLaren et al. In their work, Ndagano et al show experimentally that the values
taken by the VQF goes from 0 to 1 and that it does not depend on the type of vector
beam or the basis used to perform the measurements. The VQF is expressed as [19]:

VQF = Re[C] = Re

(1 −
3

∑
i=1

⟨σi⟩2

)1/2
 , (2.34)

where ⟨σi⟩ are the expectation values of the Pauli operators, representing a set of
normalized intensity measurements, which as detailed in [19] "resemble the Stokes
parameters used in recovering the polarization distribution, but are fundamentally
different: they do not represent a series of polarization measurements but rather a
series of holographic measurements of the spatial field, and result in a measure of
the degree of non-separability of vector beams", though the quantification of vector
beam purity is, in principle, difficult to implement because it involves spatial projec-
tive measurements. Luckily, in 2019 an alternate form to measure the concurrence
C, thus the VQF directly from Stokes parameters is proposed [20]:

C =

√
1 −

S2
1

S2
0
− S2

2

S2
0
−

S2
3

S2
0

, (2.35)

where Si corresponds to the values of the Stokes parameters Si integrated over the
whole transverse profile of the beam:

Si =
∫ ∫ ∞

−∞
SidA; i = 0, 1, 2, 3. (2.36)

This approach is the one used on this work to determine the purity of the generated
beams.
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2.3.3 Stability analysis

Temporal stability of a vector beam can be measured directly from the variation of
ellipticity and orientation of the polarization states along the plane perpendicular
to beam propagation. Even more, since instability of vector modes is a completely
random process, if the beam is unstable and its Stokes parameters, given by equation
2.32, are measured for two different times, regardless of the time interval in which
the measurements are performed, the values for ellipticity and orientation of the
polarization will be different. Therefore, in order to quantify the stability of the
generated vector modes it is sufficient to consider the value of these quantities as a
function of time.

To do so, the same methodology followed by Perez-Garcia and collaborators in [21]
will be considered. On their work, to asses the performance of the implemented
setup, the theoretical and experimental values of the orientation and flattening (a
measure of the shape of polarization where f = 0 corresponds to a circularly po-
larized state and f = 1 to a linearly polarized state) were compared by calculating
the root mean squared error (RMSE) of both parameters for each polarization ellipse
across the transverse plane. The orientation angle and flattening are given as:

α =
1
2

arctan
(

S2

S1

)
f =

A − B
A

(2.37)

where Si corresponds to the Stokes parameters and the terms A and B are the semi-
major and semi-minor axis, respectively; and can be calculated using the Stokes pa-
rameters:

A =

√
1
2

(
S0 +

√
S2

1 + S2
2

)

B =

√
1
2

(
S0 −

√
S2

1 + S2
2

)
(2.38)

However, an important difference between the comparison made in [21] and the one
that was performed in this project is that instead of comparing the theoretical and
experimental values, three different measurements of intensity for each beam were
made and the root mean squared error was computed considering the measurement
at a time t = t1 as the expected value in contrast to the values obtained for t = t2
and t = t3.
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Chapter 3

Spatial light modulators (SLMs)

As stated on the previous chapter, as the interest in using tailored vector beams in-
creases, so does the amount of techniques that facilitates its generation and char-
acterization. Among those techniques we can find different approaches such as
those using liquid crystal wave-plates, glass cones, interferometric arrays, and dig-
ital holography. The latter is one of the most flexible and versatile and allows the
generation of a huge amount of different fields with particular phase, intensity and
polarisation distribution. In this chapter we explain in more detail how the Spatial
Light Modulators are used to modulate the properties of light; in the same way, basic
information about the SLMs and its working principle (liquid crystals properties) is
provided. Finally, a brief comparison between SLMs and DMDs is presented.

3.1 Liquid crystals

Solid, liquid, and gas are the most evident states (or phases) in which matter may
be found, the differences between these phases rely mainly on the level of positional
and orientational order that the molecules posses [56]; nevertheless there are inter-
mediate states (also known as mesomorphic phases [57]) that show a behavior in
between those states (in figure 3.1 a diagram representing the main states of matter
as well as the possible transitions between states is shown). In general, the solid,
liquid and gas phases are stable for a certain range of temperature, if the tempera-
ture is changed, the amount of order among the molecules also changes and so does
the phase [58]. One of such intermediate phases is a phase discovered in 1888: liq-
uid crystals (LCs), which represent "a fascinating state of matter that combines order
and mobility at multiple hierarchical levels" [59]. LCs are arrangements of molecules
with some specific characteristics: elongated in shape with some rigidity in its cen-
tral region and flexible ends, rod-like (or disk-like), organic, easy to polarize.

LCs posses some typical properties of liquids as well as some properties of solids:
for example the property of flowing like a liquid (which means no long-range order
in at least one of the directions); formation and fusion of droplets; birefringence by
the anisotropy of optical, electrical and magnetic properties, which means that their
properties depend on the direction in which they are viewed (and implies that there
exists long-range order in at least one of the directions) [57, 60, 61], interestingly the
refraction index can be controlled electrically thanks to the anisotropies (optical and
dielectric) on LCs [62]. In spite of being an intermediate state, a means of measuring
the orientational order in a liquid crystal is called order parameter, its typical values
range 0.3− 0.9 [58], where a value of 1 would mean perfect orientational order (solid-
like) and a value of 0 corresponds to no orientational order (liquid-like); this value
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decreases as temperature is increased, this together with the latent heat of the phase
transition between solid an liquid crystal compared with that of liquid crystal to
liquid, may be useful to evidence if liquid crystals are more similar to liquids than
they are to solids or vice versa.

FIGURE 3.1: Diagram representing the three main states of matter:
solid, liquid and gas. Intermediate phases may be found in the tran-
sition (blue arrows) from one into another. When going through melt-
ing, some solids may reach a liquid-crystal state before the liquid

state.

Other characteristics of LCs include a change in their visual appearance when transi-
tioning from one phase to another; the property to eliminate defects by self-healing;
the existence of either intrinsically permanent or induced electric dipole; they work
under low voltage and low power and that they can often operate correctly in the
presence of sunlight; the configuration (arrangement) of liquid crystals’ structure is
associated with the ability to easily respond under external stimuli and change their
configuration [57, 61], for example the photorefractive effect that is used to produce
re-writable and dynamic holographic images; and the fact that when applying an
external electric or magnetic field, molecules tend to arrange in a direction parallel
or perpendicular to the applied field, then the structure of the liquid crystal changes
together with the optical transmission properties [60, 63].

There are several types of LCs and their formation depends on several factors such as
the constituent molecules, temperature, concentration and solvents; although many
of their characteristics are shared, depending on the arrangement mechanism LCs
may be considered lyotropic (formed by colloidal solutions, sensitive to concen-
tration and temperature) or thermotopic (created by heating crystalline structures,
temperature-dependent) [59]. In turn, the latter are subdivided based on the molec-
ular arrangement and symmetry (as can be seen on figure ) in: nematics (molecules
tend to be parallel to some common axis and it can occur only in systems where
there is no distinction between right and left, have a strong dipole moment and high
refractive index); cholesterics (periodic orientation along the z-direction, helix-like
configuration); smectics (layered structures with a well defined inter-layer spacing,
more ordered than nematics); and columnar phases (discotic molecular structures
stacked in columns and organized in various shapes) [57, 59, 64, 65].
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FIGURE 3.2: Schematic representation of the molecular arrangement
in different types of LCs: a) nematic; b) smectics; and c) cholesterics.

LCs are ubiquitous in technological applications [66, 67, 68] as detection of hot
points in microcircuits, localization of tumors in humans, conversion of display
screens, real-time holography, diffractive optics, optical imaging, plasmonics, solar
cells, photonic crystals, photovoltaics as well as nanophotonics. It is important to
note that when thinking for applications in specific devices, "liquid crystals need to
be forced and adequately aligned. Therefore, samples are formed between a pair of
surface treated glass plates with about few microns distance" [61]. Fortunately, con-
cerning the current developments in synthesis and characterization, it is possible
to generate devices with specific electro-optical effects, actuation, chromism, sens-
ing, templating and other interesting features, particularly those including display
devices [59, 61].

Specifically, the liquid crystal on silicon (LCOS) devices are a technology based on
both the properties of liquid crystals and the advantages of high-performance sili-
con complementary metal oxide semiconductor (CMOS): LCOS devices can work in
transmission or reflection and may be used to alter the polarization and/or phase
of an incident beam [65]. A relevant constituent of these devises are the pixels: alu-
minum mirrors deposited on a silicon backplane substrate which contains also the
electronic circuitry, because of their sophisticated configuration, it is possible to con-
trol the phase retardation of the incident field on each pixel across the device by
changing the applied voltage. LCOS with LCs in the nematic phase have slower re-
sponse times and are the most widely used due to ease manipulation. The spatial
light modulators (SLMs) are an example of this technology.

Already in 1992, when applications of LC were mainly focused on display tech-
nologies serving as a fundamental bridge allowing the interaction of people with
technology [56], the great influence of LC-based technology was envisioned as the
prevailing method for transmitting information within modern technological society
[56] which was expected to play even a bigger role in the future. The high potential
of LCs and their intended economical perspectives together with the fact that there
are still challenges to overcome (such as residual DC charges, ionic impurities that
may lead to disruptions on the display application), make research on this field very
appealing and active [59].
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3.2 Characteristics of SLMs

Spatial light modulators are quasi-planar opto-electronic and programmable devices
arranged in a pixelated manner that allow the manipulation of some properties (am-
plitude, phase, and polarization) of light. The use of SLMs as "diffractive optical
elements in optical systems to facilitate flexible control of light beams" [69] is exten-
sively spread, their implementation in many fields such as imaging, digital hologra-
phy, optical switching, micro-structure fabrication, and optical vortex generation is
widely generalized [70].

Although at the beginning SLMs consisted of "complex setups that required an ex-
pert to use them" [71], the extended use in several fields, including not only research
and implementations but also the pedagogical realm, permitted their incorporation
as a well-established optical technology capable to work in a plug-and-play manner
that a non-expert can use with only a little knowledge [72]. In fact, for their usage,
no specialized software is required, one only needs to connect it to a computer and
then it can be used as a second monitor.

The properties, and thus the physics, of liquid crystals is the principle governing
SLMs’ behavior. Each pixel on the array allows a local, independent and dynamic
control of the optical path of the light passing through it or being reflected off it,
that is, SLMs may be implemented upon transmission or reflection [5, 73], the latter
is the implementation followed on this work. In order to control each pixel, and
consequently the properties of the incident light it is necessary to adjust the voltage
applied on each pixel, which will change the orientation of the LC’s molecules and,
by birefringence, will induce the phase change [6].

In essence, the beam is shaped by the suitable codification of the phase and am-
plitude into the SLM, that is: by finding the appropriate image and encode it (the
computer generated hologram, CGH or digital hologram) it is possible to produce
virtually any desired result [5]. In the complex amplitude modulation approach
(which is described in detail on the next chapter), a digital hologram pattern, with
gray levels in the interval [0, 255] encoding the complex amplitude, is displayed on
the SLM, allowing the transformation of the incoming beam for the creation of an
output beam with the desired structure; each gray level corresponds to a pixel volt-
age and to a specific orientation of the liquid crystal’s molecules and is associated
to a discrete increment of the phase from 0 to 2π, albeit the obtained response may
vary from the ideal response due to external factors such as defects during manu-
facturing, the non-linear effects produced on the LC, possible anomalies within the
surface, and the conditions of operation (incident angle, power supply, frame rate,
etc.), among others [74]. Hence calibration before first use is suggested for optimal
utilization.

In general, after light reaches the SLM, it will be diffracted as effect of the grating
formed by the pixel array but there will always be an undesired effect: a portion
of light (that goes from 5% to 20%) that is undiffracted and consequently does not
interact with the hologram, if it is not separated from the diffracted light, the two
components may interfere. To overcome this effect, a blazed grating is codified into
the SLM together with the desired phase-shift, it will act acts as a linear phase ramp,
having the effect of moving the desired beam away from the undiffracted beam (lo-
cated on the zeroth order). As a matter of fact, for certain cases, when working
in the first diffraction order, calibration of the SLM is a secondary aspect, as con-
cluded by Spangenberg and collaborators in their work, the calibration of the SLM
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may not even be necessary [69] since it will have almost the same response for all
wavelengths with only minor effects in the amplitude.

SLMs may be classified depending on how they are being used, which is the op-
tical parameter they modulate, and the type of driving signal. The most common
type of SLM is the electro-optical liquid crystal display, which includes transpar-
ent liquid crystal displays for the transmissive types and liquid crystal on Silicon
for the reflective ones. Regarding the molecular alignment, which impacts on how
the beam is manipulated, there are three possible configurations: parallel aligned
nematic (PAN), vertically aligned nematic (VAN), and twisted nematic (TN). In the
latter the orientation of the molecules in the bottom and top layers are rotated by a
fixed angle; while in the two former all layers are parallel to each other [74].

Because the modulation allowed by the majority of commercial SLMs is restricted to
either phase- or amplitude-only (or mostly) modulation of light, several approaches
using only one SLM to control more than one DoF simultaneously and indepen-
dently have been proposed but there are still challenges to overcome. Already in
2016 the relevance of SLMs as a tool for creating on-demand arbitrary optical fields
was pointed out as well as the approaches using complex amplitude modulation on
phase-only SLMs [75].

Figure 3.3 shows a schematic representation of the LCOS-SLM’s configuration: A
layer of LC molecules is inserted between two transparent alignment films, followed
on one side by transparent electrodes, afterwards it is covered with a flat glass sub-
strate; on the other side, at the bottom lies a silicon substrate above which an active
matrix circuit, that permits the control of each pixel electrode by the applied volt-
age; this matrix is connected to the pixelated electrodes (typically made of reflective
aluminium mirrors) [5, 74].

FIGURE 3.3: Configuration of a LCOS-SLM.

An important characteristic of SLMs, generally considered as a drawback, but which
results fundamental for the implementation described on this work, is their polar-
ization dependency, which means that SLMs allows the modulation of light under a
specific polarization state: typically linear horizontal [38]. Among the advantages,
thanks to the superposition principle in optics, it is possible to highlight their ability
to allow a multiplexing approach; additional to the fact that SLMs allow encod-
ing arbitrary phase functions, have wide availability, posses technological maturity,
and can be reprogrammed [74, 76, 77]; additionally to the possibility of providing
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precise, repeatable, and re-configurable optical modulation patterns [78], SLMs also
"have the potential to eliminate the undesired artifacts (low resolution, noise, etc.)
in holographic applications resulting in dynamic modulation response and high res-
olution" [74]. Disadvantages of SLMs include the wavelength-dependency of their
modulation efficiency, refresh rate (60Hz), and high price (though a low cost SLM
has been introduced by Huang et al [79]).

Relevant features to fully characterize the SLM perform are: active area (for scien-
tific applications values are usually around 1 − 2cm2; transmittance/reflectance is
limited by several factors but mainly by losses in the multiple layers (values ranges
from 70% to 90%); spectral acceptance, which for practical uses covers the visible
and near infrared (with a bandwidth of ≈ 200nm; spatial resolution, which is re-
lated to pixel density and cross-talk between adjacent pixels (commonly around 40
lines per /mm); response time (typical values range 1 − 100ms; filling factor, refers
to the zones over the SLM’s surface that permit an active control of the incident
light (slightly above 90% in commercial systems); flicker, which refers to the phase
fluctuation because of the electric polarization of the molecules in the liquid crystal
(commonly this value corresponds to 0.1π; and damage threshold, which is limited
by electrodes and coating materials (around 5W/cm2 for continuous radiation and
0.1J/cm2 for pulsed femtosecond lasers) [70]. All previous criteria must be consid-
ered in order to find the SLM best suited for the targeted application.

Finally it is worth to mention a few words about digital micro-mirror devices (DMDs)
which are micro-electronic mechanical systems consisting on a periodical array of
micro-mirrors each of which is free to move in two positions known as the "on" and
the "off" positions; DMDs work with binary holograms and have emerged as an
alternative to the use of SLMs, due to their high modulation rates (up to 30kHz),
wavelength- and polarization-independence and low costs, in diverse areas such as
atomic physics, quantum information, novel microscopy, scattering medium, op-
togenetics, spectroscopy, data storage, simulation of turbulence and particles with
rapid motion, and also vector beam generation [80, 81, 82, 83]. Nevertheless, some
disadvantages of DMDs include limited modulation depth and low diffraction effi-
ciency [38, 84].

3.3 Light modulation using SLMs

The use of SLMs is only one of many ways (which include the implementation of
DMDs, phase plates, cylindrical lens pair, integrated devices, fiber based techniques,
etc.) to modulate or produce light with specific characteristics, and the techniques
are widely diversified; the central point of those techniques consists on modulate the
two-dimensional transverse properties (phase, amplitude, polarization or a combi-
nation of them) of an input Gaussian beam either by a single pass, multiple sequen-
tial passes, or by the use of two SLMs [16]. In this section, a few out of the many
available methods and techniques to generate structured light using SLMs are pre-
sented and briefly explained, for most of the cases the applications envisioned by
the authors are standed out.

First of all, two approaches that generate the structured beam inside the cavity will
be highlighted: On one side is the work of Ngcobo and collaborators [85], who pre-
sented in 2013 what they called "a digital laser comprising an electrically addressed
reflective phase-only spatial light modulator as an intra-cavity digitally addressed
holographic mirror" (see figure 3.4); by the modification of the hologram displayed
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on the SLM, the modulation of amplitude-only, phase-only or both may be imple-
mented; in this technique both phase and amplitude are modulated using complex
amplitude modulation and a phase-only Hamamatsu LCOS-SLM X110468E series
device, which acts as a holographic mirror allowing the generation on-demand of
vector modes in real-time (all holograms were designed with standard well-known
techniques). Before the generation of arbitrary modes, the performance of the digital
laser as a standard stable cavity was verified and it was followed by the success-
ful generation of Hermite–Gaussian, Laguerre–Gaussian, super-Gaussian (flat-top)
and Airy beams; limitations on this technique come mainly from the resolution and
threshold of the SLM selected while advantages include its accessibility and poten-
tial applications in controlling thermal lensing and aberrations in real-time.

FIGURE 3.4: a) Schematic of the digital laser: A conventional res-
onator but with a SLM as the back optical element of the cavity,
ND:YAG is the gain medium and it is pumped by an external laser
diode (LD) source and the output coupler (OC), the SLM is used
to display the CGH; and b) example of the Higher-order Laguerre-

Gaussian modes created with the digital laser. Taken from [85].

The second approach, following the same line, is the one made by Burger and col-
laborators in 2015 [86]. They started with a conventional resonator containing two
reflective mirrors comprising a stable cavity; through subsequent steps this was re-
placed by equivalent resonators ending in a configuration comprised by a reflective
mirror and a reflective SLM with the adequate hologram displayed on it. Two vari-
ations were tried, by modifying the type of liquid crystal used in the SLM (ensuring
vertical polarization is essential since SLMs require linear vertically polarized light
for optimal operation): one composed by a twisted-nematic liquid crystal, and the
other by a parallel-aligned one. With both configurations they found that "inten-
sity distribution pattern in the near-field was the same as that of the far-field, which
showed that these laser modes are also free-space modes and invariant on propa-
gation" [86].Their device allows for transverse mode control; they tried with phase-
only holograms and also with the complex amplitude modulation technique. The
main restrictions of the designed device are imposed by the characteristics of the
SLM: resolution and output power (given by the threshold damage).

It is important to recall that when shaping light, it is desirable to have full control
of the field (amplitude and phase), and not only one parameter, because this allows
the generation of beams with special and controllable properties. In what concerns
extra-cavity generation of vector beams using SLMs, to achieve the control of the
two polarization components it is necessary to divide the screen into two halves,
passing the beam twice through the SLM after a proper polarization transformation,
or propose optical arrangements with two SLMs. Methods based on the use of SLMs
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require "bulky optical systems but their programmability offers a great flexibility"
[76].

In 2000, Davids and collaborators [41] summarized two previously reported tech-
niques: both using a LC-SLM but the first system with the capability of rotating the
principal axes of that elliptical polarization state by an arbitrary angle and the other
with the capability of generating an arbitrary state of elliptical polarization. They in-
cluded for the first time a demonstration of the 2-dimensionally codifying capability
for controlling the polarization state of a light beam by the use of a parallel-aligned
liquid-crystal SLM: with the first technique an arbitrary rotation of the major axis for
elliptical light is shown; while the second technique is used to change linearly polar-
ized light to arbitrary elliptically polarized light; the authors highlight the fact that
both techniques may be combined to generate a totally arbitrary polarization state.
In this work it is outstanded the fact that each pixel of the SLM behaves as a voltage-
controlled wave plate, therefore by changing the applied voltage, a phase shift from
0 to 2πrad (as a function of pixel position) may be induced. The transmitted beam is
analyzed finding an unexpected edge-enhancement suggesting applications in im-
age processing and information encryption.

Davis, Valadéz, and Cottrell proposed in 2003 [87] an easy-to-implement-technique
(which is an improvement of a previous work of themselves) in which amplitude
and phase are encoding (with a linear or quadratic carrier) onto a binary phase-only
SLM, by introducing amplitude information through the spatial modification of the
diffraction efficiency of a phase-only mask based on the spatial modification of the
diffraction efficiency and redirecting the desired light in a specific direction. In this
approach light that is not diffracted onto the first order (desired light) is sent to the
zeroth order. This technique is said to find applications in optical pattern recognition
and image processing.

Neil and collaborators (2002) [88] proposed a method to generate arbitrary complex
vector wave fronts that influenced further approaches of several researchers and
consists on the implementation of a reconfigurable ferroelectric liquid-crystal SLM
(a reconfigurable binary optical element) in a off-axis configuration to control the
wave front and which also permits aberration correction. To produce an arbitrary
scalar beam, first the incident beam is binarized together with phase tilt, then it
is separated by a lens (which is part of a 4f system) into several diffraction orders
where the +1 diffraction order is the exact Fourier transform of the desired field;
this diffraction order is selected by a spatial filter and is subsequently retransformed
by a second lens giving as result an inverted and tilted version of the desired field,
which can be recovered by the use of a mirror. For the vector beam generation,
the strategy followed differs mainly in the fact that the incoming beam is split into
two orthogonally polarized beams and propagated by slightly different directions;
additionally, the form of the incident wave is not plane but has been selected in a
manner that additional equal and opposite phase tilts are introduced to its polarized
components; the introduced tilts are chosen so that each component may be isolated
from the diffracted orders by a spatial filter and overlapped on the Fourier plane.
Radially and azimuthally polarized beams were generated with this method; one of
the main disadvantages is the inefficient use of light.

To overcome the inefficient use of light detected in the work of Neil et all [88]; Maurer
and collaborators proposed in 2007 an interferometric method, which allows ampli-
tude and phase control at video rate switching, and is implemented with a nematic
liquid crystal SLM to diffract a Gaussian laser beam [89]. In this approach the SLM
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is divided into two halves, each displays a hologram, therefore the independent and
simultaneous manipulation of each diffracted beam is possible by modifying the
displayed hologram on the corresponding half. They use linearly polarized light at
45◦, then the beam is separated in two outgoing beams with orthogonal polarization
states separated by 2.5◦, eventually the beams are expanded and diffracted at each
half of the SLM for individual manipulation by the hologram that are controlled
by a computer in real time, finally both beams are recombined to create the vector
mode. The optical path traveled by both beams between splitting and recombina-
tion is almost the same, providing the system with high stability. The holograms
are calculated from the analytical form of the desired beams and are designed to
fulfill two conditions: transforming the incoming beams into the selected modes;
and reverse exactly the propagation direction of the incoming beams into their re-
spective first diffraction orders. With this configuration Hermite–Gaussian and La-
guerre–Gaussian vector beam modes of different order are generated, potential ap-
plications include material processing, STED microscopy and optical tweezers. The
main drawback of this approximation is that it works well only for a restricted group
of modes, whereas for pronounced amplitude profile modes, the contrast of the holo-
graphic grating structure should be modulated with its amplitude profile.

FIGURE 3.5: Experimental setup used by Maurer and collaborators,
taken form [89]. Notice that the input beam is split in two orthog-
onally polarized beams by a Wollaston prism, then each component
hits a different part of the SLM in order to be modulated before re-

combination.

In their work, Arrizón and collaborators (2007) [90] presented 3 classes of phase
CGH (one of them already reported in the literature and two of them new propos-
als) to encode scalar complex fields, two of them give high quality beams even when
implemented in low-resolution SLMs: Laguerre-Gauss and non-diffracting Bessel
beams are successfully produced. The implementation is performed using a translu-
cent twisted-nematic liquid-crystal SLM (the LC2002 SLM of HoloEye Photonics
AG) in a phase-mostly configuration with a phase range reduced to 1.2πrad, two
linear polarizers, a quarter-wave plate and a CCD camera to record the intensities
distributions of the generated beams. The proposed technique may have applica-
tions in manipulation of living cells with optical tweezers.

Another approach, also published in 2007 [91], involves the use of a transmissive
twist nematic liquid crystal SLM implemented in a 4 − f system with an interfer-
ometric array to generate arbitrary vector beams. For this case, the hologram with
the appropriate phase distribution (depending on the desired beam) is designed and
displayed on the SLM in such a way that the incoming beam may be diffracted into
several diffraction orders, spatially filtering only the ± first orders to be converted
into the circular polarization base (each one to each orthogonal component) and then
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recombined by a Ronchi phase grating; special care is taken to make the period of
the hologram match as much as possible with that of the Ronchi grating. The tech-
nique showed in this work permits the codification for different beams in different
areas of the SLM allowing for a single vector beam to contain multiple polarization
configurations.

FIGURE 3.6: Experimental configuration for the double pass config-
uration, taken from [92]. By the first pass one polarization compo-
nent is fully modulated by the proper codification of a binary phase
grating; then the beam passes twice a QWP to rotate the polarization
states by 90◦ upon reflection, finally the second pass on the SLM per-

mits the modulation of the other polarization component.

The work of Moreno and collaborators (2011) shows the possibility of having full
spatial polarization modulation [92]. In their set up the main element is a paral-
lel aligned nematic SLM manufactured by Seiko Epson, operated in a transmissive
mode and light with polarization states in both components: horizontal and verti-
cal. They report in detail the different stages of the experiment: first they studied
the possibilities of phase and amplitude control after a single pass (by using a linear
phase grating with encoded amplitude); then they focus on the double modulation
approximation (which requires swapping the orthogonal polarization components)
using a single SLM divided in two working areas and operated in a reflective con-
figuration, the experimental configuration is shown on figure 3.6. Their approach
requires two major features: first to encode the optical elements onto the SLM; sec-
ond to rotate the polarization states by 90◦ which allows full control over the zeroth
and first diffraction orders, it is important to emphasize that only one polarization
state is affected on each pass and the orientation and period of the grating that gives
the second modulation can be the same or different from the first one. The authors
suggest options for equivalent configurations using two SLMs either in the reflec-
tive or transmissive mode. The correct alignment of the system is essential to avoid
interference fringes. Finally, the resolution is limited by the number of pixels on the
SLM and their size.

In 2014, Zhu and Wang [69] proposed a technique (the experimental setup is shown
on figure 3.7) that allows the arbitrary manipulation of phase and amplitude of an
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incident beam by the use of two Holoeye PLUTO phase-only SLMs based on reflec-
tive LCoS micro-displays; to achieve their goal, they required to control the polar-
ization direction of the input light on the first and second SLMs. Considering that
each SLM imprints an specific phase distribution ϕ1(x, y) (which determines the am-
plitude distribution) and ϕ2(x, y) respectively (a linear combination of ϕ1(x, y) and
ϕ2(x, y) determines the final phase distribution), it is possible to calculate the the-
oretical electrical field of the desired beam to determine the corresponding phase
patterns to be loaded on each SLM. With this approach the generation of LG beams,
Bessel beams, collinear OAM beams and arbitrary beams with odd-shaped inten-
sity was successfully shown. The authors suggest applications in free-space optical
communications.

FIGURE 3.7: Experimental setup using two SLMs to achieve arbitrary
phase and amplitude manipulation. The hologram on SLM1 gives
the amplitude distribution while a combination of holograms in SLM
1 and SLM2 provides the phase distribution. Col: collimator, Pol:

polarizer, HWP: half-wave plate. Taken from [69].

A work of 2015 by Chen and collaborators [93], demonstrates the simultaneous con-
trol of amplitude, phase and state of polarization by implementing a transmissive
phase-only SLM in a 4f system, using a macro-pixel encoding approach (each macro-
pixel composed by four pixels). The digital holograms that creates the two orthogo-
nally polarized beams are created by codifying the complex amplitude distribution
using complex amplitude decomposition (that is, considering it as a sum of two com-
plex quantities with constant module) in a phase-only pattern that have the ability to
encode arbitrary phase and amplitude distributions. Here, two orthogonally polar-
ized components are passed through the SLM, which provides them structured am-
plitude profile and phase distributions, afterwards they are coaxially superimposed
to create the vector beams. The authors present this implementation as promising in
applications such as focus shaping, high-resolution imaging and optical tweezers.

Taking advantage of the superposition principle in optics, Rosales-Guzmán, Bhebhe,
and Forbes accomplish in 2017 [94] the generation of several (up to sixteen) vector
beams with varied polarization distributions and spatial shapes simultaneously by
using a multiplexing approach and implemented with a single reflective SLM (Holo-
eye PLUTO). Their approach is an interferometric approximation that relies on di-
viding the wavefront of the initial beam, which comes from a horizontally polarized
laser. On the SLM two sets of scalar fields are created, each with a unique carrier
frequency, which is selected in such a way that two groups of beams may be formed:
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each group will follow different paths to acquire orthogonal circular polarization;
with the proper codification of the hologram it is possible to digitally and simul-
taneously manipulate the phase, amplitude and shape of each beam previous to
recombination by pairs. Finally the beams are recombined into a single set by coax-
ial superposition, using a polarizing beam splitter. To verify their technique, they
generate Bessel modes and cylindrical vector beams. The applications envisaged by
the authors include optical communications and quantum computing.

In 2018 Otte and collaborators [95] presented a new technique based on spatial mul-
tiplexing of several holograms with two quarter-wave plates and a reflective phase-
only SLM passing the beam twice to maintain the full resolution of the SLM (because
it is used in full-screen mode), that allows manipulation of phase, polarization, and
amplitude: after the first pass, the encoding of amplitude and phase is performed
(here the first diffraction order is used); while the second pass (using the zeroth
diffraction order), structures the polarization properties. This is not an interferomet-
ric method, but a single-beam one that requires the generation of advanced (sophis-
ticated) holograms to enable the manipulation of the DoFs of light and produce the
tailored beams. The spatial resolution is given by the period of the blazed gratings
encoded into the holograms and not by SLM properties. Applications are focused
on optical trapping, laser material machining and advanced imaging techniques.

Forbes, Dudley, and McLaren [75] give a complete review of approaches, known up
to 2016, to create structured light by complex amplitude modulation on phase-only
SLMs (this approach will be explained in more detail in the next chapter). Among
the applications, they spotlight those in the fields of creating non-diffracting Bessel
beams, vortex beams carrying OAM, vector beams, optical trapping and tweezing,
multiplexing approaches in free space and fibers; they also point out the relevance
of this techniques in classical and quantum information.
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Chapter 4

Complex Amplitude Modulation.

On this chapter a brief overview concerning complex amplitude modulation (CAM)
methods to shape light for different purposes is presented, pointing out the diver-
sity of approaches. The main concepts needed to understand this method are also
shown, particularly the proposal of 2007 by Arrizón et al [90] (used in this work) is
developed in more detail.

Complex Amplitude Modulation (CAM) is a sophisticated technique widely used
in diverse fields of optics, photonics and signal processing, due to its capability to
control with high precision the phase and amplitude of a given light field, enabling
the generation of customized and tailored optical beams that include scalar beams,
vector beams and arbitrary amplitude distribution beams. The key of CAM relies on
how the phase and amplitude information is encoded.

CAM is not a new or recent approach, the concept was slowly developed by con-
tributions of several scientists and was favored with technological advancements;
some of the fundamental concepts in this regard go back to the conceptualization
of light as a wave and include wavefront engineering and holography. The latter
was a concept introduced by Dennis Gabor in his seminal work "A new microscope
principle" in which he showed that optical information may be transposed into vari-
ations of optical path difference, or, alternatively, into amplitude and phase distribu-
tions [96]. The advent of computer generated holograms (CGH) revolutionized the
implementations of this technique enabling real-time manipulation of light, which
combined with the deeper understanding that researchers achieve about light’s be-
haviour have positioned CAM as a priceless technique concerning light shaping for
different applications such as communications [14], microscopy [13], and laser pro-
cessing [97].

Before explaining the fundamental concepts related with CAM, it is necessary to an-
swer the following questions: what happen with light when it passes through an
optical element and what the effect of a grating is? These two phenomena will be
crucial to understand CAM. First, In general when light interacts with matter,in the
specific case of light passing through an optical element, one or more of its properties
may be modified according to the characteristics of the element but in general part of
the light may be absorbed (leading to changes in the intensity), part of the light will
be transmitted, and also it will experience a phase change due to the interactions
with the material (see figure 4.1); the properties and behavior of some optical ele-
ments (such as mirrors, lenses, or diffractive elements) is well known and, in some
cases, the effects that such element will have in a wavefront, may be simulated and
codified into a CGH. Second, a grating may be described as an optical element with a
periodic structure consisting on transparent and opaque slits; when interacting with
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a grating, light experiences diffraction, which leads to the separation and redirec-
tion of the incident light into multiple diffraction orders; "in a sense, nature converts
the phase changes into intensity changes through diffraction (...) thus by exploiting
this principle further it is possible to structure arbitrary amplitude, phase and polar-
ization" [5]. CAM involves the manipulation of the phase across a spatial domain,
to achieve so the phase distribution should be modeled into a CGH to control the
direction and intensity of the diffraction orders by codifying an appropriate phase
profile.

FIGURE 4.1: Phenomena that light may experience when interacting
with optical elements: a) transmission, b) reflection, c) refraction, d)
absorption, and e) diffraction. In the figure n1 is the refraction index
of the medium and n2 is the refractive index of the optical element.

4.1 Complex Amplitude Modulation approaches

As stated on the previous chapter, most of the SLMs commercially available modu-
late only or mostly either the phase or the amplitude of light, nevertheless for many
applications specific control over both DoFs of an input field is required to obtain the
desired field. In this context, complex amplitude modulation (CAM), which can be
understood as the possibility "to control the amplitude and the phase of the incident
illumination independently (...) which assumes the need of at least two physical
modulation processes" [17], emerges as a powerful and versatile tool.

Phase-only modulation is used when the amplitude distribution of the desired field
is expected to be the same as that of the input field and "implies that the state of
polarization of modulated waves remains intact" [98], examples of phase-only mod-
ulation include redirection or inclination of the beam, focusing, and providing the
beam with orbital angular momentum; to achieve this type of modulation the holo-
gram is codified as mod[ϕ2 − ϕ1, 2π], where ϕ1 is the phase of the input field and ϕ2
is the desired phase; a disadvantage of phase-only modulation is that it produces
undesired secondary rings. On the other hand, amplitude-only modulation is the
case when only a change in the amplitude distribution of the beam is desired; usu-
ally, if a phase-only SLM is going to be used to modulate the amplitude, it can only
be decreased by distributing the light away from the desired order in a spatially-
dependent way, therefore controlling the depth for each point allows amplitude
modulation. Controlling amplitude and phase simultaneously may be achieved by
CAM.

The phase-only, amplitude-only or complex-amplitude response of a device can be
represented in a complex plane. Recall that a complex number is expressed in its
standard form as a + bi, where a is the real part and b is the imaginary part; and
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in the exponential form a complex number is given by r expiθ , where r is the mag-
nitude and θ is the phase; both representations are related by r =

√
a2 + b2 and

θ = arctan( b
a ). That being the case, the phase-only response corresponds to change

θ while keeping r constant, this can be represented as a rotation around the ori-
gin while maintaining constant the distance to the origin, or a unit circle traced in
the complex plane; on the contrary, an amplitude-only modulation corresponds to
changing r while keeping θ constant, which can be understood as moving across a
straight line that makes an angle θ with respect to the x-axis; finally, complex am-
plitude modulation modifies the values of both r and θ can be viewed as changing
positions inside a filled circle in the complex plane (see figure 4.2).

FIGURE 4.2: Representation in the complex plane of a phase only
response, which traces a unit circle in the complex plane (left); an
amplitude-only response, in the drawing each line represent a dif-
ferent wavefront with specific phase and amplitude (right); and a
complex-amplitude modulation response, which corresponds to a

filled circle (middle).

The general scheme of complex amplitude modulation consists on representing the
amplitude and phase of a given field as a complex number (a specific position in
the complex plane); then it is necessary to determine the desired complex amplitude
distribution and encode it, that is assign the specific values for phase and amplitude
at each point; afterwards, the modulation pattern that specifies how the amplitude
and phase must change across the wavefront must be generated, which allows the
creation of the desired field; use a device (generally a SLM) to display the modula-
tion pattern; finally light should be directed to the SLM and after interacting with it,
the field with the desired phase and amplitude distribution is created.

For example, consider that given an optical field of the form

Ein(x, y) = Ain(x, y)eiϕin , (4.1)

which is supposed to be transformed into a desired field

Edes(x, y) = Ades(x, y)eiϕdes , (4.2)

in a single step. This requires an element with a transmission function that has phase
as well as amplitude modulation and which is given by

t =
Ades

Ain
ei(ϕdes−ϕin) = Areleiϕrel , (4.3)
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but expressed as a form that is phase-only dependent such as

t → exp[iΦslm(Arel , ϕrel)]. (4.4)

One implication of the latter equation is that the desired beam is created at the plane
of the SLM but, for practical reasons, an optical system (usually a telescope) is gen-
erally used to rely the SLM’s plane to a detector plane. Notice two important things
concerning the transmission function: first, that the expression for Φslm considers
variations of amplitude in a position-dependent manner; second, it results evident
that encoding is critical since "accurate control of the optical field crucially depends
on the method employed to encode the hologram" [99].

In general, techniques that use this approach, require spatial filtering to select the
desired diffraction order either if light was sent to the zero order (by decreasing the
depth of the phase step) or to higher diffraction orders (by adding a high-frequency
grating) [5, 75, 100]. In traditional approaches, the transformation of the field is
achieved by diffractive optical elements executed in two steps with phase-only op-
tics, first modifying the amplitude and then correcting the phase [75]

Once clearly stated that the transmission function encoded in the hologram must
contain phase and amplitude modulation and that this can be achieved by CAM
approach, it turns out necessary to mention that it is precisely the different ways of
finding Φslm(Arel , ϕrel) and the manner of implementing it what gives the numerous
approaches to CAM. For example, "the phase-only complex amplitude modulation
scheme for low resolution devices, such as SLM, originates from the report of Kirk
and Jones (in 1971)" [101]. In their work, Kirk and Jones, present for the first time a
phase-only filter with arbitrary signal-to-noise ratio, minimization of plotting, and
ease of replication. Their complex-valued spatial filter is fabricated holographically
by encoding phase (as a phase retardation) and amplitude (by varying the depth of
modulation of a superimposed phase grating) together and allows the modulation
of both amplitude and phase of a wave front incident on it [17]. Remarkably, the
behavior of this filter can be made as close to that of an ideal filter as desired.

The different approaches to CAM can be broadly divided into two categories [102]:
those focused on the number of devices used (single or multiple SLMs) and those
centered on the encoding method (super-pixel approach, double constrain iterative
method, hologram bleaching, and double-phase hologram). It is important to con-
sider that independently of the variation used to implement CAM, it "is realized with
the reduction of effective resolution because the amount of information of a com-
plex hologram doubles that of an amplitude-only or phase-only hologram. In other
words, the essence of CAM is sacrificing spatial bandwidth product to achieve the
expression of complex amplitude information" [102]. From the work of Bartelt [103],
which proposes a suitable configuration of two pure-phase filters and additional op-
tical elements that allows amplitude and phase control with 100% efficiency, further
approaches using multiple SLMs were among the first proposals to achieve CAM,
nevertheless they resulted in bulky setups that require a precise alignment, which
can be hard to achieve.

Within the classification of multiple SLMs to achieve CAM are the cascaded meth-
ods, the interferometric methods; and the iteration and phase compensation method.
The former consists on the use of two liquid-crystal devices to consecutively modu-
late amplitude and phase, such as the work of Gregory and collaborators in which
two liquid-crystal screens are used [104], the proposal of Amako and collaborators
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[105], and the slightly more recent approach given by Hsieh and collaborators, that
uses a commercially available cascaded twisted nematic liquid crystal SLM [106]. In-
terferometric methods such as [107] and [108] rely on the interferometric superposi-
tion of light, in this approaches the hologram is decomposed in two amplitude-only
holograms (AOHs) or phase-only holograms (PHOs) each one uploaded in a differ-
ent SLM, and can include Mach-Zender interferometer, Michelson interferometer,
common-path interferometric schemes or others. The iteration and phase compen-
sation method which also uses two SLMs: the first to obtain the target amplitude (by
an iterative algorithm), and the second to compensate the phase reconstructed by the
first one [109]. On the other hand, single SLM approximations are more recent, and
avoid the complicated setups of the multiple SLMs approaches, in this classification
works as [92] or [94], are included and consider either dividing the SLM’s screen into
two halves or multiplexing approach.

Concerning encoding methods: for super-pixel (also known as macro-pixel) ap-
proach several pixels of the device constitute a pixel for the desired complex am-
plitude distribution, in [110] for example, a double-phase hologram is implemented
in an available low-resolution SLM to achieve complex amplitude modulation with
macro-pixels composed by arrays of 1x2 and 2x2 pixels; the double constrain itera-
tive method is based on iteration through suitable algorithms to restrict phase and
amplitude over each iteration, usually employing PHOs, in [111] the phase-only
computer generated hologram is calculated by a double-constrain Gerchberg–Saxton
algorithm to constrain amplitude and phase in the image plane, further correction in
the image plane is performed, a drawback of this approaches is that iterations result
time-consuming; for hologram bleaching the information of the amplitude is en-
coded as part of the phase information after the target complex amplitude interferes
with an off-axis reference plane wave, in this approach the desired beam is found
on the first diffraction order; lastly the double-pass approach is a method based on
a single-pixel approximation where the complex field is decomposed in two POHs
and complementary checkerboard patterns to combine them into a phase-only SLM,
as in [112] where a 4f system is used for the complex field reconstruction after apply-
ing a low-pass filter at the Fourier plane, an advantage is the high computational ef-
ficiency but on the drawbacks it has lower reconstruction accuracy than super-pixel
methods since the reconstruction is affected by the information of adjacent pixels.

In their work "Comparison of beam generation techniques using a phase only spa-
tial light modulator" [100], Clark and collaborators test both numerically and exper-
imentally six hologram generation techniques for a single Laguerre-Gaussian beam,
an optical Ferris wheel, and a photographic image known as "Laser class sailboat"
(see figure 4.3). After analysis, they ranked the perform of the six methods according
to the obtained mode quality and power; the six selected methods rely on the use of
phase gratings (the desired field is found on the first-order deflection and must be
spatially selected), are deterministic and based on single-pass. In their findings and
conclusions the authors state that "Method F", which corresponds to the proposal of
Arrizón and collaborators [90], gives the best results concerning the numerical anal-
ysis, produces accurate representation of the fields for all tested modes (and also for
the picture), and besides performing well, it has the advantage of requiring reduced
phase range, which allows the use of this technique with low-cost SLMs.
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FIGURE 4.3: Measured intensities for a fundamental Gaussian, a LG0
1

and the laser class sailboat. First column shows the desired pattern.
First and second rows were measured after one Rayleigh range, the
last row shows measurements performed in the image plane of the

SLM.

4.2 The proposal of Arrizón.

As already emphasized, when referring beam shaping, amplitude and phase mod-
ulation is critical. CAM may be achieved by encoding amplitude information as
phase information thus allowing the independent control of both DoFs. One of the
approaches that does precisely this, and which has been found to give excellent re-
sults in field reconstruction, is the proposal of Arrizón and collaborators [90]. What
follows is a scheme of their proposal with brief comments, and some added details.
It is important to notice that this scheme is presented to generate scalar fields, but
it can be generalized to the generation of vector beams since these are a superposi-
tion of the former as long as the two scalar beams are spatially orthogonal and with
orthogonal polarization states.

Given an input beam, the goal is to obtain a desired beam specified by an amplitude
term, A(x, y) ∈ [0, 1], and a phase term, ϕ(x, y) ∈ [−π, π], as:

s(x, y) = A(x, y) exp[iϕ(x, y)]. (4.5)

For this purpose, the desired beam must be first expressed by means of a phase
CGH, which transmittance may be expressed as a function that explicitly depends
on the amplitude and phase of the desired field:

h(x, y) = exp[iΨ(A(x, y), ϕ(x, y))]. (4.6)

It is clear that the key to obtain the desired hologram is establishing Ψ(A, ϕ), which
can be achieved by several means. The strategy followed in the cited work is propos-
ing a Fourier series representation of h(x, y) in the domain of ϕ:

h(x, y) =
∞

∑
q=−∞

hq(x, y) =
∞

∑
q=−∞

cA
q exp(iqϕ), (4.7)
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where, as conventionally, the coefficients

cA
q = (2π)−1

∫ π

−π
exp[iψ(A, ϕ)] exp(−iqϕ)dϕ. (4.8)

By imposing the signal encoding condition (cA
1 = Aa for some positive constant a),

then the desired field distribution may be recovered from the term h1(x, y). Consid-
ering the expression for the coefficients cA

q , the explicit form of the term cA
1 is given

by:

cA
1 = (2π)−1

∫ π

−π
exp[iψ(A, ϕ)] exp(−iϕ)dϕ =

∫ π

−π
exp[i (ψ(A, ϕ)− ϕ)]dϕ = Aa,

(4.9)

which can be rewritten as:

cA
1 =

∫ π

−π
(cos[(ψ(A, ϕ)− ϕ] + i sin[(ψ(A, ϕ)− ϕ]) dϕ = 2πAa. (4.10)

In other words, the signal encoding condition is fulfilled if:∫ π

−π
cos[(ψ(A, ϕ)− ϕ]dϕ = 2πAa, (4.11)

∫ π

−π
sin[(ψ(A, ϕ)− ϕ]dϕ = 0. (4.12)

Since the maximum of equation 4.11 is 2π, the maximum value of a in the encoding
condition is determined to be a = 1. On the other hand, the condition 4.12 is fulfilled
if ψ(A, ϕ) has odd symmetry in ϕ. Notice that the solution is not unique. In the work
that is being analyzed, three different sets of functions, which lead to three different
types of phase computer generated holograms, are presented. Those solutions are
listed below:

1. First type: A CGH equivalent to a synthetic hologram that can be found in
literature previous to the work of Arrizón et al is given by Ψ(A, ϕ) = f (A)ϕ,
therefore the expression for cA

q may be rewritten as:

cA
q = (2π)−1

∫ π

−π
cos[( f (A)− q)ϕ]dϕ, (4.13)

that is:

cA
q = (2π)−1

(
2

sin[( f (A)− q)π]

( f (A)− q)π

)
, (4.14)

which corresponds to:
cA

q = sinc[ f (A)− q]. (4.15)

Given the fact that the sinc function is an even function, the coefficients can be
written:

cA
q = sinc[q − f (A)]. (4.16)
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For the encoding condition cA
1 = Aa = sinc[1 − f (A)], and for a = 1:

A = sinc[1 − f (A)]. (4.17)

The function f (A) is obtained by numerical inversion of 4.17.

2. Second type: Corresponds to a CGH presented in [90] for the first time. A
function of the form Ψ(A, ϕ) = ϕ + f (A) sin ϕ, which is a valid proposal due
to the odd symmetry in ϕ. Considering this, the phase CGH transmittance, ac-
cording to 4.6 is given by h(x, y) = exp[iϕ + i f (A) sin ϕ], which can be written
alternatively as:

h(x, y) = exp(iϕ) exp[i f (A) sin ϕ]. (4.18)

Using the Jacobi-Anger identity, the second term in 4.18 may be written as:

exp[i f (A) sin ϕ] =
∞

∑
q=−∞

Jq[ f (A)] exp(iqϕ), (4.19)

where Jq[ f (A)] is the Bessel function of integer-order q. Considering this ex-
pression in 4.18 and the Fourier series expansion as expressed in 4.7:

exp(iϕ)
∞

∑
q=−∞

Jq[ f (A)] exp(iqϕ) =
∞

∑
q=−∞

cA
q exp(iqϕ). (4.20)

By considering the left side of 4.20, including the term exp(iϕ) in the sum-
mation and shifting the index of that summation (only on the left side) to
q → q − 1:

∞

∑
q=−∞

Jq−1[ f (A)] exp(iqϕ) =
∞

∑
q=−∞

cA
q exp(iqϕ), (4.21)

from which it can be seen that the coefficients cA
q = Jq−1[ f (A)]. For the encod-

ing condition:
cA

1 = A = J0[ f (A)]. (4.22)

Relation 4.22 is satisfied for A ∈ [0, 1] and an appropriate value of f (A) ∈
[0, x0], where x0 ≈ 2.4048 is the first positive root of J0(x). As for the case
of the holograms in the first type, f (A) is found by numerical inversion of
cA

1 = A = J0[ f (A)].

3. Third type: Also corresponds to a CGH presented in [90] for the first time. A
function with odd symmetry in ϕ and similar to the one used for obtaining the
second type holograms is proposed: Ψ(A, ϕ) = f (A) sin ϕ. Proceeding as in
the previous case:

exp[i f (A)sinϕ] =
∞

∑
q=−∞

cA
q exp(iqϕ). (4.23)
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By using again the Jacobi-Anger identity:

∞

∑
q=−∞

Jq[ f (A)] exp(iqϕ) =
∞

∑
q=−∞

cA
q exp(iqϕ). (4.24)

From which it can be seen that cA
q = Ja[ f (A)]. For the encoding condition:

cA
1 = Aa = J1[ f (A)]. (4.25)

Equation 4.25 is fulfilled for a maximum value of a = 0.5819, which corre-
sponds to the maximum value of J1(x) and occurs at x = x1 ≈ 1.84. Once
again, f (A) is obtained by numerical inversion. This approach may be imple-
mented with phase modulation in a reduced domain, which implies that it can
be easily obtained with conventional LC SLMs.
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Chapter 5

Experimental implementation of
CAM in an on-axis configuration.

In this section a description of the experimental setup implemented to generate
Laguerre-Gauss vector beams in an on-axis configuration with the support of a SLM
using CAM is provided. In the same manner, the algorithm to generate the holo-
grams as well as the algorithms used for the characterization of the obtained modes
are explained.

5.1 Experimental setup for the generation of LG vector beams.

The LG vector modes that have been described in previous chapters, were success-
fully generated by using an experimental setup in which two main elements were
implemented: a SLM, which is used to project the holograms that will perform the
CAM, the phase modulation and the beams’ superposition; and a camera that is
used for monitoring the beam and also as a mean to perform the intensity measure-
ments required for the beam characterization. It is important to notice that single
vector mode generation using a single SLM, as proposed for the first time up to our
knowledge on this work, requires the beam to pass twice through the SLM to achieve
independent manipulation of both polarization components, therefore the screen of
the SLM was digitally divided in two halves.

Although it is true that, as mentioned on previous chapters, the use of SLMs to gen-
erate structured light is highly generalized, the main contribution of this work relies
on the fact that the components that superimpose to generate the desired vector
beam follow the same optical path (on-axis configuration), the manipulation is in
both amplitude and phase by the use of complex amplitude modulation, and this is
a single-beam generation approach, not a multiplexing one.

The SLM used for this implementation consists on a two-dimensional array of liquid-
crysal pixels that for a known given reference (input) beam allows the specification
of the desired (output) beam. Concretely it is a PLUTO 2.1 Holoeye device (which is
shown in figure 5.1), which is a polarization-sensitive, reflective, phase-only LCOS
which pixel pitch is 8.0µm, active area of 15.36 × 8.64 mm, the fill factor is 93%, it
achieves input frame rates of 60Hz, finally although the total resolution of the SLM
is 1920 × 1080, the screen was digitally divided in two, so the effective resolution
for our implementation is 960 × 1080 pixels. Each pixel on the array acts as a pro-
grammable phase shifter depending on the assigned voltage (gray value). The SLM
was controlled with Matlab via HDMI connection to the computer.
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FIGURE 5.1: Picture of PLUTO 2.1 Holoeye SLM device.

The camera is a Thorlabs CMOS DCC3240C (see figure 5.2) with a resolution of
1280 × 1024 pixels, pixel size of 5.3µm with an imaging area of 6.78 × 5.43 mm. The
camera allows control of acquisition rate from 0.5 fps to 5.06 fps, and exposure time
may be modified from 0 ms to 343.4 ms. To operate the camera, it must be connected
via standard 5V USB 3.0 port to the computer and the ThorCamTM software for Win-
dows has to be previously installed. The camera and the SLM are controlled with
the same computer simultaneously.

FIGURE 5.2: Picture of the camera Thorlabs CMOS DCC3240C used.

Next a detailed description of the setup as well as a guideline of how the generation
technique works is provided. For clarification purposes, figures 5.3 and 5.4 show a
schematic representation of the experimental array in two different views.

We will emphasize here that the vector beam generation using a SLM requires a
proper codification of the desired beam to generate the correct holograms. The first
half of the SLM has a hologram that allows CAM and generates the scalar beams
that will be superimposed with the appropriate topological charge; the second half
of the SLM corrects only the phase of one of the components, which allows the su-
perposition to take place.

The first stage of the experimental mounting is used for the generation of the input
beam and it consists on a horizontally polarized He-Ne laser (λ = 633 nm, 12mW
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of power) followed by a microscope objective 10X, which expands the beam, right
away the objective microscope, a lens L1 ( f1 = 100 mm) is used to collimate the beam
and obtain an approximately plane wave front. To select a portion of that wave front,
a spacial filter is used.

The second stage is composed by lenses L2 ( f2 = 175 mm) and L3 ( f3 = 400 mm),
which form a telescope that is used to create an image of the input beam just in the
plane of the SLM. Given the fact that the SLM is polarization-sensitive, it is assured
that the incident beam has horizontal linear polarization to be fully and correctly
modulated by the hologram on the first half of the device. When the beam reaches
the first half of the SLM two important things happen: 1) CAM takes place providing
the beam with specific topological charge l1, according to the codified hologram; and
2) the beam is diffracted into several diffraction orders (not shown in figure).

Among the diffraction orders, the first one contains the desired information, there-
fore it must be selected and separated from the undesired light; to achieve this a
second spatial filter is used. Additionally, two plane mirrors M1 and M2 are placed
to redirect the selected order to the second half of the SLM; since the beam reflects
in two mirrors, there is no net change on its topological charge. Before reaching the
second half of the SLM, a half-wave plate (HWP) with its fast axis oriented at 22.5◦

is used to rotate the polarization state of the beam from linear to diagonal (45◦ ), the
orientation of the HWP ensures equal magnitude of both polarization components.
consecutively, a second telescope using L4 ( f4 = 300 mm) y L5 ( f5 = 300 mm) is
implemented.

FIGURE 5.3: Schematic representation of the experimental setup. MO:
microscope objective. Li: Lenses. Mi: Mirrors. SFi Spatial filters.
SLM: Spatial light modulator. HWP: Half-wave plate. QWP: Quarter-

wave plate.

Now the rotated beam reaches the second half of the SLM where a phase-only holo-
gram is displayed and provides the beam with a different topological charge. Notice
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that due to the polarization-sensitive nature of the SLM, only the horizontally polar-
ized component of the beam will be modulated, while the vertically polarized com-
ponent will remain unaffected. Recall that to achieve superposition, the two com-
ponents must be orthogonal in both: amplitude distribution and polarization state.
Therefore, for our case the horizontal and vertical component of the beam serve as
a pair of base vector beams for the superposition process, which are collinearly re-
combined after the second reflection on the SLM.

After the SLM a quarter-wave plate (QWP), rotated at 45◦ with respect to the fast
axis, is placed to perform a change on the polarization basis from the linear to the
circular basis: horizontal polarization is converted into circular right-handed polar-
ization, and vertical polarization into circular left-handed polarization.

Up to this point the vector beam has already been generated, nevertheless, two more
elements are needed to monitor (camera) and characterize (analyzer) it. The analyzer
is placed between the QWP and the camera, the description of how it is used will
be provided in the following sections. Finally, the camera, which is connected to a
computer, is used to verify alignment details and the intensity distribution of the
generated beams.

Before starting with the measurements that will allow the characterization, it is nec-
essary to verify that the beams are, in fact, vector beams. To do so, before placing the
analyzer, a linear polarizer is situated between the QWP and the camera, then the
polarizer is rotated and the change in the intensity distribution is the key to know if
the beam is vector or scalar (as explained on Chapter 2).

FIGURE 5.4: Schematic representation of the experimental setup. MO:
microscope objective. Li: Lenses. Mi: Mirrors. SFi Spatial filters.
SLM: Spatial light modulator. HWP: Half-wave plate. QWP: Quarter-

wave plate.

With the technique described it is possible, in principle, to generate arbitrary vector
fields by suitable codification of the holograms displayed on the SLM, nevertheless
technical constrains still must be overcame and the scope of this work include only
the generation of beams belonging to the family of the LG vector beams. In the
next sections the details about hologram generation and beam characterization are
described.
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5.2 Hologram codification

As sated previously, the holograms were encoded using a Matlab algorithm. In our
implementation the SLM screen is first divided in two halves, on the first half a
CGH is codified using CAM as proposed in the "third type" hologram explained
in [90]; the second half the CGH contains a blazed grating to perform phase-only
modulation codified, as conventionally, through the modulo operation. The general
scheme for the hologram codification is as follows:

1. First it is necessary to establish the resolution of the holograms, which must be
the same as the resolution of the SLM, considering that two holograms will be
displayed at the same time; thus digital division of SLM’s screen is needed.

2. Two matrices, one for each half of the SLM, with the appropriate resolution are
generated, in the same way all sizes are re-scaled to millimeters.

3. The beam parameters as well as the parameters needed to compute the LG
scalar beam are defined. This parameters include: wavelength, wave number,
beam radius, intermodal phase, topological charge and number of rings.

4. Amplitude and phase of the desired LG beam is computed. The hologram
with the LG beam information is generated using CAM. To accomplish this,
two functions are used: one to compute the Laguerre polynomials, the other
to numerically invert J1[ f (A)] = A and find f (A).

5. The hologram with an azimuthally varying phase is generated.

6. After normalization of the gray levels to fully cover the available levels on the
SLM, the two holograms are combined in a single image and displayed on the
SLM.

In figure 5.5 three examples of the generated holograms are shown, it is important
to emphasize that the sizes do not correspond to the sizes of the display in the SLM
since it has been modified for clarity purposes.

5.3 Characterization of the generated beams

As stated on Chapter 2 Stokes polarimetry is a powerful technique that through
Stokes parameters, which may be computed by four intensity measurements, repre-
sent a useful tool to determine not only the state of polarization of a beam but also
to compute the concurrence, a quantity that determines the purity of a vector beam,
and the orientation angle and flattening, parameters that will enable the stability
analysis.

One at a time, each intensity measurement is taken with the camera and the obtained
image is saved in .tif format for further processing. To perform the intensity mea-
surements, the analyzer (which is composed by a linear polarzer and a QWP or a
HWP) must be setted up at an adequate configuration, that is:

1. To measure IR the beam passes through a QWP with its fast axis oriented at
+45◦ followed by a linear polarizer with its transmission axis in a horizontal
position, to finally reach the camera.

2. For the measurement of IL the same configuration as in the previous case is
needed, but in this case the QWP is rotated at −45◦.
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FIGURE 5.5: Holograms used to generate LG vector beams with dif-
ferent number of rings and topological charge. On the left CAM CGH,
on the right POH. The values for the number of rings correspond
(from top to bottom) to p = 0, 2, 3 and the values for the topological
charge (from top to bottom) are l = 2, 6, 20.The display corresponds

to the digital partition of the SLM available space.

3. For IH the QWP is replaced by a HWP with its fast axis at 0◦.

4. Finally, to measure ID, the HWP is rotated at 22.5◦.

Once all the measurements are recorded, those measurements are used to compute
with Matlab the Stokes parameters as established by 2.32, further reconstruction of
the transverse polarization distribution of the beams is possible by assigning, for
each point on the image, a value of the angle of rotation and ellipticity (see equation
2.31). The purity of the generated beams is given by the concurrence as given in
equation 2.35. Finally, to determine the stability of the beams, a comparison of the
flattening and the orientation (as expressed in 2.37) is performed through the root
mean squared error (RMSE), as usually defined, but considering the expected value
as the value recorded for each beam on t = t0; in the case of a beam that keeps
the same flattening and orientation of its polarization over time, the corresponding
values would be the same for t0, t1, and t2. Ideally, the RMSE would be 0% for a beam
that suffered no changes and 100% for a beam that changes completely, therefore, the
closest the RMSE to 0%, the more stability the beam has. In all cases, the values were
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compared with the expected values according to numerical simulations.
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Chapter 6

Generation and characterization of
Laguerre-Gauss vector modes

During the experimental implementation several combinations for different LG vec-
tor modes were generated. That is, we superimposed LG modes for values of p =
0, 1, ..., 4 and l = ±1,±2, ...,±4 in all the possible combinations, obtaining as can be
seen on the figures displayed along this chapter that:

1. As the number of rings is increased, the spot size is increased too. For values
with p > 2 the spot size was too big that it was not possible to be captured
entirely by the camera, because part of the spot was too near to the edges. This
complication may be overcame by reducing the spot size, using a camera with
larger sensor or capture multiple shots and merge to reconstruct the whole
transversal section of the beam. In spite of this inconvenience, for the purposes
of this thesis it is not necessary to generate beams with high values of p, since
the main goal is to demonstrate that the proposed technique works and this is
achieved by generating vector beams regardless of the values of the parameters
for the topological charge and the number of rings.

2. As the topological charge is increased, more discontinuities appeared when IR
and IL where measured and instead of showing a continues ring (or concentric
rings) as expected, a doted circumference (or concentric doted circumferences)
was encountered. This may be caused by analyzer misalignment, calibration
issues in the wave plates implemented in the experimental set up, or beam
distortions due to optical path followed by the beam; which can be overcome
by the use of optical devices with more quality and ensuring the correct cali-
bration of the instruments used. As with the number of rings, high values of
topological charge are not mandatory since the goal of the reported work is a
proof-of-principle of the technique.

To evidence the effectiveness of the technique, in this work we report five repre-
sentative beams illustrating the cases of modes with different intermodal phase and
modes with topological charge higher than 1 and number of additional rings higher
than zero (see figures 6.1 and 6.2). For the characterization, four different measure-
ments of intensity were performed, each associated with a polarisation state: hori-
zontal (IH), diagonal (I+45), right-handed (IR) and left-handed (IL). The images ac-
quired with those measurements were processed in a dedicated Matlab code that
we wrote, as detailed on Chapter 5, to determine Stokes parameters, which were
used to reconstruct the transverse polarisation distribution as well as to calculate
the vectorness, polarisation angle, and flattering of each beam.
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6.1 Generation

FIGURE 6.1: Vector mode
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The Laguerre-Gauss vector beams were generated experimentally and simulated nu-
merically. Two different approaches were explored: first the same vector mode was
generated but the intermodal phase was modified; secondly, different values for the
radial and azimuthal indexes, related with the topological charge and number of
rings respectively, were explored. Without loss of generality, the analysis will be re-
stricted to the Laguerre-Gauss vector modes
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On figure 6.1 scalar modes LG with the same number of rings and opposite topolog-
ical charge were superimposed to generate the vector mode

√
2

2

(
LG1

0 R̂ + LG−1
0 L̂

)
,

but the intermodal phase was computationally modified to have radial (α = 0),
spiral (α = π

6 ) and azimuthal polarisation (α = π). The four experimental measure-
ments for intensity are shown and compared with the numerical simulation and, as
can be seen, there is a good agreement between both: for IH and ID there is a dis-
tribution showing two petals orientated in a different direction in accordance with
the intermodal phase and the orientation of the linear polarizer; on the other hand,
IR and IL show an almost homogeneous donut-like distribution although in the ex-
perimental measurements IR is more intense than IL, which could be due to a wrong
angle in any of the optical elements used in the generation or the detection, while
for the simulation both have the same intensity.

When exploring different topological charges and number of rings, it is found that
IH and ID have the same form in the numerical simulation and experiment while for
IR and IL there are differences regarding the homogeneity of the distribution, which
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FIGURE 6.2: Vector modes for an intermodal phase of α = 0 in both
cases.

are more evident in the case of a topological charge l = 3, and in general as the
topological charge increases, so does the distortion of the intensity distribution. On
the other hand, it is worth to notice that the intensity of the rings decreases radially
dramatically in the experiment while in the numerical simulation it remains almost
the same, that is, the variations in intensity are small; the discrepancies may be re-
lated with the fact that in the numerical simulation, a set of assumptions are made
which may not match fully or exactly with the experimental conditions, for instance
in the simulation factors such as imperfections in the optical devices, loses in the
optical system, and diffractive effects are not considered into account, neither the
possible measurement errors or calibration problems, since in the numerical simula-
tion the ideal case is the one considered. The four intensity measurements for modes√

2
2

(
LG1

2 R̂ + LG−1
2 L̂

)
and

√
2

2

(
LG3

1 R̂ + LG−3
1 L̂

)
, as well as the numerical simulation,

can be seen on figure 6.2.

6.2 Polarization reconstruction.

The intensity measurements were used to calculate Stokes parameters according
with Stokes polarimetry as explained in the previous chapters; afterwards the polar-
ization for the generated beams was reconstructed. It is possible to notice in figures
6.3 and 6.4 that the Stokes parameter S0 is a ring with homogeneous distribution for
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FIGURE 6.3: Stokes parameters for the vector mode√
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phase.

the case of the mode
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)
, the parameters S1 and S2 have the same

shape but different orientation and S3 is not zero for any of the experimental cases
while it is for the numerical simulations. In this case, the discrepancies may also be
related with the differences between the numerical simulation and the experimental
implementation, specially the characteristics of the camera play and important role
since is in this stage where its sensitivity, calibration, alignment, and quality may
give raise to artifacts, or the detection of noise and background light.

For the other two modes, namely
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the parameter S0 is a series of concentric rings, where, as expected, the number of
rings corresponds with the radial index, as in the previous case; the distribution of
the S1 and S2 Stokes’ parameters is the same in both the experimental measurements
and the simulation, though in the simulation it has higher values; finally, as in the
previous case, the parameter S3 is not zero for the experimental cases, but it is for
the numerical simulation.

Once the Stokes parameters were measured, it was possible to use them, as ex-
plained on the previous chapter, to reconstruct the polarization states of each vector
mode for regularly spaced points on a grid along its transverse plane. On figures
6.5 and 6.6 the polarization state is overlapped on the reconstructed intensity profile
of the beams. On the figures the green ellipses correspond to circular-left handed
polarization; the white lines to linear polarization and the orange ellipses to circular
right-handed polarization.
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FIGURE 6.4: Stokes parameters for two vector modes for an inter-
modal phase α = 0.

FIGURE 6.5: Polarization reconstruction for the LG beam with radial,
spiral and azimuthal polarization states.
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FIGURE 6.6: Polarization reconstruction for two different LG vector
beams.

6.3 Purity analysis.

As mentioned above, the vectorness determines the "purity" of the generated modes,
a value of 0 corresponds to a fully scalar beam and a value of 1 belongs to a fully
vector beam. Therefore the Stokes parameters were used to compute vectornes using
the expression 2.35:

C =

√
1 −

S2
1

S2
0
− S2

2

S2
0
−

S2
3

S2
0

(6.1)

where Si corresponds to the values of the Stokes parameters Si integrated over the
whole transverse profile of the beam:

Si =
∫ ∫ ∞

−∞
SidA; i = 0, 1, 2, 3 (6.2)

The values obtained for the cases at hand, namely
√

2
2

(
LG1

0 R̂ + LG−1
0 L̂

)
with differ-

ent intermodal phase (corresponding to radial, spiral and azimuthal polarization),√
2

2

(
LG1

2 R̂ + LG−1
2 L̂

)
and

√
2

2

(
LG3

1 R̂ + LG−3
1 L̂

)
are summarized on table 6.1. Notice

that most of the values are close to 1, in fact the furthest value corresponds to 0.89,
indicating that the purity of the beams is very high. In all cases there is agreement
between the theoretical and the calculated value, with percent error ranging from
3% to 11%. Therefore, as proposed by the technique, the generated beams posses
high purity.
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Vector mode CT CE1 CE2 CE3
√

2
2

(
LG1

0 R̂ + LG−1
0 L̂

)
, α = 0. 1.00 0.97 0.96 0.97

√
2

2

(
LG1

0 R̂ + LG−1
0 L̂

)
, α = π

6 . 1.00 0.89 0.90 0.89
√

2
2

(
LG1

0 R̂ + LG−1
0 L̂

)
, α = π. 1.00 0.97 0.89 0.91

√
2

2

(
LG1

2 R̂ + LG−1
2 L̂

)
, α = 0. 1.00 0.95 0.93 0.95

√
2

2

(
LG3

1 R̂ + LG−3
1 L̂

)
, α = 0. 1.00 0.96 0.90 0.96

TABLE 6.1: Theoretical (CT)and experimental (CEi) concurrence for
the generated vector modes at different times.

6.4 Stability analysis

In the case of the
√

2
2

(
LG1

0 R̂ + LG−1
0 L̂

)
radial, spiral and azimuthal modes, a stabil-

ity analysis was performed. First the ellipticity and the orientation of polarization
for each point along the plane perpendicular to beam propagation were calculated
at three different times considering; t0 the first measurement, t1 the second measure-
ment, and t2 the third measurement. For each measurement, the acquisition of four
intensity images, as described on the previous chapter, were performed. The time
difference between each measurement was of ten minutes.

FIGURE 6.7: Intensity measurements and polarization reconstruction
(last column) for the mode

√
2

2

(
LG1

2 R̂ + LG−1
2 L̂

)
at three different

times.

Observe in image 6.7 the intensity measurements and polarization reconstruction
for the mode

√
2

2

(
LG1

2 R̂ + LG−1
2 L̂

)
at three different times. By the first qualitative

inspection, the intensity distributions and the polarization reconstruction have a re-
markable similarity, in fact it is difficult to point a particular difference. However,
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upon subjecting the images to meticulous scrutiny as explained on chapter 2 and
following the methodology described by Perez-Garcia and collaborators in [21], the
root mean squared error (RMSE) of both parameters for each polarization ellipse
across the transverse plane was calculated to make a quantitative comparison be-
tween the values obtained at t0 in contrast to the values obtained for t = t1 and
t = t2.

Vector mode azimuthal spiral radial
t0 vs t1 t0 vs t2 t0 vs t1 t0 vs t2 t0 vs t1 t0 vs t2

RMSEα 1.3317% 1.7768% 0.8427% 1.2715% 1.4122% 1.7721%

RMSE f 0.0007% 0.0016% 0.0012% 0.0006% 0.0023% 0.0036%

TABLE 6.2: RMSEα y RMSE f of the modes for azimuthal, spiral, and

radial
√

2
2

(
LG1

0 R̂ + LG−1
0 L̂

)
mode .

As can be seen on table 6.2 the RMSE for all the cases is less than 2% indicating a
high similarity among the three measurements. Since the comparison is made be-
tween the same beam at different times, the values obtained for RMSE show that the
beam is very similar to itself over time, with any differences being minor (observe
in figure 6.8 an example of this), and perhaps caused by small fluctuations in the
measurement devices, the methodology followed for data acquisition or calibration
errors in the devices used in the experimental setup. As it has been highlighted in
previous chapters, there is not a consensus about a quantitative measurement to de-
termine and classify the stability of the beams; in this sense, this is a pioneer work
which gives a first approach that can provide a first step for a more precise clas-
sification of the stability in a vector beam. In spite of the latter and with careful
consideration, it is possible to conclude that the fluctuations in the intermodal phase
are likely negligible and the generated beams are highly stable.

FIGURE 6.8: Detail of the polarization and intensity distribution for a
section of the beam

√
2

2

(
LG1

0 R̂ + LG−1
0 L̂

)
at three different times.
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Chapter 7

Conclusions and further work

As the interest in exploring structured light has increased, a bunch of unseen prop-
erties, behaviors and applications have been found, such as the mentioned in the
previous chapters, which include the self-healing property [8] or the property of
having orbital angular momentum [9] on the one side, and applications ranging
from optical [11, 12, 13], to biomedical [37, 68]. At the same time, this interest trig-
gered the development of technological advances and a great progress in the field of
structured light, as presented in [10].

Some of the areas in which structured light have found interesting applications in-
clude optical tweezers, metrology, high resolution microscopy, optical communica-
tions, among others. Among the needs of the field, looking for generation and char-
acterization techniques has been medular and in this context the use of SLMs has
gained prominence since this devices enables the creation of light beams with virtu-
ally any desired shape. In spite of the broad number of current techniques for the
generation of structured light, generating vector beams that at the same time posses
high purity and stability has not been achieved. In fact there is not consensual well-
established method for evaluating the stability of the generated beams over time and
the approaches are generally based on qualitative descriptions rather than quantita-
tive approximations. This work explored the use of a spatial light modulator in a
configuration that has not been previously used in the field and provides a quanti-
tative means for evaluating the stability of the generated beams.

The conclusions that can be derived from this work are as follows: first of all the ap-
parent disadvantage of SLMs which is its polarization-sensitive attribute was the key
to achieve generation of vector beams on-axis and therefore ensuring that the two
polarization components follow always the same optical path and the intermodal
phase remains constant over time. It was possible to generate LG vector beams by
combining Laguerre-Gauss scalar modes with the same number of rings and oppo-
site topological charges. It was further demonstrated that the vector modes gener-
ated posses a high degree of purity and are highly stable. This was done by calculat-
ing its concurrence (degree of non-separability between the spatial and polarisation
degrees of freedom), flatness and orientation of the reconstructed polarization el-
lipses of the whole transverse plane, and comparing these values for measurements
of the same beam in different times by calculating the root mean squared error and
finding errors below 2% in all cases. The small discrepancies may be explained by
problems related to the measurement technique, imperfections in the optical ele-
ments used, and tiny deviations in calibration rather than by the quality of the gen-
eration technique proposed.
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As a proof-of-principle for the proposed technique, we focused on the generation of
LG beams, nevertheless the same principle may be followed to generate other beams
with arbitrary polarization distributions and spatial shapes. Although some aspects
are still to be improved to enhance the scope of the technique demonstrated. Fur-
ther work include rethink on how the setup may be modified to achieve complex
amplitude modulation in both halves of the spatial light modulator, and the gener-
alization of the technique to generate other families of modes. Additionally it would
be possible to explore more deeply a way of quantitative characterizing the stability
of vector beams and even propose a classification. An alternative route to take in
the future is the use of this highly stable beams in a specific application, for example
in optical metrology or optical tweezers and refine the technique to achieve the best
generation of the target vector beam.
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