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Abstract

In recent years, Quantum Mechanics has gained notoriety for challenging our most
basic intuition and prior knowledge of the Natural world. Some of the topics that
have sparked plenty of interest among the scientific community, as well as the gen-
eral public, are the so called quantum non-local correlations, from which the better
known is quantum entanglement. These intriguing phenomena relate physical entities
that are spatially separated and make them behave as a single system in a seemingly
instantaneous fashion. Furthermore, quantum non-local correlations are not only rel-
evant in a philosophical sense, they also constitute a fundamental resource for future
technologies with applications far beyond our current perspective.

Nevertheless, multipartite quantum correlations have only been recently investi-
gated and still there is plenty of research needed to properly understand them. In this
work we strive to contribute to this generation of knowledge by studying the Hamil-
tonian of a non-linear system in a resonance condition that is believed to correlate
four modes of light. Our contribution is focused on attempting to certify multipartite
quantum correlations using a specific methodology. More specifically, our analysis is
made using mathematical tools known as phase-space methods, in particular one of
these, which is called the positive-P representation. We compare our results by per-
forming a similar analysis using the Heisenberg evolution equations. Afterwards, we
use these results to test for two quantum non-local correlations, namely, entanglement
and steering and we do so by employing mathematical criteria called witnesses. We
found the presence of both of these quantum correlations in a regime characterized
by the quotient between two quantities, called the coupling parameters.
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Chapter 1

Introduction

1.1 Quantum non-locality

Some of the most emblematic mysteries of modern physics are the phenomena known
as non-local quantum correlations. Originally described by Einstein, Podolsky and
Rosen on their 1935 article [1], were at first considered as absurd consequences de-
rived from the mathematical structure of quantum mechanics, and used to argue that
the latter was an incomplete theory. Years later, several experiments [2–9] showed
that these phenomena do occur in Nature and that it is necessary to understand them
in order to construct a more realistic model of the Universe.

Non-local quantum correlations have no classical analogy and have defied the com-
prehension and intuition of generations of physicists. These correlations imply that
some specific type of quantum systems can be physically separated in subsystems and
still can only be described as, or behave as one. Even though these phenomena is
generally referred to under the generic term of entanglement, we will later discuss
that this is just one type of non-local correlation out of many, and its differences with
the rest of them will be pointed out. In particular, we are interested in two of these
correlations, called entanglement and steering.

In quantum mechanics some physical states are described mathematically by a
state vector. When this vector cannot be written as the product of the state vector
of each of its parts (which are called subsystems) then the whole system is said to be
entangled. In some entangled physical states a measurement on one of the subsystems
can produce effects on some other subsystem, even if these two subsystems are phys-
ically separated from one another. Such effect is called steering.

In their seminal paper, Einstein, Podolsky and Rosen proposed that the non-local
correlations could have been generated by some unknown factors, nowadays called hid-
den variables [1]. In 1964, Bell devised a definition for locality that took into account
these hypothetical hidden variables. Based on this definition, he developed a require-
ment for theories with hidden variables, which is the satisfaction of what is now known
as a Bell inequality. If this requirement was not met by the predictions of a theory,
then such theory was incompatible with hidden variables. Observations from exper-
iments [4, 5, 10], consistent with predictions from quantum mechanics showed that
for some states, Bell’s requirement was not met, and therefore, quantum mechanics
was incompatible with a hidden variable theory, or in other words, these experiments
showed that quantum mechanics was non-local. Thus, with the emergence of the Bell
inequalities, a test for non-local quantum correlations came into existence.
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Non-local quantum correlations have sparked plenty of interest over recent years
because of the profound philosophical implications that they have on physical reality,
but also for the potential that they provide for quantum technologies [11, 12]. We
will now mention some of the possible applications that have motivated research in
quantum non-local correlations. More specifically, in the area of quantum cryptogra-
phy, which is primarily concerned with developing secure communications, entangled
photon pairs have been used to send messages from a satellite to a ground station up
to 1200 km away [13] and for distributing a secret key to be used for encrypting mes-
sages [14]. Quantum teleportation is another technology that so far has been able to
transfer quantum states between photons using non-local correlations [15–17]. Also,
algorithms for quantum computing have been proved [18] to take advantage of multi-
partite entanglement (i.e. entanglement between more than two subsystems) in order
to provide the very much expected exponential speed up over classical computing.

1.2 Differences between non-local quantum correlations

As has been noted, the term entanglement has been used to describe all types of
quantum non-local correlations. Nowadays, we are aware that there are different
types of non-local correlations apart from entanglement. We will now discuss their
conceptual differences.

Entanglement and steering

An entangled system is a quantum state that cannot be described mathematically as
the product of the quantum states of its subsystems [19]. On the other hand, steerable
systems are the ones in which measurements performed in one of the subsystems alter
the state of other subsystems even if they are physically separated from each others.
Originally in their paper, Einstein, Podolsky and Rosen thought of a quantum system
that was formed by two particles. These particles were then distributed between two
observers: Alice and Bob. Originally their reasoning was explained using position
and momentum for the two particles, however it can also be explained using spin-1/2
particles [20], which is the case that we will use for the following explanation. It is
worth noting that there are some other degrees of freedom besides these that can be
quantum correlated.

The following is a simplified description of the setup of Einstein, Podolsky and
Rosen but using spin as the correlated variable. First, Alice receives her particle and
chooses a specific observable to measure. We will call this observable X. It could
be spin in the X̂ direction, for example. From that measurement Alice will obtain a
certain value x 2 {�1, 1}. Afterwards, Bob can perform a measurement on his own
and, if he chooses the same observable X, he will obtain a perfectly anticorrelated
result. What we mean by anticorrelated, is that he gets the opposite result, in other
words, if Alice measures 1, then Bob measures �1. If, by contrast, Alice had chosen
to measure spin in the Ẑ direction, Bob’s measurement of that observable would yield
the perfectly anticorrelated value from the one obtained by Alice. We can conclude
that Alice, by choosing on her own the observable to measure, is directing Bob’s
state to an eigenstate of either �̂x or �̂z [21, 22]. This ability of her to influence Bob’s
state from a distance was called steering by Schrödinger [23, 24] and still is to this day.
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Steering is on itself a non-local quantum correlation and it is important to point
out its differences from entanglement since all steerable states are entangled but not
all entangled states present steering [21]. Furthermore, some states can present one-
way steering, in which Alice can influence Bob but Bob cannot influence Alice, or
two-way steering in which both observers can influence the other. Is in this sense that
steering is not necessarily a symmetric correlation, while entanglement is, given the
fact that the two subsystems are equally entangled to each other.

Bell non-locality

As we have discussed earlier, Bell developed a mathematical requirement for all
hidden-variable theories that, if not met by a particular theory, showed that pre-
dictions by that theory could not be explained by hidden variables. This requirement
was devised as a linear inequality for the measured values of quantum subsystems
that are believed to be correlated. Mathematical expressions of such form are called
Bell’s inequalities [25].

If a quantum state violates a Bell inequality it is said to have Bell non-locality,
which is itself a strong non-local quantum correlation. If a quantum state has Bell
non-locality it is also entangled and shows two-way steering [26, 27]. However, it is
important to note that some quantum states may present entanglement or steering
without violating a Bell inequality [28]. That is one of the reasons there is need for
some other tools to test for the presence of entanglement and steering, besides Bell
inequalities.

1.3 Multipartite quantum correlations

We have briefly discussed the concepts of quantum correlations and have mentioned
that they have potential applications for the development of new technologies. In
order to accomplish this, it is needed to build complex systems that involve quantum
non-local correlations within multiple parties [29]. For example, in order to build a
quantum computer, plenty of qubits will be needed to perform computations, and,
to achieve the long awaited quantum speed up, it is necessary that these qubits are
entangled [18], or more generally, quantum correlated with each other. That is one
of the reasons that multipartite quantum correlations are needed to be studied and
better understood. There are more challenges to be faced in this research area, for
instance, there is a basically unique way of quantifying bipartite pure state entangle-
ment [30], but the multipartite case treats each situation differently depending on how
those entangled states are meant to be used. Furthermore, it has been argued [31]
that in the multipartite regime these phenomena will be much richer and will allow
researchers to answer questions such as “What is the natural unit of entanglement?”
or “When is a state maximally entangled?” in a less ambiguous way. Summarizing,
plenty of research for quantum non-local correlations in the multipartite regime is still
needed and that is our main motivation for this work.

Additionally, there are practical applications for systems that exhibit multipartite
non-local correlations. For instance, Acín et al. [32], have shown that, in order to
prove security for a cryptography protocol, it is necessary that the states produced by
it violate a Bell inequality. Later, the authors developed a protocol with this purpose
and proved its security against several attacks. On a different work, Giovannetti et
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al. [33] have demonstrated that by employing a multipartite entangled state, they can
reduce the error on the estimation of a phase shift on a two-level qubit. This phase
shift is generated by the dynamics of the system and instead of preparing the state N
times and performing a measurement for each of these, they entangle N qubits and
perform a collective measurement once. The enhancement on the error is proportional
to

p
N , for N entangled qubits.

As has been noted, another type of application for quantum correlations is quan-
tum teleportation, in which an unknown quantum state can be transferred between
particles at a distance. Until recently, all experiments performed on quantum tele-
portation were restricted to a two-dimensional sub-space, however, quantum systems
might have more than one degree of freedom and these parameters may be defined for
high dimensions, such as orbital angular momentum [34], for example. By considering
this high dimensional facet, in 2019, Luo et. al. [35] proposed an experimental scheme
for teleporting an arbitrarily high dimensional photonic quantum state. The authors
also implemented it successfully for a three-dimensional space, thus demonstrating
the teleportation of a qutrit. For this purpose, the authors used a three-dimensional
Bell state, which is a multipartite quantum-correlated system. Furthermore, Hu et.
al. [36] also were able to teleport a three-dimensional system using auxiliary pairs of
photons that were entangled with each other.

Quantum cryptography can also benefit from multipartite correlations, as has been
shown by authors such as Cerf et al. [37] whose work extends quantum cryptography
protocols to spaces of d-arbitrary dimensions. In their paper, they also derived a se-
curity proof for quantum cryptography using qudits that guarantees that a secret key
rate can always be produced by these methods. Further research on quantum commu-
nications using d-level systems has been done, and its benefits and future challenges
have been identified, as reported by Cozzolino et al. [38]. Among the benefits dis-
cussed by the authors we can find a larger capacity for information transmission and a
higher noise resilience. More specifically on this last topic, Cozzolino et al. claim that
to guarantee secure communications using quantum systems, a quotient called QBER
(Quantum Bit Error Rate), that is the ratio of an error rate to the overall received
rate, has to be below a certain threshold. For two-dimensional systems, this number
is around 11%, while for systems with d = 4 and d = 8 levels, the threshold is 18.93%
and 24.70%. The errors used to calculate the QBER may have been generated either
by environmental noise or by eavesdropping attacks, thus adding dimensions to the
communication system enhances its robustness against noise in general.

Generation of multipartite quantum correlations

One specific way to generate photons that share a quantum correlation is by using
nonlinear optics. These phenomena is exhibited by media that responds to higher
powers of an incident electric field. In the next chapter, we will discuss more thor-
oughly these processes, but for now we can mention some earlier works that have
used them to generate entanglement and steering. For instance, in 2004, Olsen [39]
demonstrated that second harmonic generation (SHG) is one nonlinear process that
generates both entanglement and steering. In this process, two photons of frequency
!1 are coupled in a medium with second order susceptibility. By a parametric process
(one that involves no molecular transitions) inside the medium, one photon of fre-
quency !2 = 2!1 is generated. The author showed that this newly generated photon
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presents entanglement and steering with the photons from the fundamental frequency
!1. Olsen also expanded his work using two processes for third harmonic generation
(THG) [40] to generate entangled modes of light. Similar to SHG, in THG, three pho-
tons (of frequency !1) interact with a medium that generates one photon of frequency
!3 = 3!1. This process is called direct third harmonic generation. Additionally, the
author considered a different way of THG that starts with a SHG system that is fol-
lowed by a sum-frequency generation. After producing the already discussed photon
of frequency !2 by SHG, another parametric process combines the energy of this pho-
ton with one of the undepleted pump of frequency !1 to produce !3 = !2 + !1. This
experimental scheme is called cascaded third-harmonic generation. Both systems were
shown to produce entanglement and steering [40]. Using a different nonlinear process,
Rojas et. al. [41] found that multipartite entanglement between three photons was
generated by a process called triple-photon-generation (TPG). One of the processes
considered takes a photon of frequency !p and converts it into a triplet of photons
of frequencies !1,!2,!3, such that !p = !1 + !2 + !3. If just !p is pumped into
the medium, in other words: used to excite the medium, then the process is called
spontaneous, if one or two of the output frequencies are also pumped in, then it is
called partially seeded, and if all of the output frequencies are pumped in, is called
fully seeded. Authors [41] showed that while the spontaneous case does not produce
quantum correlations, the fully seeded case is an efficient way to generate genuine
tripartite entanglement.

In this work we will examine a nonlinear physical system that that is doubly
pumped by Gaussian modes and that produces a triplet of photons [42]. The triplet
of photons is then converted to four modes of light under a specific geometric condi-
tion that depends on the relative angle of incidence of the pumps [43]. The resonance
condition is generated by walk off effects due to the birrefringence of the medium.
This physical system is believed [43] to produce four partite entanglement as well
as steering in two continuous variables called the field quadratures. In order to cer-
tify the presence of this quantum correlation we use the positive-P representation by
Drummond and Gardiner [44], as well as the application of entanglement and steering
witnesses.

1.4 Layout of the work

The work is divided in the following way: after this brief introduction a chapter is de-
voted to the theoretical background and concepts developed or used during the work,
for example, more formal definitions of the quantum correlations that were studied,
the variables that were quantum correlated, the type of quantum states that describe
the modes of light that were used in the physical system, etc. Afterwards, the method-
ology of our research is discussed and comparisons between the two methodologies are
made. This is followed by the presentation of our results, namely, the solutions to the
differential equations obtained by both methods, the observables that are quantum
correlated as well as the witnesses that certify the presence of these quantum correla-
tions. Lastly, we discuss the conclusions and possible incremental research that could
be performed for later works.
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Chapter 2

Theoretical framework

In this chapter we will discuss the necessary background for the development of our
work. Important physical concepts such as entanglement and steering will be mathe-
matically defined, as well as some theoretical tools and methods that are used in our
analysis, such as the quantum correlation witnesses and phase space methods. Also,
some physical quantities called quadratures will be presented, since these are the ones
that we are trying to show that are quantum correlated in our system.

2.1 Non-local quantum correlations

2.1.1 Entanglement

In quantum mechanics, a physical system is in a pure state if it can be described by a
state vector | i of unit length in a complex Hilbert space H. Some physical systems
are formed by two or more subsystems1, which in turn can be described by two or
more state vectors, for example: |ai that belongs to H1 and |bi that belongs to H2.

The state vector of the whole system can be in a product form of the vector of its
subsystems, such as:

| i = |ai ⌦ |bi , (2.1)

where ⌦ represents the tensor product. State vectors that can be represented in this
product form are called separable and are not entangled [19].

Quantum mechanics also allows for state vectors to be in a superposition (or linear
combination) such as:

| i = ↵ |Ai+ � |Bi , (2.2)

where ↵ and � are complex numbers called probability amplitudes that satisfy the
equation |↵|2 + |�|2 = 1. However, for some of these superpositions, it is not possible
to write them in product form of the state vectors of its subsystems, for example:

|�i = ↵ |a1i ⌦ |b1i+ � |a2i ⌦ |b2i . (2.3)

States such as 2.3, that cannot be written as a product of the vector states of their
subsystems, are entangled [45].

A more general type of state, called mixed state, is described by a density operator
⇢̂, which is a convex sum of projector operators onto a particular set of pure states

1Throughout this work the terms subsystem and party are used interchangeably.
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| ki. Mathematically, this is represented by:

⇢̂ =
NX

k=1

pk | ki h k| . (2.4)

Analogously, for a mixed state, if its density operator can be written as:

⇢̂ =
X

i

pi |aii hai|⌦ |bii hbi| , (2.5)

then it is separable. However, it is not trivial to find a decomposition such as 2.1 or
2.5 for a given state [12], even if it exists, and therefore, a more simple way of testing
entanglement is needed.

Multipartite entanglement

Generalizing the concept of entanglement to systems that have more than two par-
ties can be done through the following definition [31]. A system has multipartite
entanglement if its density operator cannot be written as:

⇢̂ =
X

i

pi⇢̂1,i ⌦ ⇢̂2,i · · ·⌦ ⇢̂n,i, (2.6)

where ⇢̂n,i belongs to the Hilbert space Hn and denotes the density matrix for the
n-th subsystem on the state i.

Unlike the bipartite case, there is a distinction between types of multipartite entan-
glement. In particular, we are referring to the terms of full multipartite entanglement
and genuine multipartite entanglement that sometimes are used indistinctly in the
literature, while in fact, they represent different concepts [46, 47]. These terms are
used to represent the intuition that this quantum correlation is distributed among all
the parties in the system, and not only between some of them.

This distinction with the bipartite case becomes necessary for the instance in
which, within a system, certain subsystems may be exclusively correlated with each
other but not with the rest of the parties. It is important to distinguish this difference
while using entanglement certification techniques (which will be discussed below, in
subsection 2.9) because it is possible to mistakenly assure that we have multipartite
entanglement while in fact, only bipartite entanglement is present. For example, we
could have a tripartite system in which subsystems 1 and 2 are entangled with each
other, but not with subsystem 3. This state could be represented by the density
matrix:

⇢̂ =
X

k

wk⇢̂k,12 ⌦ ⇢̂k,3. (2.7)

Even though the state described in eq. 2.7 presents entanglement between the first
two parties, it is biseparable because it can be factorized in the bipartition 12 � 3,
therefore it exhibits no multipartite entanglement, just bipartite entanglement.

We will now proceed to explain in more detail the difference between the two def-
initions: full multipartite entanglement is present when a state cannot be written as
a biseparable state, such as the one in eq. 2.7, or a fully separable state [46, 47], for
instance eq. 2.6. On the other hand, genuine multipartite entanglement occurs when
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the system cannot be written as a biseparable state or fully separable state, nor as a
convex sum of biseparable or fully separable states.

We now present an example in which this distinction is clearly shown. One of the
biseparable states for the tripartite case corresponds to the density matrix of eq. 2.7,
while the other two possible combinations of the three modes are:

⇢̂ =
X

k

wk⇢̂k,13 ⌦ ⇢̂k,2, (2.8)

⇢̂ =
X

k

wk⇢̂k,23 ⌦ ⇢̂k,1. (2.9)

Furthermore, the fully separable tripartite state is:

⇢̂ =
X

k

wk⇢̂k,1 ⌦ ⇢̂k,2 ⌦ ⇢̂k,3. (2.10)

If a quantum system cannot be described by any of the eqs. 2.7 - 2.10, then it exhibits
full multipartite entanglement.

Subsequently, for a quantum system to exhibit genuine multipartite entanglement,
it cannot be written as eqs. 2.7 - 2.10, nor it can be a convex sum of biseparable or
fully separable states. Mathematically this condition is written as [47]:

⇢̂NG = P1

X

i

wi⇢̂
i
1,2⇢̂

i
3 + P2

X

j

wj ⇢̂
j
1,3⇢̂

j
2 + P3

X

k

wk⇢̂
k
2,3⇢̂

k
1, (2.11)

where
P3

m=1 Pm = 1,
P

nwn = 1 and the sign for the outer product, ⌦, has been
omitted for briefness. If a tripartite quantum state cannot be written in any convex
combination of the general form 2.11, then it possesses genuine multipartite entangle-
ment.

An important comment on this matter is that even though in general these two
definitions are different, for pure states they are equivalent. In other words, if a pure
state is fully inseparable, it is also genuinely entangled and presents Bell nonlocality
[46, 47]. It is in this sense that some of the earliest experiments that showed the pres-
ence of entanglement dealt with proving violations of Bell’s inequalities. Examples
of these are the Freedman-Clauser experiment [2] as well as the important works by
Aspect et al. [4, 5]. The experiment performed by Wu and Shaknov [48] is also very
relevant since it is the earliest experiment that showed the presence of entanglement
in a physical system. In this work, Wu and Shaknov showed that in a pair of photons
that is produced by the annihilation of an electron and a positron, each photon has
orthogonal polarization with the other.

We will now mention some possible applications for entanglement. One of these
applications is called dense coding [49]. What is meant by coding in this context is
the usage of a physical system to represent information that we wish to communicate.
In particular, we are going to be dealing with transmission of bits of information such
as yes/no answers. In classical systems, a bit of information could be represented,
for example, by the presence of an electrical current or by different voltage levels.
On quantum information, however, these two different values are represented by two
orthogonal basis states which are called qubits and will be denoted by |0i and |1i.
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Unlike the classical case, orthogonal basis states can be in a superposition of these
two state vectors. An example of this, that uses two qubits, is the Bell basis, which
is formed by the four Bell states:

�� +
↵
=

1p
2
(|0i |1i+ |1i |0i) ,

�� �↵ = 1p
2
(|0i |1i � |1i |0i) ,

���+
↵
=

1p
2
(|0i |0i+ |1i |1i) ,

����↵ = 1p
2
(|0i |0i � |1i |1i) . (2.12)

An interesting property from this basis is the fact that starting from any of the
four Bell states, only manipulation of one of the two qubits is necessary to change
to any of the three remaining basis states. This property was used by Bennett and
Wiesner [50] to propose an encoding scheme, called dense coding, in which two bits
of information can be coded by manipulating only one qubit.

A different application for entanglement is quantum teleportation. In this scheme
[51], a person, usually called Alice, wants to send a particular quantum state |�i to
another person, usually called Bob. Alice does not know what is the state and is not
able to send the physical system itself, so she makes it interact with another system
in a known state. This new system is called an ancilla. After the interaction, the
original system is no longer in the state |�i, but the information from said state is
transmitted to the ancilla system which is now sent to Bob. By considering the actions
performed by Alice, Bob can apply some unitary operations to the ancilla system in
order to recover the original state |�i. For this protocol, is necessary that Alice and
Bob share an entangled state beforehand. In particular, they share the | �i state
that was defined in eq. 2.12. This is done by sending to each person one of the
qubits of the Bell state. Subsequently, Alice will perform a joint measurement on the
Bell basis of her system in state |�i with her entangled qubit from state | �i and
she will inform the result from her measurement to Bob through a classical channel.
Depending on the result that Alice gets, Bob can perform a unitary operation on his
qubit from the shared entangled system | �i and recover the original state |�i. In
this state teleportation, the original state vanishes but it is possible to reconstruct it
elsewhere thanks to the entanglement of the Bell state  �

2.1.2 Steering

Steering is a formalization of the EPR argument [52, 53]. When steering is present, by
performing local measurements on one of the subsystems, it is possible to affect the
rest of the parties and steer them into orthogonal eigenstates of the observable that
was measured. Steering is an asymmetric quantum non-local correlation, that means
that one of the subsystems may steer the other, but not necessarily the other way
around. It is possible, however, to have systems in which there is two-way steering,
but that is not the general case.

In a similar fashion to entanglement, steering present in systems with multiple par-
ties can be considered genuine multipartite steering under specific conditions. Namely,
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genuine multipartite steering is present when all of the different subsystems (or bipar-
titions) can steer each other [21, 54].

Steering was formalized by Wiseman, Jones and Doherty in 2007 [22, 55] as the
capability of remotely generating ensembles that could not be obtained by a local
hidden state (LHS) [56]. That is a state shared by Alice and Bob, ⇢̂�, that yields to
Bob measurement results given by a probability distribution of the form

Z
d�µ(�)p(a|x,�), (2.13)

where � is a hidden variable, unknown to Bob, that produces the result a to Alice
when she performs measurements on the observable x, and which is determined by
the distribution µ(�). The authors [22] define a state as not-steerable if it does not
produce measurements consistent with distribution 2.13. Notice that the equation
depends on the conditional probabilities of measurements performed by Alice. It is
in that sense that the definition is asymmetric, for it may change if we consider the
probabilities of measurements done by Bob.

Steering was suggested originally by Einstein, Podolsky and Rosen in their sem-
inal paper of 1935 [1] as a consequence of the mathematical formalism of quantum
mechanics, even though the term was not proposed by them but by Schrödinger [23,
57]. Several years later, the phenomenon was confirmed experimentally [57, 58]. We
will proceed to mention some of the experiments that demonstrated that this was
indeed, a physical phenomenon.

In 1992, Ou et al. [58] employed an optical parametric oscillator (OPO) to gener-
ate this quantum correlation among signal and idler beams of light. To determine that
the two emitted beams were correlated, they measured the quadratures Xi, Pi (these
quantities serve as analogous of position and momentum for a mode of light and will
be further discussed in this work in section 2.2) of one of the beams (the idler) using
homodyne detection. Afterwards they inferred the values for the same observable on
the other beam, Xs, Ps, and calculated the variance of the difference between the two
of them �2

infX = h(Xs � giXi)2i, where gi is a real coefficient used for normalization.
This normalization is such that, given a value for Xi, one can determine Xs within
a very small error if the following relation is satisfied: �2

infX < 1. Afterwards, for
specific values Xs, Ps the following result arises: �2

infX�
2
infP < 1 while X and P

being non-commutative have to satisfy the Heisenberg relationship: �2X�2P � 1.
The apparent contradiction is solved, according to the authors, because �2

infX is a
conditional distribution between Xs and Xi (with the same argument applying to
quadrature P ). In other words, the quadratures Xi, for the idler beam, and Xs for
the signal, are quantum correlated with each other.

On another instance, Händchen et al. [57] produced one-way steering on Gaus-
sian states (Gaussian states and their importance for our work are discussed in section
2.4). Their experimental setup utilized squeezed states generated by type-I parametric
down-conversion as the source. They superimposed this mode of light with a vacuum
on a balanced beamsplitter and called one of the outputs state A. The other output
was put through a half wave plate and then through a variable beamsplitter where
it was superimposed with a second vacuum mode. The contribution of each of these
modes could be modified by the authors at will. The output is called state B. Lastly,
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the authors performed measurements on states A and B using homodyne detection.

The criteria considered by the authors to certify one way steering is the following
(Subsection 2.10, included in this chapter, is devoted to this important topic):

VB|A(XB)VB|A(PB) � 1,

VA|B(XA)VA|B(PA) � 1, (2.14)

where VB|A(XA) denotes the conditional variance of the quadrature XB given a result
by a measurement on state A, etc. The violation of the first of these inequalities cer-
tifies steering from state A to state B and the violation of the second inequality is the
converse case. This specific criterion was defined by Reid [52] and will be revisited in
section 2.10.1, since it is also used in this work. The results obtained by the authors
were dependent on the contribution of the second vacuum mode (the one used to gen-
erate state B) and the regime where they found one-way steering is located between
40% and 70% of the variable beamsplitter for the vacuum mode. Below this threshold
they found two-way steering, and above it, they found no steering whatsoever.

Important research has been done on the possible applications of steering, which
is arguably one of the most puzzling and interesting phenomena of physics, and there-
fore, could be used in devices that just a hundred years ago would be thought of as
mere fantasy. We will now mention some of these important applications [59–61].

Quantum Key Distribution (QKD) is an area of applied quantum physics where
the objective is to send a string of information, which we call key, securely to another
person, using a quantum system. The reason is that, it was shown by Shannon [62]
that if this key distribution is performed securely, and the key itself meets some spe-
cific requirements, then it can be used in cryptography protocols such as the one-time
pad. This protocol is secure against statistical analysis of the encrypted message [62],
which would in turn make it applicable for secure communications.

In practice, QKD protocols consider the case in which two people, Alice and Bob,
send each other these bits of information using quantum systems, such as polarized
photons, nevertheless, the assumption is made that both Alice and Bob trust their
measurement devices. It has been shown that this assumption is not very realistic
since these systems can be hacked by a variety of methods [59, 60], thus, it has been
proposed by Branciard et al. [61] to use experimental setups that depend on steering,
that allow us to trust only one of the measurement devices involved without compro-
mising security. This experimental scheme is more realistic since one of the devices
could be owned by a trusted institution, such as a bank for example, while the other
may be compromised without risking information leaks.

Later on we will discuss the existence of several criteria that can be used to certify
steering. One of the most simple [21, 63] consists of formulating criteria for the
statistical correlations between the measurements performed by Alice and by Bob,
similar to the one defined by Reid [52] and used by Händchen et al. [57] in the
previous subsection.
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2.2 Field quadratures

The physical system that we will be studying uses light sources and a specific type of
medium to produce four modes of light that, we believe, present genuine multipartite
entanglement and steering. The quantum correlations between these modes occur in
the quantities called field quadratures, or simply quadratures. These quantities behave
as analogous to position and momentum for modes of light. We will devote this sub-
section to defining them and listing their properties.

From the classical point of view, light is an electromagnetic wave and, as such, it
has a strong relationship with the harmonic oscillator. It has been shown [64] that
the similarities between the two systems are what allow us to define two analogous
quantities to position and momentum for a state of light.

Let us first consider the classical harmonic oscillator for a mass m and frequency
!. Its equations of motion are the following:

p = m
dx

dt
, (2.15)

m
d2x

dt2
=

dp

dt
= �m!2x. (2.16)

We will also take into account the expression for the total energy of the harmonic
oscillator, namely:

E =
p2

2m
+

1

2
m!2x2. (2.17)

On the other hand, we will examine an electromagnetic wave linearly polarized
that is contained in a cavity of dimension L. It is moving in the z direction and its
electric field oscillates along the x-axis. Solutions for the electric and magnetic fields,
respectively, are:

Ex(z, t) = E0 sin kz sin!t, (2.18)

By(z, t) = B0 cos kz cos!t. (2.19)

The total energy can be calculated by performing an integral on the energy density,
which is:

U =
1

2

✓
✏0E

2 +
1

µ0
B2

◆
. (2.20)

That integral across the length of the cavity yields:

E =
V

4

✓
✏0E

2
0 sin

2(!t) +
B2

0

µ0
cos2(!t)

◆
. (2.21)

By inspecting and comparing equations 2.17 and 2.21 we can define generalized coor-
dinates q(t) and p(t) as follows:

q(t) =
p
m

✓
✏0V

2!2

◆ 1
2

E0 sin(!t), (2.22)

p(t) =
1p
m

✓
V

2µ0

◆ 1
2

B0 cos(!t), (2.23)

which are analogous to position and momentum for the harmonic oscillator.
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Furthermore, these coordinates satisfy the equations of motion for the harmonic
oscillator, that is:

p =
dq

dt
, (2.24)

and
dp

dt
= �!2q (2.25)

except for the factor of the mass m. We can now define the (classical) field quadratures
as:

X1(t) =
⇣ !
2~

⌘ 1
2
q(t), (2.26)

X2(t) =

✓
1

2~!

◆ 1
2

p(t). (2.27)

Having established the classical quadratures, we will now present them from a
quantum mechanical point of view. The quantum harmonic oscillator can be expressed
in terms of the ladder operators [65], which are defined as follows:

â =
1

(2m!~)1/2
(m!x̂+ ip̂x), (2.28)

â† =
1

(2m!~)1/2
(m!x̂� ip̂x). (2.29)

By manipulating these operators we can find position and momentum as a linear
combination of them:

x̂ =

✓
~

2m!

◆1/2

(â+ â†), (2.30)

p̂x = �i

✓
m~!
2

◆1/2

(â� â†). (2.31)

One can show by substituting the quantum mechanical operators 2.30 and 2.31 on
the eqs. 2.26 and 2.27 for position and momentum, and considering a unitary mass
m = 1, that the field quadratures can be defined quantum mechanically as2:

X̂ =
1

2
(â† + â), (2.32)

P̂ =
i

2
(â† � â). (2.33)

On summary, by an analogy with the quantum harmonic oscillator, we can define
two continuous variables that act as position and momentum for a mode of light, since
they are defined similarly in terms of the ladder operators for a quantum harmonic
oscillator of unitary mass. These variables are the quadratures X̂ and P̂ .

2.3 Coherent states

Coherent states are quantum states of light that have been referred as the most similar
to light produced by a laser [68, 69]. All modes of light used throughout this work
are modeled as coherent states because we are trying to represent a physical system

2More generally, the constant in these equations is c/2, being 1, 2, and
p
2, the usual values for c.

This difference depends on the selection of the value of ~ for natural units [66, 67].
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in which two laser beams are directed into a specific type of medium. The physical
system will be more thoroughly discussed later, in section 3.1.

In analogy to how a classical electromagnetic wave is generated, by a displacement
of the value of the electric or the magnetic field followed by the self propagation derived
from Maxwell equations, the coherent state is defined by the displacement from the
quantum vacuum. This displacement is mathematically represented by the action of
the displacement operator, D̂(↵), defined as:

D̂(↵) = exp
⇣
↵â† � ↵⇤â

⌘
. (2.34)

where ↵ is a dimensionless complex quantity associated with the classical complex
amplitude, which is in turn related to both magnitude and phase of the light mode.
Furthermore, the displacement operator is unitary:

D̂†D̂ = D̂D̂† = Î, (2.35)

which means its Hermitian conjugate is its inverse: D̂† = D̂�1.

Coherent states are therefore defined as:

|↵i = D̂(↵) |0i , (2.36)

and their dual vector is:
h↵| = h0| D̂†(↵). (2.37)

Coherent states are eigenstates of the annihilation operator:

â |↵i = ↵ |↵i , (2.38)

and their dual vectors are eigenstates of the creation operator:

h↵| â† = ↵⇤ h↵| . (2.39)

The average number of photons in a coherent state can be calculated by the
evaluation of the photon number operator defined as:

n̂ = â†â, (2.40)

which yields:
h↵| n̂ |↵i = ↵⇤↵ = |a|2, (2.41)

thus giving physical meaning to the quantity |↵|2 where ↵ was the displacement ap-
plied to the vacuum state.

Coherent states form an overcomplete basis
Z

|↵i h↵| d2↵ = ⇡ > 1, (2.42)

but are not orthogonal:

h�|↵i = exp


1

2
(�⇤↵� �↵⇤)

�
exp


�1

2
|� � ↵|2

�
6= 0. (2.43)
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2.4 Gaussian modes

Gaussian modes are quantum states light of continuous variables that can be repre-
sented in terms of Gaussian functions [67, 70]. More specifically, a mode is said to be
Gaussian if its Wigner function (which is a phase-space distribution) is a Gaussian
function. Moreover Gaussian transformations are those operations that take a Gaus-
sian state and map it to another Gaussian state.

These type of states and transformations are very relevant in practice. For exam-
ple, there are plenty of nonlinear processes that can be modeled with high accuracy
by Gaussian transformations, like squeezing, which is a process that decreases the
variance of one continuous variable while increasing the variance of its conjugate vari-
able. Some other Gaussian transformations are phase rotation transformations, the
displacement operator, the beam splitter transformation, the one mode squeezing op-
erator, among others [66, 67].

On the other hand, examples of Gaussian states of light are the vacuum state,
|0i, that is the state with zero photons, the thermal states, the coherent states, |↵i,
which are the most relevant Gaussian states to our work since those are the ones being
modeled, and the squeezed states.

2.5 Phase-space methods

As in classical mechanics there is a defined phase space in which we can represent a
dynamical system in terms of its position and momentum at any given time, an optical
phase space can be analogously defined. For this purpose the field quadratures will
take the role of position and momentum, each representing an axis on the plane, and
the particular state of the system will be represented as a vector.

It is important to note that since position and momentum do not commute, neither
do the field quadratures, therefore there is an uncertainty relation between the two of
them that can be showed to be [71]:

�X̂�P̂ � 1

4
. (2.44)

As a consequence of this uncertainty the state vector in phase space does not point
to a specific point, but to a circle (more generally an area of undefined shape) on
the plane. See figure 2.1 for a graphical representation. This area represents a set of
allowed values for the quadratures that satisfy the relation 2.44. The change of shape
of the area represents the augmentation of precision in one of the quadratures but
that implies the decrement on the other one.
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Figure 2.1: Graphical representation of the state vector in the phase
space. The area of the circles and ellipses is all the same as it represents
the uncertainty relation between the two quadratures. It is possible
to augment the precision in one of the quadratures by lowering it on
the other one. This trade off is represented by the variances of the
quadratures, and thus by ellipticities of the ellipses, in the lower right

corner of the figures.

Phase space distributions

Having defined a phase space, it is possible to define a distribution function. On a
context of statistical mechanics, that is a function that yields the probability of finding
a particular state vector within a small area of the phase space. In quantum optics
however, there are analogous functions that yield the expectation values for observ-
ables of a quantum system [72]. Therefore, we can describe the system in terms of the
evolution of these distribution functions, which are called quasiprobability functions.

There are several of these functions and we obtain them by writing the density
operator in terms of an overcomplete basis. Important differences between probability
functions and quasiprobability functions are that the latter may have negative values
and may not be normalized to unity. Phase space distributions have been used in
quantum optics to study a variety of phenomena regarding quantum non-local corre-
lations [73, 74].

More specifically, if we consider the density operator for a quantum state in terms
of coherent states:

⇢̂ =

Z
P (↵) |↵i h↵| d2↵, (2.45)

we encounter the weight function P (↵) known as the Glauber-Sudarshan P -function
[69, 75]. Like a classical probability distribution function, the P -function is normalized
to unity, that is: Z

P (↵)d2↵ = 1, (2.46)

since ⇢̂ is a Hermitian operator, P (↵) must be real.

The reason for which we are interested in these distribution functions is because,
depending on the ordering of a product of annihilation and/or creation operators with
the density matrix, we can choose a phase space distribution to map said product of
operators to a function of the phase space [72]. In that way the density operator is
mapped to these type of quasiprobability distributions. Furthermore, the evolution
equation for the density operator may be mapped to a Fokker-Planck equation [72] in
terms of this P -function and then to a set of stochastic differential equations which
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can be solved numerically [76, 77].

Moreover, the P -function can help us to characterize a system in the following
sense: if said system is classical, then the P -function will only take positive values
as a real probability density function [71]. If the system is nonclassical, then the
Glauber-Sudarshan P -function takes negative or singular values [44].

2.6 Positive-P representation

As it has been mentioned before, the Glauber-Sudarshan function can take negative
or very singular values if the photon statistics are nonclassical [69, 71, 72]. In order
to solve quantum optical problems of this nature in a more simple way, Drummond
and Gardiner formulated [44] a generalisation of the P representation by using non-
diagonal coherent state projectors in the density operator expansion.

In the cited paper, Drummond and Gardiner [44] prove that for a given density
operator ⇢̂, if a Glauber-Sudarshan function exists, then there is also a positive non-
diagonal P -function defined as:

P (↵) =

✓
1

4⇡2

◆
exp

⇥
�|↵� �⇤|2/4

⇤
h(↵+ �⇤)/2| ⇢̂ |(↵+ �⇤)/2i (2.47)

This representation takes place in a phase space twice the size of the classical
one, in which (↵,�) can vary independently over the whole complex plane. Similarly
to the P -representation, it is possible to obtain a Fokker-Planck equation using this
distribution and utilize it to study the dynamics of the system.

In particular, the following correspondences between the products of the creation
and annihilation operators, â, â†, the density matrix, ⇢̂, and the positive-P function
and its parameter ↵, will be used later in this work:

â⇢̂ �! ↵P,

⇢̂â �! (↵� @

@↵† )P,

â†⇢̂ �! (↵† � @

@↵
)P,

⇢̂â† �! ↵†P. (2.48)

Previous research has shown [78–81] that the Positive-P representation yields suc-
cessful results in the field of quantum optics. Some examples on this matter include,
but are not limited to, the following: Rosales-Zárate et al. [78] performed probabilis-
tic quantum simulations of Bell inequality violations . To map from the traditionally
used operator eigenvalues to the phase-space probabilistic method, the positive-P rep-
resentation was used. Drummond and Raymer [79], presented a theory of propagation
for non-classical radiation in a medium near resonance conditions. They also used the
positive-P representation and compared their results with Heisenberg equations of
motion. Their results allowed them to calculate statistics for the radiation field such
as photon antibunching. Also, Vyas and Singh [80] employed the positive-P repre-
sentation to study the dynamics of the optical parametric oscillators (OPOs) and
their coherence properties. Additionally, Drummond et al. [81] used the positive-P
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representation to simulate quantum states in a linear photonic network. Their re-
sults allowed them to compute measurable probabilities and certify the presence of
entanglement.

2.7 Fokker-Planck equations

This type of equation was first used by Fokker and Planck to describe the Brown-
ian motion of particles [82]. A deterministic equation of motion for a small particle
immersed in a liquid would need to consider the force exerted by every molecule of
the fluid on the particle, however, this is not possible due to the enormous amount of
molecules, so we treat the macroscopic system stochastically, or in other words, proba-
bilistically. A Fokker-Planck equation arises as a distribution function for macroscopic
quantities that are fluctuating, position in the case of Brownian motion.
A general case for N -variables has the following form [82]:

@W

@t
=

2

4�
NX

i=1

@

@xi
A(x) +

NX

i,j=1

@2

@xi@xj
Dij(x)

3

5W, (2.49)

where A is called the drift vector and D is called the diffusion matrix, and where
they generally depend on the N variables: x1, x2, . . . xN . A Fokker-Planck equation
can be obtained from the mapping between the positive P -function and the density
operator.

Furthermore, if the diffusion matrix can be factorized as the product D = BBT ,
then it is possible to map the Fokker-Planck equation to a set of N stochastic differ-
ential equations of the following form:

dxi
dt

= Ai(x) +Bij(x)⇣j , (2.50)

where xi denote the N variables of the system and ⇣j is a random process with mean
zero and finite variance.

2.8 Stochastic differential equations

An stochastic differential equation (SDE) is a differential equation in which there is at
least one parameter that is determined by a random process. These type of equations
were introduced by Langevin to describe the movement of small particles immersed
in fluids [83, 84], just as it was the case for the Fokker-Planck equation. This par-
ticle movement can be summarized as starting from an initial position and after a
brief time step, receiving a small push that moves the particle in one direction or
its opposite (for one dimensional SDEs). The direction for each small push is deter-
mined randomly. The particle’s final position will consist of the initial position plus
the algebraic sum of all the displacements occurred within the time window. We will
now present the general structure and properties of an stochastic differential equation.

Lets consider the ordinary differential equation:

dx(t)

dt
= a(t)x(t), (2.51)
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where a(t) denotes an stochastic parameter defined as:

a(t) = f(t) + h(t)⇣(t), (2.52)

and where ⇣(t) is a white noise process, which is a random process with mean zero
and a finite variance. This white noise process generates different trajectories which
will be averaged to obtain the solution of our SDE. This mathematical white noise is
important because it corresponds to quantum noise originated in the physical system
from the uncertainty in the observable from quantum mechanical objects [85]. Then
we can write the SDE as:

dx(t)

dt
= f(t)x(t) + h(t)x(t)⇣(t). (2.53)

Writing it in its differential form, the SDE takes the following representation:

dx(t) = f(x)x(t)dt+ h(t)x(t)dW (t), (2.54)

where dW (t) is notation for the differential form of the brownian motion, also called
Wiener process [84].

We could also express eq. 2.53 as follows:

dx(t)

dt
= a(x, t) + b(x, t)⇣(t), (2.55)

in which we have defined a(x, t) = f(t)x(t) and b(x, t) = h(t)x(t). Expression 2.55 is
what is known as the Langevin equation [83]. This definition will be useful in subsec-
tion 2.8.2 when we define an Ito Stochastic Differential Equation.

The solution for the Langevin eq. 2.55 is:

x(t)� x(0) =

Z t

0
a(x(t0), t0)dt0 +

Z t

0
b(x(t0), t0)dW (t0)dt0, (2.56)

if it can be shown that the second integral from the right hand side does exist. Several
authors [83, 84, 86] have demonstrated that this in fact can be proven if we consider
this integral to be the limit, as n �! 1, of the following approximation:

S =
nX

i=1

b(x(⌧i), ⌧i) (W (ti)�W (ti�1)) , (2.57)

in which we have defined ⌧i to be an arbitrary intermediate point in the interval
[ti�1, ti]. The difference between these two instants in time is called a time step and is
denoted by �t. These n intervals span the entirety of the time domain [t0 = 0, tn = t].

It is important to notice that the selection of the point ⌧i does make a difference
in the behaviour of the function b, thus making a difference on the final outcome. Two
specific choices have been proven to be useful:

• If one chooses ⌧i = ti�1, that is, the left end point of the time interval, then we
obtain the Ito integral [84, 86].

• On the other hand, if we choose ⌧i = ti�1+ti
2 , in other words, the midpoint of

the time interval, we get the Stratonovich integral [84, 86].
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Each of these possibilities has its properties and, depending on the problem to be
solved, its advantages. Since our purpose is to solve SDEs numerically by different
algorithms, the choice of the form of the differential equation will depend on the spe-
cific algorithm that will be used.

2.8.1 Numerical methods for solving SDEs

As we have previously discussed, stochastic differential equations produce random
trajectories. The noise is different for each trajectory (since it is random), so, even
if both displacements start from the same initial, the trajectories will be different in
general. This means that a single SDE can produce an infinite number of paths. It is
possible, however, to obtain averages after calculating a sufficiently large amount of
these trajectories, even if it is a finite number of them. The average of any observable
is obtained by averaging over the stochastic trajectories numerically.

Numerical methods are, in general, algorithms that are utilized to approximate
values for quantities that not necessarily have an analytical solution, or that have
one that is not possible to be computed within a reasonable time. These approxima-
tions usually rely on iterative processes and often start with an estimated guess that
is refined until convergence is achieved. The time efficiency for numerical method
approximation is usually determined by the computational power used [76]. More
efficient methods, which are called of higher order of convergence, achieve higher pre-
cision with less operations but are often more difficult to implement.

Numerical methods for solving differential equations are often used to solve or-
dinary or partial differential equations [76]. However, there are modifications to the
algorithms that can be implemented for SDEs. They usually consist on the addition of
random fluctuations on each iteration, as is the case for the Euler-Maruyama method
[76].

2.8.2 Ito and Stratonovich calculus

Depending on the type of integral (or interpretation, as it is called by some authors
[76]) used for the stochastic differential equations, different methodology emerges for
calculating the solution. Specifically in the context of numerical methods, which are
iterative, the computation of the next step in time depends for each equation in the
following way [87]:

Let us consider x0 = x(t0), t1 = t0 +�t, x = x1+x0
2 and lastly t = t+�t

2 , then for
calculating the next step in time we do the following:

• Ito calculus is defined by functions of the initial points:

x1 = x0 + (a(x0, t0) + b(x0, t0)⇣)�t. (2.58)

• Stratonovich calculus uses points in the middle of the time step:

x1 = x0 +
�
a
�
x, t
�
+ b

�
x, t
�
⇣
�
�t. (2.59)
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As has been mentioned in the previous section, the integral is defined as the limit
in which the number of small time intervals n �! 1, or equivalently: �t �! 0.

2.8.3 Algorithms for numerical calculation

We will now discuss the numerical algorithms used in this work, but we will first
introduce some useful notation. We define the following quantity:

D(x, t) = a(x, t) + b(x, t)⇣, (2.60)

so that we can write the Langevin equation 2.55 as:

dx

dt
= D(x, t). (2.61)

The following are the numerical methods that were used to solve the SDEs as they
are discussed by Drummond and Kiesewetter [87].

• Euler-Maruyama: This is a traditional method that is only convergent to
first order and usually has large errors. It approximates the derivative as a
finite difference and refines the value of the function iteratively. It is designed to
be used with an Ito SDE. We start from t0 and with the definition tn+1 = tn+�t
we calculate:

�xn = D(xn, tn)�t,

xn+1 = xn +�xn. (2.62)

• Midpoint: This numerical method is convergent to second order and is also
based on the Euler-Maruyama method [87] but calculates the value of the slope
for the midpoint between the time steps, x. It is designed to be used with a
Stratonovich SDE. We start by defining an intermediate time for the respective
interval tn = t+�t/2 and we calculate the following:

xn = xn +D(xn, t)
�t

2
,

xn+1 = (2x� xn) . (2.63)

• Runge-Kutta of 4th order: This is an algorithm based on Euler’s method
that considers four values for the slope of the function within the same time
interval to provide a more precise solution. It has to be used with a Stratonovich
SDE. The relevant quantities for this algorithm:

d(1) = D(xn, tn)
�t

2
,

d(2) = D(xn + d(1), t)
�t

2
,

d(3) = D(xn + d(2), t)
�t

2
,

d(4) = D(xn + 2d(3), tn+1)
�t

2
,

xn+1 =
⇣
xn + (d(1) + 2(d(2) + d(3)))/3

⌘
+ d(4)/3. (2.64)
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• Central difference: This algorithm calculates an approximation of the deriva-
tive of the function by averaging the values at the start and at the end of the
time step, as well as adding a random fluctuation. Like the majority of the algo-
rithms discussed so far, it requires a Stratonovich SDE. The relevant quantities
for this algorithm are the following:

xn = xn +D(xn, t)�t,

xn+1 = (xn + x) /2. (2.65)

The algorithms presented so far were the ones we used in our work, however
there are plenty of algorithms for solving SDEs that we did not mention, for example
[76]: lower orders of the Runge-Kutta method, a variation for the midpoint algorithm
which is called adaptive midpoint and the implicit Ito-Euler algorithm that requires
an implicit Ito SDE, among others. The reason for choosing these algorithms is that
they minimize the computational time for our calculations and they all yield the same
results.

2.9 Entanglement witnesses

As has been noted, there are several distinct non-local quantum correlations. One of
the first ways to test for non-local correlations was by using Bell’s inequality [2, 4,
5]. Furthermore, it has been shown that for pure states, all entangled systems exhibit
steering as well as Bell non-locality [26, 88]. For mixed states, however, the situation
is more complex, as demonstrating the presence of a quantum correlation does not
guarantee the presence of the other stronger correlations. Therefore methods to test
for entanglement and steering independently are needed.

Nowadays if one wants to test if a quantum correlation is present there are sev-
eral criteria available. For example, in bipartite systems, entanglement can be found
using the Peres-Horodecki criterion [89, 90] which states that if a system is separable
then its density operator partial transpose will have no negative eigenvalues, while in
the case of an entangled system, it will have at least one negative eigenvalue. This
criterion, however, depends on the prior knowledge of the density operator, but this
is not the case in practice. For these situations a different type of criteria called wit-
nesses were developed. These quantities are operators defined in terms of observables
that are sensitive to these non-local effects. If the expectation value of these quantities
exceed a certain threshold, it indicates that the system has presence of said correlation.

Witnesses are useful since they can be used in a wider variety of physical systems
compared to the Bell inequalities, and test weaker correlations as entanglement and
steering on their own, as well as depending on directly measureable observables.

Non-local quantum correlations have been mostly studied on bipartite systems,
and standard criteria has been developed to test for entanglement, steering and Bell
non-locality. On the other hand, multipartite systems are still being characterized and
there is a vast amount of witnesses used to test for these multipartite correlations.
Below we mention some witnesses that are useful for our work. We start by defining
what is a bipartition: for a system with n-parties, a bipartition is the formation of two
non-empty sets that together contain all the n-subsystems. Both sets cannot contain
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the same elements, but different bipartitions can be defined and studied for the same
system. For a schematic diagram of what is a bipartition see figure 2.2.

Figure 2.2: Schematic representation of three different bipartitions
for a set of 4 elements. There are in total, seven different bipartitions

for four elements.

2.9.1 Duan-Giedke-Cirac-Zoller (DGCZ) criterion

As it was mentioned previously, there are plenty of witnesses that serve as crite-
rion for separability in quantum systems. This entanglement criterion in particular
is used for continuous variable bipartite systems and is based on the calculation of
variances of specially defined operators. Duan, Giedke, Cirac and Zoller (DGCZ) [91]
demonstrated that the sum of the total variance of linear combinations of continuous
variables for separable states is bounded below a certain threshold.

The authors start by using the quadrature definition:

X̂j = (â†j + âj),

P̂j = i(â†j � âj), (2.66)

and define the following operators in terms of the quadratures:

Û = X̂i � X̂j ,

V̂ = P̂i � P̂j , (2.67)

and showed that it is a sufficient criterion to certify entanglement if the following
condition is violated:

Di,j = h�2Ui+ h�2V i � 4. (2.68)
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This criterion is a sufficient but not necessary condition for entanglement to be
present, which in turn means that a system may exhibit entanglement without vio-
lating the condition.

2.9.2 General separability criterion

Giovannetti et al. derived a generalization of these criteria [92] that is based on the
commutation relations satisfied by the observables used. This general criterion is
specific for bipartite systems.

The authors start by considering a bipartite separable state that can be written
as:

⇢̂sep =
X

k

wk⇢̂k,1 ⌦ ⇢̂k,2, (2.69)

where ⇢̂k,1, ⇢̂k,2 are normalized density matrices and wk are coefficients of a normalized
convex combination.

Giovannetti et al. proceed to select two different arbitrary observables for each
subsystem. These observables will be called r̂j , ŝj , where j = 1, 2. Here, the subindices
represent each party of the bipartition. Afterwards, the authors use these observables
to define the operators:

Ĉj = i [r̂j , ŝj ] . (2.70)

The following quantities are then introduced:

û = a1r̂1 + a2r̂2,

v̂ = b1ŝ1 + b2ŝ2, (2.71)

where a1, a2, b1, b2 are arbitrary, real coefficients.

Subsequently, Giovannetti et al. prove that every separable bipartite state satisfies
the following inequality:

h�2ûih�2v̂i � O2
, (2.72)

where O is defined as:
O =

1

2

�
|a1b1|O1 + |a2b2|O2

�
, (2.73)

which in turn depends on:
Oj =

X

k

wk|hĈjik|. (2.74)

Lastly, hĈjik is the expectation value of Ĉj for the state k in eq. 2.69.

Summarizing, if a bipartite quantum system violates the inequality 2.72, then it is
entangled. The threshold depends on the chosen observables r̂j , ŝj and on the defini-
tions 2.71. This result is very relevant to the study of bipartite quantum correlations
because it provides us with a general recipe to test for entanglement. Here, by gen-
eral, we refer to the fact that we can define a witness and calculate its corresponding
threshold for any arbitrary pair of observables just by considering their commutation
relations. Some of the following entanglement criteria used within this work are of
the general form of eq. 2.72.
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2.9.3 van Loock-Furusawa criterion.

In the same spirit as the prior criterion, authors van Loock and Furusawa [93] de-
veloped a method to test for entanglement in multipartite systems. Their operator
definition for an N -partite system is the following:

û = g1X̂1 + · · ·+ gNX̂N ,

v̂ = h1P̂1 + · · ·+ hN P̂N , (2.75)

where gi, hi are arbitrary real numbers. Authors have shown that if the system is
separable in a bipartition of modes r and s, it will satisfy the following condition:

(�u)2 + (�v)2 � 2

0

@

������

nX

kr

hkrgkr

������
+

������

nX

ks

hksgks

������

1

A . (2.76)

In order to prove full N -partite entanglement it is needed to show that no possible
bipartition of the N -modes of the system is separable, therefore the single following
inequality is sufficient to demonstrate N -partite entanglement:

(�u)2 + (�v)2 � 2min{SB}, (2.77)

where SB is the set of numbers
���Pn

kr hkrgkr
��+
��Pn

ks hksgks
���, evaluated for each pos-

sible bipartition of modes r and s.

In particular, Teh and Reid [47], considered the 4-partite case and defined the
operators from equations 2.75 as:

Û = X̂1 �
1p
3

⇣
X̂2 + X̂3 + X̂4

⌘
,

V̂ = P̂1 +
1p
3

⇣
P̂2 + P̂3 + P̂4

⌘
. (2.78)

Considering the 4 modes, we can consider the following 7 bipartitions: 1�234, 2�134,
3� 124, 4� 123, 12� 34, 13� 24, 14� 23. Afterwards, the quantities:

��Pn
kr hkrgkr

��+��Pn
ks hksgks

��, which constitute the set SB, for each of the mentioned bipartitions, are
calculated as:

• Bipartition 1� 234: |h1g1|+ |h2g2 + h3g3 + h4g4| = |1|+
���1

3 � 1
3 � 1

3

�� = 2.

• Bipartition 2� 134: |h2g2|+ |h1g1 + h3g3 + h4g4| =
���1

3

��+
��1� 1

3 � 1
3

�� = 2
3 .

• Bipartition 3� 124: |h3g3|+ |h1g1 + h2g2 + h4g4| =
���1

3

��+
��1� 1

3 � 1
3

�� = 2
3 .

• Bipartition 4� 123: |h4g4|+ |h1g1 + h2g2 + h3g3| =
���1

3

��+
��1� 1

3 � 1
3

�� = 2
3 .

• Bipartition 12� 34: |h1g1 + h2g2|+ |h3g3 + h4g4| =
��1� 1

3

��+
���1

3 � 1
3

�� = 4
3 .

• Bipartition 13� 24: |h1g1 + h3g3|+ |h2g2 + h4g4| =
��1� 1

3

��+
���1

3 � 1
3

�� = 4
3 .

• Bipartition 14� 23: |h1g1 + h4g4|+ |h2g2 + h3g3| =
��1� 1

3

��+
���1

3 � 1
3

�� = 4
3 .

These calculations yield three different results, which in turn can be used to obtain
three different thresholds for bipartition entanglement using expression 2.76. Further-
more, the lowest value of the set is 4

3 , thus the threshold for the N -partite entanglement
using only the inequality from eq. 2.77 is two times this value, that is 8

3 .
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2.9.4 Teh-Reid criteria for genuine N-partite entanglement.

The criterion developed by van Loock and Furusawa is useful to certify full N -partite
entanglement. However, it has been pointed out that this is different to genuine
multipartite entanglement because the latter also prohibits convex sums of biseparable
states. Authors Teh and Reid have shown [47] that by defining a quantity Ik =
(�u)2 + (�v)2, where u and v are linear combinations of the system observables
X̂j , P̂j , for a certain bipartition labeled k, violation of the inequality Ik � 4 will
certify entanglement for that bipartition. Furthermore if the sum of Ik for all possible
bipartitions in the system violates the following inequality:

X

k

Ik � 4, (2.79)

then the system is genuinely entangled. More so, the authors prove that if there is
a single quantity, which we will call I, that negates separability for all bipartitions
on its own, then it can also certify genuine multipartite entanglement if the following
requirement is not met:

I � 4. (2.80)

It is important to note that the threshold value equal to 4 in expressions 2.79 and 2.80
is a function of the commutator of the observables X̂j , P̂j and the linear coefficients
used in u and v, thus this limit may change depending on how these operators are
defined. The particular case outlined here applies to the definitions in eq. 2.66.

The importance of this result is not only that increments what can be known with
certain criteria, but the fact that this result is more general. More specifically, the
van Loock-Furusawa criterion described in eq. 2.77 can be seen as a special case of
inequality 2.80, but it is certainly not the only one.

As an example, Teh and Reid [47] consider the 4-partite case, and using the fol-
lowing inequalities (which were also defined by van Loock and Furusawa [93]):

BI =
⇥
�2(X1 �X2)

⇤
+
⇥
�2(P1 + P2 + g3P3 + g4P4)

⇤
� 4,

BII =
⇥
�2(X2 �X3)

⇤
+
⇥
�2(g1P1 + P2 + P3 + g4P4)

⇤
� 4,

BIII =
⇥
�2(X1 �X3)

⇤
+
⇥
�2(P1 + g2P2 + P3 + g4P4)

⇤
� 4,

BIV =
⇥
�2(X3 �X4)

⇤
+
⇥
�2(g1P1 + g2P2 + P3 + P4)

⇤
� 4,

BV =
⇥
�2(X2 �X4)

⇤
+
⇥
�2(g1P1 + P2 + g3P3 + P4)

⇤
� 4,

BV I =
⇥
�2(X1 �X4)

⇤
+
⇥
�2(P1 + g2P2 + g3P3 + P4)

⇤
� 4,

demonstrate that the violation of the single inequality:

6X

j=1

B � 12, (2.81)

certifies genuine 4-partite entanglement. Summarizing, Teh and Reid have shown [47]
that the criterion of eq. 2.77 is part of a family of entanglement witnesses that not
only certify full multipartite entanglement but also genuine multipartite entanglement.
Criteria of this family can always be defined for N -partite systems.
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2.10 Steering witnesses

Similarly to the entanglement witnesses that have been discussed so far, there are also
witnesses that can be used to detect steering. The most important difference between
these two types of witnesses is that, since entanglement is a symmetric correlation,
the entanglement witnesses yield the same results for any given pair of subsystems,
regardless of the order in which the modes are operated. On the other hand, steering is
an asymmetric correlation, therefore the steering witness can produce different results
for the same pair of subsystems depending on whether we are testing if subsystem A
steers subsystem B, or if B steers A. Similarly to the entanglement case, steering in
multipartite systems is also distinguished between full N-partite steering and genuine
N-partite steering.

2.10.1 Bipartite steering

A criterion proposed by Reid and Drummond [94] used to test for steering between
two parties of a system is:

EPRi|j = Vinf(X̂i)Vinf(P̂i) < 1. (2.82)

Here, Vinf (Â) is the inferred variance for an arbitrary operator Â. These quantities
are defined as follows:

Vinf(X̂i) = �2(X̂i)�

h
�2(X̂i, X̂j)

i2

�2(X̂j)
,

Vinf(P̂i) = �2(P̂i)�

h
�2(P̂i, P̂j)

i2

�2(P̂j)
, (2.83)

where �2(Â, B̂) = 1
2hÂB̂ + B̂Âi � hÂihB̂i is the covariance of the operators Â and

B̂. If the inequality 2.82 is satisfied, steering from subsystem i onto subsystem j is
certified.

2.10.2 Full N-partite steering criterion

A different criterion used by Teh et al. [95] to detect steering is:

SA|B = �
⇣
X̂A � X̂B

⌘
�
⇣
P̂A � P̂B

⌘
< 1. (2.84)

If this inequality is violated, then steering of subsystem B by subsystem A is certified.
Furthermore, a more general form for this criterion is:

SA|B = �
⇣
X̂A � Ô1

B

⌘
�
⇣
P̂A � Ô2

B

⌘
< 1. (2.85)

where Ô1
B and Ô2

B are observables for subsystem B, which might be in turn, conformed
by more than one subsystem, thus allowing us to use the criterion to test for N -partite
steering. In order to certify full N -partite steering, this correlation has to be found
for any possible bipartition of the N modes in its two-way version.
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2.10.3 Genuine multipartite steering criterion.

A criterion used to certify genuine multipartite steering was developed by Teh et al.
[95]. If we define the following operators:

u = h1x1 + h2x2 + h3x3 + h4x4,

v = g1p1 + g2p2 + g3p3 + g4p4, (2.86)

then, we can consider the following bipartitions: 1-234, 2-134, 3-124, 4-123 as well as:
12-34, 13-24, 14-23. For the first bipartition, the violation of the following inequality:

�u�v � |g1h1|, (2.87)

where �u, denotes the standard deviation for operator u and �v is the corresponding
quantity for v; implies the steering of system 1 by subsystems 2, 3 and 4. Similarly,
violation of:

�u�v � |g2h2 + g3h3 + g4h4|, (2.88)

implies the steering of partition 234 by subsystem 1. Thus, the violation of the
following inequality implies two-way steering [95]:

�u�v � min {|g1h1|, |g2h2 + g3h3 + g4h4|} . (2.89)

If a different bipartition is considered, such as 13-24, then the inequality would
be:

�u�v � min {|g1h1 + g3h3|, |g2h2 + g4h4|} . (2.90)

In order to certify genuine multipartite steering across the system, the two-way
steering has to be present for every possible bipartition by an inequality such as the
former [95]. Furthermore, if we consider the minimal number from these bipartition
inequalities, we certify genuine multipartite steering by using just one inequality.

For the 4 partite case, there are 7 bipartitions, and using results obtained previ-
ously from subsection 2.9.3, in which u and v are defined identically, we can obtain
the thresholds for two-way steering:

• Bipartition 1� 234: min{|h1g1| , |h2g2 + h3g3 + h4g4|} = 1.

• Bipartition 2� 134: min {|h2g2| , |h1g1 + h3g3 + h4g4|} = 1
3 .

• Bipartition 3� 124: min {|h3g3| , |h1g1 + h2g2 + h4g4|} = 1
3 .

• Bipartition 4� 123: min {|h4g4| , |h1g1 + h2g2 + h3g3|} = 1
3 .

• Bipartition 12� 34: min {|h1g1 + h2g2| , |h3g3 + h4g4|} = 2
3 .

• Bipartition 13� 24: min {|h1g1 + h3g3| , |h2g2 + h4g4|} = 2
3 .

• Bipartition 14� 23: min {|h1g1 + h4g4| , |h2g2 + h3g3|} = 2
3 .

If we obtain values for �u�v that are below the minimum value of these thresholds,
then genuine 4-partite steering is certified.
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2.11 Monogamy relations

In the context of quantum correlations, monogamy relations refer to the way that
entanglement or steering are distributed among the multiple parties of a system. In
particular, monogamy relations quantify the amount of each of these correlation among
each of the parties of the system. A system is monogamous if quantum correlations
are restricted quantitatively between different subsystems. For example, in a tripar-
tite quantum system if two parties, A and B, are maximally correlated, then they
cannot share any correlation with party C [96]. This restriction on the ability of the
parties to be correlated with each other is exclusive to the quantum phenomena, since
classical correlations do not have these constraints.

Our interest in monogamy relations emerges because it is important to under-
stand how the quantum correlations are distributed among the different parties in a
quantitative way. It was our intention to include monogamy relations in our study to
make it more thorough, however, as far as we are concerned, there are no proposals
for monogamy relations for the 4-partite case for continuous variable systems using
witnesses. Nevertheless, we include this topic in our work because we believe it can
provide for an interesting continuation of our analysis. In this section of the work we
will start by discussing the first monogamy relation established, which is in a work by
Coffman, Kundu and Wootters [97] and which is defined for tripartite systems. Later
on, we will discuss the generalized case for N subsystems.

In order to quantify the amount of entanglement distributed among the parties of
a quantum system, it is necessary to quantify the entanglement itself, that is why Coff-
man, Kundu and Wootters (CKW) [97] start by defining the tangle for that purpose.
They consider their system to be conformed by two two-level qubits, such as spin-12
particles, but claim that their methodology could also be used for larger systems.

For a pair of qubits called A and B, on a pure state, described by the density
matrix ⇢̂AB, the authors define the spin-flipped density matrix as:

⇢AB = (�y ⌦ �y) ⇢
⇤
AB (�y ⌦ �y) , (2.91)

where the asterisk represents the complex conjugate and �y is the standard Pauli spin
matrix:

�y =

✓
0 �i
i 0

◆
. (2.92)

Afterwards, the authors calculate the product ⇢AB⇢AB that has only real, non-
negative eigenvalues �1, . . . ,�4, though it is not Hermitian. Then, the tangle of the
density matrix ⇢AB is defined as:

⌧AB = (max [�1 � �2 � �3 � �4, 0])
2 . (2.93)

Coffman, Kundu and Wootters argue that ⌧ = 0 corresponds to an unentangled
state, while ⌧ = 1 is the result obtained from a maximally entangled state.

The relationship between this, seemingly arbitrary quantity, and the entanglement
of a physical system is discussed on a previous work by Wootters [98]. In it, the
author defines a different quantity called the concurrence, which is the square root of
the tangle. That is:

CAB = (max{�1 � �2 � �3 � �4, 0}) (2.94)
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Even though the concurrence itself is very used in the literature [99–101], in the more
recent article CKW argue that the mathematical manipulation simplifies greatly by
introducing the new term.

The importance of this measurement for multipartite entanglement resides on the
fact that an N -partite system can be analyzed through bipartitions of the parties.
Subsequently, for a given bipartition, we can study the level of entanglement between
the two parties within it, and use that value to determine if these two share a quan-
tum correlation with the rest of the system. Moreover, the bipartitions for the whole
system do not need to be restricted to just two subsystems. The two parties of the
bipartition may be conformed by more than one physical subsystem, in other words,
for a tripartite system composed by subsystems A, B and C, the bipartition A�BC
is perfectly valid.

So far the measurement for entanglement has been provided, and with it the
monogamy relation can be defined. For a pure-state tripartite quantum system be-
tween two parties the monogamy relation is defined as:

⌧AB + ⌧AC  ⌧A(BC), (2.95)

which can be interpreted as follows: the amount of entanglement that A has with BC,
bounds the total amount of entanglement, that is, entanglement of A with B and C,
individually. Additionally to this bound, the amount of entanglement that A has with
B is not available to C [97].

The monogamy definition of inequality 2.95 applies specifically to pure states but
a generalization to mixed states is also available [97]. If instead of being in a pure
state our tripartite quantum system is described by the density operator ⇢, then, we
first have to consider all possible pure-state decompositions. In other words, all sets
{ j ,!j}, such that our density operator can be written as:

⇢̂ =
X

j

!j | ji h j | .

Once this is done, it is possible to calculate the average tangle for each of these
decompositions [97]:

h⌧A(BC)i =
X

j

!j⌧A(BC)( j). (2.96)

Once all of these quantities are calculated, the minimum of the set of the tangles
calculated, min{⌧A(BC)}, will take the place of the right hand side of inequality 2.95.
Mathematically, this is expressed as:

⌧AB + ⌧AC  min{⌧A(BC)}. (2.97)

Moreover, this important result by CKW was generalized years later by Osborne and
Verstraete [102] to include not only tripartite quantum systems, but an arbitrary num-
ber N of subsystems.
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General monogamy relations

In this work, not only we are interested in entanglement, but also in other quantum
correlations. In that sense, it is important to mention that, just as monogamy was
defined for the tangle, an arbitrary quantum correlation measure can yield a corre-
sponding monogamy relation [96]. For a given bipartite quantum correlation measure,
Q, the monogamy relation is expressed as [96]:

Q(⇢AB) +Q(⇢AC)  Q(⇢A(BC)). (2.98)

If a system does not satisfy relation 2.98, then it is non-monogamous for measure Q.
We believe it is important to clarify that the tangle or the concurrence are not the
only entanglement measures. Alternatives for this purpose include: negativity [89],
Tsallis entropy [103] or contangle (which is the analogous of tangle for continuous
variables) [104], among others. Therefore, the monogamy relation for entanglement
on equations 2.95 and 2.98, is not the only one.

Monogamy without quantification

Monogamy relations can be established without the need for a quantifier of the quan-
tum correlation. For instance, Rosales-Zárate et al. [105] defined a monogamy relation
that uses the previously discussed DGCZ criterion to certify entanglement. Unlike the
monogamy relations discussed so far, this entanglement certifier does not quantify en-
tanglement yet it can be used for a monogamy relation.

Let us re-write the DGCZ criterion to introduce notation necessary for the monogamy
relation. Tan and DGCZ [91, 106] define the following quantity:

Dij = �
2

✓
Xi �Xj

2

◆
+�2

✓
Pi � Pj

2

◆
, (2.99)

where, �2 denotes the variance and X, P denote the quadratures of the mode of light.
Then, if the following inequality is violated:

Dij � 1, (2.100)

entanglement is certified between modes i and j. Subsequently, Rosales-Zárate et al.
proved [105] that for a tripartite quantum system conformed by modes A, B, and
C, and using the mentioned entanglement criterion, the following monogamy relation
exists:

DBA +DBC � max{1, SB|AC}, (2.101)

where SB|AC is a steering certifier defined by Wiseman et al. [22, 55] that finds said
correlation on B by system AC when SB|AC < 1.

Furthermore, the authors also derived a monogamy relation for another entangle-
ment criterion, namely the Entij certifier introduced by Giovanneti, Mancini, Vitali
and Tombesi (GMVT) [92]. For this certifier, GMVT defined the quantities:

Entij =
�
⇣
Xi � gxijXj

⌘
�
⇣
Pi � gpijPj

⌘

1 + gxgp
, (2.102)
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where gxij and gpij are real constants chosen specifically to minimize the value of Entij .
GMVT showed that if the condition Entij < 1 holds, then it is also true that modes
i and j are entangled with each other.

Rosales-Zárate et al. found an optimal value for the real constants gxij and gpij ,
which happens to be:

gxij = gpij = g(sym)
ij , (2.103)

where g(sym)
ij depends on the covariances of the quadratures and is fixed for each pair

of modes ij. The monogamy relation for a tripartite system is [105]:

EntBAEntBC �
max{1, S2

B|(AC)}�
1 + gsymBA

� �
1 + gsymBC .

� (2.104)

Monogamy for steering

As it has been mentioned previously, it is possible to define monogamy relations for
all measureable quantum correlations, including steering. For that purpose we need a
steering parameter, in other words, a measure that quantifies the amount of steering
present in a system. Since we are interested in continuous variable (CV) systems we
will use the witness defined by Reid [107] as:

EB|A =
�
�infXB|A

� �
�infPB|A

�
, (2.105)

where �infXB|A denotes the standard deviation of the conditional distribution for the
measurement XB given a measurement at A, and where Xj and Pj denote the position
and momentum quadratures respectively.

Using this steering parameter we can certify the presence of the correlation in the
system if the following inequality is satisfied:

EB|A < 1. (2.106)

It is important to notice that the quantity EB|A is, in general, different from EA|B,
even for the same pair of subsystems A and B. What this means conceptually is that
the ability of subsystem A to modify or steer subsystem B does not automatically
imply that B is able to steer A. Even though it is possible, it has to be tested in-
dependently since steering is an asymmetric quantum correlation. Entanglement, on
the other hand, is a symmetric correlation because if A is entangled with B, then B
is also entangled with A.

Similarly to our previous discussion about entanglement, we can proceed to state
the monogamy relation for steering presented by Reid [107]: for a Gaussian CV system
of three parties, A,B and C, if EB|A < 1 is satisfied, then the following inequality is
also true:

EB|AEB|C � 1. (2.107)

In other words, if A steers B, then C cannot steer B as well. In that sense, we can say
that all steerable systems that satisfy the mentioned conditions present monogamy.
We can summarize this important result as follows: One subsystem cannot be steered
independently by two or more distinct subsystems. There is, however, a way in which
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steering can be distributed among several parties.

For a given set of N elements we can generate a bipartition by defining two subsets
in which all of the elements are included. For a tripartite system, such as the one
discussed by Reid, these bipartitions can be written as: {A,BC}, {B,AC}, {C,AB}.
For the last of these bipartitions, for example, we can treat both parties AB as a
single entity, thus it is possible that bipartite steering onto subsystem C is distributed
among the two subsystems A and B with one restriction. Reid showed [107] that for
these bipartitions recently discussed, if there is steering of party C by the group AB,
that is: EC|AB < 1, then, the following inequality is also true:

EC|A + EC|B � 2EC|AB, (2.108)

which mathematically signifies the fact that the individual steering on C by A or on
C by B is bounded by the steering of the group AB onto C.

2.12 Non-linear optics

Non-linear optics is the area of physics that studies interactions of electromagnetic
radiation with media that responds to higher powers of the incident electric field.

More specifically, media in general exhibits a phenomenon known as polarisation
in which electrically charged constituents are relocated within the media in presence
of an external electromagnetic field. This polarisation is proportional to the strength
of the electric field by a parameter called susceptibility, usually denoted by the greek
letter �. This relationship can be summarized by the following equation:

P (r, t) = ✏0�E(r, t). (2.109)

However, eq. 2.109 is a simplification, given the fact that the susceptibility can
be treated as a constant for most media, but it is not in general. In non-linear
optics, susceptibility is better described as a tensor and the phenomena arising from
its interaction with higher orders of the electrical field are studied. Polarisation,
therefore becomes better described as:

P (r, t) = ✏0�E(r, t) + �(2)E2(r, t) + �(3)E3(r, t) + . . . (2.110)

where �(2),�(3), . . . , etc. denote susceptibilities of higher order, namely of second and
third order respectively, etc. The nonlinear susceptibilities have decreasing magni-
tudes as their order increases. A typical second order susceptibility may be as small
as 8 orders of magnitude lower with respect to the linear parameter �, while the typ-
ical third order, �(3), is 16 orders of magnitude smaller [108].

The linear susceptibility is responsible for the refractive index, absorption, dis-
persion, and birefringence [108]. On the other hand, some examples of non-linear
phenomena of second order are Second Harmonic Generation (SHG), in which two
photons of angular frequency !0 are converted into one photon of frequency 2!0,
frequency mixing and parametric generation. For third order nonlinearities some ex-
amples are Third Harmonic Generation (THG) and stimulated Raman scattering,
among others [108].
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In practice, plenty of non-linear optical processes have been studied in crystals
[108]. For example, phenomena that relies on second order susceptibility requires an
anisotropic medium. That property can be found in crystals such as calcite (CaCO3),
Potassium Titanyl Phosphate (KTP) or Barium Borate (BBO). The latter is of special
relevance since our work consists of modeling a non-linear process that has been
implemented in a BBO crystal [42].

2.12.1 Spontaneous Parametric Down Conversion (SPDC)

Spontaneous parametric down conversion is a non-linear process of second order in
which a photon is converted spontaneously into two photons of lower energies [109]. It
is a process that has been widely studied lately as it is used in many applications for
the development of quantum technologies [110–113]. SPDC is a very inefficient pro-
cess that converts only a small proportion of incident photons, therefore high power
pump sources are needed to generate it [109].

There are two special conditions relevant to the process of SPDC. These are called
phase matching conditions:

~!0 = ~(!1 + !2), (2.111)
~k0 = ~k1 + ~k2, (2.112)

and signify conservation of energy and conservation of momentum respectively. Eq.
2.111 correlates the angular frequency !0 of the pump photon to the frequencies of the
two photons generated by SPDC: !1 and !2. On the other hand, eq. 2.112 correlates
the wave vector of the three photons involved in the process. A special case for these
phase matching conditions consists of the generation of twin photons that have the
same energy, that is, half of the energy of the original photon:

!1 = !2 =
!0

2
. (2.113)

This specific case is also referred to as degenerate SPDC, and is the time reversible
phenomenon with respect to SHG. Non-degenerate SPDC occurs when each of the two
photons generated have different wavelengths and its time reversible phenomenon is
sum-frequency generation (SFG).

SPDC can be further classified into type-I or type-II. These categories refer to
the polarization of the down-converted photons. In type-I SPDC, the two photons
generated have the same polarization , while the type-II SPDC produces two photons
with different polarization from each other [114]. For the degenerate emission, type-I
SPDC photons emerge on a cone that is centered along the propagation direction
of the pump beam. In this type of SPDC, entangled photons are generated in dia-
metrically opposed points of this cone. See figure 2.3 for a diagram of the emission
cone and the emission points of entangled photons. In type-II SPDC the photons are
produced and emitted in two cones [115], one ordinarily polarized, while the other is
extraordinarily polarized. The two cones intersect in one line that is collinear to the
pump beam direction of propagation and is on those two points of intersection that
the entangled photons are emitted.

This experimental scheme involving type-II phase matching is very relevant for
quantum optics since it has been shown [114] that in the section where the cones



2.12. Non-linear optics 35

Figure 2.3: Diagram of emission by SPDC of type-I. The purple
arrow represents the pump beam and the emission is generated in
one cone. Two entangled photons are generated in points that are

diametrically opposed in this cone.

overlap, light can be described by the quantum entangled state:

| i = 1p
2

�
|H,V i+ ei↵ |V,Hi

�
, (2.114)

where the relative phase ↵ originates from the crystal birrefringence. By adding a
phase shifter or by rotating the non-linear crystal itself, the phase ↵ can be set as
desired, for example to the values 0 or ⇡. Furthermore, by adding a half wave plate
in one of the paths the polarization can be switched from vertical to horizontal, thus
allowing us to produce any of the four EPR-Bell states:

�� ±↵ = 1p
2
(|H,V i± |V,Hi) ,

���±
↵
=

1p
2
(|H,Hi± |V, V i) . (2.115)

which are the maximally entangled quantum states for two parties. This is mentioned
as an example of the importance of SPDC in the study of quantum correlations in
quantum optics.

Quantum correlations generated by SPDC

Spontaneous parametric down conversion has been identified as a reliable source for
entangled modes of light. Quantum correlated states have been generated using type-
II noncollinear SPDC in crystals, as reported by Kwiat et al. [114]. In this work,
the authors generate pairs of photons that are entangled in their polarization. Fur-
thermore, SPDC is able to generate entanglement in other degrees of freedom, for
instance, in orbital angular momentum as was demonstrated by Vaziri et al. [116]. In
their experimental scheme, the authors utilize a nonlinear crystal cut for type-I phase
matching and generate a pair of entangled photons. Afterwards they send each of
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these photons through displaced holograms that transfer them to different superposi-
tions of eigenstates of orbital angular momentum. Detecting one of the photons in a
specific eigenstate guarantees that the other photon will be found in another element
of the base. The claim that the photons were correlated with each other was con-
firmed by the violation of a Bell inequality. Recently, SPDC was also used by Agusti
et al. [117] to produce genuine tripartite entanglement utilizing criteria to certify it
specifically designed for the multipartite case.



37

Chapter 3

Entanglement and steering in a
nonlinear process

In this chapter we introduce the physical system which is studied in this work as well
as the conditions necessary for the generation of multipartite quantum correlations.
A specific medium will be irradiated with two sources of light, which will be called
pump beams. By means of a parametric processes, four photons will be produced. The
main objective of our work is to certify that these four photons are quantum corre-
lated to each other on their quadratures X̂ and P̂ . We are interested in this specific
system because we want to study multipartite quantum correlations for systems larger
than the tripartite case. The system has been analyzed before but using a different
methodology that did not yield the dynamical behaviour of the modes of light nor did
it study the presence of steering [43].

3.1 Description of the physical system

The physical system in which the four modes of light are generated is a bulk anisotropic
crystal that is being pumped by two Gaussian beams that propagate in a non-collinear
way. An schematic diagram of the system is provided in figure 3.1. In this crystal,
two non-linear processes of type-I SPDC occur. In each of these, three photons are
involved: the pump, the signal and the idler. It has been reported [118] that under
specific conditions, two triplets of photons are converted into four coupled modes.

The medium in which the physical process occurs is a standard �(2) bulk crystal.
This type of medium is necessary because it exhibits birrefringence, which is needed
for the parametric process. The experimental scheme has been implemented success-
fully using a BBO (Beta-Barium-Borate) crystal [118], but there are other options
that might be used, as long as they exhibit birrefringence [119, 120]. In the physical
implementation reported by Gatti et al. [42], the two pumps have a wavelength of
�p = 352 nm while signal and idler have the corresponding �s = �i = 704 nm. Inside
of the medium, by changing the direction of propagation of the pump, a geometri-
cal condition is fulfilled, in which uncoupled triplets of photons, which can be seen
schematically represented in figure 3.2, are converted into four entangled modes [121].
To achieve this condition of resonance a rotation along the incidence plane of the crys-
tal has to be performed. There is a specific angle of rotation needed for each angle of
propagation between the two pumps. For a schematic representation of this rotation,
see figure 3.3. This geometric condition changes the size of the emission cones so that
they overlap, and is in this intersection that entangled photons from one cone match
the entangled photons from the other cone. See figures 3.4 and 3.5 for a schematic
representation of the emission cones. In these diagrams, the modes of light are linked
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with each other through some quantities g1 and g2. These are called coupling parame-
ters and are proportional to the complex amplitude of the pump beams. A schematic
representation of the four entangled modes can be seen in figure 3.6.

Figure 3.1: Diagram of a physical system in which the SPDC process
occurs. Under certain conditions of resonance, this type of system

produces four modes of light.

In the experimental scheme [42] the active material is a BBO crystal in which
two processes of type-I non collinear parametric down conversion occur [42], one for
each of the two incident beams. This is the scheme that will be modeled in our work.
The two pump modes are directed at different angles with respect to the optical axis
and experience different refraction indices. This happens because media with �(2) is
anisotropic [108], thus a different refraction index is experienced by light that travels
in different directions. The tilt angle between the pumps is related to the resonance
condition that is needed to produce 4-mode entanglement because for a given angle
between the two lasers, there is an specific angle, which is called �, to which the
crystal has to be rotated in order to achieve this conversion [118]. The rotation occurs
along the incidence plane.
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Figure 3.2: Diagram of the 3-mode coupling generated by the SPDC.
The â0 represents the mode of light from the undepleted pump, while
â1 and â2 represent the signal and the idler, respectively. In this
case â1 is coupled exclusively with â0 and the same is true for â2.
Each correlation happens because of coupling parameters g1 and g2,

respectively.

Figure 3.3: Schematic diagram of the geometric condition that pro-
duces the four modes of light. Depending on the relative angle of
propagation ✓p, there is a specific rotation angle (�) along the inci-

dence plane of the crystal that produces the four modes.
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Figure 3.4: Schematic representation of the two processes of SPDC
type-I occurring inside the BBO crystal. Each emission cone is gener-
ated by one of the pump modes and a geometrical condition overlaps

them, creating the entanglement.

β=0º β=7º
Figure 3.5: To the left side of the image we see the two emission
cones produced by the processes of SPDC type-I. Diametrically op-
posed points (which are represented by the stars or by the squares) on
each of these cones contain entangled photons. Once the geometrical
condition has been achieved by the rotation of the crystal, diametri-
cally opposed points from the two circles are overlapped, thus gener-

ating the four entangled photons that we are studying.
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Figure 3.6: Schematic diagram of the entanglement for the 4 photons
generated in the special resonance condition and its relation with the
coupling parameters. Unlike the diagram 3.2, this one shows coupling

between modes 1 and 4, 1 and 2 and 2 and 3.

3.2 Fokker-Planck equation for a fourth particle Hamil-

tonian.

In this section, we will obtain a Fokker-Planck equation to study the dynamics of the
system and find out if it presents entanglement and steering. We start by considering
the Hamiltonian reported by Gatti [43]:

Ĥ = �i~(g1â†1â
†
2 + g2â

†
2â

†
3 + g2â

†
4â

†
1 � g1â1â2 � g1â2â3 � g1â4â1). (3.1)

Next, since we wish to also analyse the dynamics of the system, we consider the
time evolution equation for the density matrix:

i~@⇢̂
@t

= [Ĥ, ⇢̂], (3.2)

on substituting the Hamiltonian of eq. 3.1 on eq. 3.2, and on performing the commu-
tator, we obtain:

@⇢̂

@t
= �i~(g1â†1â

†
2⇢̂� g1â1â2⇢̂+ g2â

†
2â

†
3⇢̂+ g2â

†
4â

†
1⇢̂� g2â2â3⇢̂� g2â4â1⇢̂

� g1⇢̂â
†
1â

†
2 + g1⇢̂â1â2 � g2⇢̂â

†
2â

†
3 � g2⇢̂â

†
4â

†
1 + g1⇢̂â2â3 + g2⇢̂â4â1). (3.3)
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Using the known correspondences, 2.48, between the density matrix and the positive-P
function we acquire the following expression:
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= �
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After distributing and simplifying we arrive at:
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(3.5)

which is a Fokker-Planck equation of the general form:

@⇢̂

@t
=


�
X @

@xi
Ai(x) +

1

2

X @2

@xi@xj
Dij(x)

�
P (x), (3.6)

where A(x) is called the drift matrix and D(x) is called the diffusion matrix.
If we consider the ordering ↵1,↵2,↵3,↵4,↵

†
1,↵

†
2,↵

†
3,↵

†
4, then the drift matrix Ai is:

A = �(g1↵
†
2 + g2↵

†
4, g1↵

†
2 + g2↵

†
4, g2↵

†
2, g2↵

†
1, g1↵2 + g2↵4, g1↵1 + g2↵3, g2↵2, g2↵1).

(3.7)
And the diffusion matrix is:

D =

0

BBBBBBBBBB@

0 g1 0 g2 0 0 0 0
g1 0 g2 0 0 0 0 0
0 g2 0 0 0 0 0 0
g2 0 0 0 0 0 0 0
0 0 0 0 0 g1 0 g2
0 0 0 0 g1 0 g2 0
0 0 0 0 0 g2 0 0
0 0 0 0 g2 0 0 0

1

CCCCCCCCCCA

. (3.8)

As was discussed previously in section 2.7, if the diffusion matrix D can be written
as D = BBT , then a set of stochastic differential equations can be obtained from the
Fokker-Planck equation. In particular, since this matrix D can indeed be factorized
as D = BBT , therefore we are able to map it to a set of stochastic differential equa-
tions. We proceed to find the matrix B, since this is needed in order to find the set
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of stochastic differential equations.

In order to obtain B, first, we consider the matrix D to be formed by 4 submatrices
with dimensions 4⇥ 4, that is:

D =

✓
d 0
0 d

◆
, (3.9)

where 0 denotes a 4⇥ 4 null matrix which is filled exclusively with zeros, and where
we have defined d as:

d =

0

BB@

0 g1 0 g2
g1 0 g2 0
0 g2 0 0
g2 0 0 0

1

CCA .

Next, we consider B to also be formed by 4 submatrices:

B =

✓
b1 b2
b3 b4

◆
. (3.10)

On performing the matrix multiplication we obtain: BBT

BBT =

✓
b1bT1 + b2bT2 b1bT3 + b2bT4
b3bT1 + b4bT2 b3bT3 + b4bT4

◆
. (3.11)

By equating that matrix 3.11 to matrix 3.9, we can simplify our calculations by
proposing that the matrix B is formed by null matrices in its antidiagonal. That is:

B =

✓
b1 0
0 b4.

◆
(3.12)

Thus, the product in eq. 3.11 simplifies to:

BBT =

✓
b1bT1 0
0 b4bT4

◆
. (3.13)

Afterwards, by equating D = BBT using equations 3.9 and 3.13 respectively, we
obtain: ✓

d 0
0 d

◆
=

✓
b1bT1 0
0 b4bT4

◆
. (3.14)

We realize that both terms on the diagonal of matrix BBT have to be equal. In other
words: b1bT1 = b4bT4 . This can be simplified by defining one submatrix b = b1 = b4
without subindices:

BBT =

✓
bbT 0
0 bbT

◆
. (3.15)

After obtaining this result we realize that the matrix B can be obtained by finding
a matrix b that satisfies the following equation: bbT = d. For such a purpose we
propose a matrix b of the following form:

b =

0

BB@

a b c q
e f g h
r j k l
m n o p

1

CCA , (3.16)
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where variables a through p denote complex numbers. We then perform the matrix
multiplication bbT = d and end up with a system of 16 equations. After proposing
that variables e = g = k = r = n = p = 0, we simplify to 10 equations for 10
variables. Afterwards, by using Mathematica 13.0 to solve the system, we find the
following solution:

b =

0

BB@

�i �i 1 1
0 ig12 0 g1

2
0 �ig2g1 0 g2

g1
ig22 0 g2

2 0

1

CCA . (3.17)

That in turn gives us the solution for B as:

B =

0

BBBBBBBBBBB@

�i �i 1 1 0 0 0 0
0 ig12 0 g1

2 0 0 0 0
0 �ig2g1 0 g2

g1
0 0 0 0

ig22 0 g2
2 0 0 0 0 0

0 0 0 0 �i �i 1 1
0 0 0 0 0 ig12 0 g1

2
0 0 0 0 0 �ig2g1 0 g2

g1
0 0 0 0 ig22 0 g2

2 0

1

CCCCCCCCCCCA

. (3.18)

Lastly, we add that this solution for b, and thus, for B is not unique, but it serves
our purpose as long as it satisfies the equation D = BBT . Now that we have obtained
an expression for the matrix B we can use its elements to generate a set of SDE’s.
This procedure will be explained in the following subsection.

3.3 Stochastic Differential Equations

Once that a Fokker-Planck equation is obtained, it is possible to map it to a set of
stochastic differential equations (SDE’s) by the following correspondence that was also
previously mentioned in section 2.7. Given the Fokker-Planck equation:

@P

@t
=


�
X @

@xi
Ai(x) +

1

2

X @2

@xi@xj
Dij(x)

�
P (x),

then the stochastic differential equation for each variable is written as:

dxi
dt

= Ai(x) +Bij(x)⇣j ,

where ⇣j is a delta-correlated Gaussian noise. That is:

h⇣i(t)⇣j(t0)i = �ij�(t� t0). (3.19)

In other words, the noise produced by one of these functions at an instant t has no
statistical correlation with noise from the same function at a different time [72]. These
values also have no statistical correlation with the ones produced by other, similarly
defined functions.
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For the variables ↵1, . . .↵4,↵
†
1 . . .↵

†
4, we obtain the following SDE’s in differential

form:

d↵1 = (�g1↵
†
2 � g2↵

†
4)dt+ (⇣3 + ⇣4)� i(⇣1 + ⇣2),

d↵2 = (�g1↵
†
1 � g2↵

†
3)dt+

g1
2
(⇣4 + i⇣2),

d↵3 = �g2↵
†
2dt+

g2
g1

(⇣4 � i⇣2),

d↵4 = �g2↵
†
1dt+

g2
2
(⇣3 + i⇣1),

d↵†
1 = (�g2↵4 � g1↵2)dt+ (⇣7 + ⇣8)� i(⇣5 + ⇣6),

d↵†
2 = (�g1↵1 � g2↵3)dt+

g1
2
(⇣8 + i⇣6),

d↵†
3 = �g2↵2dt+

g2
g1

(⇣8 � i⇣6),

d↵†
4 = �g2↵1dt+

g2
2
(⇣7 + i⇣5). (3.20)

Afterwards, this set of stochastic differential equations is solved numerically us-
ing the central difference algorithm. These solutions are particular, since we have
established the initial values for the numerical algorithm.

3.4 Heisenberg equations

In contrast to the phase space methods that we have already discussed, we can also
study the evolution of the operators using analytical methods instead of numerical
ones. We do so by using the Heisenberg equations of time evolution. This procedure
is described in this section.

We consider the same Hamiltonian from eq. 3.1, which is :

Ĥ = �i~(g1â†1â
†
2 + g2â

†
2â

†
3 + g2â

†
4â

†
1 � g1â1â2 � g1â2â3 � g1â4â1). (3.21)

Then, using the Heisenberg equations for the time evolution of an operator, which are
defined as [122]:

1

i~
dÂ

dt
= [Â, Ĥ]. (3.22)

On substituting the Hamiltonian in eq. 3.22 and by first considering the annihilation
operator of mode 1:

[â1, Ĥ] = i~([â1,�g1â
†
1â

†
2] + [â1,�g2â

†
4â

†
1] + [â1, g1â1â2] + [â1, g2â4â1]), (3.23)

=) [â1, Ĥ] = �i~(g1[â1, â†1â
†
2] + g2[â1, â

†
4â

†
1]), (3.24)

where we have considered the following commutation relation:
h
âi, â

†
j

i
= �i,j . (3.25)

Here �i,j denotes the Kronecker delta. Then, by using the commutator relation:

[Â, B̂Ĉ] = ([Â, B̂]Ĉ + B̂[Â, Ĉ]), (3.26)
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we end up with the following expression and differential equation:

[â1, Ĥ] = �i~(g1â†2 + g2â
†
4). (3.27)

Thus, we obtain:
dâ1
dt

= �g1â
†
2 � g2â

†
4. (3.28)

By performing a similar process on the rest of the operators of the Hamiltonian
we obtain the following set of coupled differential equations:

dâ†1
dt = �g1â2 � g2â4,
dâ2
dt = �g1â

†
1 � g2â

†
3,

dâ†2
dt = �g1â1 � g2â3,
dâ3
dt = �g2â

†
2,

dâ†3
dt = �g2â2,
dâ4
dt = �g2â

†
1,

dâ†4
dt = �g2â

†
1. (3.29)

This system of equations is consistent with the one obtained from the Fokker-
Planck equation except for the terms of Gaussian white noise.

Solutions to this system of coupled differential equations can be calculated using
software. These analytical expressions have closed form and are written in terms of the
operator’s initial values, which are their expectation values at t = 0. In other words,
we have obtained particular solutions to this system of equations. These solutions
were not written in this section for the sake of brevity, but their behaviour is shown
in Chapter 4. Furthermore, these solutions will be used to calculate quantities such
as the expectation value for the quadratures and the number operator.

3.5 Parameter optimization for steering witness S

Some of the witnesses designed to test for the presence of quantum correlations de-
pend on numerical parameters in addition to the observables of the system. These
parameters can take arbitrary values, thus, it is possible to optimize them in order to
obtain the best value of the witness. This is particularly important for witnesses that
have to satisfy a particular inequality to certify the quantum correlation.

In our work, this optimization was performed for the parameter k in the steering
witness S defined by Teh and Reid [95]. As was mentioned in section 2.10.2, this
witness is defined as:

Sa|b = �
⇣
X̂a � gxX̂b

⌘
�
⇣
P̂a + gpP̂b

⌘
< 1, (3.30)

but we consider the symmetric case: k ⌘ gx = gp. The reason for which we have
chosen this case involving symmetry is because it simplifies the computational com-
plexity of the optimization.
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The factors in the definition of S are the standard deviations. That is, the square
root of the variance, thus, we start by expanding the operations in the definition of
the variance for the quantities of X̂a � kX̂b and P̂a + kP̂b. By doing this, we obtain
the following expressions:

�2
⇣
X̂a � kX̂b

⌘
= hXaXai � hXai2 + 2k(hXaihXbi � hXaXbi) + k2(hXbXbi � hXbi2),

�2
⇣
P̂a + kP̂b

⌘
= hPaPai � hPai2 + 2k(hPaihPbi � hPaPbi) + k2(hPbPbi � hPbi2).

After calculating the square root for each of these variances, performing the multipli-
cation between these two factors, and calculating the expectation values for each of
the terms, we obtain a function that depends solely on k. We minimized that function
by using Matlab. It is important to notice that the expectation values in this function
are themselves a function of time, thus the optimal value for k changes after each
instant.

Once this quantity k has been optimized, we can calculate S for different modes
of light in order to find if they present steering. These results are shown in the next
chapter, in section 4.7.2.
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Chapter 4

Results

We will now present the solutions of the stochastic differential equations obtained by
the positive-P representation and the differential equations from the Heisenberg evo-
lution method. These solutions describe the temporal behaviour of the annihilation
and creation operators for the four modes of light. These operators are important
because they are used to define the quadratures and thus, the witnesses that certify
the quantum correlations. Each of these witnesses has an associated criterion, that, if
satisfied, certifies the presence of the corresponding quantum correlation. These crite-
ria are usually expressed as inequalities between the witness and a particular threshold.

An initial condition has to be specified in order to solve each of the differential
equations, whether they are stochastic or not. In this case it is a number correspond-
ing to the expectation value of the creation and annihilation operators at t = 0, that
is: hâi(0)i, or hâ†i (0)i. These conditions were set arbitrarily, but not randomly, in
order to describe a coherent state properly. More specifically, we chose this initial
values because they yield an initial number of photons equal to 100. A very small
number of photons, such as two or three, is not characteristic of a coherent state.

It is important to remember that the numerical solutions of the stochastic differ-
ential equations are an average of a large number of random paths produced by the
stochastic noise. This was mentioned in section 2.8.1. For these numerical solutions
we specify the number of random paths averaged and we denote it with nsu (number
of sub-ensembles). The set of trajectories with different random paths is called an
ensemble. An average is calculated for each ensemble and this process is repeated
several times. The number of ensembles for each simulation is denoted by the param-
eter ne. For all of the results presented in this chapter the number of ensembles is 10.
Moreover, the random noise in the stochastic process is added after each time step,
whose duration can be specified. We denote the duration of the time step, as it was
defined in section 2.8, with the parameter dt, for which we use the value of dt = 0.001.

Once the solutions to the differential equations have been presented, we use them
to calculate different operators. Linear combinations of these operators are what con-
stitute the entanglement and steering witnesses. By varying the coupling parameters
g1 and g2 we find a regime in which these witnesses violate their respective thresh-
old, thus certifying the presence of non-local quantum correlations. The variation
for these coupling parameters is presented employing the quotient between the two,
that is: g2/g1. Results obtained for these operators, as well as for the witnesses are
presented in this chapter.
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4.1 Annihilation & creation operators

The solutions we obtained from the two methodologies describe the dynamical be-
haviour of the annihilation and creation operators for the four modes of light that
we believe that are entangled. We showcase the results obtained for the annihilation
operators in figure 4.1.

Figure 4.1: Expectation values for the annihilation operators of the
four modes using coupling parameters g2/g1 = 3: (A) From the Heisen-
berg evolution equations. (B) From the positive-P representation with
nsu = 3⇥ 106, dt = 0.001. Modes 1 and 2 are equal to each other, as

well as modes 3 and 4.

As the former operators describe the absorption of one photon, the creation oper-
ators describe the emission of one photon, and their behaviour is presented in figure
4.2.

Figure 4.2: Expectation values for the creation operators of the four
modes using coupling parameters g2/g1 = 3: (A) From the Heisen-
berg evolution equations. (B) From the positive-P representation with
nsu = 3⇥ 106, dt = 0.001. Modes 1 and 2 are equal to each other, as

well as modes 3 and 4.

It is worth noting that both methods yield the same results for these operators.
The initial values for these quantities were chosen so that the average number of
photons was large enough in order to represent a coherent state of light, since this is
the representation needed for the Gaussian pumps. From these important results the
remaining quantities will be calculated. Moreover, these results show that there are
two pairs of shared modes: modes 1 and 2 on one hand, as well as modes 3 and 4 on
the other.
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4.2 Number operator

Once we have calculated the expressions for the creation and annihilation operators,
we can use them to calculate observables such as the number operator, defined as
n̂i = â†i âi. The expectation value for this observable represents the average number
of photons in a given mode of light.

The main reason for calculating this observable is to certify that our results are
sensible in a physical context. If the number operator calculated yields a negative,
or complex, number of photons, this would mean that these solutions do not describe
a physical mode of light, but that was not the case for our solutions. The expected
number of photons for the four modes of light can be seen in figure 4.3.

Figure 4.3: Expectation values for the number of photons with
g2/g1 = 3. On (A) we show results from the Heisenberg evolution
equations. On (B), results from the positive-P representation using

nsu = 3⇥ 106.

Once again, both methods produce results that are consistent with each other.
The number of photons decreases as time goes by and reaches lower values at t = 1
when the quotient between the coupling parameters g2/g1 is higher. On the other
hand, for all the values under consideration, we obtained the initial value for the
number of photons when t = 0, which indicates that our results are correct.

4.3 X̂ quadratures

As was mentioned in the theoretical background, the X̂ quadrature, which is a con-
tinuous variable, serves as analogous to position for modes of light, and is defined as:
X̂j =

⇣
â†j + âj

⌘
. These quantities are important since they will be used to define the

witnesses that cerify the quantum correlations. Their expectation values are shown in
figure 4.4 and show consistency between the Heisenberg evolution equations and the
phase space method.
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Figure 4.4: Expectation values for the X̂ operators denoted by
Xi = hX̂i(t)i. (A) shows results from the Heisenberg evolution equa-
tions. (B) corresponds to the positive-P representation using param-

eters g2/g1 = 3, nsu = 3⇥ 106.

Results obtained for these quantities, as well as those for P̂ quadratures, could be
verified using homodyne or heterodyne detection.

4.4 P̂ quadratures

The P̂ quadratures are the analogous to the momentum for the modes of light and their
definition is: P̂j = i

⇣
â†j � âj

⌘
, where i denotes the imaginary unit. The solutions we

obtained for the creation and annihilation operators were equal when referred to the
same mode, thus the quantites hP̂ii were always equal to zero (except for statistical
fluctuations due to white noise in the phase space methodology). Results for these
quantities can be seen in figure 4.5.

Figure 4.5: Expectation values for the P̂ operators denoted by
Pi = hP̂i(t)i. (A) shows results from the Heisenberg evolution equa-
tions. (B) corresponds to the positive-P representation using param-

eters g2/g1 = 3, nsu = 3⇥ 106.

4.5 Quadrature products

In order to certify entanglement and steering we use the entanglement witnesses pre-
sented in the previous sections. These witnesses are linear combinations of oper-
ators that depend on the quadratures. Furthermore, because of the definition of
the variance as h�2Ûi = hÛ2i � hÛi2, we have to perform products among the
quadratures. For example, if we consider an operator defined as Û = X̂i � X̂j , then
�2Û = h(X̂i � X̂j)2i � hX̂i � X̂ji2. This is, in turn:

�2Û = hX̂iX̂ii � hX̂iX̂ji � hX̂jX̂ii+ hX̂jX̂ji � hX̂ii2 + 2hX̂iihX̂ji � hX̂ji2. (4.1)
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As we can see from the right hand side of eq. 4.1, to calculate these variances it
is needed to compute the quadrature products first. Their expectation values are
shown in figures 4.6 and 4.7. These preliminary results were useful for debugging the
programs with the numerical algorithms used to solve the SDE’s by comparing the
results from the two methods. The final results also show consistency between the two
methodologies. From this point forward, only results from the phase space methodol-
ogy will be presented since they show consistency with the Heisenberg equations and
they constitute the main methodology of this work.

Quadrature products involving X̂i

We now present the results for the quadrature products involving X̂ quadratures.
Similarly to the annihilation and creation operators, modes 1 and 2 behave equally
as well as modes 3 and 4. For these products, as well as for the rest of our results,
calculations were made using g2/g1 = 1, g2/g1 = 3 and g2/g1 = 3.5, but the important
differences from changing the value of this parameter are only seen for the witnesses,
thus, we only include results for g2/g1 = 1 in this section.
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Figure 4.6: Expectation values of the quadrature products XiXj ,
for i, j = 1, 2, 3, 4 using the parameters g2/g1 = 1, nsu = 107 for the

positive-P representation.

Quadrature products involving P̂i

As the former results, these products are also used to calculate variances for the
entanglement witnesses. Their expectation values are shown in figure 4.7.
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Figure 4.7: Expectation values of the quadrature products PiPj , for
i, j = 1, 2, 3, 4 using the parameters g2/g1 = 1, nsu = 107 for the

positive-P representation.

Results shown in figure 4.7 are, in general, different to zero, unlike the expectation
values hP̂ii. The reason for this is because P̂ is defined as a difference, while the
quadrature products have this subtraction of terms as well as some others crossed
terms from the multiplication. It is also notorious that products from the same mode
are always equal to one. This fact arises from the commutation relation for the
creation and annihilation operators: [âi, âj ] = �i,j , where �i,j is the Kronecker delta.
Explicitly, when we are performing multiplication for quadratures of the same mode
we encounter products of annihilation and creation operator for the same mode that
yield this value of 1.

4.6 Entanglement witnesses

Now that we have calculated the expectation values for some operators and some
observables, we can use these results to test for quantum correlations in the system.
We start by considering the case for entanglement and therefore present the results
in this section. The first three criteria that we present consider the bipartite case
for two of the four possible modes involved in the process. We will examine with
these bipartite witnesses all of the possible pairings for two out of the four modes to
show they are all quantum correlated to each other. The last criterion of this section
considers the 4-partite case directly.
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4.6.1 DGCZ entanglement criterion

As it was previously mentioned in subsection 2.9.1, the following operators for a given
pair of modes of light were defined as:

Ûij = X̂i � X̂j ,

V̂ij = P̂i + P̂j . (4.2)

The entanglement witness Dij is defined as follows, and entanglement is certified if
the inequality is violated:

Dij = �
2Uij +�

2Vij � 4. (4.3)

The results obtained for these witnesses are shown in figures 4.8, 4.9, and 4.10.
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Figure 4.8: Entanglement witness Dij , for different mode pairings
using the following parameters: g2/g1 = 1, nsu = 107.
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Figure 4.9: Entanglement witness Dij , for different mode pairings
using the following parameters: g2/g1 = 3, nsu = 107.

0 0.2 0.4 0.6 0.8 1
0

2

4

6

0 0.2 0.4 0.6 0.8 1
0

2

4

6

0 0.2 0.4 0.6 0.8 1
0

2

4

6

0 0.2 0.4 0.6 0.8 1
0

2

4

6

Figure 4.10: Entanglement witness Dij , for different mode pairings
using the following parameters: g2/g1 = 3.5, nsu = 107.
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The results shown in the top right graph of each figure indicate that for any given
pair of modes that includes mode 1, entanglement is certified. Similarly, this is con-
firmed for mode 2. However, for mode 3, only two out of three possible pairings violate
the threshold, being the pairing with mode 1 the one that does not violate it. Since
entanglement is a symmetric quantum correlation, and this witness is a sufficient but
not necessary condition, we can also certify entanglement between modes 1 and 3
by using the top left subfigure. The same argument holds for pairings with mode 4,
which only violate the threshold once in the bottom right subfigure for D43 for every
quotient of the coupling parameters. As the quotient g2/g1 increases, the witnesses
Dij that go below the threshold do so in a faster way.

4.6.2 ENT±

In the second chapter we mentioned that Giovannetti et al. [92] defined an entangle-
ment criterion that is based on two real parameters called gx and gp. The expression
is shown in eq. 2.102. If those two parameters are chosen to be gx = �1 and gp = 1,
then the expression is called ENT+. If these values are switched, we obtain ENT�.
We can write these two expressions briefly as follows:

ENT±
ij =

q
�2(X̂i ⌥ X̂j)�2(P̂i ± P̂j) (4.4)

This entanglement witness is used in the following criterion: if the following in-
equality is satisfied, then entanglement is certified:

ENT± < 2. (4.5)

ENT+

In figures 4.11, 4.12, and 4.13 we present the results for ENT+. These results violate
the threshold for every possible combination of two modes and for every quotient of
coupling parameters g2/g1, thus certifying the presence of entanglement.
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Figure 4.11: Results for ENT+ for different pairings of modes using
the following parameters: g2/g1 = 1, nsu = 107.
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Figure 4.12: Results for ENT+ for different pairings of modes using
the following parameters: g2/g1 = 3 , nsu = 107.
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Figure 4.13: Results for ENT+ for different pairings of modes using
the following parameters: g2/g1 = 3.5 , nsu = 107.

ENT�

Results for ENT� are shown in figures 4.14, 4.15, and 4.16. Unlike the witness ENT+,
this witness does not violate the threshold for every quotient of the coupling parame-
ters, or for every combination of modes. There is always at least one combination of
modes in which entanglement is not certified. However it is important to note that
every criterion discussed in this work is a sufficient but not necessary condition to
find entanglement, thus the violation of ENT+ already certifies the presence of this
quantum correlation when considering a specific pair of modes.
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Figure 4.14: Results for ENT� for different pairings of modes using
the following parameters: g2/g1 = 1 , nsu = 107.
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Figure 4.15: Results for ENT� for different pairings of modes using
the following parameters: g2/g1 = 3 , nsu = 107.
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Figure 4.16: Results for ENT� for different pairings of modes using
the following parameters: g2/g1 = 3.5 , nsu = 107.

4.6.3 Criterion for 4-partite entanglement

Following the criterion by Teh et al. that was mentioned in subsection 2.9.3, we
consider a particular case of the general criterion by defining the quantities Û and V̂
as:

Û = X̂1 �
1p
3

⇣
X̂2 + X̂3 + X̂4

⌘

V̂ = P̂1 +
1p
3

⇣
P̂2 + P̂3 + P̂4

⌘
(4.6)

We proceed to calculate the variances for these quantities. These variances will
be used, together with the thresholds of the different possible bipartitions, to certify
the presence of entanglement for every case. These thresholds were calculated in
subsection 2.9.3. The sum of the variances of Û and V̂ is presented in figure 4.18
comparing two different quotients for the coupling parameters.
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Figure 4.17: Expectation values for operators Û and V̂ considering
parameters g2/g1 = 3, nsu = 106.

In the following figures we present the sum of the variances, along with the thresh-
olds for entanglement for different bipartitions. This entanglement criterion was dis-
cussed in section 2.9.3, as well as the threshold for each bipartition. Entanglement
is certified for each bipartition if the sum of the variances of Û and V̂ falls below its
respective threshold. The results shown in figure 4.18 include each of the thresholds
for the different bipartitions. As time increases, entanglement is certified in more of
these different bipartitions. Results in figure 4.19 only exhibit the simplified thresh-
old for genuine multipartite entanglement. We present two cases with distinct values
for the quotient between the coupling parameters. The case for which both coupling
parameters have the same value, g2/g1 = 1, does not exhibit entanglement, except for
the bipartition 234� 1, as it is shown in figure 4.20.
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Figure 4.18: Comparison of the 4-partite entanglement criterion for
different bipartitions using a distinct coupling parameters quotient.
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Figure 4.19: Comparison of the 4-partite entanglement criterion us-
ing only one inequality with a distinct coupling parameters quotient.
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Figure 4.20: Entanglement criterion for g2/g1 = 1. The only bipar-
tition for which entanglement was found is 234� 1.

4.7 Steering witnesses

In this section we present the results for the different steering witnesses, as well as
a discussion on whether the quantum correlation was certified or not. As it was the
case for the previous section, first we consider two witnesses that test for steering
between two parties and we use it for all the different pairings and later we present
the multipartite case.

4.7.1 EPR

This criterion, presented by Margaret Reid [52], is used to determine steering between
two parties, and uses inferred variances. It is asymmetric, thus, for a given pair of
subsystems it is necessary to test before and after permuting the modes. As it was
discussed previously in section 2.10.1, the quantity EPRi|j is defined as:

EPRi|j = Vinf(X̂i)Vinf(P̂j), (4.7)
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where Vinf denotes the inferred variance. Mathematically, these variances are:

Vinf(X̂i) = �
2(X̂i)�

h
�2(X̂i, X̂j)

i2

�2(X̂j)
, (4.8)

Vinf(P̂i) = �
2(P̂i)�

h
�2(P̂i, P̂j)

i2

�2(P̂j)
, (4.9)

Steering is certified if the following inequality is satisfied EPRi|j < 1. Results for the
possible mode pairings are shown in figures 4.21, 4.22 and 4.23.
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Figure 4.21: EPR Steering witness results for different pairings of
modes the following parameters, g2/g1 = 1, nsu = 107.
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Figure 4.22: EPR Steering witness results for different pairings of
modes for the following parameters, g2/g1 = 3, nsu = 107.
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Figure 4.23: EPR Steering witness results for different pairings of
modes for the following parameters, g2/g1 = 3.5, nsu = 107.
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Results obtained for all possible mode pairings are below the threshold, thus certi-
fying that steering is present for the 4 modes. The more conspicuous difference found
by increasing the value for g2/g1 is that while this quantity increases, the value for
the witness decreases until it eventually reaches zero and stays there. This can be
interpreted as steering remaining as time goes by.

4.7.2 S Steering criterion

Proposed by Reid et. al. [53], this criterion also tests for steering but does not use
inferred variances, instead, it utilizes standard deviations. It certifies steering if the
following inequality is satisfied:

S = �(X̂ � gxX̂)�(P̂ + gpP̂ ) < 1 (4.10)

where gx and gp are arbitrary real coefficients that are optimized so that they minimize
S, as it was alrready mentioned. We are considering the symmetric case in which
gx = gp = k, because it reduces the computational complexity of the optimization for
these parameters. Results are shown in figure 4.26.
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Figure 4.24: Results for the steering parameter S, using the following
parameters: g2/g1 = 1, optimized k, nsu = 107.
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Figure 4.25: Results for the steering parameter S, using the following
parameters: g2/g1 = 3, optimized k, nsu = 107.

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Figure 4.26: Results for the steering parameter S, using the following
parameters: g2/g1 = 3.5, optimized k, nsu = 107.

Results show that for every case, steering is certified. Nevertheless, when increas-
ing the quotient between the two coupling parameters, that is g2/g1, the product of
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the standard deviations fall down below the threshold faster. It was important for
us to analyze the cases in which this product reaches zero faster, since we wanted to
find out if there was a revival in which the S witness starts to increment again after
reaching a minimum value. Furthermore, we wanted to make sure that S does not
become negative since standard deviations are always non-negative values.

4.7.3 Genuine multipartite steering criterion

This following criterion was discussed in subsection 2.10.3 and, as the former, also
depends on the product of standard deviations of witnesses u and v, which were
defined by the authors as:

u = h1x1 + h2x2 + h3x3 + h4x4,

v = g1p1 + g2p2 + g3p3 + g4p4, (4.11)

If we consider the particular bipartition 1 � 234, then the violation of the following
inequality certifies steering of subsystem 1 by subsystem 234.

�u�v � |g1h1|, (4.12)

Otherwise, if the following inequality is violated, subsystem 234 can be steered by
subsystem 1:

�u�v � |g2h2 + g3h3 + g4h4|. (4.13)

Two-way steering is certified when both of these inequalities are violated, or what is
equivalent, when the minimum of the two numbers on the right hand side is subdued.
Same procedure can be applied for the seven possible bipartitions of the 4 modes.
The different thresholds for the possible bipartitions were calculated and reported in
subsection 2.10.3. Results for this criterion are shown in figure 4.27.
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Figure 4.27: Genuine steering witnesses. (A) and (B) show the
thresholds for every possible bipartition, using the quotient between
the coupling parameters g2/g1 = 3 and g2/g1 = 3.5, respectively. (C)
and (D) are the cases with only one inequality using the quotient be-
tween the coupling parameters g2/g1 = 3 and g2/g1 = 3.5, respectively.

Results shown in figure 4.27 for this criterion certify that steering is present for
every possible bipartition of the four modes. In other words, genuine 4-partite steering
is present in the system. As the quotient g2/g1 increases, the thresholds are violated
quicker. However, in the case in which g2 = g1, steering was not certified. Results for
this case are shown in figure 4.28.
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Figure 4.28: Genuine steering criterion for g2/g1 = 1. (A) shows the
threshold for every bipartition and (B) shows the simplified threshold.

Steering was not certified for this case.

4.8 Coupling parameters regime

Now that has been certified that quantum correlations are present in the system under
specific conditions, namely a range of values for the quotient between the coupling
parameters, it is possible to look for this regime by comparing results for different
values of g1 and g2.

Results for this section show two witnesses, ENT1i, i = 2, 3 for entanglement and
EPR3j , j = 1, 4 for steering. Values are taken for time t = 0.9049 but for different
combinations of values of g1 and g2. We consider here values from 0.1 up to 1.0 by
steps of 0.1 for the coupling parameters. The regime for these parameters in which
the correlations are certified is then discussed.

4.8.1 Entanglement
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(a) Entanglement between modes 1 and 2.
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(b) Entanglement between modes 1 and 3.

Figure 4.29: ENT+
1i entanglement criterion for different combina-

tions of parameters g1 and g2. (A) shows the correlation between
modes 1 and 2. (B) shows the case for modes 1 and 3. These particu-
lar pairings were chosen because they contrast considerably from each

other. Entanglement is certified when ENT+
ij  2.
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Results of figure 4.29 show that entanglement is not present when both of the coupling
parameters have the same value of 0.1. This is consistent with the results shown
in section 4.6.2. However, once either of these quantities increase, entanglement is
certified. For ENT+

12 there is another regime for larger values of g1 and g2 in which
entanglement ceases to exist. The reason for which we chose these parameters is
that the entanglement criterion ENT+ certified entanglement for every pairing of the
modes, unlike the other entanglement witnesses Di,j and ENT�. Furthermore, when
comparing results using this witness for a given pair of modes, the resulting grids
were equal, regardless of the permutation of said modes. This is consistent with our
knowledge of entanglement as a symmetric correlation.

4.8.2 Steering
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(a) Steering between modes 2 and 4.
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(b) Steering between modes 1 and 3.

Figure 4.30: EPR steering criterion for different combinations of
parameters g1 and g2. (A) shows the correlation between modes 1 and
3. (B) shows the case for modes 3 and 4. These pairings were chosen
because they contrast considerably to each other. Steering is certified

whenever EPRij  1.

The results shown in figure 4.30 do not certify steering when g1 = g2 = 0.1, but as
the quotient g2/g1 increases its value, steering is certified. This is consistent with
the results shown in section 4.7.1. Thus, in the entanglement case, the value of each
of the coupling parameters is important, while for the steering correlation, it is the
quotient between the two of them that allows us to find the quantum correlation. It
is also worth mentioning that, while we can find steering for most of the values of g1,
as the parameter g2 increases in both of these grids, we can no longer certify steering,
but after increasing the parameter some more, we can certify it again. This type of
behaviour is known as death and revival. Unlike the entanglement case, results from
the same pairing of modes were not equal. This again shows consistency with steering
being an asymmetric correlation.
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Chapter 5

Conclusions

The main objective of this work was to certify the presence of two non-local quantum
correlations, nameley, entanglement and steering, in a given non-linear system. We
were interested in this system because it produces the correlations in two continu-
ous variables and it does so for multiple parties. The methodologies used for this
work consisted in a phase space method, called the positive-P representation, and the
Heisenberg evolution equations. Using the former, a set of stochastic differential equa-
tions was obtained and was solved numerically. Meanwhile, the Heisenberg evolution
equations yielded a set of coupled differential equations that was solved analytically
using software. The solutions were consistent between the two procedures and de-
scribed the dynamical behaviour of the annihilation and creation operators for four
modes of light. By employing these solutions, observable quantities were calculated.
Two in particular are of special relevance; these are called the quadratures, X̂ and
P̂ , and they serve, respectively, as analogous to position and momentum for modes
of light. The quadratures were later used for defining quantities known as witnesses
that are capable of certifying the presence of the quantum correlations known as en-
tanglement and steering.

After testing thoroughly using several distinct witnesses, the results obtained cer-
tify the presence of these two quantum correlations between the four modes of light
under specific conditions. Namely, both correlations are present when the quotient
between two quantities called coupling parameters, which are denoted by g1 and g2,
is greater or equal than 3. These coupling parameters are related to the complex
amplitude of the two pump beams involved in the system. Furthermore, it was also
shown that, as time passes, both entanglement and steering become present for more
bipartitions of the four modes until eventually they develop into genuine multipartite
entanglement and steering. This means that every mode of light is correlated with
each other. The case for full multipartite entanglement and steering was not studied
in this work.

Our results presented in section 4.8 show parts of the regime for the coupling
parameters in which quantum correlations are certified. The work could be extended
towards describing this regime more generally for a larger range of parameters g1 and
g2.

Future work could be directed towards finding whether monogamy relations are
present for multipartite steering and entanglement for the specific case of four modes.
As far as we are concerned, there is no criteria for monogamy relations regarding four
parties. Therefore, working towards monogamy relations for this specific case is an
interesting line of research.
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