

 POSGRADO INTERINSTITUCIONAL EN CIENCIA Y TECNOLOGÍA

REAL TIME EMBEDDED RGB-D SLAM

USING CNNS FOR DEPTH ESTIMATION

AND FEATURE EXTRACTION

TESIS

QUE PARA OBTENER EL GRADO

ACADÉMICO DE

MAESTRO EN CIENCIA Y TECNOLOGÍA

EN LA ESPECIALIDAD DE

MECATRÓNICA

PRESENTA

ING. MARCOS RENATO ROCHA HERNÁNDEZ

DIRECTOR DE TESIS
DR. GERARDO RAMON FLORES COLUNGA

Versión Final. Incluye cambios sugeridos por revisores

Vo. Bo. DEL DIRECTOR

A 20 DE MARZODEL 2023

LEÓN, GUANAJUATO, MARZO, 2023.

iii

Acknowledgements
This thesis was partially supported by the Laboratorio Nacional de Supercómputo del
Sureste de México (LNS) under agreement 202201026N.

Thank you to Consejo Nacional de Ciencia y Tecnología (CONACYT) for giving me
the opportunity to being able to develop this work and grow as a proffesional and
to all the community members of Centro de Investigaciones en Óptica (CIO), with
special meaning to Dr. Gerardo Flores who was my advisor and mentor during
the development of this project and to all my colleagues and team members of
Laboratorio de Percepción y Robótica. Thanks to my family and friends for all the
support they gave me in this journey, without them this path would have been so
much harder.

v

CENTRO DE INVESTIGACIONES EN ÓPTICA

Abstract
CIO

Perception and Robotics Laboratory

Master in Science and Technology with especialization in Mechatronics

Real Time embedded RGB-D SLAM using CNN’s for depth estimation and
feature extraction

by Engr. Marcos Rocha

A robust and efficient Simultaneous Localization and Mapping (SLAM) system
is essential for intelligent mobile robots to work in unknown environments. For
visual SLAM algorithms, though the theoretical framework has been well estab-
lished for most aspects, feature extraction and association is still empirically de-
signed in most cases, and can be vulnerable in complex environments. Also, most
of the most robust SLAM algorithms rely on special devices like a stereo cam-
era or depth sensors, which can be expensive and give more complexity to the
system, that is why monocular depth estimation is an essential task in the com-
puter vision community. While tremendous successful methods have obtained
excellent results, most of them are computationally expensive and not applica-
ble for real-time on-device inference. This work shows that feature extraction
and depth estimation using a monocular camera with deep convolutional neu-
ral networks (CNNs) can be incorporated into a modern SLAM framework. The
proposed SLAM system utilizes two CNNs, one to detect keypoints in each im-
age frame, and to give not only keypoint descriptors, but also a global descriptor
of the whole image and the second one to make depth estimations from a single
image frame, all using only a monocular camera.

HTTP://WWW.CIO.MX
http://faculty.university.com
http://department.university.com

vii

Contents

Acknowledgements iii

Abstract v

1 Introduction 1
1.1 Overview and Motivation . 1
1.2 Justification . 2
1.3 Goal of the Thesis . 3
1.4 The SLAM problem . 3
1.5 State of the Art . 5

1.5.1 Feature Extraction . 6
1.5.2 Depth Inference . 7

2 Theoretical Knowledge 9
2.1 ORB-SLAM . 9

2.1.1 Tracking . 10
2.1.2 Local Mapping . 12
2.1.3 Loop Closing . 14

2.2 Hf-Net . 15
2.2.1 Architecture . 16

2.3 Depth Network . 17
2.4 ROS: Robot Operating System . 17

3 Methodology 21
3.1 Camera configurations . 21

3.1.1 RGB-D Camera . 21
3.1.2 Monocular camera . 22

viii

3.1.3 Stereo camera . 23
3.2 SLAM Parameters . 24
3.3 System Overview . 27

4 Experiments 31
4.1 Estimating the depth maps . 31
4.2 Extracting key-features . 32
4.3 SLAM results . 34

4.3.1 Trajectory comparison . 35
4.3.2 Monocular Vs. RGB-D . 40
4.3.3 RGB-D Vs. Stereo . 42

5 Conclusions 45

Bibliography 47

ix

List of Figures

2.1 ORB-SLAM system threads . 10
2.2 Covisibility and Essential graphs . 13
2.3 HF-Net architecture . 15
2.4 Depth CNN architecture . 17
2.5 ROS: A set of nodes, topics, tools, several applications, compatibil-

ity of programming languages . 18

3.1 Kinect camera . 22
3.2 A webcam is an example of a monocular camera 23
3.3 ZED stereo camera . 23
3.4 System Diagram. 27
3.5 System sequence . 28

4.1 Input to the network . 32
4.2 Network output . 32
4.3 Inferenced keypoints using the network 33
4.4 Keypoints matching (50 points only) 33
4.5 View of the system executed in real-time 35
4.6 Sequence 00 trajectory comparison 36
4.7 Monocular Vs. Proposed RGB-D Vs. Stereo graphs 39
4.8 Proposed RGB-D Vs. Monocular graphs 41
4.9 Proposed RGB-D Vs. Stereo graphs 43

xi

List of Tables

3.1 Camera Parameters . 25
3.2 Viewer (RVIZ) parameters. 26
3.3 ORB Parameters . 26

4.1 APE results comparison for each sequence 37
4.2 ATE results comparison for each sequence 37
4.3 RPE results comparison for each sequence 38
4.4 Relative error for each metric between monocular mode and the

proposed RGB-D system . 40
4.5 Relative error for each metric between stereo mode and the pro-

posed RGB-D system . 42

1

Chapter 1

Introduction

The general hypothesis of this thesis is to investigate and proof that

A simultaneous localization and mapping system can be improved in efficiency and sim-
plicity with the use of deep learning algorithms such as neural networks and that it can
be executed in real-time on an embedded device.

With this in mind, the following work is presented.

1.1 Overview and Motivation

In the last decades, researchers around the world have been focused in solving
to solve a vast diversity of problems using computers, for instance, they use this
computers to give a system the ability to perceive the world as we do. People are
complex biological machines,that have been trying to create sensors capable of
simulate our senses. For instance, some sensors were made to detect temperature
variations, and others to detect distance. A particular example is the human vision
which its equivalent sensor is the camera, either monocular or stereo these sensors
act as our eyes. Nowadays, most of current research in computer vision is mainly
oriented in finding solutions using machine learning or deep learning algorithms.
As a consequence of this, is important to have computer systems that can make
use of this algorithms to, for example, sense objects on the environment or make
estimations of properties like scene depth.

2 Chapter 1. Introduction

1.2 Justification

Deep learning algorithms translate into a massive opportunity for businesses look-
ing to leverage the technology to deliver high-performance outcomes. Research
firms predict that the deep learning market could be worth nearly $100 billion by
2028 driven by data mining, sentiment analytics, recommendations, personaliza-
tion and automation. This is because deep learning bring great advantages over
other solutions. This advantages are:

1. Feature Generation Automation: Deep learning algorithms can generate
new features from among a limited number located in the training dataset
without additional human intervention. This means deep learning can per-
form complex tasks that often require extensive feature engineering.

2. Works well with unstructured data: One of the biggest draws of deep learn-
ing is its ability to work with unstructured data. Text, images, and voice are
some of the most common data formats. Training deep learning networks
with unstructured data and appropriate labeling can help businesses opti-
mize virtually every function from marketing and sales to finance.

3. Better Self-learning Capabilities: The multiple layers in deep neural net-
works allow models to become more efficient at learning complex features
and performing more intensive computational tasks, i.e., execute many com-
plex operations simultaneously. This is due to deep learning algorithms’
ability to eventually learn from its own errors. It can verify the accuracy of
its predictions/outputs and make necessary adjustments.

4. Supports Parallel and Distributed Algorithms: Parallel and distributed al-
gorithms allow deep learning models to be trained at scale. For instance, if
you were to train a model on a single computer, it could take up to 10 days
to run through all the data. On the other hand, parallel algorithms can be
distributed across multiple systems/computers to complete the training in
less than a day.

5. Cost Effectiveness: While training deep learning models can be cost-intensive,
once trained, it can help businesses cut down on unnecessary expenditure.
In industries such as manufacturing, consulting, or even retail, the cost of

1.3. Goal of the Thesis 3

an inaccurate prediction or product defect is massive. It often outweighs the
costs of training deep learning models.

6. Advanced Analytics: Deep learning, when applied to data science, can of-
fer better and more effective processing models. Its ability to learn unsu-
pervised drives continuous improvement in accuracy and outcomes. It also
offers data scientists with more reliable and concise analysis results.

7. Scalability: Deep learning is highly scalable due to its ability to process
massive amounts of data and perform a lot of computations in a cost and
time-effective manner. This directly impacts productivity (faster deploy-
ment/rollouts) and modularity and portability (trained models can be used
across a range of problems).

1.3 Goal of the Thesis

With that motivation in mind, the main goal of this work is as follows.

To investigate and implement deep learning methods on a SLAM system to improve the
performance and simplify the hardware requirements, without sacrificing processing time
and still be able to operate in real-time.

This can be divided into ... objectives.

1. Review the state of the art methods and theory behind applied deep learning
to SLAM.

2. Find and study available methods, tools and technologies suitable for SLAM.

3. Implement the algorithms into a SLAM system pipeline.

4. Make tests in order to extract results for evaluation.

5. Demonstrate the effectiveness and suitability of the resulting SLAM system.

1.4 The SLAM problem

The SLAM problem dates from 1986 in IEEE Robotics and Automation Confer-
ence, where researchers had a conversation about probabilistic methods in robotics

4 Chapter 1. Introduction

area. Since that year, SLAM has become a relevant topic in this area. In general,
SLAM is a system focused on recognizing the environment and generating a map
and finding its location at the same time. A map is a visual representation of the
environment and it can be very useful in several applications, as the representa-
tion of places where the human do not have open access, or for carrying out some
tasks as path planning, mobile robots, among others. As it is mentioned before,
there are 2D and 3D maps; in the case of the first one, it is commonly generated
by sensors like LiDARs, sonars and scanners, among others, since its detection
range covers only two dimensions, x (width) and z (depth). On the other side, the
3D maps can be generated by stereo cameras, RGB-D sensors or 3D LiDARs, and
others. These sensors provide information about 3D scenes, therefore, the maps
can be dense, semi-dense or sparse.

The SLAM problem implies the generation of a map using the system localization,
and the estimation of current location using the map, to wit, both need each other,
it is usually compared with the famous chicken-or-egg problem. However, there
are various approaches to solve it, which imply the implementation of some al-
gorithms using different sensors. Some researchers have proposed various proba-
bilistic approaches for solving the SLAM problem, and these are based in Bayesian
networks as Kalman Filter, Particle Filter, and Kalman Filter variations, among
others. However, the large environments are a main constrain of this type of fil-
ters due to the increase in the size of the system variables. On the other hand,
another problem is the measurement error from sensors. There are sensors which
are more accurate than others, it is always present, as a result of this, the sensors
add error to the system and then the system location and mapping have a cumu-
lative error. For solving this, some techniques are used to reduce the error like
loop closing. In addition, not only the sensors cause error, the dynamic objects are
within several scenes cause error in some processes such as the calculation of the
perspective transform, among others.

This work is addressed as follows. This first chapter presents the state of the
art about SLAM and its fusion with deep learning and some approaches using
artificial inteligence. Chapter 2 introduces the fundamental knowledge, in which
this thesis is based. Chapter 3 explains the methodology and contributions of this
work. Chapter 4 reports the results of the tested system. Finally in Chapter 5, the

1.5. State of the Art 5

conclusions and future work are presented.

1.5 State of the Art

Roboticists attempt to build systems that are capable of begin executed in real time
for a vast array of applications like vehicle navigation, visual servoing, and object
detection. Most of the aformentioned examples require the interaction between
robots and if its necessary with humans and react to the actions of each other.
Due to this, a low latency is important for such systems. Building a system that
executes in real time on a modern computer can be challenging but doing so on
a mobile platform with less than one-tenth of the processing power is extremely
difficult. Moreover, these platforms are more appealing for real life scenarios be-
cause they use less power and are compact.

An area of research that has become popular within the robotics community is
the use of machine learning to solve problems in robotics. Neural Networks are
being used with outstanding success solving many problems and nowadays have
surpassed human performance.

The problem of Simultaneous Localization and Mapping (SLAM) over the last
decades has had great progress. [5]. Feature-based SLAM systems are the most
implemented in robotics thanks to their efficiency and scalability. The majority of
these SLAM systems make use of hand-crafted visual features such as SIFT[37],
SURF[4] and ORB[49], that can fail when are applied in complex environments.
For example, ORB-SLAM2[41], usually fails to recognize the environments pre-
viously visited when the scene or the viewpoint has been changed[55]. These
SLAM systems (excluding monocular) require a depth sensor, which is essential
to get accurate and precise results. Normally these depth sensors (e.g. LiDARs,
structured-light sensors, etc) are bulky, heavy, expensive and consume a lot of
power. These limitations motivate the depth estimation using a monocular cam-
era, due to its low cost, compact size, and high energy efficiency.

On the other side, for other computer vision tasks, deep convolutional neural
networks (CNNs) have substituted the hand-crafted features and sensors with
dominant related research and applications. Trained with a large amount of data,

6 Chapter 1. Introduction

CNNs can learn features that are robust against changes in illumination, back-
ground and viewpoint. Although most works with CNNs work with image region-
level features (e.g. semantics), some works focus on on learning pixel-wise fea-
tures, normally referred to as local features or local descriptors. Despite it has
been shown that those features are better than hand-crafted ones and specially
designed sensors, there arent many works using them in visual SLAM systems
due to the computational power needed to utilize these algorithms making them
unable to operate in real-time, specially embedded devices.

1.5.1 Feature Extraction

The process of many visual SLAM systems start by detecting key points on an
image frame and matching them with those in a previous key-frame or in a map
by the similarity of their descriptors. Between the various key-points features
used in computer vision, Shi-Tomasi [54] and ORB [50] are the most used by visual
SLAM algorithms (e.g. MonoSLAM [8], ORB-SLAM2 [42], VINS-Mono [47]) for
their balanced effectiveness and efficiency. It was found that the features in the
last layer of a deep CNN can outperform hand-crafted local features, even if the
CNN is not trained for such representations. [10].

Since then, research on training CNNs specifically for local feature extraction have
been presented [22][3][64][39]. These networks take a local image and output a
descriptor of this patch. Although their performance against pre-trained CNNs
may be uncertain, both of these approaches consistently outperform handcrafted
features [7].

Key-point detection is more difficult than patch description in deep learning, be-
cause the notation of a key-point is semantically ill-posed, causing direct data an-
notation infeasible. DeTone et al. address this problem proposing a self-supervised
learning approach, using it to train a fully convolutional neural network for joint
key-point detection and description (SuperPoint) [11] Another network with this
same capabilities, GCN, is trained using a supervision of visual odometry [58].
Dusmanu et al. designed D2-Net in which the knowledge of key-point detection
and description can be further shared [13]. It is worth noting that there are end-to-
end CNNs for pose estimation [62][26][38][13] being feature extraction a hidden

1.5. State of the Art 7

task in the networks.

1.5.2 Depth Inference

Depth estimation using a single image has an extensive history of studies. At the
begging, techniques such as image pre-processing, feature extraction, edge detec-
tion, etc. were widely used to solve this task. In [33] the authors modify a camera
lens to make simultaneous image and depth extraction with a cost-efficient al-
gorithm. This proposed method took advantage of prior knowledge about real
images, particularly their statistical distribution [43]. Moreover, in most cases the
obtained depth maps required manual correction.

In [53] a Markov Rndom Field (MRF) is used for patch-based depth reconstruc-
tion from a single image. First the original image is divided into a set of patches
with different scales. Then the hand-crafted features are applied to these patches.
Using the computed statistics from different scales of the patches, the relationship
between the depth of the patch and the neighborhood patches are modeled by
the MRF, recreating the depth of the image. The knowledge about image statis-
tics could provide the ability to recreate the depth map of a single image, but the
information about the environment is also useful. For example, in [9] of the envi-
ronment mainly consists of vertical and horizontal lines (walls, floor, etc.). This is
helpful to determine the perspective and estimate the depth in scenarios where,
as an example, the robot moves along a hallway. However, it fails in other types
of environments. Recently, methods based on hand-crafted features have been
outperformed by deep learning and CNNs, becoming tools of choice for depth
estimation.

Fully-convolutional neural networks [36], that are build with an encoder and a
decoder, are the most common architectures used for depth reconstruction. One
of the early works in deep learning based depth estimation using a single image
is [15]. The authors use a coarse-scale network to infer the depth of the image
as a dense depth map. Later, a local fine-scale network aligns the depth map
with the images local details (objects, wall edges, etc). In [18] the authors use
inverse depth maps, obtained by the neural network, with known inter-view dis-
placement, achieving non-supervised learning of the CNN, solving the problem

8 Chapter 1. Introduction

of acquiring large datasets for training. The training set consists of 22 600 stereo
images, without data augmentation or usage of pre-trained decoder (in this case
- AlexNet [28]). In [31],the original up-convolution algorithm is proposed as well
as the reverse Huber loss function [44]. This architecture was tested for real time
applications, but the used hardware is an NVidia GeForce GTX TITAN with 12GB
of GPU memory, that is more powerful than an NVidia Jetson. This FCNN is
used within the SLAM process presented in [59] on a PC with an Intel Xeon CPU
at 2.4GHz with 16GB of RAM and an Nvidia Quadro K5200 GPU with 8GB of
VRAM. The authors of MegaDepth [34] and DenseDepth [1] focus mainly on im-
proving the learning phase. In [34] a learning strategy, data augmentation tech-
niques and a loss function are proposed. MegaDepth authors focus on improving
the quality of the training dataset. Also, they suggest routines to refine the depth
with automatic ordinal labeling and semantic segmentation. Both of these archi-
tectures are too heavy to process images in real time, especially on embedded
systems. In general, most of the FCNN-depth reconstruction research leave com-
puting constraints out of the scope.

9

Chapter 2

Theoretical Knowledge

This chapter is divided in four sections, each one explains the main knowledge in
which the proposed SLAM system is based, since the system is result of a fusion
of several processes to achieve the mapping and localization. The following topics
that will be addressed are: ORB-SLAM, HF-Net and a depth inference network.
Finally, the last section talks about Robot Operating System (ROS), a framework,
used to exchange data between processes in the SLAM system.

2.1 ORB-SLAM

The main algorithm is based on a well-known SLAM system that is one the best
implementations of the mapping and localization problem, since is fast due to the
way to obtain the interest features about environment, this system is named ORB-
SLAM due to used features to recognize the scene, these features have the same
name (ORB, Oriented FAST [48] and Rotated BRIEF [6] [51]), and ORB features
consist of finding potentially invariant points to rotations and escalations. This
kind of features allows to obtain the same point from different perspectives or
views and to match with previous points.

ORB-SLAM approach is separated in three threads, tracking, local mapping and
loop closure as we can appreciate in the Figure 2.1. Below are mentioned the main
threads of the ORB-SLAM.

10 Chapter 2. Theoretical Knowledge

(A) System thread and modules (B) Input pre-processing

FIGURE 2.1: ORB-SLAM system threads

2.1.1 Tracking

The tracking thread has four main processes, which are pre-process input, pose
prediction or relocalization, Track local map and New Keyframe Decision. At
first, the input data is obtained from a monocular, stereo or RGB-D camera and
then the ORB features are extracted from each image. Figure 2.1b, the pre-process
is shown, it is applied to the input images, either RGB-D or stereo images, both
have two types of keypoints, monocular and stereo, and the points are classified
in close or far depending on intrinsic parameters of the camera.

The stereo keypoints have three defined coordinates and are determined as xs =

(uL; vL; uR), where uL and vL are the coordinates on the left image, and uR is the
horizontal coordinate on the right image, the reason for ORB-SLAM only needs
one coordinate is because the right camera is fixed respect to the left camera, so,
the ORB features detected in the left image tend to be in the same vertical posi-
tion but different horizontal position. On the other hand, the RGB-D input only
capture an image RGB, therefore, the process generates a virtual right coordinate
using the depth image (d), and some intrinsic parameters as focal distance (fx)
and baseline (b). The way for obtaining it is using the disparity formula (2.1),
this concept is the difference between horizontal coordinates corresponding to an
ORB match.

2.1. ORB-SLAM 11

disparity = uL − uR =
fxb
d

(2.1)

Since, fx, b and d are known, disparity is unknown and the aim is find uR, the
formula to obtain it is:

uR = uL −
fxb
d

(2.2)

Once the coordinates are obtained, the system classifies them as close or far. This
classification allows to safely triangulate the keypoints using close keypoints,
since the captured objects in the image have better resolution. The keypoints are
considered close if the corresponding depth estimation for the keypoint is less
than 40 times the baseline. The far keypoints are used for giving rotation informa-
tion, since they can appear in many frames, therefore, they are used in multiple
views.

The monocular keypoints are defined as xm = (uL; vL), these points correspond to
not matched features or RGB input, in this case, the depth is invalid. The monoc-
ular keypoints are triangulated in multiple views. On the other hand, the system
obtains RGB input frames whereas the process is running, however, if the SLAM
system stores all these frames, the memory would be saturated. A solution of
this, some frames are selected to be stored depending on a criteria, these frames
are named as keyframes.

After obtaining the stereo and monocular keypoints, the system predicts the sys-
tem pose, the first time that the system is executed, the thread selects a keyframe
and its pose as the SLAM origin, then the SLAM generates an initial map using
the stereo keypoints. Since the threads run all the time while the ORB-SLAM is
running, in some situations, the system loses its position, in this case, a bag of
words based in DBoW2 [17] is used to find candidate keyframes. Then, the sys-
tem corresponds ORB features with map points in the selected keyframes. The
camera pose is found using RANSAC iterations [45] for each keyframe and using
PnP algorithm [32]. This process is named ”global relocalization” and it is based
on [40]. After that, the SLAM optimizes the pose camera using bundle adjustment
(BA) [[60],[56]], which is a technique for functions optimizing. The system uses

12 Chapter 2. Theoretical Knowledge

Levenberg-Marquard algorithm, a method implemented in g2o [29], to carry out
the optimizations.

Once the camera pose is estimated, the 3D map is created. While ORB-SLAM is
running, the map is increasing, it means that the processing time is getting bigger,
to solution it, the SLAM uses a local map composed of a set of keyframes K1, a set
K2 and a reference keyframe Kre f 2K1, where the set K1 has matching map points
with the current frame, the set K2 shares map points with the set K1, and Kre f is
the keyframe with more map points in common with the current frame.

Finally, the last process in the tracking thread is the new keyframe decision, here,
the input frames are converted in keyframes or not depending on different con-
ditions, the first one is related with relocalization mode, since at least 20 frames
must have passed between the last global relocalization frame and the current
frame, the second condition is similar to the last condition, the difference is that
this condition depends on keyframe insertion, at least 20 frames must have passed
after the last keyframe insertion. If a frame has at least 50 points (condition 3) and
less that 90% points than Kre f , the frame is considered as keyframe. In general,
all these process are within tracking thread.

2.1.2 Local Mapping

The next thread is the local mapping, where it has as input the keyframe obtained
from the tracking thread, only if the frame was accepted as keyframe. If this is the
situation, the covisibility graph (a graph where the keyframes are linked among
others depending on common points, see a) from figure 2.2) is updated and the
process adds a node for Ki and updates the edges between key-frames depending
on shared map points. After that, the bag of words is computed for new key-
frame.

2.1. ORB-SLAM 13

(A) Covisibility graph (B) Essential graph

FIGURE 2.2: Covisibility and Essential graphs

Once the keyframe insertion is done, local mapping thread culls the map points
if these do not satisfy the next conditions. The first one says that a point must be
in more than 25% of the frames where it must appear. And the second condition
refers to that map point must be observed in at least three keyframes after its
creation. The next step of local mapping thread consists in the new map points
creation. In the covisibility graph, there are Ki keyframes connected by edges,
also there are unmatched points, so, the SLAM system attempts to match these
points with another unmatched points and then triangulate these points to obtain
new points only if these have the scale consistency, parallax, positive depth in
both cameras, and the reprojection error (difference between the the real 2D point
and the 2D projected point from the 3D point) is small. After that, a local BA
optimizes the current keyframe with a connected set of keyframes and all points
observed in that set. Also, there are keyframes with the some points seen in the
set of keyframes but their keyframe are not in the set, however, for this situations,
the points are also included in the local BA and remain fixed.

The last step of this thread is the local keyframe culling, this step consists in dis-
carding redundant keyframes. For this, the system checks if the 90% of points of
a keyframe is in at least three keyframes in the same or finer scale [57]. If this is
the situation, the process deletes the keyframe.

14 Chapter 2. Theoretical Knowledge

2.1.3 Loop Closing

The loop closure thread tries to find a loop closure using the last keyframe pro-
cessed by local mapping thread. This thread has two main processes; loop detec-
tion and loop correction. Below each step will be mentioned.

The loop detection has two main steps, the first step is to detect a candidate loop
using a similarity between the bag of words vector of Ki and its neighbors. An
angle is necessary to discard non-relevant information, the proposed angle is
θmin = 30, it is to avoid using much information, since the process will be slow, the
step retains the lowest score smin. The keyframes with a lower score than smin and
directly connected to the last keyframe processed are discarded and it only con-
sidered a loop candidate, if there are at least three loop candidates with keyframes
connected. After that, a similarity transform is computed, this is because the cur-
rent frame and loop candidate keyframe do not have the same perspective, there-
fore, it will help to validate the loop and know the accumulated error. This step
computes the similarity transform using the map points of the current keyframe
and loop candidate keyframes. The way to do it is using ORB correspondences
between both and then, the similarity transform is computed with method pro-
posed by Horn [24] with iterations of RANSAC algorithm with each candidate
keyframe. Once the last step is finished and a similarity transform is successful
(enough inliers) and optimizes, the system optimizes the similarity matrix again
using more correspondences. If the similarity transform is still successful, the
result is a loop closure.

Like the loop detection, the loop correction has two steps: loop fusion and opti-
mize essential graph from figure 2.2b. If the last process detects a loop, the loop
correction fuses the duplicated map points, the recent keyframes generates new
edges, this edges are inserted in the covisibility graph. The current pose is cor-
rected according to the loop keyframe, and the correction is propagated to the last
poses and all points inside of the keyframes set are fused. Finally, the edges are
inserted to covisibility graph. The last step of loop detection isthe optimization of
the essential graph which contains the nodes of keyframes as covisibility graph,
but the difference is that the essential graph has less edges, it allows a better com-
putational cost. This step applies an optimization using the similarity transform

2.2. Hf-Net 15

which corrects the scale drift. Finally, a full BA is used, BA adjusts all points and
keyframes except the origin keyframe.

2.2 Hf-Net

Robust and accurate visual localization is a fundamental capability for numerous
applications, such as autonomous driving, mobile robotics, or augmented reality.
It remains, however, a challenging task, particularly for large-scale environments
and in presence of significant appearance changes. State-of-the-art methods not
only struggle with such scenarios, but are often too resource intensive for certain
real-time applications.

Mobilenet

SuperPoint
Decoder

Keypoint
scores

Local
descriptors

NetVLAD Layer

Global
descriptor

Input image

Shared
features

FIGURE 2.3: HF-Net architecture

HF-Net [52] is a hierarchical localization approach based on a monolithic CNN
that simultaneously predicts local features and global descriptors for accurate 6-
DoF localization. This network exploits the coarse-to-fine localization paradigm,
first a global retrieval is performed to obtain localization hypothesis and only later
match local features within those candidate places.

16 Chapter 2. Theoretical Knowledge

This hierarchical approach incurs significant run-time savings and makes the sys-
tem suitable for real-time operation.

2.2.1 Architecture

Convolutional neural networks intrinsically exhibit a hierarchical structure. This
paradigm fits well the joint predictions of local and global features and comes at
low additional run-time costs. The HF-Net architecture (Figure 2.3) is composed
of a single encoder and three heads predicting: i) key-point detection scores, ii)
dense local descriptors and iii) a global image-wide descriptor. This sharing of
computation is natural: in state-of-the-art image retrieval networks, the global de-
scriptors are usually computed from the aggregation of local feature maps, which
might be useful to predict local features.

The encoder of HF-Net is a MobileNet [25] backbone, a popular architecture op-
timized for mobile inference. The global descriptor is computed by NetVLAD
layer [2] on top of the last feature map of MobileNet. For the local features, the
SuperPoint [12] architecture is used for its efficiency, as it decodes the key-points
and local descriptors in a fixed non-learned manner. This is much faster than
applying transposed convolutions to upsample the features. It predicts dense de-
scriptors which are fast to sample bilinearly, resulting in a run-time independent
from the number of detected key-points. The local feature heads branch out from
the MobileNet encoder at an earlier stage than the global head, as a higher spatial
resolution is required to retain spatially discriminative features, local features are
on a lower semantic level than image-wide descriptors [16].

This design enables HF-Net to give both local and global features with a single in-
ference model, benefiting not only subsequent pose tracking, but also loop closure
detection and re-localization modules in the SLAM system. This design choice is
not only driven by functionalities, but also experimental results showing that the
features from HF-Net are superior than those from alternative deep CNN feature
extractors for the SLAM system.

2.3. Depth Network 17

2.3 Depth Network

The Stereotypical FCNN model for depth reconstruction consists of the encoder
and the decoder. The former extracts the high-level features from the input image
while the latter generates the depth maps from these features.

6464

50
0

128 128

25
6

256 256

12
8 512 512

64
1024 1024

32

Bottleneck

512

64

512

64

512

64

512

64

256

12
8

256

12
8

256

12
8

256

12
8

128

25
6

128

25
6

128

25
6

128

25
6

64

51
2

64

51
2

64

51
2

64

51
2

51
2

SOFT

FIGURE 2.4: Depth CNN architecture

The architecture of the network used in this work is an optimized version of mon-
odepth2 [20]. For the encoder is used a ResNet18 [23] which is known to be a
versatile feature extractor. Despite being a deep network with several residual
blocks, it is fast enough to operate in real time. As for the decoder is used a se-
ries of upsampling blocks which use the nearest neighbour algorithm. Each of the
upsampling blocks are followed by a non-bottleneck convolution followed by a
ReLU activation. Each five blocks the output is reduced to one channel, i.e. depth,
with 5x5 convolution, resulting in a faster inference. The enhancements used in
this architecture are skip connections, which are the projection from encoder lay-
ers to decoder. Here the output of the last convolution block in every stack of the
encoder with its respective outputs of the decoder blocks. Despite this technique
not always improves the model accuracy, it produces more sharpened depths of
the objects edges.

2.4 ROS: Robot Operating System

Before considering the methodology of this work, it is important to know how
ROS (Robot Operating System) works, which will be explained below, since this

18 Chapter 2. Theoretical Knowledge

system is the base of the SLAM execution, and it allows exchanging information
from different algorithms and then use the data in other programs. As we men-
tioned in the past, ROS is a system which it allows communicating various algo-
rithms simultaneously. This characteristic allows sharing information (messages)
from an algorithm when it is executing. Each executed program establishes a node
representing a process, which can provide information computes during of the
process execution. The way for distributing the information is the usage of topics.
A topic is the bus where the process (node) sends and receives the messages, in
other words, a topic is the plumbing of the system where the data navigate from
a node to another. It exists different type of topics which depends of the kind of
information, for instance, the way to share an image from a process to another is
using “sensor msgs/Image”, each topic has different parameters, continuing with
the same example, this topic has the size of the image (width and height), also it
has the type of encoding, this can be “8UC1”, “16UC3”, “16SC1”, among others.

In the figure 2.5 shows an equation representing the general meaning of ROS, in
this picture we can appreciate four characteristics, plumbing is the connections
among nodes through topics, tools are those packages as RViz, Gazebo and others
that allow visualize the programs, among other applications, capabilities are dif-
ferent applications of algorithms to achieve general or specific implementations
as image processing, pose estimation, filters, and more. Finally, community mean
the students and hobbyists to multinational corporations and government agen-
cies, people and organizations of all stripes that keep the ROS project goin.

FIGURE 2.5: ROS: A set of nodes, topics, tools, several applications,
compatibility of programming languages

In general, ROS is a platform where several programs are able to share messages
among themselves. The algorithms are executed using two different ways, the
first one is using rosrun, but it needs to execute the “roscore”, which it is a nodes

2.4. ROS: Robot Operating System 19

collection and necessary services to run the algorithms, the second way to achieve
running a program is executing it with roslaunch, it needs a “.launch” file, which
contains information about name of the nodes we want to execute, the name of the
ROS package and optional parameters about the algorithm, in this case, it is not
necessary to run the roscore since roslaunch is in charge of doing it. A difference
among rosrun and roslaunch is the number of nodes executed when the command
is used. In the case of rosrun, it allows to run only one node. On the other hand,
roslaunch allows the executing of only one node or more nodes. However, the
best way to execute the nodes depends on the user.

21

Chapter 3

Methodology

This chapter presents a description of the necessary configurations to develop the
SLAM system, the first section is about the different camera models that are used
in SLAM, after that, the next section is about the needed parameters for the cam-
era, SLAM and RVIZ used in the process. The last section is a system overview
showing the sequence of the main code to achieve the real-time approach.

3.1 Camera configurations

As we mentioned before, the key idea of SLAM is obtaining information about
the environment. Therefore, it is necessary as input a camera which could be a
monocular, RGB-D or a stereo. The selection of the sensor depends on the ap-
proach. Therefore, the characteristics of each kind of cameras are mentioned be-
low.

3.1.1 RGB-D Camera

As is well known, the RGB-D sensor works very well in places where the rays
of the sun are not direct, in other words, indoor scenes and it is not trustworthy
in outdoor environments, it is due to its operating mode, which consists in four
channels of data, the RGB abbreviation means the three channels of typical image,
in other ways, RGB are Red, Green and Blue layers of an image, the fourth chan-
nel is a matrix with depth values of the scene. Therefore, RGB-D camera has an
RGB camera, an IR projector and a IR camera. The last one is used to detect the

22 Chapter 3. Methodology

dot pattern projected by the IR sensor (IR projector), these dots provides informa-
tion about depth of the environment, the IR camera measures the “time of flight”
of the projected light by the infrared transmitter, in other words, the distance be-
tween sensors and objects is measuring the time that light takes to travel from the
transmitter to object and after returning to receptor. Since the sensor works with
infrared light, it is very hard to detect the dots under the sun, so, it is not trust-
worthy in outdoor. One of the most known RGB-D cameras is the “Kinect” by
Microsoft, in the figure 3.1a, the internal structure is observable. The figure 3.1b
shows the IR pattern from a Kinect, the dots are light and dark speckles and are
generated from several diffraction gratings [63].

(A) The Kinect and his sensors
(B) IR pattern used to calculate the

depth of the real world

FIGURE 3.1: Kinect camera

3.1.2 Monocular camera

Another sensor is the monocular camera, the main characteristic is the absence
of a depth map obtained from only one position, in other words, the camera is
not able to obtain information of depth about environment. In the case of RGB-D
camera, as it is mentioned earlier, there are two sensors which obtain the depth,
in the case of the stereo camera, the baseline is known, therefore, the calculate of
depth has more constrains, it means that the depth is easier calculated than using
a monocular camera. An example of a monocular camera is shown in the figure
3.2.

3.1. Camera configurations 23

FIGURE 3.2: A webcam is an example of a monocular camera

3.1.3 Stereo camera

FIGURE 3.3: ZED stereo camera

The stereo camera consists in two RGB cameras separated by a fixed distance, the
depth map from stereo camera is obtained from the matching of features, which
are found in both images (left and right), once we obtain the features, the dif-
ference (in pixels) between the features on left image and right image has to be
calculated, when the features correspond to distant objects the distance between
the left features and right features is small, on the other hand, the distance when
the objects near the camera is larger, this separation is known as disparity and it is

24 Chapter 3. Methodology

elementary to calculate the depth because the disparity is inversely proportional
to depth including some internal parameters of the cameras as baseline and fo-
cal distance, in other words, the depth is calculated from the equation 3.1, where
D is the depth, b is the baseline and f is the focal distance. By this reason, the
method to find the depth from a stereo camera is more robust to the rays of the
sun, therefore, is better in outdoor environments.

D =
b f

disparity
(3.1)

3.2 SLAM Parameters

There are many necessary parameters for the use of SLAM, these parameters refer
to stereo camera configuration and SLAM and they are listed in tables 3.1, 3.2
and 3.3. The first column shows the name of parameters and the second column
presents a brief description of them.

3.2. SLAM Parameters 25

Camera Parameter Description
Camera.fx Focal distance in pixels on the x axis: component

in x of the distance from center camera to image
plane.

Camera.fy Focal distance in pixels on the y axis.
Camera.cx Center of the camera on the x axis, it corresponds

the half of width of the image in pixels
approximately.

Camera.cy Center of camera on the y axis.
Camera.k1 Radial distortion coefficient.
Camera.k2 Radial distortion coefficient.
Camera.p1 Tangential distortion coefficient.
Camera.p2 Tangential distortion coefficient.
Camera.k3 Radial distortion coefficient.
Camera.width Size of the image along x axis in pixels.
Camera.height Size of the image along y axis in pixels.
Camera.fps Quantity of frames per second.
Camera.bf Result of multiplying the baseline and the

horizontal focal distance, the baseline is
on meters.

Camera.RGB Configuration of layers of the image, it
could be RGB or BGR, if it is monochromatic,
the parameter is ignored.

ThDepth Threshold to determinate if an object is
near or far from stereo camera.

DepthMapFactor Depth map value factor, it depends on the
scale factor.

TABLE 3.1: Camera Parameters

26 Chapter 3. Methodology

RVIZ Parameter Description
PointCloudMapping.Resolution Size of the flat squares.

TABLE 3.2: Viewer (RVIZ) parameters.

ORB Parameter Description
ORBextractor.nFeatures Number of ORB features for image.
ORBextractor.scaleFactor Scale factor to reduce the size of the image.
ORBextractor.nLevels Number of times to reduce an image.
ORBextractor.iniThFAST Initial number of features to detect in each

cell of the image, the image is divided in
cells along of width and height.

ORBextractor.minThFAST If the number of features is lower than
iniThFAST, it is the minimum quantity to
detect features, it depends on the texture
of the environment.

TABLE 3.3: ORB Parameters

These parameters can be modified depending on different factors. The camera
parameters are unique values of each camera, for instance, the baseline depends
on the structure of the stereo camera, the intrinsic parameters (fx, fy, cx, cy, k1,
k2, p1, p2 and k3) are values that are different for each camera, since they bet on
the physical structure and size of the image.On the other hand, ORB and viewer
parameters build upon the user, that means of the user can choose the value of
the parameters taking into consideration the environment in the case of ORB pa-
rameters or the capabilities of the computer or the environment texture and the
viewer parameters depend on the taste of the person to visualize the point cloud.
The user is able to change these parameters (viewer parameters) during the code
is running.

3.3. System Overview 27

3.3 System Overview

Input (Monocular
Camera)

Depth Inference

Deep Feature
Extraction

(Modified ORB-SLAM)

RGB Image

Depth Map

Encoder-Decoder
 Net

HF-Net Keypoints &
Descriptors

Global
descriptor

RGB-D SLAM

Visual Odometry

Jetson AGX
Xavier

FIGURE 3.4: System Diagram.

In general, the formulation of the problem is how to execute the SLAM in real-
time running two deep learning networks in parallel on an embedded system, so,
ORB-SLAM2 was modified in a way that his integrated feature extraction module
in the pre-processing RGB-D pipeline is substituted by the HF-Net which will feed
the key-points and descriptors into the system while in parallel the depth network
will be estimating depth maps, working as a depth sensor, all of this using a single
monocular camera. The figure 3.5 shows the sequence of the main program to
achieve the aim. The program begins with the block “Initialize the threads”, this
process as the name indicate, starts the different threads to run in parallel, it has
the capability to decrease the total time in which the program works. As it is
mentioned, the initialized threads are: Tracking, Local Mapping, Loop Closing,
Depth estimation, Feature extraction and Viewer.

28 Chapter 3. Methodology

Camera
Node

SLAM node

Depth NN
node

Feature extr.
NN node

Initialize
camera

Publlish
images in

topic

Initialize
NN

Initialize
NN

Subscribe
to image
topic

Subscribe
to image
topic

Extract
Global and

local
features

Compute
depth map

Publish topics:
/features

/keypoints

Publish topic:
/depth

Initialize
SLAM

threads

Subscribre to topics:
/features

/keypoints
/depth

TrackRGBD

Cam_pose
function

Publish Odometry and
PointCloud topics

Save
trajectory

End Node?

End Node?End Node?

End Node?

Read
camera

Node ended

Node ended Node ended

Node ended

Yes

Yes Yes

Yes

No

No No

No

FIGURE 3.5: System sequence

3.3. System Overview 29

In the case of RGB-D configuration, the program needs three topics to achieve
the aim. One of them correspond to the rgb raw image, the second topic is about
depth data and the last one is the extracted features obtained from the HF-Net.
Once the program subscribes to these topics, the “ORB-SLAM2” function starts
with the rest of the process, which corresponds mentioned before. After that,
the last function of the code is “Cam pose”, which is in charge of the conver-
sion of data from pose and odometry of the camera to topics which carry the
information. These topics have the information about the path and orientation of
the camera and the odometry of the system. During the main process, a map is
generated with its data being published in a topic as a point cloud. Therefore,
there are four published topics: “/Camera_Pose”, “Camera_Odom”, “Odom”
and “/PointCloud”. Finally, if the program is closed, the trajectories are saved
in a text file. On the other hand, if the program is not closed, the loop is repeated
again, hence, the main process continues.

31

Chapter 4

Experiments

This chapter has four sections. The first section presents the depth maps obtained
using the depth inferencing network and the process time. After that, the second
section shows the results of passing an image through the HF-Net for key-feature
extraction and its respective processing time. In the third section, the proposed
SLAM system is tested making an analysis of the overall system. Finally, the
trajectories for each configuration of the SLAM system are compared, using the
necessary metrics for a SLAM benchmark.

4.1 Estimating the depth maps

For inference tests two possible scenarios where considered: 1) fully autonomous
depth reconstruction on an NVidia Jetson AGX Xavier, 2) remote depth recon-
struction on a PC. For both scenarios the network model was compiled using
the TensorRT framework [61] which converts the model architecture to a more
efficient internal structure without modifying its synaptic weights, providing the
system with a faster inference time compared to the standard framework in which
the model was built, in this case the Pytorch [27] framework.

This model of neural network has better results than some basic architectures pre-
sented in [30], [35] and [14]te, that are focused on offline depth reconstruction.
The tests showed that this network makes the depth inference for an rgb image
of dimensions 1024x320, on an average of 83ms (12 fps) on the Jetson AGX and
an average of 61ms on a PC with a Ryzen 3700X cpu and an RTX2060 super GPU.

32 Chapter 4. Experiments

The 12 fps that can be obtained in the Jetson AGX is enough to be used in the em-
bedded RGB-D version of ORB-SLAM2 due to the fact that normally the system
can work at a rate of 10 fps as minimum. All of this process using almost 2Gb of
GPU memory.

FIGURE 4.1: Input to the network

FIGURE 4.2: Network output

4.2 Extracting key-features

As mentioned in the 2 chapter, the process of feature extraction is as follows: an
image firstly passes through a shared encoder, and then goes into three paral-
lel decoders predicting key point detection scores, dense local descriptors and a
global image-wide descriptor, respectively. The first two decoders have the same
architecture as SuperPoint, and the global descriptor is computed by a NetVLAD
layer. This design enables HF-Net to give both local and global features with a
single inference model. This process takes on average 73ms (13 fps) on the Jetson

4.2. Extracting key-features 33

AGX and an average of 45ms (22 fps) on a PC with the same setup as the previous
section. This network uses the Tensorflow framework and has been optimized
using the TensorRT framework for faster inference using at run-time 8Gb of GPU
memory due to the more complex structure of the network compared to the net-
work used to inference the depth of the scene. Also a ROS node was developed
for this network.

(A) First view of the scene

(B) Scene after one lap

FIGURE 4.3: Inferenced keypoints using the network

FIGURE 4.4: Keypoints matching (50 points only)

34 Chapter 4. Experiments

4.3 SLAM results

The proposed SLAM system is shown in section 3 of chapter 3. The framework is
similar to ORB-SLAM2. Differences originate from feature extraction, for which
we use HF-Net to give both local features (key points and their descriptors) and
global features (image descriptors) with a single CNN model, replacing the ORB
extraction module in the pre-processing section of the original ORB-SLAM track-
ing thread. The local features are then incorporated into the localization and map-
ping pipeline. The global features are then introduced into the loop closure de-
tection module to rapidly re-localize at system initialization or when tracking fail-
ures. The second important difference is the use of the depth inference network as
a depth sensor, enabling the use of the RGB-D framework of ORB-SLAM2 using
a single monocular camera. Due to the modifications made to the original system
this SLAM system only works in the RGB-D mode.

The difference of processing time between the two networks used in this work is
due to the image sizes used on each one of them. The depth network processes
a 1024x320 image and the HF-Net for its input uses a 640x200 gray-scale image.
It is known that the resolution of the input image directly affects the run-time
performance of the networks thus, in this case resulting in faster processing time
for a more complex network due to this factor.

The GPU memory requirements are a constraint. The networks can be executed in
parallel but in total they require almost 10 Gb of GPU memory. This reduces the
number of embedded devices in which this system can be deployed. So the Jetson
AGX Xavier is a perfect match for this case since it has 32 Gb of usable memory,
which is more than enough, in such a small device. Also the overall structure of
the SLAM system is executed in the CPU of the device benefiting the run-time
process of the SLAM since the networks are executed in GPU.

4.3. SLAM results 35

FIGURE 4.5: View of the system executed in real-time

The SLAM system was tested with the KITTI odometry dataset [19], using 11 se-
quences (00-10) which contain the ground truth trajectories. The dataset consist
of stereo sequences (left and right camera sequence of images) in rgb or grayscale
format. The proposed SLAM system is compared against monocular and stereo
ORB-SLAM2, no RGB-D since the dataset doesn’t contain depth maps for the se-
quences. Each one of the sequences was tranformed into rosbag files to be able to
use these with the ROS ecosystem. For the monocular mode of ORB-SLAM and
for the proposed RGB-D SLAM in this work, the left camera images for each one
of the sequences was used. Once the SLAM system is executed the rosbags are
played and the images of each sequence are processed in real-time and are being
displayed with the point-cloud and the trajectory as seen in figure 4.5.

4.3.1 Trajectory comparison

Once every sequence of the dataset is processed a trajectory file composed of the
poses of each frame calculated by the system is generated for each one of them.
This files are then processed for analysis with the EVO framework [21]. With this
framework the trajectories can be compared to the ground truth and the APE,
ATE and RPE metrics can be calculated as mentioned in [46]. Figure 4.6a shows
the trajectory comparison for sequence 00 of the dataset.

36 Chapter 4. Experiments

200 100 0 100 200 300
x (m)

0

100

200

300

400

500

z
(m

)

00_gt
mono_Trajectory00
pRGBD_Trajectory00
stereo_Trajectory00

(A) Without scale correction for mono mode

300 200 100 0 100 200 300
x (m)

0

100

200

300

400

500

z
(m

)

00_gt
mono_Trajectory00
pRGBD_Trajectory00
stereo_Trajectory00

(B) With scale correction for mono mode

FIGURE 4.6: Sequence 00 trajectory comparison

As it can be seen, monocular mode have an undesirable problem, scene scale. This
is due to the fact that monocular cameras are not able to obtain depth information
as mentioned in chapter 3. But this can be corrected establishing a scale factor or
using a post-processing algorithm as with the EVO framework. This shows a big
advantage for the implementation of an RGB-D system like the proposed over the
use of single monocular cameras, the problem of the scene scale is non-existent,
this without using specifically designed depth sensors. Figure 4.6b shows the
same trajectory as figure 4.6a but with a scale correction for the monocular tra-
jectory. Tables 4.1, 4.2 and 4.3 show the metrics results for monocular, stereo and
the RGB-D proposed SLAM. The next subsections compare in more detail the pro-
posed system against the monocular and stereo mode of the ORB-SLAM.

4.3. SLAM results 37

APE comparison (m)

Sequence Mono pRGBD Stereo
0 13.89675901 27.3552145 7.361499322

1 2753.371389 51.70669571 30.60135087

2 127.4755614 10.2874698 11.33953721

3 5.103892122 3.227052735 0.737397179

4 1.456245073 8.755933483 1.020267133

5 28.06305925 3.223651268 1.070369521

6 32.73910312 5.576779084 1.625190041

7 4.527961402 1.708665837 0.731800463

8 158.1067734 17.90435968 12.75993465

9 74.13084582 3.597406661 7.340355749

10 503.0876959 7.218235721 5.45851791

TABLE 4.1: APE results comparison for each sequence

ATE comparison (m)

Sequence Mono pRGBD Stereo
0 11.04558352 5.090034263 0.94812554

1 540.127654 21.78476445 8.865991159

2 26.17544914 4.430178345 5.259991635

3 1.420105353 2.262363599 0.233685461

4 0.679846815 2.063723377 0.191763687

5 7.376475987 2.012254411 0.396717009

6 19.2822248 2.473404282 0.564961364

7 2.849235269 1.161962992 0.456799722

8 48.97371983 6.570247716 3.594144804

9 39.93840938 1.658702816 3.590933261

10 8.194827284 2.353385359 1.081964368

TABLE 4.2: ATE results comparison for each sequence

38 Chapter 4. Experiments

RPE comparison (m)

Sequence Mono pRGBD Stereo
0 0.272129893 0.060485588 0.02803531

1 12.44771132 0.083237195 0.049364892

2 0.217197974 0.046737081 0.028163223

3 0.061403596 0.049887242 0.017533725

4 0.051791945 0.097842281 0.020425418

5 0.295879908 0.049478957 0.016985338

6 0.84872872 0.040147149 0.018494737

7 0.109795241 0.04169493 0.015976849

8 0.580932417 0.051659064 0.039139818

9 6.731439319 0.044563509 0.021460692

10 0.159995591 0.042893977 0.019777699

TABLE 4.3: RPE results comparison for each sequence

4.3. SLAM results 39

FIGURE 4.7: Monocular Vs. Proposed RGB-D Vs. Stereo graphs

40 Chapter 4. Experiments

4.3.2 Monocular Vs. RGB-D

From the previous tables can be calculated the relative error between the monocu-
lar setup vs the RGB-D setup, using the proposed system metrics results as a base.
The percentages of error for each metric and sequence are showed in table 4.4.

Sequence APE ATE RPE
0 -49.19886662 117.0041094 349.9086537

1 5224.980356 2379.382577 14854.50593

2 1139.134247 490.84414 364.7230208

3 58.15955117 -37.22912825 23.08476789

4 -83.3684772 -67.05727025 -47.06588526

5 770.5364479 266.5777024 497.9914056

6 487.0611446 679.5824137 2014.044786

7 164.9998206 145.2087793 163.3299588

8 783.062987 645.3862007 1024.550796

9 1960.674614 2307.809825 15005.27214

10 6869.676737 248.2144244 273.0024663

Average 1575.065324 652.3385249 3138.486186

TABLE 4.4: Relative error for each metric between monocular mode
and the proposed RGB-D system

This comparison clearly demonstrates that the proposed system is better than the
monocular approach being approximately 15.75 times better in the APE metric,
6.5 times better in the ATE metric and 31.38 times better in the RPE metric. All
of this with the trajectory scale correction for the monocular setup. Without this
correction the difference in performance would get even larger. The cases where
the monocular setup beats the RGB-D setup, the error is small compared against
the opposite in most cases being one or two orders of magnitude higher.

4.3. SLAM results 41

FIGURE 4.8: Proposed RGB-D Vs. Monocular graphs

42 Chapter 4. Experiments

4.3.3 RGB-D Vs. Stereo

In the case of the proposed system against the stereo setup, the results differ from
the previous case (Table 4.5). In most cases the stereo setup beats the RGB-D setup
being an expected result due to the quality and amount of information that can be
obtained through a stereo setup. The stereo setup retrieves a more accurate scene
scale and better depth estimations due to having two dedicated sensors (cameras)
to form the stereo par and the use of the disparity, even though it can take more
processing power. In average the stereo setup is 1.84 times better in the APE
metric, 0.45 times better in the ATE metric and 0.53 times better in the RPE metric
than the proposed method. The proposed method is almost as good as the stereo
setup, but has the advantage of being able to only use one camera and being less
processing resources demanding.

Sequence APE ATE RPE
0 -271.598411 -81.37290456 -53.64960319

1 -68.96867046 -59.30187273 -40.69371088

2 9.277868993 18.7309229 -39.74115876

3 -337.6274861 -89.67073812 -64.85328765

4 -758.2000926 -90.70787831 -79.12413961

5 -201.1718107 -80.28494774 -65.67159294

6 -243.1462748 -77.15855157 -53.93262616

7 -133.4879414 -60.68724004 -61.68155361

8 -40.317017 -45.29666218 -24.23436478

9 50.99138538 116.4904542 -51.84245532

10 -32.23801478 -54.02519336 -53.89166276

Average -184.2260422 -45.7531465 -53.57419597

TABLE 4.5: Relative error for each metric between stereo mode and
the proposed RGB-D system

4.3. SLAM results 43

FIGURE 4.9: Proposed RGB-D Vs. Stereo graphs

45

Chapter 5

Conclusions

This work presents a SLAM system that integrates two convolutional neural net-
works to improve its performance while executed in real-time on an embedded
device. One neural network to process an input image and predict a depth map,
substituting a depth sensor in an RGB-D SLAM setup and one neural network to
extract ORB-like features from the input images and introduce them in the SLAM
pipeline. Results show that deep CNN’s features can be well incorporated into
modern SLAM systems, and significantly improve the system’s performance.

The experiments related to the run-time of both networks show that most of ac-
tual deep neural networks have great accuracy but have to be executed in a offline
manner. This property can be translated to real-time execution and on an embed-
ded device with the proper optimization and compilation methods, improving its
run-time without sacrificing its accuracy.

The depth map images obtained through the encoder-decoder network prove that
deep learning methods can have more benefits than its standard counterparts, for
example the use of the mentioned network as a replacement of a depth sensor.
This replacement not only provides a better SLAM system (better than a monoc-
ular setup) using only one camera, it also solves some of the problems of depth
sensors commonly used like the one in a Kinnect, in which the light of the sun
makes impossible for this kind of sensor to be used in outdoors environments
and restraining its application to indoors environments. A well trained network
like the used in this work its not affected by the exposure to the sun. Implicitly,
the cost of the system can be decreased by this kind of setup, one standard monoc-
ular camera is cheaper than a camera with a depth sensor or even a stereo setup.

46 Chapter 5. Conclusions

Although the results for the proposed system are not better than a stereo setup,
they are very close to be. The performance can be improved by improving the
neural networks, this can be achieved using better or more data for their training
or introducing more accurate networks that can be executed in real-time.

47

Bibliography

[1] Ibraheem Alhashim and Peter Wonka. “High Quality Monocular Depth Es-
timation via Transfer Learning”. In: CoRR abs/1812.11941 (2018). arXiv: 1812.
11941. URL: http://arxiv.org/abs/1812.11941.

[2] Relja Arandjelovic et al. “NetVLAD: CNN architecture for weakly super-
vised place recognition”. In: CoRR abs/1511.07247 (2015). arXiv: 1511.07247.
URL: http://arxiv.org/abs/1511.07247.

[3] Vassileios Balntas et al. “Learning local feature descriptors with triplets and
shallow convolutional neural networks”. In: Jan. 2016, pp. 119.1–119.11. DOI:
10.5244/C.30.119.

[4] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. “SURF: Speeded Up Ro-
bust Features”. In: Computer Vision – ECCV 2006. Ed. by Aleš Leonardis,
Horst Bischof, and Axel Pinz. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2006, pp. 404–417. ISBN: 978-3-540-33833-8.

[5] Cesar Cadena et al. “Past, Present, and Future of Simultaneous Localization
and Mapping: Toward the Robust-Perception Age”. In: IEEE Transactions on
Robotics 32.6 (2016), pp. 1309–1332. DOI: 10.1109/TRO.2016.2624754.

[6] Michael Calonder et al. “BRIEF: Binary Robust Independent Elementary
Features”. In: vol. 6314. Sept. 2010, pp. 778–792. ISBN: 978-3-642-15560-4.
DOI: 10.1007/978-3-642-15561-1_56.

[7] Zhuang Dai et al. “A Comparison of CNN-Based and Hand-Crafted Key-
point Descriptors”. In: 2019 International Conference on Robotics and Automa-
tion (ICRA). 2019, pp. 2399–2404. DOI: 10.1109/ICRA.2019.8793701.

[8] Andrew J. Davison et al. “MonoSLAM: Real-Time Single Camera SLAM”.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence 29.6 (2007),
pp. 1052–1067. DOI: 10.1109/TPAMI.2007.1049.

[9] Erick Delage, Honglak Lee, and A. Ng. “A Dynamic Bayesian Network
Model for Autonomous 3D Reconstruction from a Single Indoor Image”. In:

https://arxiv.org/abs/1812.11941
https://arxiv.org/abs/1812.11941
http://arxiv.org/abs/1812.11941
https://arxiv.org/abs/1511.07247
http://arxiv.org/abs/1511.07247
https://doi.org/10.5244/C.30.119
https://doi.org/10.1109/TRO.2016.2624754
https://doi.org/10.1007/978-3-642-15561-1_56
https://doi.org/10.1109/ICRA.2019.8793701
https://doi.org/10.1109/TPAMI.2007.1049

48 Bibliography

2006 IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition (CVPR’06) 2 (2006), pp. 2418–2428.

[10] “Descriptor Matching with Convolutional Neural Networks: a Compari-
son to SIFT”. In: CoRR abs/1405.5769 (2014). Withdrawn. arXiv: 1405.5769.
URL: http://arxiv.org/abs/1405.5769.

[11] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. “SuperPoint:
Self-Supervised Interest Point Detection and Description”. In: CoRR abs/1712.07629
(2017). arXiv: 1712.07629. URL: http://arxiv.org/abs/1712.07629.

[12] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. “SuperPoint:
Self-Supervised Interest Point Detection and Description”. In: CoRR abs/1712.07629
(2017). arXiv: 1712.07629. URL: http://arxiv.org/abs/1712.07629.

[13] Mihai Dusmanu et al. “D2-Net: A Trainable CNN for Joint Detection and
Description of Local Features”. In: CoRR abs/1905.03561 (2019). arXiv: 1905.
03561. URL: http://arxiv.org/abs/1905.03561.

[14] David Eigen, Christian Puhrsch, and Rob Fergus. “Depth map prediction
from a single image using a multi-scale deep network”. In: arXiv preprint
arXiv:1406.2283 (2014).

[15] David Eigen, Christian Puhrsch, and Rob Fergus. “Depth Map Prediction
from a Single Image using a Multi-Scale Deep Network”. In: CoRR abs/1406.2283
(2014). arXiv: 1406.2283. URL: http://arxiv.org/abs/1406.2283.

[16] Mohammed E. Fathy et al. “Hierarchical Metric Learning and Matching for
2D and 3D Geometric Correspondences”. In: CoRR abs/1803.07231 (2018).
arXiv: 1803.07231. URL: http://arxiv.org/abs/1803.07231.

[17] Dorian Galvez-López and Juan D. Tardos. “Bags of Binary Words for Fast
Place Recognition in Image Sequences”. In: IEEE Transactions on Robotics 28.5
(2012), pp. 1188–1197. DOI: 10.1109/TRO.2012.2197158.

[18] Ravi Garg, Vijay Kumar B. G, and Ian D. Reid. “Unsupervised CNN for Sin-
gle View Depth Estimation: Geometry to the Rescue”. In: CoRR abs/1603.04992
(2016). arXiv: 1603.04992. URL: http://arxiv.org/abs/1603.04992.

[19] Andreas Geiger et al. “Vision meets robotics: The kitti dataset”. In: The In-
ternational Journal of Robotics Research 32.11 (2013), pp. 1231–1237.

[20] Clément Godard, Oisin Mac Aodha, and Gabriel J. Brostow. “Digging Into
Self-Supervised Monocular Depth Estimation”. In: CoRR abs/1806.01260
(2018). arXiv: 1806.01260. URL: http://arxiv.org/abs/1806.01260.

https://arxiv.org/abs/1405.5769
http://arxiv.org/abs/1405.5769
https://arxiv.org/abs/1712.07629
http://arxiv.org/abs/1712.07629
https://arxiv.org/abs/1712.07629
http://arxiv.org/abs/1712.07629
https://arxiv.org/abs/1905.03561
https://arxiv.org/abs/1905.03561
http://arxiv.org/abs/1905.03561
https://arxiv.org/abs/1406.2283
http://arxiv.org/abs/1406.2283
https://arxiv.org/abs/1803.07231
http://arxiv.org/abs/1803.07231
https://doi.org/10.1109/TRO.2012.2197158
https://arxiv.org/abs/1603.04992
http://arxiv.org/abs/1603.04992
https://arxiv.org/abs/1806.01260
http://arxiv.org/abs/1806.01260

Bibliography 49

[21] Michael Grupp. evo: Python package for the evaluation of odometry and SLAM.
https://github.com/MichaelGrupp/evo. 2017.

[22] Xufeng Han et al. “MatchNet: Unifying feature and metric learning for patch-
based matching”. In: 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2015, pp. 3279–3286. DOI: 10.1109/CVPR.2015.7298948.

[23] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In:
CoRR abs/1512.03385 (2015). arXiv: 1512.03385. URL: http://arxiv.org/
abs/1512.03385.

[24] Berthold KP Horn. “Closed-form solution of absolute orientation using unit
quaternions”. In: Josa a 4.4 (1987), pp. 629–642.

[25] Andrew G. Howard et al. “MobileNets: Efficient Convolutional Neural Net-
works for Mobile Vision Applications”. In: CoRR abs/1704.04861 (2017).
arXiv: 1704.04861. URL: http://arxiv.org/abs/1704.04861.

[26] Alex Kendall, Matthew Grimes, and Roberto Cipolla. “Convolutional net-
works for real-time 6-DOF camera relocalization”. In: CoRR abs/1505.07427
(2015). arXiv: 1505.07427. URL: http://arxiv.org/abs/1505.07427.

[27] Nikhil Ketkar. “Introduction to pytorch”. In: Deep learning with python. Springer,
2017, pp. 195–208.

[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. “ImageNet Classifi-
cation with Deep Convolutional Neural Networks”. In: Neural Information
Processing Systems 25 (Jan. 2012). DOI: 10.1145/3065386.

[29] Rainer Kümmerle et al. “g 2 o: A general framework for graph optimiza-
tion”. In: 2011 IEEE International Conference on Robotics and Automation. IEEE.
2011, pp. 3607–3613.

[30] Iro Laina et al. “Deeper depth prediction with fully convolutional residual
networks”. In: 2016 Fourth international conference on 3D vision (3DV). IEEE.
2016, pp. 239–248.

[31] Iro Laina et al. “Deeper Depth Prediction with Fully Convolutional Residual
Networks”. In: CoRR abs/1606.00373 (2016). arXiv: 1606.00373. URL: http:
//arxiv.org/abs/1606.00373.

[32] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua. “Epnp: An accu-
rate o (n) solution to the pnp problem”. In: International journal of computer
vision 81.2 (2009), p. 155.

https://github.com/MichaelGrupp/evo
https://doi.org/10.1109/CVPR.2015.7298948
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1505.07427
http://arxiv.org/abs/1505.07427
https://doi.org/10.1145/3065386
https://arxiv.org/abs/1606.00373
http://arxiv.org/abs/1606.00373
http://arxiv.org/abs/1606.00373

50 Bibliography

[33] Anat Levin et al. “Image and depth from a conventional camera with a
coded aperture”. In: ACM SIGGRAPH 2007 papers (2007).

[34] Zhengqi Li and Noah Snavely. “MegaDepth: Learning Single-View Depth
Prediction from Internet Photos”. In: CoRR abs/1804.00607 (2018). arXiv:
1804.00607. URL: http://arxiv.org/abs/1804.00607.

[35] Fayao Liu et al. “Learning depth from single monocular images using deep
convolutional neural fields”. In: IEEE transactions on pattern analysis and ma-
chine intelligence 38.10 (2015), pp. 2024–2039.

[36] Jonathan Long, Evan Shelhamer, and Trevor Darrell. “Fully Convolutional
Networks for Semantic Segmentation”. In: CoRR abs/1411.4038 (2014). arXiv:
1411.4038. URL: http://arxiv.org/abs/1411.4038.

[37] David G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints. 2003.
[38] Iaroslav Melekhov, Juho Kannala, and Esa Rahtu. “Relative Camera Pose

Estimation Using Convolutional Neural Networks”. In: CoRR abs/1702.01381
(2017). arXiv: 1702.01381. URL: http://arxiv.org/abs/1702.01381.

[39] Anastasiya Mishchuk et al. “Working hard to know your neighbor’s mar-
gins: Local descriptor learning loss”. In: CoRR abs/1705.10872 (2017). arXiv:
1705.10872. URL: http://arxiv.org/abs/1705.10872.

[40] Raúl Mur-Artal and Juan D Tardós. “Fast relocalisation and loop closing in
keyframe-based SLAM”. In: 2014 IEEE International Conference on Robotics
and Automation (ICRA). IEEE. 2014, pp. 846–853.

[41] Raul Mur-Artal and Juan D. Tardós. “ORB-SLAM2: an Open-Source SLAM
System for Monocular, Stereo and RGB-D Cameras”. In: CoRR abs/1610.06475
(2016). arXiv: 1610.06475. URL: http://arxiv.org/abs/1610.06475.

[42] Raúl Mur-Artal, J. M. M. Montiel, and Juan D. Tardós. “ORB-SLAM: A
Versatile and Accurate Monocular SLAM System”. In: IEEE Transactions on
Robotics 31.5 (2015), pp. 1147–1163. DOI: 10.1109/TRO.2015.2463671.

[43] BA Olshausen and David Field. “Natural image statistics and efficient cod-
ing”. In: Network (Bristol, England) 7 (June 1996), pp. 333–9. DOI: 10.1088/
0954-898X/7/2/014.

[44] Art Owen. “A robust hybrid of lasso and ridge regression”. In: Contemp.
Math. 443 (Jan. 2007). DOI: 10.1090/conm/443/08555.

[45] GF Page. “MULTIPLE VIEW GEOMETRY IN COMPUTER VISION, by Richard
Hartley and Andrew Zisserman, CUP, Cambridge, UK, 2003, vi+ 560 pp.,

https://arxiv.org/abs/1804.00607
http://arxiv.org/abs/1804.00607
https://arxiv.org/abs/1411.4038
http://arxiv.org/abs/1411.4038
https://arxiv.org/abs/1702.01381
http://arxiv.org/abs/1702.01381
https://arxiv.org/abs/1705.10872
http://arxiv.org/abs/1705.10872
https://arxiv.org/abs/1610.06475
http://arxiv.org/abs/1610.06475
https://doi.org/10.1109/TRO.2015.2463671
https://doi.org/10.1088/0954-898X/7/2/014
https://doi.org/10.1088/0954-898X/7/2/014
https://doi.org/10.1090/conm/443/08555

Bibliography 51

ISBN 0-521-54051-8.(Paperback£ 44.95)”. In: Robotica 23.2 (2005), pp. 271–
271.

[46] David Prokhorov et al. “Measuring robustness of Visual SLAM”. In: 2019
16th International Conference on Machine Vision Applications (MVA). IEEE. 2019,
pp. 1–6.

[47] Tong Qin, Peiliang Li, and Shaojie Shen. “VINS-Mono: A Robust and Ver-
satile Monocular Visual-Inertial State Estimator”. In: CoRR abs/1708.03852
(2017). arXiv: 1708.03852. URL: http://arxiv.org/abs/1708.03852.

[48] Edward Rosten, Reid Porter, and Tom Drummond. “Faster and Better: A
Machine Learning Approach to Corner Detection”. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence 32.1 (2010), pp. 105–119. DOI: 10.
1109/TPAMI.2008.275.

[49] Ethan Rublee et al. “ORB: An efficient alternative to SIFT or SURF”. In: 2011
International Conference on Computer Vision. 2011, pp. 2564–2571. DOI: 10.
1109/ICCV.2011.6126544.

[50] Ethan Rublee et al. “ORB: An efficient alternative to SIFT or SURF”. In: 2011
International Conference on Computer Vision. 2011, pp. 2564–2571. DOI: 10.
1109/ICCV.2011.6126544.

[51] Ethan Rublee et al. “ORB: An efficient alternative to SIFT or SURF”. In: 2011
International Conference on Computer Vision. 2011, pp. 2564–2571. DOI: 10.
1109/ICCV.2011.6126544.

[52] Paul-Edouard Sarlin et al. “From coarse to fine: Robust hierarchical local-
ization at large scale”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2019, pp. 12716–12725.

[53] Ashutosh Saxena, Sung H. Chung, and A. Ng. “3-D Depth Reconstruction
from a Single Still Image”. In: International Journal of Computer Vision 76
(2007), pp. 53–69.

[54] Jianbo Shi and Tomasi. “Good features to track”. In: 1994 Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition. 1994, pp. 593–600. DOI:
10.1109/CVPR.1994.323794.

[55] Xuesong Shi et al. “Are We Ready for Service Robots? The OpenLORIS-
Scene Datasets for Lifelong SLAM”. In: CoRR abs/1911.05603 (2019). arXiv:
1911.05603. URL: http://arxiv.org/abs/1911.05603.

https://arxiv.org/abs/1708.03852
http://arxiv.org/abs/1708.03852
https://doi.org/10.1109/TPAMI.2008.275
https://doi.org/10.1109/TPAMI.2008.275
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/CVPR.1994.323794
https://arxiv.org/abs/1911.05603
http://arxiv.org/abs/1911.05603

52 Bibliography

[56] Hauke Strasdat, José MM Montiel, and Andrew J Davison. “Visual SLAM:
why filter?” In: Image and Vision Computing 30.2 (2012), pp. 65–77.

[57] Wei Tan et al. “Robust monocular SLAM in dynamic environments”. In:
2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR).
IEEE. 2013, pp. 209–218.

[58] Jiexiong Tang, John Folkesson, and Patric Jensfelt. “Geometric Correspon-
dence Network for Camera Motion Estimation”. In: IEEE Robotics and Au-
tomation Letters PP (Jan. 2018), pp. 1–1. DOI: 10.1109/LRA.2018.2794624.

[59] Keisuke Tateno et al. “CNN-SLAM: Real-time dense monocular SLAM with
learned depth prediction”. In: CoRR abs/1704.03489 (2017). arXiv: 1704 .
03489. URL: http://arxiv.org/abs/1704.03489.

[60] Bill Triggs et al. “Bundle adjustment—a modern synthesis”. In: International
workshop on vision algorithms. Springer. 1999, pp. 298–372.

[61] Han Vanholder. Efficient inference with tensorrt. 2016.
[62] Sen Wang et al. “DeepVO: Towards End-to-End Visual Odometry with Deep

Recurrent Convolutional Neural Networks”. In: CoRR abs/1709.08429 (2017).
arXiv: 1709.08429. URL: http://arxiv.org/abs/1709.08429.

[63] Wiki. URL: http://wiki.ros.org/kinect_calibration/technical.
[64] Sergey Zagoruyko and Nikos Komodakis. “Learning to Compare Image

Patches via Convolutional Neural Networks”. In: CoRR abs/1504.03641 (2015).
arXiv: 1504.03641. URL: http://arxiv.org/abs/1504.03641.

https://doi.org/10.1109/LRA.2018.2794624
https://arxiv.org/abs/1704.03489
https://arxiv.org/abs/1704.03489
http://arxiv.org/abs/1704.03489
https://arxiv.org/abs/1709.08429
http://arxiv.org/abs/1709.08429
http://wiki.ros.org/kinect_calibration/technical
https://arxiv.org/abs/1504.03641
http://arxiv.org/abs/1504.03641

	Acknowledgements
	Abstract
	Introduction
	Overview and Motivation
	Justification
	Goal of the Thesis
	The SLAM problem
	State of the Art
	Feature Extraction
	Depth Inference

	Theoretical Knowledge
	ORB-SLAM
	Tracking
	Local Mapping
	Loop Closing

	Hf-Net
	Architecture

	Depth Network
	ROS: Robot Operating System

	Methodology
	Camera configurations
	RGB-D Camera
	Monocular camera
	Stereo camera

	SLAM Parameters
	System Overview

	Experiments
	Estimating the depth maps
	Extracting key-features
	SLAM results
	Trajectory comparison
	Monocular Vs. RGB-D
	RGB-D Vs. Stereo

	Conclusions
	Bibliography

