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En ella estaba la vida, y la vida era la luz de los hombres. La luz brilla en las
tinieblas, y las tinieblas no la recibieron. Apareció un hombre enviado por
Dios, que se llamaba Juan. Vino como testigo, para dar testimonio de la luz,
para que todos creyeran por medio de él. Él no era la luz, sino el testigo de
la luz. La Palabra era la luz verdadera que, al venir a este mundo, ilumina a
todo hombre.

El evangelio según San Juan, I, 4-9.

Y al hablar de fenómenos, me refiero particularmente al de la luz, que, en
lugar de mostrarlo, o de demostrarlo, nos oculta el semblante de las cosas
gracias al maquillaje de los siete colores del espectro que se resumen en uno
y nos dejan en blanco. Esto es: ignorantes solemnes de todo lo que ocurre
en el mundo...

Juan José Arreola, Inventario, p. 64.
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Abstract

Since the discovery of black phosphorene (a monolayer of bulk black phospho-
rus), new 2D allotropes of phosphorus have been predicted and studied due to
their interesting properties. Some possible applications of these phosphorene
structures could be in photovoltaic cells, gas sensors and rechargeable batter-
ies. In particular, blue phosphorene is characterized by having a hexagonal
structure, and thus, an isotropic optical response on the plane of the layer
structure. The electronic band structure of blue phosphorene was obtained
by using Density Functional Theory within the Generalized Gradient Ap-
proximation. It is observed, based on its band structure, that blue phospho-
rene shows a semiconducting nature, with an indirect band gap. The energy
corrections to the bands were calculated in a specific set of k points within
the irreducible Brillouin zone by employing the GW approximation and the
complete quasiparticle band structure was determined by using maximally-
localized Wannier functions. The comparison between Generalized Gradi-
ent Approximation and GW calculated band structures shows that there
are significant differences, which demonstrates the importance of performing
quasiparticle corrections. In general, neither the calculation of the optical
spectrum in the independent-particle approach nor the calculation using the
the quasiparticle energies obtained in a GW correction match correctly the
experimental data of the absorption of the materials. Therefore, the opti-
cal response including excitonic effects (electron-hole interactions) has to be
calculated. For that, the excitonic spectrum is obtained and compared with
both the independent-particle and GW optical response.
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Chapter 1

Introduction

In this first chapter, I will present, as naturally as I can, a logical succession of
the ideas that I consider important to know in order to comprehend the course
of some electronic structure methods, that is, the description of electrons in
matter. An accurate description permits us to calculate the fundamental
properties of atomic crystals, as in the case of this project, where the main
goal was to obtain the optical properties of blue phosphorene using first
principles methods. Then, a review of the most important parts of the works
where graphene was first studied is presented. It was the first two dimensional
material and it is important to know the interesting properties that graphene
posses. Finally, a complete description of blue phosphore, the object of study
in this work, is also made.

Some prior results are directly related to the development of this work and
are fundamental to understand the methodological proceedings and the im-
portance of conducting this specific investigation; some others are indirectly
related, as one can see after a first reading.

Many works have been omitted due to the introductory character of this
part of the text. The goal behind the analysis of the more important ones
is to understand, to clarify and to present a chronological review of why and
how scientific thought has been conducted and has arrived to the present
paradigms in electronic structure calculations, as could be the Density Func-
tional Theory.

In some parts, I present exact quotes from the original works, mainly in

10



Optical properties of blue phosphorene considering many-body effects

order to appreciate the thoughts of the author as written in his text, and to
present the ideas in a clearer way than I would be able to do myself; in other
cases, the comments of some authors about previous works of others are also
highlighted.

1.1 The beginnings of quantum theory

For the sake of completeness, a revision of some of the fundamental works
on quantum mechanics are presented. Even though the language used to
present the results may seem obscure, in some sense (which can also be due
to the translation of many of them, originally written in German or French).
Here, I will present the main ideas behind those works.

In 1900, Max Planck published a summary [1] that was intended to explain
the recent law of distribution of radiation obtained by him. He said that,
based on the laws of electromagnetic radiation, thermodynamics and prob-
ability calculus, he had been able to come to such deduction. However, he
did not want to pay attention to the hard evidence but to clearly explain
the main results. He presented the new constant of nature called h, whose
value was obtained by Planck that year and was equal to 6.55×10−27, among
other physical constants such as Avogrado’s constant. He explained that a
chosen energy element ε for a given resonator, vibrating inside a diathermic
medium with reflecting walls, must be proportional to its frequency ν and to
constant h, now called Planck’s constant. He said that, as he had mentioned
in other occasions, “the energy of the radiation is completely ‘randomly’ dis-
tributed over the various partial vibrations present in the radiation”. With
this, quantum theory could be considered to have originated, being h the
fundamental quantum of action.

A few years later, Einstein [2] described, in terms of energy quanta, the
photoelectric effect, which had been identified years before: “The usual idea
that the energy of light is continuously distributed over the space through
which it travels meets with especially great difficulties when one tries to ex-
plain photo-electric phenomena...”. He referred to other phenomena and to
the importance of having a new description of light: “...it seems to me that
the observations on “black-body radiation”, photoluminescence, the produc-
tion of cathode rays by ultraviolet light and other phenomena involving the
emission or conversion of light can be better understood on the assumption

Chapter 1 Juan José Nava Soto 11



Optical properties of blue phosphorene considering many-body effects

that the energy of light is distributed discontinuously in space. According
to the assumption considered here, when a light ray starting from a point is
propagated, the energy is not continuously distributed over an ever increasing
volume, but it consists of a finite number of energy quanta, localised in space,
which move without being divided and which can be absorbed or emitted only
as a whole...”.

The next important work is the one published by Niels Bohr in 1913, which
is divided into three different parts. In the first of them [3], Bohr elucidated
about the way of describing the atoms, i.e., to propose an atomic model
which could describe matter at its best. At that time, the atomic models
of Rutherford and Thomson were under investigation; both were incorrect
considering the theoretical point of view (in the case of Rutherford’s model)
and the experimental (in the case of Thomson’s model). Bohr identified
the inadequacy of using the classical theory of electrodynamics to describe
an atom and used the previous results obtained by Planck and Einstein to
propose a series of different stable states. The electrons in these states can be
described using ordinary mechanics, but the passing between different states
is related to the emission of a light quantum of homogeneous radiation whose
energy is described with Planck’s theory; this is how he was able to explain
the line spectra of the elements.

In the second part [4], guided by the hypothesis of the quantization of the
electrons angular momentum (in multiples of h/2π or ~) of the atom and the
relations obtained in the first part, he tried to indicate the different electron
configurations that would be expected for different atoms. Even though some
assumptions are fundamentally incorrect, he was able to adequately explain
some properties of the first four elements of the periodic table.

Lastly, in the third part [5], Bohr treated the chemical bond considering
atoms composed of a nucleus and surrounding electrons that interact to form
a molecule. The concluding remarks are very important. The author took
the idea proposed by Planck of the monochromatic vibrators, responsible
of the black-body radiation. He assumed that they were the atoms which
were responsible for the discrete transitions, due to the quantization of the
different energy levels of the electrons.

A few years later, in his PhD thesis, L. De Broglie [6] derives his famous
relation between the movement of a particle at a specific velocity and the
wavelength related to it. This derivation is not as straightforward as one

12 Juan José Nava Soto Chapter 1
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would think at first; he uses lots of previous works from the field of mechanics
and relativity, as well as recent quantum papers. This subtle idea of an
intrinsic wave nature present in matter is one of the principles on which
quantum mechanics is built.

The works presented by Heisenberg [7], by Born and Jordan [8], and by the
three of them together [9] deal with the theoretical treatment of quantum
mechanics as an analogous to the classical mechanics formulation. The ne-
cessity of expressing observable quantities as matrices arose in Heisenberg’s
paper, and the commutation relation for position and momentum appeared
to be different from zero (equal to i~), referred to as the “stronger quantum
condition”, in the second work. In the third one, the matrix formulation
was taken a step forward and applied to different cases in order to demon-
strate that the approach is correct; they used an approach closely related
to the prevailing classical theory, finding adequate expressions and a direct
connection.

The final important work to be reviewed here is that of Schrödinger’s [10].
Following De Broglie’s proposition, the author stated that, maybe, “the ma-
terial points consist, or are nothing but, wave-systems”. He was doubtful
about this idea, because “it does not offer an explanation of why such wave-
systems seem to be realized in nature”. However, Schrödinger’s intuition
took him to an analogy between the ideas applied to geometrical optics and
how these were unable to explain some physical optics phenomena, such
as diffraction; the uncertainty of the applicability of ordinary mechanics to
“micro-mechanical wave-phenomena” came later. Then, he presented his
famous wave-equation and applied it to solve the problem of the hydrogen
atom, getting a set of discrete energy levels, in the same way as Bohr had
obtained with his model. What is more satisfying is that, according to the
author, this undulatory mechanics description is in complete agreement with
that of matrices proposed by Born and others. At the end, Schrödinger tried
to relate the physical significance of the wavefunction (the solution of the
wave-equation) to the intensity of light emitted by atoms. This formal ondu-
latory description of matter paved the wave for the application of quantum
mechanics to many other physical phenomena.

Finally, I would like to mention that other very important works, carried out
at the same time as the previous ones, were those that dealt exclusively with
electrons. For example, the way of describing their behavior under different

Chapter 1 Juan José Nava Soto 13
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conditions, as the Fermi-Dirac statistical distribution, and the explanation
of the electron’s spin and its direct consequences, were also fundamental to
the development of a complete quantum theory.

1.2 Solid-state physics considerations

The ideas developed in quantum theory, in particular those described in
section 1.1, were groundbreaking. This is considered as a clear example
of a scientific revolution by Thomas Kuhn [11]. It is important to present
how these new fundamental ideas were applied to what is called solid-state
physics, whose main interest is the understanding of the behavior of electrons
in crystalline materials.

Felix Bloch [12], was interested in explaining how electrons move trough a
crystal lattice. He assumed that the interactions of such electrons with the
crystal were due to an effective periodic potential with the periodicity of the
crystal lattice. Therefore, the problem is thus simplified to how an indepen-
dent electron obeys the one electron Schrödinger’s equation inside a crystal.
Bloch concluded that one could study the whole crystalline lattice by just
considereding one unit cell, due to its symmetry and periodic boundary con-
ditions. What is now called Bloch’s theorem is a mathematical description
that helps us to express the solution of this Schrödinger’s equation (the elec-
tron’s wavefunction) as a plane wave modulated by a periodic function with
lattice periodicity. Nonetheless, it does not give us an explicit form of the
solution, but confine the possibilities to those of this kind, which is very
helpful. The description of the reciprocal lattice appears naturally in this
formulation as “Fourier dual” of the crystal or direct lattice.

A. H. Wilson described the consequences of the Bloch theorem [13], obtained
and described by Brillouin [14] and by Kronig and Penney [15] on the problem
of one electron moving in a one-dimensional periodic potential as: “it appears
that the energy levels break up into a number of bands of allowed energies,
separated by bands of disallowed energies”, and that is what is now called
the band theory. He explained the resulting energy bands in solids using the
nearly free electron model and the tightly bound electron model. He tried
to relate the characteristics of the electronic structure of a given element to
its nature as a metal or as a semiconductor and in the last pages, he already
uses the categories of semiconductor and insulator as we use them today.

14 Juan José Nava Soto Chapter 1
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It is important to mention that the problem of the electrons moving in crys-
tals is of course a many-body problem. P.A.M Dirac, in 1929 [16], took into
account the interaction among electrons through the exchange interaction,
which arises owing to the indistinguishability of electrons from another; two
electrons can exchange places, and the possibility of this gives rise to the
conclusion that it is a pure quantum mechanical effect. He considered the
permutation of electrons as an operator, acting on the wavefunction in a
many-body problem. A conclusion can be directly drawn: the exchange is
an essential degeneracy between all the similar particles, because the Hamil-
tonian is invariant under these permutations.

In the same sense, another important effect in matter is the correlation be-
tween electrons. In some way, we could describe it as the influence felt by
one electron due to the presence of the other ones. Wigner studied the corre-
lation of electrons in sodium in 1934 [17]; he considered a new term, due to
correlation of electrons with antiparallel spin, in the Hartree-Fock formula-
tion (reviewed to some extent in the next subsection). In this way, he made a
generalization of the method, allowing for these interactions, and considering
a correction in the total energy, called “correlation energy” by him. Wigner
was able, within some approximations, to calculate the energy of the ground
state, to determine the lattice parameter and the binding energy, and to com-
pare these two quantities with values obtained experimentally in that time.
Lastly, he concluded by saying that the correlation energy is important in
matters of paramagnetism, ferromagnetism and lattice energy. Even though
there were many approximations in the calculation, the inclusion of correla-
tion and the consideration of the important role that it plays in determining
the crystal structure are of great recognition.

1.3 Efforts made in computing electronic

structure

After having revised the key ideas that were used to formulate a theoretical
description of electrons in matter, now it is important to review some of the
first works in which the calculation of the electronic structure was the main
objective. The fundamental basis for understanding materials and phenom-
ena ultimately rests upon understanding electronic structure; the modern ab
initio calculations were developed trying to reach this objective too.

Chapter 1 Juan José Nava Soto 15
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1.3.1 Early attempts

L.H. Thomas [18] had the intention of giving a method to determine approx-
imated electric fields inside a heavy atom. He considered (1) that relativis-
tic corrections can be neglected, (2) that the effective potential felt by an
electron only depends on the distance from the nucleus, (3) that there is a
uniform distribution of electrons in phase space (two per unit cell), and (4)
that the potential is determined by the nuclear charge and the distribution
of electrons. The most remarkable contribution is that he was able to relate
the momentum of the electrons to the charge density; so, in principle, it is
possible to obtain one from the other.

Unfortunately, Fermi’s related work [19] was not available to compare the
expressions obtained by both, but, due to that almost the same methodology
was derived independently and presented the same year, the complete model
is known nowadays as the Thomas-Fermi model.

In 1930, at a time when the quantum theoretical methods were not practi-
cable when dealing with systems having many electrons, Dirac focused on
the Thomas-Fermi model. It was simpler though rougher one. He pointed
out that such a method is provided by “Thomas’ atomic model, in which the
electrons are regarded as forming a perfect gas satisfying the Fermi statis-
tics and occupying the region of phase space of lowest energy. This region
of phase space is assumed to be saturated, with two electrons with opposite
spins in each volume (2πh)3, and the remainder is assumed to be empty”. He
derived a new equation with an added term as a correction for the density
on account for the exchange effects [20]. Due to this, the complete model is
referred by some authors as the Thomas-Fermi-Dirac model.

In the work of Dirac, in which he treated exchange as a permutation ([16]),
Hartree’s self-consistent field method is mentioned as a breakthrough in con-
sidering orbitals of electrons not as an individual orbit, but as a quantum
state, represented by a three dimensional wavefunction. He also said that the
method, apparently, does not have a theoretical justification, but it matches
experiments very well. In the first of four parts [21], Hartree explained that
“Schrodinger’s suggestion concerning the interpretation of ψ,” the wavefunc-
tion, “affords a hope that it may be possible to consider the internal field of
the atom as being due to the distribution of charge given by the characteristic
functions for the core electrons; we may, in fact, attempt to find a field of

16 Juan José Nava Soto Chapter 1
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force such that the total distribution of charge, given by the characteristic
functions in this field, reproduces the field”. The general idea is to determine
the wavefunction for a “non-Coulombic central field of force” whose potential
is given.

In order to eliminate several constants from the equations, Hartree introduced
atomic units for the first time [21]; which roughly speaking, constitute a new
set of units that uses characteristic quantities of the hydrogen atom. For
example, the length unit is defined as the Bohr radius of the hydrogen atom,
the charge unit is the electron charge, and the mass unit is the electron
mass. He defined an energy unit, which is twice the ionisation energy of
the hydrogen atom, that is now known as 1 Hartree or 1 Ha. He used the
classical ~ as unit of action, and also defined a unit for time.

In the second part [22], the self-consistent method is described as follows:

“Consider an atom such as the neutral atom of an alkali metal, consisting of
closed nk groups and a series electron. The potential v for the series electron
is that of the field of the centrally symmetrical distribution of charge of the
closed groups; but just as in the theory of the hydrogen atom the field acting
on the electron is that of the nucleus only, not that of the nucleus and its
own distributed charge, so here the field for a core electron is the total field of
the nucleus and all the closed groups, less its own contribution to that field.
Now except for an electron with l = 0, its own contribution to the field is
not centrally symmetrical, so that it would seem that the assumption of a
central field is not applicable to it... It is just here that we meet the most
serious doubts concerning the replacement of the actual many-body problem
by a one-body problem with a central field for each electron, even as a first
approximation”.

Evidently, a field felt by an specific electron is that of the nucleus, plus that of
the closed group of electrons surrounding that nucleus, without considering
the field contribution of this specific electron.

The last remark is referred to the plausible doubt of applying this method to
non centrally symmetrical distribution of charge, that is, in cases where the
orbital angular momentum number (l) of the electrons is different from zero

“For numerical work we have to start from a field which will be called the
’initial field’; for each nk corresponding to a group of core electrons the field
is corrected, as explained above, for the fact that the distributed charge of an

Chapter 1 Juan José Nava Soto 17
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electron must be omitted in finding the field acting on it, and for the field
so corrected the part of the solution of the wave equation depending on r is
found by the methods given in I; then from the solutions for all groups of core
electrons a distribution of charge can be calculated (if the nk groups are all
complete, this distribution of charge will be centrally symmetrical), and then
the field of the nucleus and this distribution of charge can be found; this may
be called the ‘final field’”.

This process is shown in diagrammatic form in Figure 1.1

Initial Field

Initial Field corrected for each core electron

Solutions of Wave equation for core electrons

Distribution of charge

Final Field

Figure 1.1: Flow chart for applying the self-consistent field method. Taken
from the second paper of Hartree’s work “The wave Mechanics of an Atom
with a Non-Coulombic Central Field” [22].

If the final field is the same as the initial field, it is called a “self-consistent
field”, and is characteristic of the particular atom in particular state. Hartree
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calculated the ground state energy of helium, rubidium, sodium and chlorine
using his method, giving results in accordance with experiments.

Two years after, the work of Dirac ([20]) was presented, which helps us to
put in context the previous work: “The method of the self-consistent field
has recently been established on a very much better theoretical basis in a pa-
per by Fock,” ([23]) “which shows how one can take into account the exchange
phenomena between the equivalent electrons. Fock shows that if one takes the
best approximation to the many-dimensional wave function that is of the form
of a product of a number of three-dimensional wave functions, one for each
electron, then the three-dimensional wave functions will satisfy just Hartree’s
equations. In this way a theoretical justification for Hartree’s method is ob-
tained. The exclusion principle of Pauli, however, requires that the wave
function representing a number of electrons shall always be antisymmetrical.
One would therefore expect to get a better approximation if one first made
the product of a number of three-dimensional wave functions antisymmet-
rical, by applying permutations and taking a linear combination, and then
made it approach as closely as possible to the accurate many-dimensional
wave function. The three-dimensional wave functions will then, as found by
Fock, satisfy equations somewhat different from Hartree’s, containing extra
terms which may be considered as representing the exchange phenomena”.
Dirac contribution in this case was to obtain Fock’s equivalent equations
but, in considering the spin of the electron, adding in the derivation a new
variable in the description of the wavefunction of the problem, generalizing
the theoretical description.

1.3.2 The foundations of Density Functional Theory

Years passed, and it was not until 1964 that the work of Hohenberg and
Kohn [24] was published. This is considered as one of the fundamental works
that gave birth to the modern Density Functional Theory (DFT). 1

In Hohenberg-Kohn (HK) work [24], the introduction asserts in giving some
context:

“The point of view has been, in general, to regard the electrons as similar to a
collection of noninteracting particles with the important additional concept of

1Readers are also referred to Appendix A for the mathematical description of a func-
tional and to identify the notation used here and in the next chapter.
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collective excitations. On the other hand, there has been in existence since the
1920’s a different approach, represented by the Thomas-Fermi method and its
refinements, in which the electronic density n(r) plays a central role...”

The two HK theorems are the most important part of the paper. They
considered that the ground state was not degenerate and in their own words,
the first one is presented [24] and proven by reductio ad absurdum:

“We denote the electronic density in the ground state by n(r) ≡ (Φψ∗(r)ψ(r)Φ),
which is clearly a functional of v(r)”.

Conversely, they stated that

“...v(r) is (to within a constant) a unique functional of n(r); since, in turn,
v(r) fixes H we see that the full many-particle ground state is a unique func-
tional of n(r)”. Where H is the hamiltonian of the system.

The second one is presented as the variational principle as [24]:

“If F [n] were a known and sufficiently simple functional of n, the problem of
determining the ground-state energy and density in a given external potential
would be rather easy since it requires merely the minimization of a functional
of the three-dimensional density function. The major part of the complexities
of the many electron problems are associated with the determination of the
universal functional F [n]”.

Given this theoretical description, not really simple but presented in a very
condensed manner, the next step is to find a way to determine this universal
functional that, thanks to the demonstrations, does exist. The description
of electronic structure limits to minimizing this functional.

The other DFT foundational work deals with this last consideration and was
presented by Kohn and Sham in 1965 [25]. They began saying that:

“... we use the formalism of Hohenberg and Kohn to carry this approach
further and we obtain a set of self-consistent equations which include, in an
approximate way, exchange and correlation effects...” They require only a
knowledge of the true chemical potential, µh(n), of a homogeneous interact-
ing electron gas as a function of the density n. “We derive two alternative
sets of equations... which are analogous, respectively, to the conventional
Hartree and Hartree-Fock equations, and, although they also include correla-
tion effects, they are no more difficult to solve”.
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Moreover, they showed that the description of the ground-state of a system
can also be given in considering finite temperature. The expressions for the
low-temperature specific heat, for metals and alloys, and the spin suscepti-
bility were obtained.

The last note is essential [25]:

“We should like to point out that it is possible, formally, to replace the many-
electron problem by an exactly equivalent set of self-consistent one-electron
equations.”

They stated that it is accomplished quite simply by using the expression
for the universal functional on the density in the variational principle. The
universal functional is given as F [n] ≡ Ts[n]+Exc[n], where Ts[n] is the kinetic
energy of a system of non-interacting electrons with density n(r) and Exc[n]
is the exchange and correlation energy functional of a interacting system with
density n(r).

Then the main task is to know the explicit form of the exchange-correlation
energy functional, which includes the many-body effects. Knowing this, one
can obtain the total energy for the ground state.

A formulation of the Kohn-Sham equations is given in the next chapter (sec-
tion 2.2), using rigorous mathematical expressions and a diagram to clarify
the process. Evidently, with this brief description and presentation of some
extracts of original works, one can get an idea of what a powerful tools these
equations are to obtain electronic structure.

1.4 Two dimensional materials

Two dimensional or 2D materials are one of the main active areas of research
in material science. They could be described as materials that have few
atomic layers where the in-plane interatomic interactions is much stronger
than those that take place in the perpendicular direction. The main reason
for the great interest in this kind of materials is that their properties are
completely different from the bulk structure, giving place to an interesting
object of study that can be useful in the development of new technologies
[26].

The beginning of 2D materials can be traced to the work directed by K.S.
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Novoselov, A.K. Geim and colaborators in 2004 [27]. They synthesized
graphene successfully for the first time and analyzed its properties. In this
work, graphene was first described as “monocrystallyne graphitic films of a
few atoms thick but nonetheless stable under ambient conditions”. They also
called it “...a naturally occurring two-dimensional (2D) material referred to
as few-layer graphene”. They explained that “Graphene is the name given
to a single layer of carbon atoms densely packed into a benzene-ring struc-
ture”.The graphene layers were obtained using mechanical exfoliation or re-
peated peeling of graphite.

Novoselov et al. reported the observation of electric-field effect in few layers
graphene. They obtained the plots for the behavior of resistivity, conduc-
tivity and Hall coefficient as a function of gate voltage. In particular, they
obtained high carrier mobilities. They concluded that graphene may be the
best possible metal for metallic transistor applications as well as in ballistic
transport. They finished by saying that “... nontransistor applications of
this atomically thin material ultimately may prove the most exciting”.

A year after, the same group studied some other 2D materials [28]. Using
mechanical cleavage, they synthesized single layers of boron nitride, graphite
and transition metal dichalcogenides, which were stable under ambient con-
ditions and posses high crystal quality and continuity on a macroscopic scale.
In some sense, the research on 2D materials beyond graphene was initiated
then.

Some description regarding the methods is important to understand the diffi-
cult task that it was to characterize 2D materials experimentally. Novoselov
et al. listed some features of the cleavage technique [28]:

“1. Monolayers are in a great minority among accompanying thicker flakes.”

“2. Unlike nanotubes, 2D crystals have no clear signatures in transmission
electron microscopy.”

“3. Monolayers are completely transparent to visible light and cannot be seen
in an optical microscope on most substrates (e.g., on glass or metals). AFM
is currently the only method that allows definitive identification of single-
layer crystals, but it has a very low throughput (especially for the case of the
high-resolution imaging required), and in practice it would be impossible to
find cleaved 2D crystallites by scanning surfaces at random.”
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“4. It was not obvious that isolated atomic planes could survive without their
parent crystals.”

The last important work to be reviewed in the topic is that presented by
the research group in the same year. There, the linear dispersion relation
(energy as a function of the wavevector) for electrons and holes in graphene
is proved experimentally [29] and, when compared with previous theoretical
results ([30]), the inferred electronic spectrum it is well matched, showing,
at the Brillouin zone boundary, the shape of two cones (a valence cone and a
conduction one) that touch each other at their tips, which means that, this
material has a zero band gap.

This important result implies that the rest mass of the electrons is zero, and
that is the reason why one refers to this kind of electrons as massless fermions
or Dirac fermions, because it is necessary to use the Dirac equation for mass-
less relativistic fermions instead of that of Schrödinger for calculations. How-
ever, the cyclotron effective mass (the mass that would be measured if one
performs a cyclotron resonance frequency experiment of the material [31]) is
not zero and, in measuring this quantity, they obtained that the velocity at
which the charge carriers move in graphene is approximately 1/300 times the
velocity of light in vacuum.

The measured quantum Hall effect in graphene was also unusual. This effect
can be defined as a quantization of the Hall resistance in a two-dimensional
electron system subject to a strong magnetic field. In the case of graphene,
the quantization of the conductivity do not occur at integer values but at
half-integers. On the contrary, for two-layered graphene the quantization
returns to the expected integer changes. The qualitative transition between
graphene and its two-layer counterpart is a consequence of the nature of
fermions in graphene, which are described as massless Dirac particles.

All of this, in some sense, explains why graphene is such an interesting mate-
rial to study, why the research related to 2D materials dramatically increased
in the years after its discovery [26], and why Geim and Novoselov won the
Nobel prize in Physics in 2010.

Evidently, many new proposals for stable 2D materials have been made, and
a lot of studies have been conducted to characterize them; some examples
could be the transition metal dichalcogenides [32] and boron nitride [33],
and others were predicted just a few years ago, as black phosphorene [34].
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The possible applications of these materials are varied, depending on their
specific properties. Some of them have been proposed for chemical sensing
[35], as saturable absorbers in laser technology [36], for fabricating photo-
voltaic cells [37], for quantum information devices [38], among other possible
applications. Their potential usage also depends on the characterization and
fabrication techniques, that is why many new developments have been pro-
posed in those areas, trying to reduce the costs of synthesizing them, and
making it competitive for the industry to produce them in mass.

1.5 Blue phosphorene

Phosphorus presents many allotropes, that have been studied for more than a
century. Some of them could be the black, red, white and purple phosphorus
[39, 40]. The color of the allotrope relates directly with its fundamental
energy band gap value since it could be characterized by the way it absorbs
light.

A few years ago, it was predicted that thin black phosphorus layers were sta-
ble in environmental temperature and due to the similarity with graphene it
was called phosphorene. This allotrope presents a non-planar structure [41]
and, being a semiconductor, posses interesting electronical properties, as a
high carrier mobility [42]. Now, it has received the name of black phospho-
rene, because many new 2D phosphorus allotropes have been predicted and,
as in the case of bulk ones, characterized by the way they absorb light.

The polymorphism that some elements present remains as a interesting topic.
Crystalline structures are modified when the temperature or the pressure of
the environment change but the specific reason for a particular atomic ar-
rangement is still under debate [43]. In the case of phosphorus, very recently
it was demonstrated that the black phosphorene structure could be modi-
fied, giving place to a more symmetrical hexagonal structure (translocating
some phosphorus atoms) that was named blue phosphorene [41]. It was also
demonstrated that this structure was practically as stable as the black phos-
phorene one [44]. This hexagonal structure is such as that of graphene but
the difference being that the blue phosphorene monolayer is non-planar [45].
Among many other differences that one should expect to observe between
the two crystalline structures is that black phosphorene is a direct band gap
semiconductor while blue phosphorene is an indirect band gap semiconductor
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[46].

1.5.1 Structure

The hexagonal structure is what differentiates blue phosphorene among the
others phosphorenes. In Figure 1.2, there is a comparison between a synthe-
sized monolayer of blue phosphorene (deposited over a gold substrate) and
obtained with the Scanning Tunneling Microscope (STM) and the theoretical
prediction obtained using a simulation.

(a) (b)

Figure 1.2: (a) Theoretical array of atoms predicted by a simulation scheme
developed by [47]. (b) STM image obtained by the same authors.

As it was mention previously, the blue phosphorene structure resembles that
of graphene, but with the difference that the atoms in the unit cell are not on
the same atomic plane. With this information, it was determined that blue
phosphorene belongs to the point group of symmetry (P3̄m1, #164) [48]. In
Figure 1.3, some schematics diagrams of the structure are shown.

For describing an hexagonal crystal we use the set of primitive lattice vectors,
whose magnitude is proportional to the lattice constants a and c

a1 = (1, 0, 0) a, (1.1)

a2 =

(
1

2
,

√
3

2
, 0

)
a, (1.2)

a3 = (0, 0, 1) c. (1.3)
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a1

a2

d

Figure 1.3: Side and upper view of the crystalline structure of blue phos-
phorene. d represents the distance between the atomic planes of the atoms
inside the unit cell, a1 and a2 are the primitive vectors and the shaded area
represents the unit cell. Taken from [49].

The primitive lattice vectors set for the reciprocal space can be written as

b1 =

(
1,− 1√

3
, 0

)
2π

a
, (1.4)

b2 =

(
0,

2√
3
, 0

)
2π

a
, (1.5)

b3 = (0, 0, 1)
2π

c
. (1.6)

Using the latter, it is possible to construct the first Brillouin zone, which is
just the hexagonal lattice in real space but rotated sixty degrees, as shown
in Figure 1.4. The importance of the reciprocal space comes from the fact
that all possible eigenstates are specified by k within any primitive cell of
the periodic lattice in this space. However, the first Brillouin zone is the cell
of choice in which the optical physical process such as the excitations are
referred to.
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Figure 1.4: Unit cell of the reciprocal lattice or first Brillouin zone of an
hexagonal crystal. The orange points marked with letters denote the high
symmetry points. Taken from [49].

From equation (1.6) it can be deduced that, when having a two-dimensional
system, the magnitude of the vector orthogonal to the plane tends to zero,
due to that the value of the lattice constant c tends to infinity. For that,
excitations are just represented in a plane in the first Brillouin zone, as can
be seen in Figure 1.5. This plane includes the whole set of excitations for
which the component of the wave vector k in the direction perpendicular to
the plane are zero.

1.5.2 Synthesis

Zhang et al. [47] and Xu et al. [50] achieved to obtain blue phosphorene
monolayers using the molecular beam epitaxy technique over a gold sub-
strate on the crystallographic plane (111). They used black phosphorus as
precursor. The sample was characterized using X ray photoelectron spec-
troscopy and STM. Some of the images obtained are shown in Figure 1.6.
Following a similar methodology, it was also possible to obtain the same
blue phosphorene monolayer over gold substrate (111) functionalized with
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K

G

M

Figure 1.5: First Brillouin zone for a 2D material with an hexagonal structure
as the blue phosphorene. The high-symmetry points are denoted with letters.
The small triangle represents the irreducible Brillouin zone [49].

tellurium[51].

(a) (b) (c)

Figure 1.6: Images obtained with the STM of the blue phosphorene mono-
layer reported by Zhang et al. [47]. Panel (a) shows a large scale STM image
of the single layer on Au(111) (Vtip = 0.9 V, 100 × 100 nm2). Panel (b)
shows a close-up STM image (Vtip = 0.9 V, 50× 50 nm2). Panel (c) shows a
high resolution STM image (Vtip = 1.0 V, 8 × 8 nm2). The unit cell of blue
phosphorene is also highlighted.

1.5.3 Applications

Many works have been presented related to the change in the structure of blue
phosphorene varying the number of stacked monolayers or varying the angle
of one of those monolayers with respect to the others [46]. Some of the results
are that the absorption of the bilayer structure is modified in the sense that
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visible light could be absorbed, as a photovoltaic cell or a photodiode does.
Also, in heterostructures composed of blue phosphorene and transition metal
dichalchogenides the conversion efficiency of visible light is increased with
respect to the pure blue phosphorene structure [52]. There is also a proposal
of blue phosphorene and magnesium hydroxide as a photocatalyst to separate
water molecules [53]. In the electronic devices area, blue phosphorene was
proposed as a possible high mobility 2D material when mixed with fluoride
[54], having Dirac cones in the band structure. Also, it could be used as a
gate in a two dimensional field effect transistors [55], as a photodetector [56],
working as Schottky barriers, mixed with black phosphorene [57] or even as
a atmospheric gases sensor [58]. In the area of rechargable lithium batteries,
blue phosphorene could be used to fabricate anodes [59], making the charge
capacity bigger compared to graphite, which is the material used in the
industry nowadays to produce this kind of batteries. Finally, an interesting
property that could be useful in engineering electronic devices and thermal
expansion materials, is that the thermic coefficient in this material in the
temperature range of 0 to 350 K is negative, just as in graphene [60].

1.6 Scope of the thesis

In this project, a study of the electronic properties and linear optical re-
sponse of blue phophorene will be performed. It is expected to obtain the
band structure calculations and the linear optical susceptibilities spectra or
dielectric function, using first principles methods. Approximations that do
and do not consider the effects of many-body interactions are employed. Con-
sidering the effects of many-body interactions in the calculations would lead
to a prediction of below-band-gap absorption, that could not been explained
without that consideration.

1.6.1 Goals

• To perform a study of the linear optical properties of blue phosphorene
that includes many-body interactions effects.

• To generate knowledge to the field of study of optical properties of 2D
materials.
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1.6.2 Objectives

• To do an exhaustive revision of the state of art of the optical response
studies of blue phosphorene, that include the many-body interaction
and excitonic effects.

• To perform first principles calculations, based on DFT, to optimize
energetically the blue phosphorene crystalline structure.

• To calculate the band structure of blue phosphorene, within the DFT
formalism, and including the energy corrections trough the GW ap-
proximation methodology.

• To obtain the linear optical response of blue phosphorene using the
DFT and the Bethe-Salpeter equation formalism.

• To compare and analyse the general results of the study with those
that have been already published, with an emphasis on the effects of
the many-body interactions.
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Chapter 2

Theoretical framework

In this chapter, some theoretical aspects, necessary to comprehend the method-
ology and the physics of the calculations, are developed. The fundamental
mathematical expressions for the physical description of the phenomena are
presented.

2.1 Atomic-system hamiltonian

The quantum mechanical, time-independent, description of a system com-
posed of nuclei and electrons that interact with each other can be represented,
in the non relativistic limit, by the hamiltonian

H = Te + TI + Vee + VII + VeI , (2.1)

where Te (TI) is the electrons (ions) kinetic energy, Vee is the interaction
potential among electrons, VII is the interaction potential among ions and
VeI is the potential due to electron-ion interaction [61].

In general, equation (2.1) has to consider many-body effects, making it dif-
ficult to solve. One of the first approximations that can be done is that
of considering the ions kinetic energy term as very close to zero, because
the kinetic energy term goes as 1/M , being M the mass of the nuclei. Due
to the considerable difference between electron and nuclei mass, in a given
external perturbation, the electrons will react almost instantaneously, con-
sidering their low inertia compared to the nuclei. This is the well-known
Born-Oppenheimer approximation.

31



Optical properties of blue phosphorene considering many-body effects

On the other hand, the interaction potential of the nuclei with one another
contribute to the total energy but is not necessary to describe the electrons
dynamical behavior so one can get rid of this term too. Now, the hamiltonian
of the system can be written as

H = Te + Vee + VeI . (2.2)

To see the complexity of this formulation one has to explicitly write the terms
in equation (2.2)

H(r1, · · · , rN) = − ~
2me

N∑
i=1

∇2
i +

1

2

∑
i 6=j

e2

|ri − rj|
+

N∑
i=1

Vext(ri), (2.3)

where ~ is Planck’s constant, me the electron mass, e the electron charge and
Vext is equal to VeI , the potential acting on the electron due to the nuclei.
In (2.3), ri represents electrons coordinates, and the sum runs over the total
electrons in the system N .

2.2 The Kohn-Sham equations

2.2.1 Theoretical description

The fundamental tenet of density functional theory is that any property of
a system of many interacting particles can be viewed as a functional of the
ground state density n0(r); that is, one scalar function of position n0(r), in
principle, determines all the information in the many-body wavefunctions for
the ground state and all excited states. The attraction of density functional
theory is evident by the fact that one equation for the density is remark-
ably simpler than the full many-body Schrodinger equation that involves 3N
degrees of freedom for N electrons [61].

As was seen before, the Kohn-Sham approach replaces the original many-
body problem using an independent-particle approximation. First, one “pre-
dict” the ground-state density of the many-body interacting system. This
density can be used on an independent system with no interaction present.
Then, using this new description, one can have a set of independent-particle
equations that can be solved by numerical means. The resulting density can
then be extrapolated to the original many-body system, so one can have an
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actual answer for the problem of determining the properties of that system.
As mentioned by the authors of the method in 1965 [25], it is necessary to in-
clude the effects of the many-body interactions using the exchange-correlation
functional that has to be accurate in order to give good results.

The variational principle relates the energy of the system with the density
in a functional equation. The total energy E[n(r)] is composed of different
terms, since

E[n(r)] = Ts[n(r)] + EXC [n(r)] + EH [n(r)] + Vext[n(r)], (2.4)

where Ts[n(r)] is the kinetic energy of a system of non-interacting electrons
with density n(r), EXC [n(r)] is the exchange and correlation energy func-
tional of a interacting system with density n(r), EH [n(r)] is the Hartree
energy term and Vext[n(r)] is the potential energy term. In order to describe
the independent-particle equations in the Kohn-Sham approach one has to
construct the hamiltonian of the system using potentials, which are related
to the energy terms by a functional derivative with respect to the density in
each case. The hamiltonian in the Kohn-Sham approach is

HKS = Te + VH + VXC + Vext, (2.5)

where VH is Hartree’s potential and VXC is the exchange-correlation po-
tential. The many-body kinetic energy (a functional of the density also,
as pointed out by Hohenberg and Kohn) contribution is contained in the
exchange-correlation energy (potential) term, so the term Te is referred to
the independent-particle kinetic energy.

Knowing the terms explicitly for the hamiltonian, it is possible to obtain the
wavefunction of the different states φi(ri) from the set of equations

HKSφi = εiφi, (2.6)

where εi is the Kohn-Sham eigenvalue of the energy for the i-th state.

These equations have to be solved self-consistently: the wavefunctions ob-
tained by solving the equations are used to calculate the density, which has
to be the same as the one that was used for constructing the potential in
the hamiltonian of the system. Following this algorithm, for calculating the
ground-state density, one only has to find the density that minimizes the
energy functional (second HK theorem). In Figure 2.1 a flow chart is shown
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Is this density a self-consistent 

solution? 
No

Determine the ground state total energy.

   Yes

Construct the atomic potencial, given the atomic positions and the atomic number. 

Obtain the initial electronic density from an 

initial wavefunction.

With this quantity, obtain the effective potential: the sum of the atomic 

potencial, exchange-correlation and Hartree’s one.

Solve Kohn-Sham equations.

Obtain the new electronic density from the resulting 

wavefunction. 

Figure 2.1: Flow chart describing the procedure for reaching self-consistency
for ground-state density and energy calculations within the Kohn-Sham ap-
proach [49].
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with the procedure necessary in order to obtain the ground-state energy of
the system in this approach.

Firstly, the ionic potential is built from the atomic positions in the system.
Then, an initial density is obtained, given an initial wavefunction that is used
for constructing the effective potential. Next, the Kohn-Sham equations can
be solved, from where a new wavefunction will be obtained as a solution and,
consequently, a new density. At this point one has to answer the question:
is this a self-consistent solution? If the answer is yes, then the density can
be used to generate the same effective potential constructed at the beginning
of the calculation. If the answer is no, the process is repeated until self-
consistency is reached: a new effective potential is built with the aid of the
new calculated density and the Kohn-Sham equations are once again formed
to be solved. Finally one can proceed to calculate the total energy of the
system, that is, the ground-state energy.

2.2.2 Modern first principles calculations

Two difficulties must be overcome to reach a solution in DFT calculations
that use the Kohn-Sham approach: a wave function must be calculated for
each of the infinite number of electrons in the system, and, since each elec-
tronic wave function extends over the entire solid, the basis set required to
expand each wave function is infinite. Both problems can be surmounted by
performing calculations on periodic systems and applying Bloch’s theorem
to the electronic wavefunctions [62]. As was mentioned, one can describe
these wavefunctions as a product of a periodic function fi(r), with lattice
periodicity and a plane wave

φi(r) = eik·rfi(r), (2.7)

where k is a wave vector. This periodic function fi(r) can be expanded using
a discrete set of plane waves using the reciprocal lattice vectors G as basis
wave vectors as

fi(r) =
∑
G

ci,GeiG·r. (2.8)

Reciprocal lattice vectors are defined as G · R = 2πm, being R a lattice
vector and m an integer number. Then, using equations (2.7) and (2.8), the
wavefunctions can be written as

φi(r) =
∑
G

ci,k+Gei(k+G)·r, (2.9)
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which means that every electronic wavefunction can be written as a sum of
plane waves with wave vectors equals to (k + G). So, using the plane wave
expansion for the electronic wavefunctions (equation (2.9)), the Kohn-Sham
equations take the form [62]

∑
G′

[
~2

2m
|k + G|2δGG′+Vext(G−G′) + VH(G−G′)

+ VXC(G−G′)

]
ci,k+G′ = εici,k+G, (2.10)

where the potentials are given by their Fourier transforms. In order to solve
the set of equations one has to define two quantities: the number of k points
and the cut-off energy for the plane waves basis set

Ecut−off =
~2

2m
|k + G|2. (2.11)

Bloch’s theorem changes the problem of calculating an infinite number of
electronic wave functions to one of calculating a finite number of electronic
wave functions at an infinite number of k points. The occupied states at
each k point contribute to the electronic potential in the bulk solid so that,
in principle, an infinite number of calculations are needed to compute this
potential. However, the electronic wave functions at k points that are very
close together will be almost identical. Hence it is possible to represent the
electronic wave functions over a region of k space by the wave functions at a
single k point. In this case the electronic states at only a finite number of k
points are required to calculate the electronic potential and hence determine
the total energy of the solid. The magnitude of any error in the total energy
due to inadequacy of the k-point sampling can always be reduced by using
a denser set of k points. The computed total energy will converge as the
density of k points increases, and the error due to the k-point sampling then
approaches zero.

Also, Bloch’s theorem states that the electronic wave functions at each k
point can be expanded in terms of a discrete plane wave basis set. In princi-
ple, an infinite plane wave basis set is required to expand the electronic wave
functions. However, the coefficients ci,k+G for the plane waves with small
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kinetic energy are usually more important than those with large kinetic en-
ergy. Thus the plane wave basis set can be truncated to include only plane
waves that have kinetic energies values lower than some particular cut-off
energy. Introduction of an energy cut-off to the discrete plane-wave basis
set produces a finite basis set. The truncation of the plane wave basis set
at a finite cut-off energy will lead to an error in the computed total energy.
However, it is possible to reduce the magnitude of the error by increasing the
value of the cut-off energy until the calculated total energy converges.

2.3 Approximating the exchange-correlation

functional for DFT calculations

The key problem of electronic structure is that electrons form an interacting
many-body system. From this, the correlation and exchange energy terms
are crucial in defining a theory for the description of the electrons in matter
in the independent-particle approach.

The role of correlation among electrons stands out as defining the great ques-
tions and challenges of the field of electronic structure today; the difference
between the many-body energy of an electronic system and the energy of the
system calculated in the Hartree-Fock approximation is called the correlation
energy [62]. In the case of the exchange energy, one can think the problem
by considering electrons with two possible spin states. The charge distribu-
tion depends on whether the spins are parallel or antiparallel since the Pauli
exclusion principle excludes two electrons of the same spin from being at the
same place at the same time. Thus the electrostatic energy of a system will
depend on the relative orientation of the spins: the difference in energy de-
fines the exchange energy [63]. If the spin were not present, the problem will
remain since, as obtained by Dirac, the exchange term is the contribution
to the energy arising from the antisymmetry of the wavefunction under per-
mutation of electrons, indistinguishable between them [64]. This exchange
energy can be large in comparison with others energetic contributions to the
electronic description, so, in including this term, the theory should arrive to
more precise results.

The exchange-correlation functional EXC[n], as was mentioned before, is vi-
tal in Kohn-Sham approximation. Even though this functional can be very
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complex, it has been possible to approximate it in a simple manner [61]. The
two principal approximations used in the theory are presented here.

2.3.1 Local Density Approximation

Kohn and Sham, in their original work [25], pointed out that solids can often
be considered as close to the limit of the homogeneous electron gas. In that
limit, the exchange and correlation are local in character, and they proposed
making a Local Density Approximation (LDA) of this energy functional, in
which the exchange-correlation energy density at each point is assumed to
be the same as in a homogeneous electron gas with that density, that is

EXC [n(r)] =

∫
n(r)εxc(n(r)) dr3. (2.12)

The only information needed is the exchange correlation energy as a function
of the density (εxc(n(r))) for the system.

The rationale for the LDA is that for typical densities found in solids, the
range of the effects of exchange and correlation is rather short [61]. It is also
important to say that this approximation can be extended, considering in
the description the spin-dependent electron density, giving place to what is
known as the Local Spin Density Approximation or LSDA.

2.3.2 Generalized Gradient Approximation

The actual success of the LDA has led to the development of the Generalized
Gradient Approximation or GGA with marked improvement over many cases.
This approximation had made possible the development of DFT calculations
in chemistry due to its great accuracy: there are more rapidly varying density
regions in atoms than in molecules or solids.

The key idea is to use a functional of the magnitude of the gradient of the
density (|∇n|) with the position as well as the value of n at each point. The
exchange-correlation functional in a generalized form can be written as

EXC [n(r)] =

∫
n(r)εxc(n(r), |∇n|, ...) dr3, (2.13)

where the points denote that the exchange correlation energy could have a
dependency on higher order terms on the gradient of the density.
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Another advantage of this approximation is that the resulting binding energy
is corrected with respect to the LDA, which has an overbinding in some cases,
thus improving the agreement with experiment.

2.4 Pseudopotentials

Conduction electron wavefunctions are usually smoothly varying in the re-
gion between the ion cores, but have a complicated nodal structure in the
region close to the cores. Outside the core the potential energy that acts
on the conduction electrons is relatively weak: it is only the Coulomb po-
tential of the charged ion core and is reduced markedly by the electrostatic
screening of other conduction electrons. In this outer region the conduction
electron wavefunctions are smoothly varying. This argument leads naturally
to the idea that we might replace the actual potential energy (and filled
shells) within core region by an effective potential energy that gives the same
wavefunctions outside the core as are given by the actual ion cores [63].

A pseudopotential, in electronic structure calculations, is that ionic effec-
tive potential that replaces the strong Coulomb potential of the nuclei and
acts on the valence electrons of the atom. The use of pseudopotentials is
a convenient tool to perform electronic structure calculations, since in an
all-electron calculation, an extremely large plane wave basis set, and a vast
amount of computational time would be required to calculate the electronic
wave functions.

The pseudopotential can be generated in an atomic calculation and then be
used to determine properties of the valence electrons in molecules or solids.
Even more, considering that the pseudopotential for a problem is not unique
nor exact, the user, given the case, can choose which one can be more useful
for his own calculation [61].

2.5 The dielectric function

The dielectric and conductivity functions are the most important response
functions in condensed matter physics because they determine the optical
properties of materials, and its electrical conductivity [61].

The dielectric function ε(ω) or electric permittivity of a material describes
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its response to an external perturbation due to an electromagnetic field. It
depends sensitively on the electronic band structure of the crystal and has
a dependency on the frequency ω of the incident field. This quantity has a
complex nature and generally is written as

ε(ω) = ε1(ω) + iε2(ω), (2.14)

where ε1(ω) and ε2(ω) are the real and imaginary parts, respectively, and are
related by the Kramers-Kronig relations [64]. This quantity is not directly
accessible experimentally from optical measurement but it has a direct rela-
tion with the complex index of refraction (which is an accessible function),
given by [63]

n̂(ω) =
√
ε(ω)µ(ω), (2.15)

where µ(ω) is the magnetic permittivity of the medium. For a non magnetic
material, µ(ω) can be considered as unity so the last expression can be written
as

n̂(ω) =
√
ε(ω). (2.16)

In its components, the complex refractive index is expressed as

n̂(ω) = n0(ω) + iκ(ω), (2.17)

where n0(ω) is the ordinary refractive index, defined as the quotient between
the speed of light in vacuum and the speed of the light in the medium of
analysis, and κ(ω) is the extinction coefficient, that is directly related to the
absorption of the incident light. Using equations (2.14), (2.16) and (2.17),
the relation between both the complex electric permittivity, and the complex
refractive index can be given for its constitutive parts

n0(ω) =

√
|ε(ω)|+ ε1(ω)

2
, (2.18)

κ(ω) =

√
|ε(ω)| − ε1(ω)

2
. (2.19)

Classically, material’s polarization varies linearly with the applied electric
field as

P(ω) = ε0χ(ω)E(ω), (2.20)
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where P(ω) is the polarization, ε0 the dielectric permittivity of vacuum, χ(ω)
the electric linear susceptibility of the material and E(ω) is the electric field
oscillating at frequency ω. The dielectric function is directly related to the
electric susceptibility as

χ(ω) = ε(ω)− 1. (2.21)

In terms of the real and imaginary parts of both quantities, the relations are
of the form

ε1(ω) = 1 + Reχ(ω), (2.22)

ε2(ω) = Imχ(ω). (2.23)

The linear susceptibility is a tensor so, in terms of its Cartesian components,
equation (2.20) can be rewritten as

Pi(ω) = ε0χij(ω)Ej(ω). (2.24)

In general, χij is written as χ, referring to one of its components. Polarization
equation (2.24) indicates that the response of a medium to an oscillatory field
in time at a given frequency ω and polarized in j direction, is the electric
polarization of the medium in the direction i and that oscillates at the same
frequency ω.

Quantum mechanically, the problem of dispersion of light by dielectric media
can be thought of that of determining the net effect on the wavefunctions
of the electrons in defined states when an external perturbation is applied
i.e. an external electric field that varies with time [65]. The imaginary part
of the susceptibility, that can be obtained with Fermi’s golden rule, gives
a better physical idea of the absorption of light. This response arises from
the coupling, caused by the electric field, of occupied states with unoccupied
states; the absorption can only occur if the two states differ in energy by ~ω
and the transitions must be between states that have the same wave vector
k [64].

Within first principle calculations, the expression for obtaining linear suscep-
tibility is somewhat different, although the considerations for obtaining are
almost the same, due to the proper quantum character of the formalism. In
the independent-particle approximation, discussed earlier, the expression is

χij(−ω, ω) =
1

Ω

∑
nmk

fnm(k)
rinm(k)rjmn(k)

ωmn(k)− ω
, (2.25)
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where Ω is the unit cell volume, rmn are the matrix elements of the position
operator, k is the wave vector, ωmn are the transition frequencies of the
electrons (ωmn = ωm−ωn), where the subindexes m y n represent conduction
and valence states, respectively; considering also that fnm = fn − fm, being
fn Fermi’s factor (define as fn is equal to one if n is a valence state and fn is
equal to zero if n is a conduction state). This sum runs over all the valence
and conduction states and the total number of wave vectors k in reciprocal
space [66].

2.6 The GW approximation

The actual challenge for electronic structure theory is to provide universal
methods that accurately describe real systems in nature.

Despite the impressive agreement of many DFT calculations for ground state
properties [67], the same calculations often lead to disastrous predictions
for excitations [68]. The fundamental energy band gap is the key issue,
widely used approximate functionals in DFT lead to band gap values that
are significantly lower than experimental values for essentially all materials.
These low band gaps are not intrinsic to the Kohn-Sham approach and are
greatly improved by better treatment of the non-local exchange [61].

In 1965 L. Hedin published his famous work related to the calculation of the
one-particle Green’s function, which gives information of the low-excitation
spectra [69]. The main results are pointed out and listed by the author at
the end of the paper as:

“(1) A set of self-consistent equations for the one electron Green’s function
involving a screened potential.”

These set of self-consistent equations are derived in the paper and are now
known as the Hedin’s equations; they are presented and described in section
2.6.3 of this work.

“(2) A variational formulation for each self-consistent equation.”

The mathematical formulation of every equation is presented in terms of
specific functional operations.

“(3) A specific approximation for the first-order equation”.
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The referred approximation is the well known GW approximation, proposed
by him as a way of representing the self-energy operator up to first order.
This results when the Vertex function is approximated to zeroth-order, in
terms of the screened Coulomb potential, making the self-consistent set of
equations easier to solve. This is described mathematically at the end of
section 2.6.3 of this work.

It is important to mention that this approach is relevant since it gives a
better description of some materials properties compared with that of the
Kohn-Sham approach, though with the necessity of a greater computational
effort to perform the actual calculations.

In the following subsections, the quasiparticle definition is presented first.
Then, the Green’s functions and the self-energy operator are described. After
that, the set of self-consistent equations proposed by Hedin are presented;
the GW approximation is then introduced. Finally, some details about the
algorithms used to calculate the self-energy operator and the GW corrections
are given.

2.6.1 Quasiparticles

A successful approximation for the determination of excited states is based
on the quasiparticle concept. The Coulomb repulsion between electrons leads
to a depletion of negative charge around a given electron and the ensemble of
this electron and its surrounding positive screening charge forms a quasipar-
ticle [70] (see Figure 2.2). One could also think in quasiparticles as collective
excitations present at low energies in the materials [71].

In a solid, a real electron, or bare particle, repels the other electrons via the
Coulomb potential and surrounds itself with a positively charged polarization
cloud. The positive screening charge and the bare electron form a quasipar-
ticle which weakly interacts with other quasiparticles via a screened rather
than the bare Coulomb potential. The quasiparticle lifetime is finite since
quasiparticles are only approximate eigenstates of the N -electron Hamilto-
nian. The residual interaction between the quasiparticles leads to a complex
energy whose imaginary part is inversely proportional to the quasiparticle
life time.
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Ion

Electron

Figure 2.2: Pictorical description of a quasiparticle in a solid. An electron in
a solid interacts with the crystal lattice in such a way that the bare particle is
now surrounded by a cloud of positive charge, represented here with the pink
circle in which the elctron is enclosed. The attraction between the electron
and the ions, due to the electric force, tends to move the ions, towards the
electron, from its equilibrium position (the dashed-line circles). The net
movement of the ions has been exagerated for an easier comprehension.

2.6.2 Propagators and the self-energy operator

The mathematical description of quasiparticles is based on the single-particle
Green function G, whose exact determination requires complete knowledge of
the quasiparticle self-energy Σ. The self-energy is a non-Hermitian, energy-
dependent, and non-local operator that describes exchange and correlation
effects beyond the Hartree approximation. A determination of the self-energy
can only be approximate, and a working scheme for the quantitative calcu-
lation of excitation energies in metals, semiconductors, and insulators is the
so-called dynamically screened interaction or the GW approximation (GWA).
In this approximation, the self-energy Σ is expanded linearly in terms of the
screened interaction W , Σ ≈ GW . An exact determination of the self-energy
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for real systems is not possible, since it contains all the complexities of the
many-body system [70].

The equation that rules the behavior of quasiparticles is, neglecting spin
degrees of freedom [72],[

−1

2
∇2 + VH + Vext

]
Ψi(r) +

∫
Σ(r, r′;Ei)Ψi(r

′)dr′ = EiΨi(r), (2.26)

being Ei and Ψi the quasiparticle energy and wavefunction, respectively.

Quasiparticle properties such as energies, life times, and expectation values
of single-particle operators such as the density and the total energy of a
many-body system are determined by the single-particle Green function G
or single-particle propagator [73]

G(rt, r′t′) = −i 〈N, 0|T [Ψ̂(rt)Ψ̂†(r′t′)] |N, 0〉 , (2.27)

with |N, 0〉 is the ground state of the N -electron Hamiltonian, Ψ̂(rt) =

exp
(
iĤt
)

Ψ̂(r) exp
(
−iĤt

)
is the fermion annihilation operator in the Heisen-

berg representation, Ψ̂†(rt) is the corresponding creation operator, and T is
the time-ordering operator 1. For t > t′(t < t′) G describes the propagation
of a particle (hole) added to the many-body system described by Ĥ, i.e.,
G describes the dynamics of the N → N ± 1 excitations in an N -electron
system. Note that G is a function of only six spatial degrees of freedom and
hence much more manageable than the N -electron wavefunction with 3N
degrees of freedom [73]. The physical interpretation of the Green function is
that for t > t′ it gives the probability amplitude that a particle added at r′t′

will propagate to rt; and for t > t′ it gives the probability amplitude that a
hole created at rt will propagate to r′t′. From the Green function, one can
obtain the following [73, 75]:

1For two operators A(x) and B(y) that depend on spacetime coordinates x and y, on
a fermion system, the time ordering operator is defined as

T [A(x)B(y)] :=

{
A(x)B(y) if τx > τy,

−B(y)A(x) if τx < τy,

where τx and τy denote scalar time-coordinates of the points x and y [74].
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a) the expectation value of any single-particle operator in the ground state,

b) the ground-state energy,

c) and the one-electron excitation spectrum.

Considering a complete set of eigenstates, the quasiparticles energies Ei can
be given by the poles of the Green function [72]

G(r, r′;E) =
∑
i

Ψi(r)Ψ∗i (r
′)

E − Ei
. (2.28)

The excitation energies of the N -electron system can be written as

Ej =

{
EN+1
j − EN

0 if Ej > µ,

EN
0 − EN−1

j if Ej < µ,
(2.29)

where EN
0 is the ground-state energy of the electron system of N electrons, j

labels the excited states and µ is the chemical potential 2 And the excitation
wavefunctions as

Ψj(r) =

{
〈N, 0| ψ̂(r) |N + 1, j〉 if Ej > µ,

〈N − 1, j| ψ̂(r) |N, 0〉 if Ej < µ.
(2.30)

The non-interacting single-particle Green function G0(r, r′;E) describes the
propagation of a particle in a system of N + 1 non-interacting particles for
the case where exchange and correlation effects are neglected

G0(r, r′;E) =
∑
i

φi(r)φ∗i (r
′)

E − εi
, (2.31)

where φi(r) are the complete set of orthonormalized single-particle wave func-
tions and εi the real, independent-particle energies.

2The chemical potential of a particle system is defined as the ratio of the change of
free energy and the change of the particle number. In intrinsic semiconductors, and in the
grand canonical ensemble, the chemical potential µ(N + 1) for the N + 1 particle system
tends to the following values: when T → 0, µ(N+1) tends to the bottom of the conduction
band; wheareas for N →∞, µ(N + 1) tends to the middle of the gap [76].
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The time development of the interacting Green function is determined by
Dyson’s equation

G(r, r′;E) =G0(r, r′;E)

+

∫ ∫
G0(r, r1;E)Σ(r1, r2;E)G(r2, r

′;E)dr1dr2, (2.32)

which can be written as [73]

G−1 = (G0)−1 − Σ. (2.33)

Instead of determining the quasiparticle energies indirectly as poles of the
Green function, note that it is more convenient to obtain the quasiparticles
energies from the quasiparticle equation (2.26).

2.6.3 The Hedin’s equations

The exact self-energy can be obtained from the set of integro-differential
equations known as the Hedin’s equations [69, 70], which are written as3

Σ(1, 2) = i

∫
G(1, 4)W (1+, 3)Γ(4, 2; 3)d(3, 4) (2.34)

W (1, 2) = v(1, 2) +

∫
W (1, 3)P (3, 4)v(4, 2)d(3, 4) (2.35)

P (1, 2) = −i
∫
G(2, 3)G(4, 2)Γ(3, 4; 1)d(3, 4) (2.36)

Γ(1, 2; 3) =δ(1, 2)δ(1, 3)

+

∫
δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ(6, 7; 3)d(4, 5, 6, 7), (2.37)

where 1, 2, etc., indicates a short notation for combined space and time coor-
dinates, 1+ = (r1t1 + η), with η > 0 and infinitesimal, and v(1, 2) represents

3Cf. Appendix A to see the notation used to express the functional derivatives trough-
out the text.
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the bare Coulomb interaction (the Coulomb potential that decays as 1/r).
The screened Coulomb interaction W includes the effects of the screening
of the medium in the interaction between particles, which reduce the total
electric field felt by a charge. The vertex function Γ is given by the variation
of the inverse Green function with respect to a change in the total potential
or, alternatively, by the variation of the self-energy with respect to δV

Γ(1, 2; 3) = −δG
−1(1, 2)

δV (3)
= δ(1, 2)δ(1, 3) +

δΣ(1, 2)

δV (3)
. (2.38)

Considering the application of a small perturbation δVext to the many body
system, the irreducible polarizability P is defined as the change in the density
upon a change in the total potential δV = δVH + δVext,

P (1, 2) =
δn(1)

δV (2)
. (2.39)

From these equations, quasiparticle self-energy can be determined iteratively,
beginning from the determination of the vertex function [70].

The simplest approximation sets the vertex function to unity, and then the
self-energy as the product of the self-consistent single-particle propagator G
and the self-consistent dynamically screened interaction potential W . This is
called the GW approximation. The corresponding expressions thus are [69]

Σ(1, 2) = iG(1, 2)W (1+, 2) (2.40)

W (1, 2) = v(1, 2) +

∫
W (1, 3)P (3, 4)v(4, 2)d(3, 4) (2.41)

P (1, 2) = −iG(1, 2)G(2, 1). (2.42)

In principle, the GWA, for the self-energy, requires a self-consistent deter-
mination of the single-particle propagator G and the screened interaction
potential W . All GWA calculations start from a suitably chosen one-particle
Hamiltonian whose eigenfunctions and eigenvalues are used to construct the
single-particle propagator G, the screened interaction W , and the self-energy
Σ. The independent-particle Hamiltonian of choice is a DFT Hamiltonian.

Dinamic effects in the screening process are important since it introduces
energy-dependet correlation effects. Phenomenologically, quasiparticles drag
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their polarization cloud behind them. The screened interaction W can also
be expressed in terms of the inverse dielectric matrix ε−1. Rather than using
the integral equation, W can be determined as a convolution of the inverse
dielectric matrix with the bare Coulomb interaction potential in real space
[70]

W (r, r′;ω) =

∫
ε−1(r, r′′;ω)v(r′′, r′)dr′′. (2.43)

This convolution can be transformed in reciprocal space as

WG,G′(q;ω) =
4π

|q + G|2
ε−1
G,G′(q;ω), (2.44)

where q represents a vector in the reciprocal space. The irreducible polariz-
ability P determines the dielectric matrix via

ε(r, r′;ω) = δ(r− r′)−
∫
v(r, r′′)P (r′′, r′;ω)dr′′. (2.45)

It is important to note that to describe screening in solids in the random
phase approximation (RPA), one uses equation (2.42). In the independent-
particle approach, the interacting polarizability is replaced by the independent-
particle polarizability P0, where the propagators are now the single-particle
non-interacting Green’s function G0, evaluated at the corresponding coor-
dinates. Within the RPA, the dielectric matrix in reciprocal space can be
written as

εG,G′(q;ω) = δG,G′ − 4π

|q + G|2
PG,G′(q;ω) (2.46)

and, the polarizability P0 is given as

P0;G,G′(q;ω) =
2

V

occ + unocc∑
vc

BZ∑
q

∑
G,G′

M cv
G (k,q)[M cv

G′(k,q)]∗

×
[

1

ω + εck−q − εvk − iη
− 1

ω − εck−q + εvk − iη

]
(2.47)

where M cv
G (k,q) represents a matrix element in reciprocal space defined as

M cv
G (k,q) =

∫
φ∗ck−q(r)e−i(q+G)·rφvk−q =

∑
G′

t∗ck−q(G′ −G)tvk(G′), (2.48)
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c and v stand for a conduction or valence state, respectively, and we have use
the definition of a Bloch state φi of equation (2.9), where tmk represents the
coefficients of the terms in the expansion. The last summation in equation
(2.47), in principle, has to be calculated for an infinite set of reciprocal lattice
vectors G but an energy cut-off can be defined in the same sense as in a Kohn-
Sham calculation. The sum over the band indexes cv should extend up to
infinity although in practice only a finite number of occupied and unoccupied
states can be used. Also, for determining the frequency dependence of the
dielectric response, one can approximate the dielectric matrix using plasmon-
pole models and thus reducing the computational effort needed [70].

2.6.4 The calculation of the self-energy

In real calculations, the self-energy operator is splitted into two different
parts to perform the complete calculation:

Σ = ΣX + ΣC(E). (2.49)

These two parts are referred as the bare exchange contribution ΣX and the
energy dependent correlation contribution ΣC(E) and can be calculated in-
dependently [70].

The expression for the exchange part is

〈m,k|ΣX |l,k〉 = −4π

V

occ∑
v

BZ∑
q

∑
G

M vl
G(k,q)[M vm

G (k,q)]∗

|q + G|2
. (2.50)

The last summation in equation (2.50), in principle, has to be calculated for
an infinite set of reciprocal lattice vectors G but an energy cut-off can be
defined in the same sense as in a Kohn-Sham calculation. Finally, as one
can see, the first summation runs only over the occupied states (occ) so this
contribution to the self-energy is not so demanding.

The expression for the correlation contribution is [70]

〈m,k|ΣC(E) |l,k〉 =
1

V

occ + unocc∑
v

BZ∑
q

∑
G1G2

M vl
G(k,q)[M vm

G (k,q)]∗ṽG1G2(q)Jnk−qG1G2
(q, ω), (2.51)
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where ṽG1G2(q) is the modified Coulomb interaction, which includes local
field effects and Jnk−qG1G2

(q, ω) is a frequency convolution integral, in which
the dynamical effects of the correlation are contained. A different energy
cut-off could be defined in order to evaluate the double summation over the
reciprocal lattice vectors G1 and G2. It is important to note that, unlike
the exchange contribution to the self-energy, the sum over the band index
v should extend up to infinity although in practice only a finite number of
states can be used.

Once the self-energy is obtained, the many-body corrections to the single-
particle Hamiltonian, that is, the quasiparticle energies, are determined by
using the expression [72]

Ei = εKS
i + Zi

〈
φKS
i

∣∣Σ(εKS
i )− V KS

XC

∣∣φKS
i

〉
, (2.52)

with

Z−1
i = 1−

〈
φKS
i

∣∣ dΣ

dε
εKS
i

∣∣φKS
i

〉
, (2.53)

where the superscript KS refers to the Kohn-Sham eigenenergies, eigenfunc-
tions and exchange-correlation potential. Note that in equation (2.52) the
quasiparticle energies are determined by the Kohn-Sham states. Since the
Kohn-Sham equation has the form of one-particle Schrödinger’s equation
with an effective potential, then one could think of using their eigenstates
and eigenvalues for a system where a particle is added or removed. Although,
as it is well known, DFT or Kohn-Sham approach understimate the band gap
value, the Kohn-Sham eigenfunctions and eigenvalues have been used as ap-
proximation, having good results [72].

It is important to say that one, in general, only compute the matrix elements
of the self-energy operator for some specific states, in order to keep compu-
tational efficiency. Then, is useful to use the Wannier interpolation method
to obtain the complete band structure (see Appendix B).

2.6.5 The G0W0 or single shot GW approximation

Most current GWA calculations do not attempt a numerically expensive,
self-consistent calculation of G and W . One refer to this kind of approach as
the G0W0 or single shot GW approximation, in which a non self-consistent
calculation is performed. The single-particle non-interacting propagator G0
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is constructed with the aid of Kohn-Sham orbitals and energies. Then the
RPA polarizability is used to obtain the dielectric function and calculate the
screened Coulomb interaction W0. The self-energy operator is constructed
using both G0 and W0 and the corrections to the energies are obtained.

In general, compared with DFT computational implementations, GW cal-
culations have slower convergence with respect to the basis size, are more
sensitive to the pseudopotential used and have a scaling of the computational
running time with system size (as represented by its number of electrons N)
as N4. Concerning the memory and number of CPUs they scale as N3 or
N2 lnN [77].

Calculated quasiparticle corrections, using the G0W0 approximation, to a
DFT band structure agree in general well with experiment [68]. Since self-
consistent GWA calculations are computationally very demanding and there
exists an increasing discrepancy between theory and experiment upon full
self-consistency (here, vertex corrections must be included), inclusion of the
self-consistency is not justified due to the increase in computational cost and
the loss of predictive power [70]. However, some possible implementations
to perform the GWA in current calculations are shown. In Figure 2.3 the
procedure to obtain the quasiparticle corrections is shown for a G0W0 cal-
culation. In Figure 2.4 the procedure to obtain the quasiparticle corrections
is shown for a GW0 calculation, in which only the propagator G is updated
with the quasiparticle corrections of a previous iteration and this is done self-
consistently. In Figure 2.5 a complete self-consistent procedure to obtain the
quasiparticle corrections is shown; both the propagator G and the screened
potential W are updated in every iteration. The self-consistent condition in
the last two methods is that the propagator which was constructed using
the quasiparticle energies of a previous step, could be constructed with the
quasiparticle energies obtained in the present step.

2.7 The Bethe-Salpeter equation

In the case of optical spectra, using the GW approximation without including
electron-hole interactions, the redshift band gap problem in a DFT calcula-
tion, becomes a blueshift problem. The corrected energies used to calculate
the optical response predict that absorption in the material will exist at
higher energies that it is in reality. This is not due to a failure of the GW
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Perform a typical DFT ground-state calculation to obtain the 

eigenvalues and the eigenfunctions. 

Construct the propagator G0.

Construct the RPA polarizability P0.

Obtain the inverse matrix  ε-1.

Calculate the screened potential W0.

Construct the self-energy operator.

Determine the quasiparticles corrections to the 

eigenstates and energies.

Figure 2.3: Procedure to obtain the quasiparticle corrections for a G0W0

calculation.

approach. However, one considers the addition of a hole with respect to the
ground state and not, as in the case of absorption, the addition of a hole
and then the addition of an electron in the presence of that hole. These
effects have been well known for some time, being described by J. Frenkel as
excitations waves [78] and developed using the band structure picture by G.
Wannier [79].

The Bethe-Salpeter equation (BSE) was derived in 1951 to calculate the
ground state of the deuteron [80]. The used methodology was proposed by
the authors to ”deal only with two Fermi-Dirac particles interacting with
each other by means of an arbitrary (electrodynamic or mesonic) interaction
in the absence of any external forces, particles, or quanta.”. The complete
derivation is very general cause it is included in the relativity framework,
however the authors pointed out that in the nonrelativistic limit and for
the case of small coupling constant for the interaction their formalism leads
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Perform a typical DFT ground-state calculation to obtain the 

eigenvalues and the eigenfunctions. 

Construct the propagator G0.

Construct the RPA polarizability P0.

Obtain the inverse matrix  ε-1.

Calculate the screened potential W0.

Construct the self-energy operator.

Determine the quasiparticles corrections to the 

eigenstates and energies.

Construct a new propagator G.

Figure 2.4: Procedure to obtain the quasiparticle corrections for a GW0 cal-
culation; only the propagator G is updated with the quasiparticle corrections
of the previous iteration and this is done self-consistently. The dashed line
emphasizes that just for the first iteration the propagator G0 is required.

exactly to the ordinary nonrelativistic Schrödinger equation for a bound state
for two particles.

The BSE is actually found via Green’s-function theory [72]. It requires the
correct calculation of the quasielectron and the quasihole and contains an
interaction term that mixes the formerly independent transitions. The inclu-
sion of the electron-hole interaction by solving the Bethe-Salpeter equation
leads to much better overall agreement of the calculated optical response
with experiment, predicting correctly the below-band-gap absortion of semi-
conductors.
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Perform a typical DFT ground-state calculation to obtain the 

eigenvalues and the eigenfunctions. 

Construct the propagator G0.

Construct the RPA polarizability P0

(Construct the new RPA polarizability P).

Obtain the inverse matrix  ε-1.

Calculate the screened potential W0

(Calculate the new screened potential W).

Construct the self-energy operator.

Determine the quasiparticles corrections to the 

eigenstates and energies.

Construct a new propagator G.

Figure 2.5: Procedure to obtain the quasiparticle corrections for a self-
consistent GW calculation; both the propagator G and the screened potential
W are updated with the quasiparticle corrections of the previous iteration.
The dashed line emphasizes that just for the first iteration the propagator
G0 is required.

2.7.1 Excitons

Reflectance and absorption spectra often show non zero values for photon
energies below the energy band gap, where we might expect the crystal to
be transparent. This below-band-gap absorption results from the creation of
a bound electron-hole pair. An electron and a hole may be bound together
by their attractive Coulomb interaction, just as an electron is bound to a
proton to form a neutral hydrogen atom. The bound electron-hole pair is a
quasiparticle called an exciton. An exciton can be formed in every insulating
crystal and move trough it transporting energy; but do not transport charge
because it is electrically neutral [63]. A free electron and hole are created
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Optical properties of blue phosphorene considering many-body effects

whenever a photon with energy greater than the energy gap value is absorbed
in a crystal. In the formation of excitons, the energy states are lowered with
respect to the band gap due to the binding energy of the exciton (Figure
2.6).

Conduction band continuum

Valence band continuum

0 

E
g

E
g 

- E
ex

 
} Excitons levels } E

ex

Figure 2.6: Energy levels of an exciton created in a direct process. Eg cor-
responds to the energy band gap. The binding energy of the exciton is Eex,
referred to a free electron and hole. Hence, the lowest energy absorption line
of the crystal at absolute zero is Eg − Eex.

2.7.2 The Bethe-Salpeter equation

The Bethe-Salpeter approach to the calculation of two-particle excited states
is a straightforward extension of the GW approach for the calculation of one-
particle excited states and it leads to an effective two-particle Hamiltonian
[72].

The BSE can be written in the form [81]

L(12; 1′2′) =L0(12; 1′2′)

+

∫
d(3456)L0(14; 1′3′)K(35; 46)L(62; 52′), (2.54)

where L(12; 1′2′) is the electron-hole correlation function and K(35; 46) is
the electron-hole interaction kernel.

L0(12; 1′2′) = G(1, 2′)G(2, 1′) (2.55)
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corresponds to free electron-hole pairs with no interaction. L has a time
dependency, contained in the set of variables denoted with numbers, but a
Fourier transform can be performed in order to express it in the frequency
domain; L0 can be written as

L0(12, 1′2′;ω) = i
∑
v,c

[
ψc(x1)ψ∗v(x

′
1)ψv(x2)ψ∗c (x

′
2)

ω − (Ec − Ev)

− ψv(x1)ψ∗c (x
′
1)ψc(x2)ψ∗v(x

′
2)

ω + (Ec − Ev)

]
, (2.56)

where v runs over the occupied hole states and c over the empty electron
states. The electron-hole correlation function can also be written in similar
form to this latter equation [81]

L(12, 1′2′;ω) = i
∑
S

[
χS(x1,x

′
1)χ∗S(x

′
2,x

′
2)

ω − ΩS

− χS(x2,x
′
2)χ∗S(x

′
1,x1)

ω − ΩS

]
, (2.57)

where χS is the electron-hole amplitude corresponding to excitations energies
ΩS, given by

χS(x,x′) = −〈N, 0|ψ†(x′)ψ(x) |N,S〉 (2.58)

and S refers to the correlated electron-hole excitations of the system. Trans-
forming all continuous position variables into the basis given by the single-
particle wave functions of the electron and hole states, the electron-hole am-
plitude can be expressed in the form

χS(x,x′) =
occ∑
v

empty∑
c

(
ASvcψc(x)ψ∗v(x

′
) +BS

vcψv(x)ψ∗c (x
′
)
)
. (2.59)

In equation (2.59), the sums only run over occupied (v) and empty states
(c), respectively.

Using equation (2.59) and substituing equations (2.56) and (2.57) into the
BSE (2.54), the following coupled equations for ASvc and BS

vc are found

(Ec −Ev)ASvc +
∑
v′c′

KAA
vc,v′c′(ΩS)ASv′c′ +

∑
v′c′

KAB
vc,v′c′(ΩS)BS

v′c′ = ΩSA
S
vc, (2.60)
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∑
v′c′

KBA
vc,v′c′(ΩS)ASv′c′ + (Ec−Ev)BS

vc +
∑
v′c′

KBB
vc,v′c′(ΩS)BS

v′c′ = ΩSB
S
vc. (2.61)

where Kab
vc,v′c′ are interaction matrix elements, and a and b can be A or B.

It has been shown that the off-diagonal components given by KAB and KBA

are small with negligible contribution to the excitation energies [81]. Hence,
setting KBA = KAB = 0 (2.60) and (2.61) are decoupled into two eigenvalue
equations for ASvc and BS

vc, yielding exactly the same excitations. However,
the solutions for B give excitation energies with negative sign. The eigenvalue
equation for ASvc with positive energies are given by

(Ec − Ev)ASvc +
∑
v′c′

KAA
vc,v′c′(ΩS)ASv′c′ = ΩSA

S
vc, (2.62)

which is equivalent to expanding the excited states in electron-hole pair con-
figurations as

|N,S〉 =
hole∑
v

elec∑
c

ASvcâ
†
v b̂
†
c |N, 0〉 =

hole∑
v

elec∑
c

ASvc |vc〉 , (2.63)

where â†v and b̂†c are the hole and electron creation operators, respectively.
The expansion of the excited states given in equation 2.63 is possible due to
the consideration of non diagonal terms of the electron-hole kernel KBA and
KAB equal to zero, which is called the Tamm-Dancoff approximation.

Now, is necessary to focus on the kernel K. The matrix elements of the
electron-hole interaction kernel are given by

KAA
vc,v′c′(ΩS) = i

∫
d(3456)ψv(x4)ψ∗c (x3)K(35; 46; ΩS)ψ∗v′(x5)ψc′(x6), (2.64)

with a similar expression for KBB. The electron-hole interaction kernel is
given by the functional derivative

K(35; 46) =
δ [v(3)δ(3, 4) + Σ(3, 4)]

δG(6, 5)
. (2.65)

In order to be consistent with the quasiparticle calculation, the GWA is
employed for the self-energy operator. Ignoring the derivative of W with
respect to G one obtains

K(35; 46) = −iδ(3, 4)δ(5−, 6)v(3, 6) + iδ(3, 6)δ(4, 5)W (3+, 4) (2.66)
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=: Kx(35; 46) +Kd(35; 46). (2.67)

whereKx is the exchange term, which results from the Coulomb potential and
it is responsible, for instance, of the splitting between spin excitations, and
in turn this would be reflected on the excitation spectrum. Kd is the kernel
contribution that results from the screened-exchange self-energy. It is a direct
interaction term that describes the attractive nature of the electron-hole
interaction and thus the formation of bound electron-hole states or excitons
[81]. The frequency dependency of the kernel is given in the direct term
trough the screened Coulomb interaction W .

The matrix elements of the interaction kernel are given by [81]

〈vc|KAA,d(ΩS) |v′c′〉 =

∫
dxdx′ψ∗c (x)ψc′(x)ψv(x

′
)ψ∗v′(x

′
)

× 1

2π

∫
dωe−iω0+W (r, r′, ω)

×

[
1

ΩS − ω − (EQP
c′ − E

QP
v ) + i0+

+
1

ΩS + ω − (EQP
c − EQP

v ) + i0+

]
(2.68)

and

〈vc|KAA,x(ΩS) |v′c′〉 =

∫
dxdx′ψ∗c (x)ψv(x)v(r, r′)ψ∗c′(x

′
)ψ∗v′(x

′
). (2.69)

The matrix elements consist of six-dimensional real-space integrals involving
the quasiparticle electron and hole eigenenergies and eigenfunctions. In the
case of equation (2.68) it is also required a frequency integration. For this,
the screened Coulomb interaction can be expanded in a plasmon-pole model
as

W (r, r′, ω) =
∑
l

Wl(r, r
′)
ωl
2
×
(

1

ω − ωl + i0+
− 1

ω + ωl − i0+

)
, (2.70)
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where ωl denotes the plasmon frequency and Wl(r, r
′) the spatial behavior of

the plasmon of mode l. Substituing equation (2.70) in (2.68) gives

〈vc|KAA,d(ΩS) |v′c′〉 =
∑
l

∫
dxdx′ψ∗c (x)ψc′(x)ψv(x

′
)ψ∗v′(x

′
)W (r, r′)

× ωl
2

[
1

ωl − (ΩS − (EQP
c′ − E

QP
v ))

− 1

ωl − (ΩS − (EQP
c − EQP

v ))

]
(2.71)

which is an expression that can be evaluated analitically.

In many cases, the excitations |S〉 are mainly composed from electron-hole
pair configurations |vc〉 whose transition energies (EQP

c − EQP
v ) are close to

the excitation energy ΩS, so the difference ΩS − (EQP
c − EQP

v ) are much
smaller than the plasmon frequencies ωl, so can they be considered as zero.
With this consideration, equation (2.71) can be replaced by

〈vc|KAA,d |v′c′〉 =

∫
dxdx′ψ∗c (x)ψc′(x)ψv(x

′
)ψ∗v′(x

′
)W (r, r′, ω = 0), (2.72)

which ignores de dinamically screening effects.

2.7.3 Optical spectrum in periodic systems

In periodic systems, such as crystals, the single-particle states are now given
by |ψnk〉 with the wave vector k in the first Brillouin zone. Thus, the two-
particle excitations of equation (2.63) are now written as

|N,S〉 =
∑
k

hole∑
v

elec∑
c

ASvckâ
†
vkb̂
†
c,k+Q |N, 0〉 =

∑
k

hole∑
v

elec∑
c

ASvc |vck〉 , (2.73)

where Q is the total momentum of the two-particle state. In an optical
excitation process, Q is the momentum of the photon that is absorbed by
the two-particle state.

The eigenvalue problem of equation (2.62) now is transformed into [81]

(EQP
c,k+Q − E

QP
vk )ASvck

+

∫
VBZ

d3k′
∑
v′,c′

〈vck|K |v′c′k′〉ASv′c′k′ = ΩSA
S
vck, (2.74)
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where 〈vck|K |v′c′k′〉 are the matrix elements of the electron-hole interaction
kernel. The energy difference (EQP

c,k+Q − EQP ) is given by the quasiparticle
corrections calculated with the GWA. The integral over k is performed over
the volume of the first Brillouin zone. In semiconductor crystals, several
occupied and unoccupied bands v and c, as well as several (hundreds) wave
vectors k are necessary to represent the transitions relevant to the optical
spectrum.

The measurable quantity that can be obtained with this formalism is the
macroscopic transverse dielectric function of the system, whose imaginary
part is given by [81]

ε2(ω) =
16πe2

ω2

∑
S

∣∣∣λ̂ · 〈0|v |S〉∣∣∣2δ(ω − ΩS). (2.75)

where λ̂ = A
|A| is the unitary polarization vector of the light and v = i

~ [H, r] is
the single-particle velocity or current operator. The optical transition matrix
elements are given by

〈0|v |S〉 =
hole∑
v

elec∑
c

ASvc 〈v|v |c〉 . (2.76)

It is important to mention that, in the calculation of ε(ω), the inclusion
of local fields effects, i.e., response fields of the crystal that tend to screen
the electric field, results in a significant reduction of the dielectric function.
Equation (2.75) already includes these effects [82].

Without considering electron-hole interactions, the excitations are given by
transitions between independent hole and electron states, so equation (2.75)
reduces to [81]

ε02(ω) =
16πe2

ω2

∑
v,c

∣∣∣λ̂ · 〈v|v |c〉∣∣∣2δ(ω − (Ec − Ev)), (2.77)

where v (c) denotes valence (conduction) states.

2.7.4 Solving the problem from first principles

The procedure begins with a ground-state calculation using the Kohn-Sham
approach to obtain the energy eigenvalues and the eigenfunctions of the sys-
tem. With these elements one can construct the propagator G0. Then, one
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can determine the RPA polarizability and calculate the screened potential
W0. Using the GWA one can, with both G0 and W0, construct the self-
energy operator and thus the quasiparticles corrections to the states can be
calculated. The electron-hole interaction kernel K is determined with the
aid of W0. Finally, using the kernel and the quasiparticle corrections one
can solve the BSE and then obtain the macroscopic dielectric function. This
procedure is schematized in Figure 2.7. The main equations, used to evaluate
the specified quantities at every step, are displayed with their corresponding
number.

1

G0(r, r′;E) =
∑
i

φi(r)φ∗i (r
′)

E − εi
.

2

P (1, 2) = −iG(1, 2)G(2, 1).

3

εG,G′(q;ω) = δG,G′ − 4π

|q + G|2
PG,G′(q;ω).

4

WG,G′(q;ω) =
4π

|q + G|2
ε−1
G,G′(q;ω).

5

Σ(1, 2) = iG(1, 2)W (1+, 2).
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6

K(35; 46) = −iδ(3, 4)δ(5−, 6)v(3, 6) + iδ(3, 6)δ(4, 5)W (3+, 4),

=: Kx(35; 46) +Kd(35; 46).

7

Ei = εKSi + Zi
〈
φKSi

∣∣Σ(εKSi )− V KS
XC

∣∣φKSi 〉
with

Z−1
i = 1−

〈
φKSi

∣∣ dΣ

dε
εKSi

∣∣φKSi 〉
.

8

(EQP
c,k+Q − E

QP
vk )ASvck

+

∫
VBZ

d3k′
∑
v′,c′

〈vck|K |v′c′k′〉ASv′c′k′ = ΩSA
S
vck.

9

ε2(ω) =
16πe2

ω2

∑
S

∣∣∣λ̂ · 〈0|v |S〉∣∣∣2δ(ω − ΩS)

with

〈0|v |S〉 =
hole∑
v

elec∑
c

ASvc 〈v|v |c〉 .
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Obtain the macroscopic 

dielectric function ε2.

Perform a typical DFT ground-state calculation to obtain 

the eigenvalues and the eigenfunctions. 

Construct the propagator G0.

Construct the RPA polarizability P0.

Obtain the matrix  ε.

   Calculate the screened potential W0.

Construct the self-energy operator.

       Construct the Bethe-Salpeter kernel K.
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Figure 2.7: Flow chart describing the procedure for obtaining the macro-
scopic dielectric function considering excitonic effects within the Bethe-
Salpeter formalism on top of the G0W0 approximation.
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Chapter 3

Results and discussion

In this chapter, the numerical results, obtained by performing the correspond-
ing calculations, of the crystalline and electronic structure and optical prop-
erties of blue phosphorene are presented. The electronic structure calculated
within the Kohn-Sham approach and with the corresponding GW correc-
tions (using the Wannier interpolation method) are obtained and compared.
The spectrum of linear optical response is calculated within the independent-
particle approach and using the Bethe-Salpeter equation, in order to include
excitonic effects in the spectrum. The obtained results are compared with
previous works.

The ABINIT software (see Appendix C) was employed for the calculations.
The Wannier90 software (see Appendix B) was employed to obtain the quasi-
particle band structure.

3.1 Crystalline structure

The atomic positions in the primitive cell were necessary to begin with the
ground state calculation and, then, to obtain the properties in which we are
interested in. In this case, the relaxed crystalline structure was obtained in
a previous work [49]; those atomics positions were used here to represent the
atomic system correctly. The considerations related to obtain the correct
atomic positions, in that work, were the following.

The supercell approximation was selected to deal with the aperiodic configu-
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ration of the blue phosphorene monolayer. Also, the spin-orbit coupling was
neglected, due to that phosphorus could be considered as a light element.
The Perdew-Burke-Ernzerhof (PBE) exchange-correlation potential was se-
lected. This is an exchange-correlation potential characteristic of a GGA
which has been used for DFT calculations.

A convergence study atomic structure was performed as a function of the
energy cut-off, the number of k points in reciprocal space and the interatomic
distance between blue phosphorene monolayers. In general, one select an
specific value for all parameters and then one can vary just one of them
at a time, keeping the others constant, until convergence is reached. This
process is repeated by keeping the value of the corresponding parameter at
which convergence was reached in the previous step and varying of a second
parameter. There is no specific order to perform a convergence study in
general. In this case, when I speak of a converged structure value, I refer to
that at which the difference in total energy of the system of the last two steps
of the convergence study is less than some criterion. In the case of this study,
for the relaxed or ground state structure, the energy change criterion was of
1× 10−5 Ha. So, if the change in energy between the last two steps was less
than this value, the convergence of the structure was said to be obtained.

The unit cell of blue phosphorene is shown in Figure 1.3. As initial approx-
imation, the atomic positions where those of the ideal hexagonal structure.
The number of k points in reciprocal space were varied using the Monkhorst-
Pack methodology [83, 84] and the converged grid was that of 12 × 12 × 1.
Then the distance between monolayers, due to the supercell modeling, was
obtained as 25 Å. Finally, the energy cut-off was selected as 35 Ha. The
optimal structure was obtained by minimizing the forces between the atoms
until every cartesian component of the force tensor in the unit cell were less
than 1× 10−9 Ha/Bohr. In Figure 3.1a the top (XY plane) and lateral (XZ
plane) views of the relaxed blue phosphorene structure are shown. In Table
3.1, there is a comparison between the obtained values for the cell parameters
of the studied structure and those reported elsewhere. It is notorious that
the obtained lattice values are comparable with those already reported.
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3.28 Å 

3.28 Å 

(a)

1.27 Å 

(b)

Figure 3.1: (a) Top and lateral (b) view of the monolayer of blue phosphorene.
The lateral view shows the zig zag array of the atoms. The shaded region
represents the primite cell.

3.2 Electronic structure

To obtain the band structure of the blue phosphorene monolayer, described
in 3.1 in the Kohn-Sham approach, the same values determined in the con-
vergence studies were used. But, in this case, the number of k points in
reciprocal space was selected as 120, being sufficient to obtain the appro-
priate smoothed bands. These points were along the path delimited by the
high-symmetry points M-Γ-K-M in the first Brillouin zone, as is shown in
Figure 1.5. Even more, this path delimits the irreducible Brillouin zone,
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Table 3.1: Comparison of the obtained structural parameters of the mono-
layer of blue phosphorene reported in other works.

Approximation Magnitude Bonding Angle
for of a1 distance d between bonds
EXC (Å) (Å) (Å) (degrees)

[49] GGA-PBE 3.28 2.27 1.27 92.80
[41] GGA-PBE 3.33 2.27
[55] GGA-HSE06 2.27 1.24 92.88
[59] GGA-PBE 3.33
[58] GGA-PBE 3.28 1.24
[85] GGA-PBE 3.28 1.24
[86] GGA-PBE 2.26 1.23 93.07
[87] GGA-PBE 3.29 1.20

which is the smallest fraction of the Brillouin zone that is sufficient to deter-
mine all the information on the excitations of the crystal. The excitations
at all other k points outside the irreducible Brillouin zone are related by the
symmetry operations.

In Figure 3.2 the band structure is shown. Blue phosphorene has an indirect
band gap of 1.92 eV. This means that electrons in the top of the valence band,
which here is set to zero, not only need to gain that amount of energy but
also a corresponding change in momentum to pass to the conduction band
minimum. Qualitatively, the shape of the bands is very similar, compared
with other studies [46, 86], where the reported values for the band gap were
of 1.9 eV and 2.098 eV, respectively.

For the single shot GW corrections (G0W0) of the bands, a different set of
convergence studies was performed. First, the energy cut-off, represented in
ABINIT with the parameter ecut was allow to varied; it was determined
that the value of 35 Ha was sufficient. Then, the number of bands (nband)
obtained to generate the RPA polarizability in the independent-particle ap-
proach (equation (2.47) and the self-energy (see equations (2.50) and (2.51))
was 100. The energy cut-off for the correlation part of the self-energy and P0

(ecuteps) (equations (2.47) and (2.51)) was determined as 5 Ha. The energy
cut-off for the exchange part (ecutsigx) of the self-energy operator (equation
(2.50)) was of 8 Ha. Finally, the k point grid was 18× 18× 1, which permits
a correction for 37 points inside the irreducible Brillouin zone for the first ten
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Figure 3.2: Band structure of the blue phosphorene monolayer obtained
within the Kohn-Sham approach. The energy band gap is indirect and is
marked with the arrow and denoted with the transition ∆1. The obtained
value for the band gap was of 1.92 eV.

bands. The criterion for convergence was that the difference in the corrected
band gap value between two steps were less than 10 meV. An important
note has to be made: it was mandatory to use this specific grid to obtain the
desire corrections for the high-symmetry points; the convergence was accom-
plish with a grid of 16× 16× 1 or 30 points, but due to the Monkhorst-Pack
methodology, used to map the reciprocal space by the software, no high-
symmetry points were considered within this grid. The corrected band gap
value was of 3.44 eV. A summary of the used values, obtained from the con-
vergence tests, in comparison with other works is presented in Table 3.2. The
reported convergence values are similar in some cases, as that of the energy
cut-off, but presents differences related to the number of included bands and
the k-point grid. Even though the obtained values may differ, the band-gap
value is comparable, which is a proof of correspondence in the methodology.

The quasiparticle band structure was obtained using the Wannier interpo-
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Table 3.2: Comparison of the convergence values and the GW energy band
gap obtained in this work with those reported by other authors.

ecut nband nband ecuteps ecutsigx k-point Band Gap
(Ha) P0 Σ (Ha) (Ha) grid (eV)

This work 35 100 100 5 8 18× 18× 1 3.44
[88] 25 100 100 11.94 17.64 12× 12× 1 2.95
[89] 18.38 10× 10× 1 3.34
[90] 30 500 500 5 30× 30× 1 3.41
[91] 30 256 480 18× 18× 1 3.53
[92] 30 300 300 18× 18× 1 3.36

lation method (see Appendix B). For this, the Wannier90 software (see last
section of Appendix B), inside ABINIT, was used. The corrected 37 points
for the ten bands were interpolated to 324 points for the same ten bands.
As initial projections, sp3 and s orbitals were used, following the theoretical
description of the bonding in blue phosphorene [47, 93]. The criterion to
determine if we are using localized Wannier functions is

〈wn0(r)| r2 |wn0(r)〉 − (〈wn0(r)| r |wn0(r)〉)2 < 5Å2, (3.1)

which is referred as the spread value, and evaluated for every band [94].
In this case, this criterion was accomplished only for the first eight bands.
Hence, the Wannier interpolation of quasiparticle bands is shown in Figure
3.3. The maximum valence band was set to zero.

In Table 3.3, a comparison between different energy gaps, represented by ∆1-
∆6 in Figure 3.2 and 3.3, is shown. As was mentioned before, the fundamental
gap obtained in the DFT approach was of 1.92 eV for the transition ∆1. The
quasiparticle corrections not only changes the energy band-gap value but the
position in the first Brioullin zone, given by the transition ∆4. Considering
this, and that the energy differences between the DFT and the GW values are
not equal for every transition; as an approximation a GW energy correction
at just one point in the first Brioullin zone can be taken, resulting in a rigid
shift of the complete band structure.

In Figures 3.4 and 3.5, a comparison between both standard DFT and GW
corrected band structures is presented. In both figures, the blue bands repre-
sent the DFT valence bands, the red ones are the DFT conduction bands and
the purple dotted lines are both the valence and conduction bands corrected
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Figure 3.3: Quasiparticle band structure of the blue phosphorene monolayer.
The energy band gap is still indirect and denoted with the transition ∆4.
The obtained value for the band gap was of 3.44 eV.

Table 3.3: Comparison between different energy gaps obtained for DFT and
GW calculations.

Transition DFT GW Difference
Value (eV) Value (eV) (eV)

∆1 1.92 3.71 1.79
∆2 2.18 3.93 1.75
∆3 1.96 3.76 1.80
∆4 2.05 3.44 1.39
∆5 2.28 4.04 1.76
∆6 3.87 5.43 1.56

with the GWA. Figure 3.5 is a zoom of the direct band gap zone to compare
easily both band structures.

As was said before, the convergence value for the spread in the Wannier
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interpolation was not accomplished for the ninth and tenth bands, so one
could not considered that they are represented correctly in the band struc-
ture. However, those two bands are not neccesary in this case to discuss
the results. For the other eight bands, one can assure that they do are real
quasiparticle bands. In Figure 3.5 is easy to see the main differences around
the band gap. In the DFT calculation it is predicted that the valence band
maximum is at a point between Γ and K. But, for the quasiparticle struc-
ture, the valence band maximum is at the Γ point. This new maximum in
the valence bands is what gives the change in the position of the fundamental
transition in the first Brillouin zone.
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Figure 3.4: Comparison between the DFT standard calculation band struc-
ture (red and blue lines) and tha GWA corrected bands (purple dotted lines).

3.3 Optical properties

To obtain the BSE optical spectrum, a new convergence study for both ecut
and ecuteps must be performed to see if the used values for the GW correc-
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-5

0

5

Figure 3.5: Comparison between DFT standard calculation band structure
(red and blue lines) and GWA corrected bands (purple dotted lines). This
zoom-in view allows one to compare more easily both band structures around
the band gap. The shaded region corresponds to the direct transitions that
are responsible of the resonance (at around 4 eV) in the optical response of
blue phosphorene.

tions could be reduced and thus the computational effort. The parameter
ecut, as said before, controls the energy-cutoff to solve the Kohn-Sham equa-
tions. The parameter ecuteps is necessary to construct the direct part of the
Bethe-Salpeter kernel (equation (2.67), which includes the screened potential.
Fortunately, the newly obtained values were smaller, being of 18 Ha for ecut
and 4 Ha for ecuteps, using the same 100 bands obtained before for the sum-
mation of this latter quantity (equation (2.47)). For the parameter ecutsigx,
no convergence study was necessary, since this is the energy cut-off that it is
used to calculate the exchange part of the self-energy (equation 2.50). The
self-energy operator is not constructed by the software; the software does not
correct the energy in the optical properties calculation for the points in the
Brillouin zone. In this type of calculation, a rigid or scissors shift is selected,
in order to approximate the behavior of the bands that were corrected by
using the GWA (see equation (2.74), the quantities denoted as EQP ). The
value for the scissors shift was of 1.52 eV, corresponding to the difference in
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energy of the DFT band-gap value (transition ∆1) and the GW band-gap
value (transition ∆4), presented in Table 3.3. It is important to say that
this is just an approximation. The bands to be included in the summation
of equation (2.74) are, ideally, the occupied valence and the corresponding
unoccupied conduction bands. That is, the first ten bands, in the case of
the blue phosphorene. As it can be seen in Figure 3.5, the transitions that
are responsible of the resonance structure around the direct band gap in the
optical response of blue phosphorene are not much affected in performing
this approximation.

In this sense, the next convergence study was that of the bands to be included
in the summation of the equation (2.74). Ideally, all the valence and con-
duction bands have to be included but with a convergence study only some
bands can be used in order to calculate a converged spectrum. In Figure
3.6, spectra of the imaginary part of the parallel component of the dielectric
function, for different number of valence and conduction bands are plotted.
In ABINIT, for excitonic calculations, the parameter that sets the lower va-
lence band included in the calculation is bs loband while the parameter that
defines the maximum conduction band to be included has the same parame-
ter name nband as that used for the number of the bands in the sum for the
self-energy operator in GW calculations. As a result, bs loband was selected
to be equal to 2 and nband equal to 10; this means that four valence bands
and five conduction bands were considered in the calculation. For the cases
of bs loband = 3 and nband = 8, and bs loband = 3 and nband = 8, a consid-
erable change in the response is evident. For the cases of bs loband = 2 and
nband = 9, and bs loband = 2 and nband = 10, just a small shift is present in
the response, but the latter does not contain the unphysical behavior around
3 eV. A new case was necessary to determine that convergence was reached.
The difference between bs loband = 1 and nband = 10, and bs loband = 2 and
nband = 10 is minimal, so the latter was considered as the converged values
for those parameters.

Next, the more demanding convergence study was performed, namely, the
convergence with respect to the number of k points in the reciprocal space.
The k-point grid was augmented gradually. Some of the obtained spectra
are presented in Figure 3.7. The yellow spectra (72× 72× 1) shows a lot of
peaks, indicating the low convergence value of the grid. For the blue spectra
(76× 76× 1) this behavior is reduced and only seen between 5 and 6 eV. It
can be noted that the purple spectra (78× 78× 1) it is well converged. For
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Figure 3.6: Spectra of the imaginary part of the in-plane component of the
dielectric function calculated within the BSE formalism, for different values
of bs loband and nband. The purple or first graph was considered to be
well converged, so four valence and five conduction bands were used in the
calculations.

this latter, a total of 6084 points were necessary to reach the convergence.

A summary of the used convergence parameters values, obtained from the
convergence tests is presented in Table 3.4, together with a comparison of
respective data with other works. The calculated spectrum of the in-plane
dielectric using the BSE formalism is shown in Figure 3.8. The real part has
a static value ε

||
1(0) or DC value of 3.12. Also, ε

||
1 reaches its maximum value

of 9.12 at 3.94 eV. On the other hand, the imaginary part of the dielectric
function ε

||
2 has its maximum of 17.97 at its resonance frequency or at 4.03

eV . The resonance appears since in this specific frequency exist a maxi-
mum absorption of light, because the energy of the incident photons exactly
match the direct transitions of the electrons in the material (see Figure 3.5).
Similarly, some others peaks in the imaginary part of the dielectric function
suggest that there exist some others transitions that are being match at that
specific frequency value. Specially, the peak at 2.49 eV is the excitonic peak,
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Figure 3.7: Spectra of the imaginary part of the in-plane component of the
dielectric function calculated within the BSE formalism, for different values
of the k points grid. The purple or first graph was considered to be well
converged, so a grid of 78×78×1 or a total of 6084 k points were considered
in the calculation.

i.e. the energy at which the formation of excitons is at maximum, which
results of excitonic absorption. The consequence that this have in ε

||
1 is the

peak value of 5.55 at 2.4 eV.

Table 3.4: Comparison of the convergence parameters obtained in this work
to perform the excitonic calculations with those reported by other authors.

ecut bs loband nband ecuteps k-point Code
(Ha) (Ha) grid

This work 18 2 10 4 78× 78× 1 ABINIT
[88]
[90] 3 8 120× 120× 1 BerkeleyGW 1

[91] 2 9 52× 52× 1 BerkeleyGW
[92] 2 9 42× 42× 1 YAMBO 2
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Figure 3.8: Spectra of the real (left) and imaginary (right) parts of the
in-plane component of the dielectric function ε|| obtained within the Bethe-
Salpeter formalism for the blue phosphorene.

From Figure 2.7 one can see that the independent-particle polarizability and
the corresponding dielectric matrix is necessary to solve the BSE (step 3 ).
The corresponding spectrum for the dielectric function, calculated within the
RPA, is shown in Figure 3.9. In this case, the absorption window is at aprox-
imately 2 eV, which corresponds with the fundamental direct gap calculated
within the Kohn-Sham approach. The imaginary part of the dielectric func-
tion has a maximum of 7.88 at the resonance frequency, located at 3.97 eV.
The real part has a static value ε

||
1(0) of 3.04. Also, ε

||
1 reaches its maximum

value of 7.55 at 3.58 eV.

To demonstrate that the energy corrections within the GWA do not predict
correctly the optical properties, the spectrum calculated within the RPA but
using the quasiparticle energies corrections is shown in Figure 3.10. In this
case, all the values are blue shifted 1.5 eV with respect to the independent-
particle calculation (see Figure 3.9), which is the energy value used to shift

1https://berkeleygw.org/
2https://www.yambo-code.eu/
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Figure 3.9: Spectra of the real (left) and imaginary (right) parts of the
in-plane component of the dielectric function (ε||) obtained within the
independent-particle approach and the RPA for the blue phosphorene.

all the bands in the calculation, as was explained before. The real part of
the dielectric function has a static value of 2.5. Also, this real part reaches a
maximum of 7.39 at 5.09 eV. On the other hand, the imaginary part of the
dielectric function has a maximum of 7.88 at 5.47 eV.

The comparison between the spectra of the imaginary part of the in-plane
component of the dielectric function ε|| calculated using the independent-
particle approach, within the RPA, (RPA-KS), the dielectric function for
which the quasiparticle energies where used, within the RPA (RPA-GW),
and within the Bethe-Salpeter formalism (BS) is shown in Figure 3.11. Here
is easy to see that neither the RPA-KS nor the RPA-GW calculated dielectric
function could predict correctly the corresponding below-band-gap absorp-
tion. Also that these two are qualitatively the same, for this case, being the
RPA-GW spectrum blue shifted with respect to the RPA-KS one. In gen-
eral, BS curve compares well with other reported curves in that range of the
spectrum, as that of Villegas et. al. [91] and İyikanat et. al. [92], showing
the corresponding excitonic peak, at around 2.5 eV, and the resonance, at
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Figure 3.10: Spectra of the real (left) and imaginary (right) parts of the
in-plane component of the dielectric function (ε||) obtained using the GW
quasiparticle energies for the evaluation of the optical response within the
RPA for the blue phosphorene.

around 4.1 eV.

Finally, a comparison of the spectra of the in-plane dielectric function cal-
culated with different values of the broadening factor was made (see Figure
3.12). The broadening factor also acts as a damping factor in the evaluation
of the optical response. If the broadening factor is zero then the imaginary
part of the dielectric function at the resonance frequency will tend to infinity.
If the value of the broadening factor is not zero, and increased, the peaks
of ε2 will be more damped. In general, the value of the broadening factor is
of experimental interest, because it can be tuned to match the experimental
curve and the theoretically predicted one.

The calculated spectrum of the in-plane dielectric using the BSE formalism,
for a broadening value of 100 meV was shown in Figure 3.13. This was
obtained by using the default value of the parameter used in ABINIT to
considerer the broadening in the calculation of the Bethe-Salpeter spectrum,
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Figure 3.11: Spectra of the imaginary part of the in-plane component of the
dielectric function (ε||) calculated within the Bethe-Salpeter formalism (BS),
using the Kohn-Sham eigenvalues to obtain the polarizability (RPA-KS) and
using the quasiparticle energies to obtain the polarizability (RPA-GW).

and is called zcut. The one calculated for a broadening factor of 50 meV
is shown in Figure 3.13. This was considered in order to reproduce the
results reported by Villegas et. al. [91], who did the calculation for the same
spectrum range and considering that value of broadening factor. In our case,
the real part has a static value of 3.12. Also, ε

||
1 reaches its maximum value

of 17.33 at 3.98 eV. The imaginary part of the dielectric function has its
maximum value of 34.04 at 4.03 eV and the excitonic peak is still at 2.49 eV.

The calculated complex refractive index, corresponding to the dielectric func-
tion for a broadening of 50 meV, is presented in Figure 3.14. The real part
of the refractive index n|| has a static value of 1.77; it reaches its maximum
value of 4.76 at 4 eV. The imaginary part of the refractive index or absorp-
tion coefficient κ|| has its maximum value of 4.58 at 4.06 eV. The excitonic
peak it is located at 2.51 eV and has a value of 1.44.

80 Juan José Nava Soto Chapter 3



Optical properties of blue phosphorene considering many-body effects

 0

 5

 10

 15

 20

 25

 30

 35

 0  1  2  3  4  5  6

e|
| 2

Energy (eV)

50 meV
100 meV

Figure 3.12: Spectra of the imaginary part of the in-plane component of the
dielectric function calculated within the BSE formalism for different values
of the broadening factor or the imaginary frequency.
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Figure 3.13: Spectra of the real (left) and imaginary (right) parts of the
in-plane component of the dielectric function ε|| obtained within the Bethe-
Salpeter formalism for the blue phosphorene, using a broadening of 50 meV.
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Figure 3.14: Spectra of the real (left) and imaginary (right) parts of the
in-plane component of the complex index of refraction (n̂||) obtained within
the Bethe-Salpeter formalism for the blue phosphorene, using a broadening
of 50 meV.
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Conclusions

An exhaustive revision of the state of art of optical response studies of blue
phosphorene, which consider the many-body effects, was made. The optimize
crystalline structure of blue phosphorene was obtained from a previous work,
where the structural parameters are in good agreement with those reported
previously. The electronic band structure of blue phosphorene was obtained
by using Density Functional Theory within the Generalized Gradient Approx-
imation. The energy corrections to the bands were calculated in a specific
set of k points within the irreducible Brillouin zone by employing the GW
approximation. The complete quasiparticle band structure was determined
by using maximally-localized Wannier functions and the corresponding inter-
polation scheme. The optical response including excitonic effects (electron-
hole interactions) was calculated within the Bethe-Salpeter formalism. This
excitonic spectrum was compared with both the independent-particle and
GW optical response, showing that only the one calculated using the Bethe-
Salpeter approach is able to predict below-band-gap absorption. In general,
the proposed goals for the thesis were accomplished.

The quasiparticle band structure was of great importance in showing that,
in general, this can not be calculated by obtaining the energy correction for
just a one point in the reciprocal space and then applying a rigid shift to the
DFT band structure. The usage of Wannier functions, with the aid of the
Wannier90 software, is what enable us to obtain such a band structure, which
could be impossible, or highly computationally demanding, without that
formalism. Also, qualitatively, the behavior of the bands can be compared
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with other works; the band-gap value is also well compared (of around 3.4
eV). It is easy to see that the converged values for the different paremeters
used to perform the complete calculation are also in agreement.

For the excitonic spectrum, the comparison with previous works shows that
the determined convergence parameters are, in general, very similar. By
inspection, the spectrums of the cited works are comparable for both the
excitonic peak (at around 2.5 eV) and the resonance frequency (of 4.1 eV),
with those obtained in this one (2.49 and 4.03 eV).

The comparison among the excitonic spectrum, the RPA independent-particle
approach and the RPA using the GW quasiparticle energies shows that the in-
clusion of the electron-hole interactions greatly changes the optical response,
demostrating the importance of including these interactions in the optical
properties calculations. The prediction of the below-band-gap absorption
of the excitonic calculation could be compared with the experimental mea-
sumerents for semiconductors, which cannot be explained with the typical
DFT calculation nor with the usage of the quasiparticle energies corrections
to calculate the optical response, as was stated as hyphotesis for the devel-
opment of this work.

As was mentioned before, the results were calculated using the abinit soft-
ware exclusively, except for the Wannier interpolation scheme. The com-
parison between the other works shows that there is no big difference in
performing this type of calculation using different softwares, even though the
convergence values may change for the same system. This could be both
related to the code implementation and the approximation that the software
considers.

Finally, due to the developed work and thesis research, one can have a per-
spective of the new possible work that could be performed in order to continue
in the 2D materials area. In general, the topological properties are one of
the main research areas today, because material scientists are interested in
predict properties that could be then measured on the laboratory. For this
case, it is necessary to analize many of the new predicted 2D materials and
to determine whether they could have this type of properties.

Also, many of the modern issues are that of the energy consumption and
renewable energies; for that, many researchers are looking for new promizing
materials that could be used in the development of the new generation of
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photovoltaic devices. This new devices may have a greater portability and
conversion rate of light than the actual ones, considering that they may have
a “greener” impact. The 2D materials may play an important role in this
topic, in which many has been studied but there still a path to road.
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Appendix A

What is a functional?

A variational principle is one that enables a problem to be solved using cal-
culus of variations, which concerns finding functions that optimize the values
of quantities that depend on those functions [95]. Considering a function
F (x, y(x), y(x)′) and the integral

I =

∫ b

a

F (x, y(x), y(x)′) dx = I[y(x)], (A.1)

such an integral is called a functional. The prime notation on y denotes the
first derivative with respect to x. It is a generalization of a function in that
it is a number which depends on a function rather than on another number
[95].

In finding which y(x) makes the functional a maximum or a minimum requires
that the following expression must be satisfied

∂F

∂y
− d

dx

∂F

∂y′
= 0 (A.2)

This is known as the variational or functional derivative of F with re-
spect to y and is sometimes written as δF

δy
. The equation A.2 is called the

Euler-Lagrange equation. Many laws of physics may be stated in terms of a
variational problem defining a functional, such as Hamilton’s principle and
Fermat’s principle.
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Wannier functions

The original work of Wannier [79] was intended to show that the description
of the electrons in crystals can be that of the combination of the two differ-
ent descriptions used in that time: running waves represented in the Bloch
theorem and localized in space “atomic” functions.

The description of the theory behind Wannier functions, scope and software
developed for the calculations of interpolated band structures using them is
presented here.

In the independent-particle approximation, the electronic ground state of a
system is determined by specifying a set of one-particle orbitals and their oc-
cupations. In atomic crystals, these one-particle orbitals are normally written
as Bloch functions ψnk(r) characterized by a crystal momentum k lying inside
the Brillouin zone and a band index n. However, alternative representations
are possible, such as that of Wannier, defined by an unitary transformation
from the Bloch functions to a set of localized Wannier functions (WFs). One
feature of WFs is that, unlike Bloch functions, WFs are not eigenstates of
the Hamiltonian; in selecting them, one trades off localization in energy for
localization in space [96]. A second feature is that WFs are non-unique.
This is a consequence of the phase indeterminacy that Bloch orbitals ψnk(r)
have at every wavevector k or, more generally, the gauge indeterminacy of
applying any arbitrary unitary transformation to the occupied Bloch states
at each k. This second indeterminacy is troublesome in the case of degen-
eracy of occupied bands at certain high symmetry points in the Brillouin
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zone, making a partition into separate “bands”, that could separately be
transformed in Wannier functions, problematic [96]. Therefore, first a prior
knowledge of the states to use to compute WFs is necessary. In this respect,
Marzari and Vanderbilt introduced a “maximal localization” criterion for
identifying a unique set of WFs for a given crystalline insulator [97]. Such
development was the start for electronic structure community to construct
maximally-localized WFs (MLWFs) explicitly.

B.1 General description

In the mathematical description, the one-particle effective Hamiltonian H
commutes with the lattice-translation operator TR. This property lead to
choose as common eigenstates the Bloch orbitals

ψnk(r) = unk(r)eik·r, (B.1)

where unk(r) has the periodicity of the lattice.

Note that Bloch functions at different k have different envelope functions
eik·r. Hence, it can be possible to build a localized “wave packet” by super-
posing Bloch functions of different k as [96]

w0(r) =
V

(2π)3

∫
BZ

dkψnk(r), (B.2)

where V is the real space primitive cell volume and the integral is carried
out over the Brillouin zone (BZ). Inserting a phase factor e−ik·R into the
integrand of equation B.2, where R is a real space lattice vector; this has
the effect of translating the real space WF by R, generating additional WFs.
Hence, using Dirac notation WF’s can be written as

|Rn〉 =
V

(2π)3

∫
BZ

dke−ik·R |ψnk〉 , (B.3)

where |Rn〉 is the WF wRn at position R and with a band index n. The
set of functions |Rn〉 is orthonormal and equation B.3 takes the form of a
Fourier transform. The corresponding inverse Fourier transform is

|ψnk〉 =
∑
R

eik·R |Rn〉 . (B.4)
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Most important, Bloch and Wannier states (equations (B.4 and (B.3)) pro-
vide an equally valid description of the band subspace, even if WFs are not
not Hamiltonian eigenstates. This can be seen by expressing the band pro-
jection operator P in both representations [96]

P =
V

(2π)3

∫
BZ

dk |ψnk〉 〈ψnk| =
∑
R

|Rn〉 〈Rn| , (B.5)

hence WFs represents the space spanned by Bloch band in a crystal, where
they are characterized by being localized and having the same information
that is contained in the Bloch functions.

The gauge freedom arises in the definition of Bloch state ψnk because∣∣∣ψ′

nk

〉
= eiφn(k) |ψnk〉 , (B.6)

where φn(k) is any real periodic function in reciprocal space. The gauge
freedom given trough equation (B.6) gives a particular set of WFs; so different
choices of gauge would give different sets of WFs having in general different
shapes and spreads. In conclusion, WFs are strongly not unique so one
would like to choose the “best” phase in terms of localization (to obtain the
MLWF’s). The criterion to determine that the WFs are maximally-localized,
presented by Marzari and Vanderbilt [97], is that the second momentum or
the spread calculated for a given set of WFs

Ω =
∑
n

[〈wn0(r)| r2 |wn0(r)〉 − (〈wn0(r)| r |wn0(r)〉)2] (B.7)

is a minimum. One have to take into account that some of the terms of
equation B.7 are gauge invariant, so the total spread could not ever be zero.

B.2 Quasiparticle band structure calculation

WFs can be generated by using the Kohn-Sham Bloch functions and eigen-
values calculated with the formalism of DFT. The disadvantage is that the
calculation of the Kohn-Sham energy bands underestimate the energy band
gaps of insulators and semiconductors. These energy bands can be corrected
using many-body perturbation theory within the GW approximation [96].
However, one practical difficulty in generating the GW band structure is
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that the evaluation of quasiparticle corrections to eigenenergies along differ-
ent symmetry lines in the Brillouin zone is computationally very demanding.
One numerical approximation is to perform the GW calculation only at se-
lected high-symmetry k points, and then deduce a “scissors correction,” i.e.,
a constant shift to be applied to the conduction-band Kohn-Sham eigenval-
ues elsewhere in the Brillouin zone [96]. In 2009 Hamann and Vanderbilt
[98], proposed a method using Wannier interpolation to determine the GW
quasiparticle bands efficiently and accurately at arbitrary k points in the Bril-
louin zone. Wannier interpolation schemes, by which quantities computed
on a relatively coarse k-space mesh can be used to interpolate faithfully
onto an arbitrarily fine k-space mesh, are relatively low cost. In this case,
the computed energy corrections are determined for a relatively coarse mesh
and, after the interpolation, the complete quasiparticle band structure can
be obtained.

Once we have obtained the MLWF’s for a group of bands, a set of Bloch-like
states can be constructed ∣∣∣ψ′

nk

〉
=
∑
R

eik·R |Rn〉 . (B.8)

The prime serves as a reminder that the states
∣∣ψ′

nk

〉
are generally not eigen-

states of the Hamiltonian 1. At a given k, the Hamiltonian matrix elements
in the space of the bands is represented by the matrix

H
′

k,nm =
〈
ψ

′

nk

∣∣∣H ∣∣∣ψ′

mk

〉
=
∑
R

eik·R 〈0n|H |Rm〉 . (B.9)

In general this is a non-diagonal matrix in the band-like indices, and the
interpolated eigenenergies are obtained by diagonalization,

HH
k,nm =

[
U †kHkUk

]
nm

= δnmεnk, (B.10)

where the unitary matrices Uk transform between the Wannier and Hamilto-
nian gauge 2 (denoted by the H index) and εnk are the energy eigenvalues at
a given k. If we insert into equations (B.9) and (B.10) a k at which the GW
corrections were determined, we simply recover the eigenvalues εnk, while for
arbitrary k the resulting ε̄nk interpolate smoothly between the values of the
grid.

1These states belong to the Wannier gauge.
2The gauge in which the Hamiltonian is diagonal.
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B.3 The Wannier90 software

In order to exploit the WFs theory in real calculations one can use Wannier90,
an open-source code for generating MLWF’s [99]. It allows to compute elec-
tronic properties of materials with high efficiency and accuracy. ABINIT has
an interface to Wannier90 and there are several post-processing codes that
are able to use the output of Wannier90 for further analysis and calculations.

More information about the software, tutorials and general documentation
can be found on the official website http://www.wannier.org/.
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Appendix C

The ABINIT software

“ABINIT is a package whose main program allows one to find the total
energy, charge density and electronic structure of systems made of electrons
and nuclei (molecules and periodic solids) within Density Functional Theory
(DFT), using pseudopotentials and a planewave basis. ABINIT also opti-
mizes the geometry according to the DFT forces and stresses, or performs
molecular dynamics simulations using these forces, or generates phonons,
Born effective charges, and dielectric tensors, based on Density-Functional
Perturbation Theory, and many more properties. Excited states and spec-
tra can be computed within the Many-Body Perturbation Theory (the GW
approximation and the Bethe-Salpeter equation). DFT+U and Dynamical
mean-field theory are available for strongly correlated materials. In addition
to the main ABINIT code, different utility programs are provided”[100–
102].

ABINIT is distributed under the GNU General Public Licence. It is fully
documented: it has an user guide, installation tutorials, lists of variables,
a public forum for the users to ask questions, a large pseudopotential li-
brary and various tutorials to learn how to use the code. For more re-
lated information, updates and improvements, visit the official web site:
https://www.abinit.org/.
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de Bragg. J. Phys. Radium 1, 377–400 (1930).

15. Kronig, R. d. L. & Penney, W. G. Quantum mechanics of electrons in
crystal lattices. Proceedings of the royal society of London. 130, 499–
513 (1931).

16. Dirac, P. A. M. Quantum mechanics of many-electron systems. Pro-
ceedings of the Royal Society of London. 123, 714–733 (1929).

17. Wigner, E. On the interaction of electrons in metals. Physical Review
46, 1002 (1934).

18. Thomas, L. H. The calculation of atomic fields in Mathematical pro-
ceedings of the Cambridge philosophical society 23 (1927), 542–548.

19. Fermi, E. Un metodo statistico per la determinazione di alcune prior-
ieta dell’atome. Rend. Accad. Naz. Lincei 6, 32 (1927).

20. Dirac, P. A. Note on exchange phenomena in the Thomas atom in
Mathematical proceedings of the Cambridge philosophical society 26
(1930), 376–385.

21. Hartree, D. R. The wave mechanics of an atom with a non-Coulomb
central field. Part I. Theory and methods in Mathematical Proceedings
of the Cambridge Philosophical Society 24 (1928), 89–110.

22. Hartree, D. R. The wave mechanics of an atom with a non-coulomb
central field. Part II. Some results and discussion in Mathematical
Proceedings of the Cambridge Philosophical Society 24 (1928), 111–
132.
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