
 

THEORETICAL STUDY OF THE GENERATION 
OF THREE ENTANGLED AND STEERABLE 

OPTICAL MODES BY A THIRD-ORDER 
NONLINEAR INTERACTION 

 
 

Agosto de 2019 
León, Guanajuato, México 

MAESTRIA EN CIENCIAS (ÓPTICA) 

Asesora: Laura Elena Casandra Rosales Zárate 

Estudiante: Tarek Abraham Peña Armendáriz  





De luz un haz, de fotones un mar.
Un vuelo ciego sin noción de tiempo y lugar,
y entre tanta relatividad
¿Cual será su realidad?
La trayectoria individual es caótica y coherente
¿Qué de ti será pequeño fotón?
Tu inmersión final es inminente
ahora vas al mar del famoso electrón.
Sigues un camino errante y esquivo,
y le apuestas al Quantum seguir vivo.
No hay manera de fallar
si la naturaleza hay que acatar.
Aun con el estruendo de creación y aniquilación,
no hay más que la conservación.
Tu energía, tiempo, momento y posición
tu descendencia llevará en correlación.
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Abstract

The emergent quantum technologies have awoken a great scientific interest and effort
to manipulate quantum systems. For these systems, quantum correlations are one of
the characteristics on which emergent quantum technologies are based. It has been
observed that in order to generate quantum correlations, as entanglement or EPR
steering, non-linear optical devices are very useful. Even more, lately, generation of
multipartite entanglement has become an important field of study for new applica-
tions on quantum protocols. One of the proposals to generate a genuine tripartite
entangled state is to use a third-order nonlinear optical interaction. In this thesis
we investigate three Hamiltonians for non-linear processes as third harmonic gener-
ation, spontaneous parametric down conversion, sum and difference of frequencies
generation of third order. The Hamiltonians under consideration are composed of
one high-frequency mode (b̂) and low-frequency modes (âi). The difference between
these three Hamiltonians is the freedom for the low-frequency modes to be strictly
equals (one annihilation operator â3) or might be different (â2

1â2 or â1â2â3). In order
to study these Hamiltonians and their capability to produce multipartite entangle-
ment, we will use phase-space techniques and the theory of stochastic processes.
Throughout this thesis, we will explain the mathematical framework of both theo-
ries and how they are connected. To certify entanglement and steering we use what
are known as witnesses. Thus, we identify in which cases bipartite and multipar-
tite entanglement are present. Finally, we found that bipartite entanglement and
steering are always achieved for all the Hamiltonians under study. However, only
in the case of â1â2â3 we found is possible to generate a tripartite steerable state in
the three low-frequency modes and even more a four-modes entangled multicolored
state.
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1 Introduction

“Wir müssen wissen, Wir werden wissen.”

“We must know, we will know.”

David Hilbert 1862-1934

In the history of humanity there have been important developments and emergent
technologies which, were landmarks due to the change they produced in human life.
Must of the time this progress is a consequence of a deeper understanding of nature
and/or the generation of new ideas that leads to a change in the scientific paradigm.
One example of this are the quantum technologies. Despite of the idea that quantum
technologies are just really new ideas which are still in development, we have been in
contact with them for decades. At least for the so called first generation of quantum
technologies.
The first generation of quantum technologies are the transistor-semiconductors de-
vices and laser systems [1, 2]. There is no doubt about the importance of these
inventions and in their contribution to the nowadays society. However, these kind
of technologies are based on the effects of quantum mechanics but does not focus
in the creation or manipulation of quantum states. In order to illustrate the actual
meaning of this, lets consider a diode. The idea behind the diode is to allow the
conduction in one direction and block it (very low conduction) in the other one. In
order to do this, a voltage is applied. This voltage decreases or increases the depth
of a quantum well in which the charges (electrons) are immersed. This is important
for electronic systems, however, there is no interest in the state of the charges of the
diode.
The second generation of quantum technologies (most of the times just called quan-
tum technologies) are those ones where the main core are based on the quantum
states and its properties [3, 4]. Therefore, explodes quantum effects as quantum
superposition, entanglement and its correlations.
These new ideas are studied on the emergent fields of quantum information [5], quan-
tum metrology [6, 7] and quantum communications [8]. Physical implementations of
those are mostly based on quantum optics, atomic physics, quantum electronics or
optoelectronics. In order to be able to manipulate such technologies, there must be
a great capability to create and control quantum states with very specific properties.
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Chapter 1 Introduction

Therefore, many research work have been made in the field. A commercial imple-
mentation of these technologies, as for example in quantum computing, has been
pursuit highly in the last decade. The effort has been so great that the European sci-
entific community released a manifesto in 2016, at the quantum Europe conference
“to call to launch an ambitious European initiative in quantum technologies, needed
to ensure Europe’s leading role in a technological revolution now under way”. In
that manifesto they asked for one billion euros to their initiative [9]. Nevertheless,
not only Europe is interested, worldwide companies as Google, Intel and IBM for
example, have invested time, effort and significant quantities of money to create a
universal quantum computer.
The reason behind all this interest in quantum computing is due to what its supremacy
over classical computers. As an example, lets consider the nowadays security sys-
tems based of factorization. As it is known, any natural number can be factorized
as a product of prime numbers. For example, 49 = 72, 100 = 2252. However, the
greater the number, the harder to find the correct factorization. These security sys-
tems use the factorization as the key to access to the protected information. Thus,
the security relies on the incapability of a classical computer to solve the problem in
an appropriate time. Nevertheless, despite the complexity, Shor showed a quantum
algorithm which would be able to solve the problem in a quantum computer [10].
Thus, since quantum entanglement is a resource for these emergent technologies,
its generation and correlation properties, are an important research area for both
industrial and scientific development [11, 12, 13]. As we will explain later, it has
been observed that a really efficient type of platforms used to generate entangled
states are the optical ones. Before we go further on the subject we must give a
briefly introduction to quantum entanglement.
This was introduced by Einstein, Podolsky and Rosen (EPR) in 1935 [14] in an
attempt to show that quantum theory was incomplete and could not describe reality
accurately. In their paper, EPR showed a continuous variable state, which is part of
two subsystems A and B. For this state, after an interaction between each other, the
final state could not be described as a product of independent states of the original
subsystems. Even more, they showed, that this kind of states have the property that
a measurement in A, can steer B. Such that B is be projected in a basis according to
the measurement performed in A. The idea of being able to observe such an effect
was enough evidence for EPR to conclude that quantum theory was incomplete.
However, in response to that paper, Schrödinger introduced the terms of “entangled
states” and “steering”. Moreover, he said that entanglement was the characteristic of
quantum mechanics and therefore quantum theory was not incomplete and, indeed,
was complete and correct for local systems [15]. Nevertheless, he rejected the idea
of non-local interactions.
In order to illustrate what a non-local interaction actually means, we show below
the following example:
Let us consider the Hilbert space C2⊗C2 of two parties A and B with spin | ↑〉 or
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| ↓〉 in the direction z. The state described as:

|Ψ〉 = 1√
2

(
| ↑↓〉+ | ↓↑〉

)
, (1.1)

is one of the states known as Bell states, which are maximally entangled states. A
measurement of the spin of party A will produce a collapse in the wave function.
Such that, no matter the distance between parties A and B, party B must collapse
to a definite state. Let us consider, as a matter of example, if the measurement of
spin of A is | ↑〉 then, immediately the spin of B must collapse in | ↓〉. This failure of
locality, was thought that it could not be observed. However in 1964, John Bell [16]
introduced a set of inequalities, such that if quantum entanglement was a misleading
subject of quantum theory, they must never be violated. These inequalities were
named after him, it is worth to say that nowadays they have been violated several
times[17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27].
The very first experiment about the violation of Bell-type inequalities [17], was
performed by Freedman and Clauser in 1972 measuring the polarization of pho-
tons [18]. However, they used a variation of the Bell inequalities named Freedman’s
inequality. After that, Aspect et al [19] conducted the first three Bell’s test, using
calcium cascade sources [19, 20], where they showed violation of the Bell’s inequal-
ities. Later on, different Bell test were developed using different systems [21, 22].
However, there was the possibility of “loopholes” in these experiments. In 2015,
three different groups were able to show significant loophole-free Bell-tests. The
first one, performed by Hensen et al [23], demonstrated quantum entanglement in
the spin of electrons at a distance of 1.3 km. That same year, Shalm et al [24] and
Giustina et al [25] performed experiments with entangled photons. Remarkable was
that Shalm’s experiment used random number generators to choose the direction
of the measurement basis. In 2018 two new experiments were carried out, with
two new different approaches. The first one, by a great international collaboration,
where instead of using random number generator, they used random human choices
to choose the basis of measure. In order to did that, around 100,000 persons were
recruited [26]. The second one, used light from two distant quasars to set the ba-
sis of their measurement settings [27]. These experiments showed that quantum
entanglement is a correct feature of quantum mechanics.
With the purpose of illustrate the meaning of steering lets consider again the state
of Eq. (1.1). This state may be written in the basis generated by the Pauli’s matrix
Ŝz as in the first example, or it can be expressed in the direction of x, i.e., the basis
generated by Ŝx. If the eigenstates in the direction of x are |+〉 or |−〉, then the
state may be written as:

|Ψ〉 = 1√
2

(
|+−〉+ | −+〉

)
, (1.2)

So far, this is no more but two different ways to represent a state. However, at the
moment of performing a measurement on one of the parties, the remaining part is
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projected in the chosen basis by the other party. Thus, lets consider a measurement
on party A. We will, obtain the to following different outcomes for party B:

if
Ŝz, ρ̂ = 1

2 (|↑ 〉〈 ↑|+ |↓ 〉〈 ↓|) ,
Ŝx, ρ̂ = 1

2 (|+ 〉〈+|+ |− 〉〈−|) .

These different results imply that it is possible to steer the final state of party B, rea-
son why Schrödinger has referred to it as “steering”. It has been observed that such
a resource is important for quantum teleportation [28] and quantum cryptography
[29, 30].
Steering and quantum entanglements are two important quantum resources which
potential applications to quantum information. Thus, much work has been done
in order to quantify and certify them [12, 11, 31, 32, 33, 34]. On the other hand,
besides the scientific investigations on the verification of quantum entanglement and
its implementation, there have also been studies on the generation of multipartite
entanglement. This has been already achieved in different platforms, for instance for
a Greenberger–Horne–Zeilinger (GHZ) state of 14 ions [35], generation of tripartite
entanglement by optical means [36, 37, 38, 39, 40, 41, 42, 43, 44] and recently in
quantum memories [45]. Nowadays, as far as we are concerned, there is no stan-
dard method to experimentally generate entangled states of four and three modes,
therefore, this remains as an open research area. Moreover, there have also been
theoretical investigations for tripartite entanglement generation [46, 47, 48]. In
particular, the proposal of Rojas et al [47] used a third-order nonlinear interaction
to produce tripartite entanglement.
Thus, our goal is to study an optical system to generate genuine multipartite entan-
gled and steerable states. In order to do so, we will study the third-order non-linear
interaction proposed by Rojas et al [47] but in its most general form. Even though in
their study they found generation of tripartite entanglement, their approach is per-
formed under the undepleted approximation, i.e., the pump beam (high-frequency
mode, HF) is treated as a classical beam. This approximation makes not possible
to investigate the quantum correlations that HF mode might have. In addition,
quantum steering is not investigated.
Thus, we investigate this third-order nonlinear interaction, but, the undepleted
approximation is not considered. This new approach allow us to treat the high-
frequency mode as a quantum one. Thus, besides tripartite entanglement between
the low-frequency (LF) modes, we can study entanglement with the HF mode. In
particular, we show that this non-linear interaction might produce a four modes
entangled state. Moreover, we also show certification of bipartite and tripartite
steering.
Throughout this thesis, we must give a briefly introduction to quantum entanglement
and steering witnessing. After that, we will describe the mathematical framework
of quantum optics which was used in this work. Then, we will explain the optical
system which we proposed to generate entanglement and our results.
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2 Quantum correlations

“If a man never contradicts himself, the reason must be that he virtually never says
anything at all.”

Erwin Schrödinger 1887-1961

Referring to quantum correlations we must distinguish between the different types
and characteristics. In this thesis, we considered entanglement and steering.

2.1 Quantum Entanglement

Lets define a system in a Hilbert spaceH, which can be described as a direct product
of two subspaces H1 and H2, H =H1 ⊗H2. In the case of pure states where |Ψ〉 is
a state in H such that it can not be written down as:

|Ψ〉 = |ψ1〉|ψ2〉, (2.1)

where |ψ1〉 and |ψ2〉 are states in H1 and H2 respectively, then the state is entangled.
In the case of general states, which include the mixed states, we consider a density
operator ρ̂ in H. If there are density operators ρ̂1

i , and ρ̂2
i in H1 and H2 respectively,

such that it is possible to write:

ρ̂ =
∑
i

ωiρ̂
1
i ρ̂

2
i , (2.2)

where ωi are probabilities, then the state is separable, if this is not true the state is
entangled.

2.2 Steering

Now we show the way in which EPR argued about the completeness of quantum
mechanics. As above, we define a system H which can be described as the direct
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product of two subsystems H1 and H2. Now lets consider an state |Ψ〉 in H such
that:

|Ψ〉 =
∞∑
n=0
|ψ1〉n|ψ2〉n =

∞∑
m=0
|φ1〉m|φ2〉m, (2.3)

where |ψ1〉n and |φ1〉m are states in H1 and |ψ2〉n, |φ2〉m in H2. Now, lets consider
two operators Ŝ and T̂ which do not commute. If |ψi〉n are eigenstates of Ŝ and
|φi〉m eigenstates of T̂ . It is possible to perform a measurement in one subsystem,
lets say H1, according with the measure the state will collapse either in the basis
of Ŝ or T̂ , i.e., in |ψ1〉n or |φ1〉m. However, this will not be on both, such that the
other subsystem H2 must collapse also in |ψ2〉n or |φ2〉m. In that way, measuring
one subsystem must steer the other one.
It is important to clarify that the set of steerable states is a strict subset of the set
of entangled states [49, 50].

Figure 2.1: Venn diagram of entangled and steerable states.

2.3 How to certify entanglement and steering

The study of quantum entanglement require the capability of distinguish which
states are entangled and which are not. Therefore, a great effort has been made to
develop criteria to measure the amount of entanglement and to identify it. In this
thesis we focus in how to identify it, rather than to measure the amount of it. These
criteria are called witnesses. This is because these criteria witness entanglement,
but do not quantify how much entanglement is between the parties. In addition,
it may happen that a witness do not identify an entangled state. For that reason,
we shall never say that a state is not entangled if a witness do not identify it as
such. On the other hand, entanglement it is not restricted to bipartite systems,
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as matter of fact, it might take place in any multipartite system. Thus, we shall
describe different criteria that are used to study bipartite and n-parties systems. In
this work we focus in continuous variables systems. This means that the degrees of
freedom in which the state might be entangled, take continuous values.

Figure 2.2: Representation of a witness certifying entanglement.

2.3.1 Bipartite systems

For the case of continuous variable systems, where there are only two distinguishable
subsystems, two main criteria are considered. We discuss both of them below.

Duan, Giedke, Cirac and Zoller-Simon criterion

One of the inequalities that is used to certify that a state is entangled, was developed
by Duan, Giedke, Cirac and Zoller (DGCZ) [51] and Simon [52]. Using the field
quadratures operators X̂ = (â+ â†)/2 and P̂ = (â− â†)/2i with

[
X̂l, P̂k

]
= i

2 , where
â(â†) is the annihilation (creation) operator. Then the inequalities are given by:

∆− = ∆2(X̂i − X̂j) + ∆2(P̂i + P̂j) ≥ 4,
∆+ = ∆2(X̂i + X̂j) + ∆2(P̂i − P̂j) ≥ 4. (2.4)

Here ∆2(Â) is the variance of the operator Â. The violation of any of these inequal-
ities certify the existence of bipartite entanglement.
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V. Giovannetti, S. Mancini, D. Vitali, and P. Tombesi criterion

Giovanetti et al [53] developed the second criterion that we will use. The criterion
states that if:

Ent(gx, gp) =

√
∆2(X̂i − gxX̂j)∆2(P̂i + gpP̂j)

(1 + gxgp)
≥ 1, (2.5)

does not hold, then the bipartite state is entangled.
Here gx and gp are real parameters which are chosen optimally. If gx=gp, is called
the symmetric case (g(sym)) and we denote Ent(gx, gp) ≡ Ent(g(sym)). Here we will
take two different g(sym) such that Ent(1) = Ent− and Ent(−1) = Ent+.

Bipartite Steering

In order to certify steering the criteria developed by Reid [54] will be used, which
is:

Ei|j = Vinf |j(X̂i)Vinf |j(P̂i) < 1, (2.6)

where:

Vinf |j(X̂i) = ∆2(X̂i)−
[∆2(X̂i, X̂j)]2

∆2(X̂j)
,

Vinf |j(P̂i) = ∆2(P̂i)−
[∆2(P̂i, P̂j)]2

∆2(P̂j)
.

Here ∆2(Â, B̂) =
〈(
ÂB̂ + B̂Â

)
/2
〉
−
〈
Â
〉 〈
B̂
〉
, is the covariance of operators Â and

B̂.
One conclusion that we might obtain for the three last witnesses is that while en-
tanglement is symmetric, steering is not. Thus, in a composite system made by two
recognizable modes, lets say A and B. It is possible that mode A steers mode B,
but B does not steer A.

2.3.2 Multipartite systems

Before we explain the theory of multipartite witnesses, some clarifications will be
explained. When we are interested in a system of N parties, where N ≥ 3, we must
make a distinction between genuine N -partite entanglement and fully inseparable
states [55]. For the sake of clarity, we study the following state of three parties:

ρ̂ = P1
∑
i

ωiρ̂12ρ̂3 + P2
∑
n

ωnρ̂1ρ̂23 + P3
∑
m

ωmρ̂13ρ̂2, (2.7)
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where ∑Pi = 1 and ∑ωk = 1. ρ̂ij are density operators of the composite system
H =Hi⊗Hj and ρ̂k a density operator in Hk. This state is not genuinely entangled
in its three parties. Even when ρ̂ij may be density operators of bipartite entangled
states. Therefore, a genuine three-party entangled state is that one which cannot
be written as Eq. (2.7). However, if ρ̂ij are entangled states, ρ̂ would be fully
inseparable.
Once we have said the above, we show the criteria that are used for this situation.

P. van Loock and A. Furusawa

Peter van Loock and Akira Furusawa [56] have derived sufficient conditions to detect
multiparty entangled states. Since in this thesis, we focus on tripartite quantum
correlations, we will only show the theory for the tripartite state case.
First, let us define the following operators:

Û = h1x̂1 + h2x̂2 + h3x̂3, (2.8)
V̂ = g1p̂1 + g2p̂2 + g3p̂3. (2.9)

Here hi and gi are real parameters chosen optimally. Now let us suppose a state
given by,

ρ̂ =
∑
i

ηiρ̂i,km ⊗ ρ̂i,n, (2.10)

here ρ̂i,km means that party k may be entangled with m, but none of them is entan-
gled with n. The sum of the variances of û and v̂ is:

〈(4Û)2〉ρ + 〈(4V̂ )2〉ρ =
∑
i

ηi

[
h2
k〈x2

k〉+ h2
m〈x2

m〉+ h2
n〈x2

n〉

+ 2
[
hkhn〈xkxn〉+ hkhm〈xkxm〉+ hnhm〈xnxm〉

]
+ g2

k〈p2
k〉+ g2

m〈p2
m〉+ g2

n〈p2
n〉

+ 2
[
gkgn〈pkpn〉+ gkgm〈pkpm〉+ gngm〈pnpm〉

]]
− 〈û〉2ρ − 〈v̂〉2ρ.

(2.11)

Now, since we have said that party n is not entangled with k and m, it is possible to
write 〈xkxn〉 as a separation of products given by 〈xk〉〈xn〉. Similarly, for the terms
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Chapter 2 Quantum correlations

of n with m and k. However, we can not do the same between k and m. Using this
separation in Eq. (2.11) we get:

〈(4û)2〉ρ + 〈(4v̂)2〉ρ =
∑
i

ηi

[
〈x2

k〉+ h2
m〈x2

m〉+ h2
n〈x2

n〉+ g2
k〈p2

k〉+ g2
m〈p2

m〉+ g2
n〈p2

n〉

+ 2
[
hkhm∆2(xk, xm) + hkhn������∆2(xk, xn) + hmhn������∆2(xm, xn)

+ gkgm∆2(pk, pm) + gkgn������∆2(pk, pn) + gmgn������∆2(pm, pn)
]]

∑
i

ηi〈û〉2i − (
∑
i

ηi〈û〉i)2∑
i

ηi〈v̂〉2i − (
∑
i

ηi〈û〉i)2.

(2.12)

Now, for the next step we are going to use the following relations:

〈4Â2〉+ 〈4B̂2〉 ≥ |〈[Â, B̂]〉|, (2.13)

[
X̂l, P̂k

]
= icδkj, (2.14)

where c is a constant related to the normalization factor. Next, we notice that
the last line in Eq. (2.12) is always not negative, due to the inequality of Cauchy-
Schwarz, we can rewrite it as:

∑
i

ηi

[
h2
k〈x2

k〉+ h2
m〈x2

m〉+ h2
n〈x2

n〉+ g2
k〈p2

k〉+ g2
m〈p2

m〉+ g2
n〈p2

n〉

+ 2
[
hkhm∆2(xk, xm) + gkgm∆2(pk, pm)

]]
= h2

n〈4x2
n〉+ g2

n〈4g2
n〉+ 〈4(hkxk + hmxm)2〉+ g2

n〈4(gkpk + gmpm)2〉

≥| 〈
[
hnxn, gnpn

]
〉 | + | 〈[hkxk + hmxm, gkpk + gmpm]〉 |

= c
[
| hngn | + | hkgk + hmgm |

]
.

(2.15)

Throughout this thesis, c = 1
2 . Therefore, if Eq. (2.15) does not hold, the tripartite

state is genuine entangled for pure states. While for mixed states, the state is said
to be at least fully inseparable.

R.Y. Teh and M. D. Reid criterion

In order to certify genuine multipartite entanglement and steering for general states,
the criterion developed in [55] must be used. Violation of the following inequality
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2.4 Monogamy relations

confirms genuine tripartite entanglement and steering:

S = ∆2(Û) + ∆2(V̂ ) ≥ C min{|h3g3|+ |h1g1 + h2g2|],
|h2g2|+ |h1g1 + h3g3|,
|h1g1|+ |h2g2 + h3g3|}. (2.16)

This inequality corresponds to the case of entanglement when C = 2, while it
corresponds to steering for C = 1.
In this thesis we take h1 = h2 = h3 = g1 = 1, g2 = g3 = −1/2, which set the
inequality as:

∆2
[
X̂1 + X̂2 + X̂3

]
+ ∆2

[
P̂1 −

(P̂2 + P̂3)
2

]
≥ C. (2.17)

2.4 Monogamy relations

Lets consider a system which is composed of more than two distinguishable sub-
systems. Lets say A, B and C, in such a case it is possible to study bipartite
entanglement and steering in pairs. In order to do this, we will use the so called
monogamy relations. Here we use monogamy relations developed in [57]:

EB|AEB|C ≥ max{1, E2
B|{AC}}, (2.18)

where {AC} is the composite system of A and B. A consequence of this relation is
that, if it is possible to certify steering from A to B, then EB|C would not be capable
to certify steering from C to A.
In addition, there are two other monogamy relations for the entanglement witnesses
derived in [58]:

EntB|AEntB|C ≥
max

{
1, E2

B|{AC}

}
[
1 + (g(sym)

BA )2
][

1 + (g(sym)
BA )2

] , (2.19)

∆B|A∆B|C ≥ max
{

1, EB|{AC}
}
. (2.20)

Here ∆B|A denotes the Duan et al criterion defined in Eq. (2.4). These two last
relations establish bounds for the entanglement witnessing.
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3 Coherent states and Phase-space
picture

“Somewhere, something incredible is waiting to be known.”

Carl Sagan 1934-1996

3.1 Coherent states

The quantized electric field, in the Heisenberg representation, is expressed in terms
of the creation and annihilation operators in the following form [59]:

Ê(~r, t) = i
∑
k

√
~ωk
2V εo

~ek

(
exp(i~k · ~r)âk(t)− exp(−i~k · ~r)â†k(t)

)
, (3.1)

where ~k is the number wave vector, ~r the position vector, ~ek the unitary polarization
vector, V the volume of quantization, and εo is the permissibility of vacuum.
Thus, the properties of the electric field may be calculated as expectation values of
combinations and products of both operators.
It is easy to show that for a number or Fock state 〈n|Ê|n〉 = 0. Therefore, in order
to find the classical limit of the field (mean field different to zero) we must seek
states for which mean field do not vanish (as it happen with the number states). In
other words, it is necessary to find the eigenstates of the annihilation operator.
Those states are called coherent states [60], they are represented as |α〉 and obey
the following relation:

â|α〉 = α|α〉. (3.2)

It is easy to find that these states also satisfy:

〈α|â† = α∗〈α|. (3.3)

The coherent states have the property, as the vacuum state, that they minimize the
Heisenberg uncertainty relation for the field quadratures, which is 〈4X̂12〉〈4X̂22〉 ≥
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Chapter 3 Coherent states and Phase-space picture

1
16 . This means that a coherent state minimize the quantum noise, remaining only
the noise due to the vacuum. This property is stated as:

〈4X̂1
2〉α = 〈4X̂2

2〉α = 1
4 . (3.4)

It makes perfect sense that coherent states minimize the uncertainty principle, since
we were seeking states for the classical limit. Thus, the coherent states are the most
classical like quantum states.
Even more, since the expectation value of the number operator is

〈N̂〉α = |α|2, (3.5)

coherent states has a continuous expectation value of number of photons, as it would
be expected in the classical picture.
There are two important properties for the coherent states. These are the complete-
ness relation or resolution of unity and their inner product. These are given below:

ˆ
|α 〉〈α|d

2α

π
= 1. (3.6)

〈β|α〉 = exp
[1
2(β∗α− βα∗)

]
exp

[
−1

2 |β − α|
2
]
. (3.7)

Coherent states form an over complete basis for the Hilbert space of one single-
mode electromagnetic field. This means that any state can be represented as a
combination of coherent sates. However this combination might not be unique.

3.2 Phase-Space Representation

Unlike classical mechanics, quantum mechanics do not accept the classic idea of
phase-space, since the operators X̂ and P̂ do not commute. However, it is possible
to use the properties of coherent states to construct a complex plane working as a
phase-space. Using the field quadratures operators we find:

〈X̂1〉α = (α + α∗)
2 = Re(α), 〈X̂2〉α = (α− α∗)

2i = Im(α). (3.8)

In that way it is possible to use the α-plane as a phase-space.

3.2.1 Phase-space probability quasidistributions

There are several functions which are part of the set of phase-space probability
quasidistributions, which are also known as phase-space representations. However,
in this thesis we focus only in three of them. Bellow we introduce th P -function,
the positive-P and the Wigner functions.
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3.2 Phase-Space Representation

3.2.1.1 P -function

Since coherent states form a continuous basis, it is possible to express the density
operator ρ̂, in terms of a function P (α), as:

ρ̂ =
ˆ
P (α) |α 〉〈α| d2α, (3.9)

This P -function is known as the Glauber-Sudarshan P -function [60]. This P -
function might be considered as a probability distribution. However, since this
distribution may be negative in certain regions, it should not be called a probability
distribution but a quasi-distribution. Before we show the usefulness of this function,
we shall show how it can be calculated. Given a density operator, the P -function is
obtained by using:

P (α) = e|α|
2

π2

ˆ
e|u|

2 〈−u |ρ̂|u〉 eu∗α−uα∗
d2u. (3.10)

Now, one of the greatest strength of P -function relies in the following theorem

Optical equivalence theorem of Sudarshan

Lets define a normally ordered function Ĝ(N)(â, â†), i.e., all the powers of â† are in
the left side respect â. Hence we consider the following form:

G(N)(â, â†) =
∑
n

∑
m

cnmâ
†nâm. (3.11)

Next, using the expansion of the density matrix in terms of the P -function given in
Eq. (3.9), expectation values can be obtained as [61]:

〈
G(N)(â, â†)

〉
=
ˆ
P (α)G(N)(α, α∗). (3.12)

The optical equivalence theorem provides a useful way to compute expectation values
of normally ordered operators weighting P -function with G(N).

3.2.2 Positive P function

At this point, the importance of such a function is more clear. However, as we
have described above, the P -function is not positive semidefinite and even for some
cases it is not well-behaved. The last may bring problems in certain treatments
concerned to this thesis. Reason why, we now must proceed to introduce a more
general representation which would be well-behaved and positive semidefinite. This
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distributions was introduced by P. D. Drummond C. Gardiner [62], is called positive
P -function and is defined through the following relation:

ρ̂ =
ˆ
P+(α, α+)Λ̂(α, α+)d2αd2α+, (3.13)

where

Λ̂(α, α+) = |α 〉〈α
+|

〈α+|α〉
. (3.14)

The first situation to note is that positive-P function is integrated over a space of
two independent complex variables, unlike the P function. This double the complex
space. In addition, the fact that α and α+ are independent variables allow us to cover
the whole complex plane. This provides the opportunity to choose a function P+

that is always positive semidefinite. Therefore it behaves like an actual probability
distribution.
An important fact is that the optical equivalence theorem remains in the way of:〈

G(N)(â, â†)
〉

=
ˆ
P (α, α+)G(N)(α, α+). (3.15)

3.2.3 Wigner function

Finally we shall introduce the Wigner function which was the very first quasi-
distribution probability (in a Quantum mechanics context). In 1932, in an attempt
to introduce a probability distribution in the phase space, Wigner came up with a
function, that later on was named after him.
The Wigner function is defined as:

W (q, p) ≡ 1
2π~

∞̂

−∞

〈
q + 1

2x
∣∣∣∣∣ρ̂
∣∣∣∣∣q − 1

2x
〉
eipx/~dx.

For pure states, the Wigner function is closely related to the wave function. This
function depends on two parameters, q and p. In the case where q and p are po-
sition and momentum parameters, we can obtain the probability density for each
representation, by integrating as follows:

∞̂

−∞

W (q, p)dq = |ϕ(p)|2, (3.16)

and
∞̂

−∞

W (q, p)dp = |ψ(q)|2. (3.17)
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3.3 Mapping von Neumann equation to Phase-space representations

If it is true |ϕ(p)|2 and |ψ(q)|2 are probability densities, Wigner function is not.
W (q, p) may be negative in certain regions. Nevertheless, as the last two distri-
butions, it can be used to calculate expectation values, but, this time, for Weyl
(symmetrically) ordered operators.
In order to illustrate the meaning of symmetric order we must show an example:

(â†â)s = 1
2(â†â+ ââ†),

(â†2 â)s = 1
3(â†2 â+ â†ââ† + ââ†

2), (3.18)

and so on.
So that, if we have a symmetrically ordered operator, lets say {G(q̂, p̂)}W then

〈
{G(q̂, p̂)}W

〉
=
ˆ
{G(q, p)}W W (q, p)dqdp. (3.19)

3.3 Mapping von Neumann equation to Phase-space
representations

Time evolution of quantum systems is given by the von Neumann equation given
below:

∂ρ̂

∂t
= −i~[Ĥint, ρ̂]. (3.20)

The solution of this equation is enough to obtain all the properties of the system.
Nevertheless, most of the time, this solution is not easy to find. Therefore, it is
necessary to use other approaches to solve the problem. Here, we focus in the use
of the phase-space representations to find a solution [63]. The use of this methods
have been used in quantum optics in a wide range of platforms [64, 65, 66, 67,
68, 69, 70, 71, 72]. The idea is to write a time evolution equation for the quasi-
distribution functions. There are mappings to obtain differential equations for the
phase-space representations from the Eq. (3.20). In the case of the positive-P and
Wigner representations, those mappings are showed below:

âρ̂ = αP+, ρ̂â =
(
α− ∂

∂α+

)
P+,

ρ̂â† = P+α+, â†ρ̂ =
(
α+ − ∂

∂α

)
P+, (3.21)

19



Chapter 3 Coherent states and Phase-space picture

and

âρ̂ =
(
α + 1

2
∂

∂α∗

)
W, ρ̂â =

(
α− 1

2
∂

∂α∗

)
W,

ρ̂â† =
(
α∗ + 1

2
∂

∂α

)
W, â†ρ̂ =

(
α∗ − 1

2
∂

∂α

)
W. (3.22)

Direct substitution of these mappings give us the differential equations for each
representation.
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4 Fokker-Planck equation and
stochastic differential equations

“Science cannot solve the ultimate mystery of nature. And that is because, in the
last analysis, we ourselves are a part of the mystery that we are trying to solve.”

Max Planck 1858-1947

The probability quasidistributions we have discussed so far, are not restricted to
behave as an actual probability distribution. However, many times they do. There-
fore, the study and use of tools of classical statistics must not scape of our scope.
A powerful tool is the so known Fokker-Planck (F-P) equation. Before we show
how we connect quasidistributions with the F-P equation, we shall explain what
actually a F-P equation is. In order to achieve such a task, we must explain some
definitions [73, 74].

Random Variable

Lets define Ω as a set of possible outcomes from a measurable space E. Then a
random variable X is a measurable function such that X : Ω → E. Thus, the
probability that an event takes place is given by:

Pr(X ∈ S) = P (ω ∈ Ω|X(ω) ∈ E), (4.1)

where P is the probability measure.

Markov Process

Lets consider a conditional density probability P (~x, t), which depends on n random
variables such that ~x = x1, ..., xn. When it is sufficient to know P ( ~xo, to), at some
~xo and to in order to know P (~x, t) at any future time, it is said that the process has
the Markov property.
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Chapter 4 Fokker-Planck equation and stochastic differential equations

Fokker-Planck equation

A conditional density probability P (~x, t| ~xo, to), which behaves as a Markov process,
usually satisfies the following equation, named as Fokker-Planck equation [74, 75]:

dP (~x, t| ~xo, to)
dt

=
[
−
∑
i

∂

∂xi
Ai(~x) + 1

2
∑
i

∑
j

∂2

∂xi∂xj
Dij(~x)

]
P (~x, t| ~xo, to). (4.2)

Here Ai(~x) is known as the drift term and Dij(~x) the diffusion term. Important is
to stress the fact that matrix Dij(~x) is symmetric and positive semidefinite.
From the FP equation, we can study the behavior of an ensemble during the time.
The average quantities of an observable are calculated as the observable weighted
with P (~x, t| ~xo, to). However, there is also the option to take a different approach. As
we have said above ~x is a vector of random variables. For those random variables,
we can obtain a set of stochastic differential equations (SDE). The solution of those
SDE are single trajectories, which change for any time that are solved. Such that,
the average of these trajectories at time t, give us the ensemble’s behavior. The
corresponding set of SDE, in the Itô approach, which we shall explain later, is given
by [74, 73]:

dxi
dt

= Ai(~x) +Bj
i (~x)ξj, (4.3)

where D = BBT and ξj are δ-correlated Gaussian noise terms, i.e.,
〈
ξi(t′)ξj(t)

〉
=

δijδ(t− t′).
Hence, expectation values are calculated as averages over a large amount of different
trajectories generated by Eq. (4.3). The main idea is, once we have the set of SDE, we
solved for the initial conditions and generate a great amount of trajectories. When
we average all the trajectories, we would have the mean behavior of the ensemble.
Such that, without the necessity of solving the F-P type equation, we can study the
dynamics of our system of interest.
In order to illustrate the method we show the following example:
Lets consider a F-P equation in one dimension:

dP

dt
=
[
− ∂

∂x
x+ 1

2
∂2

∂x2

]
P. (4.4)

Following the proceeding described above, the correspondent SDE is:

dx

dt
= x+ ξ. (4.5)

By solving numerically Eq. (4.5), several trajectories will be generated. Therefore,
it is necessary to solve this equation for several times and take an average over the
whole set of trajectories.
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4.1 Calculus in stochastic processes

0 0.5 1

0

0.1

0.2

0.3

0.4

0.5

Figure 4.1: Time evolution of x(t). In black there are showed some individual
trajectories and in blue it is showed the final average of the trajectories.

In Fig. (4.1), an example of some of the individual trajectories is shown and also
the mean behavior. In order to obtain the mean behavior we had to solve Eq. (4.5)
100,000 times.
On the other hand, Eq. (4.4) can be solved quite easy since after applying variable
separation such that, if P (x, t) = Px(x)Pt(t) then Px satisfies:(

∂2

∂x2 − 2x ∂
∂x

)
Px = (λ− 1)Px, (4.6)

where λ is the constant of separation. The solution of Eq. (4.6) are the Hermite
polynomials. Thus, for this case there was no need to apply the formalism of SDE.
However, for many problems in quantum optics, finding the solutions of F-P equa-
tions are not that straightforward, which is the case of the systems treated in this
thesis. Therefore, for those problems we must use the SDE formalism.

4.1 Calculus in stochastic processes

In order to treat systems with a stochastic component, an extension of usual calculus
is necessary. This extension has two main different approaches: The Itô calculus
(which is the one used in this thesis) and the Stratonovich calculus.
Both approaches describe stochastic processes, however, they are not equal. The
most immediate (and maybe the most important) difference is the chain rule. While
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in the Stratonovich calculus the chain rule is the same than in usual calculus, in the
Itô calculus it is not. Lets illustrate this.
Itô’s formula:
Lets ~x(t) be a vector of random variables. An arbitrary, but twice continuously
differentiable, function f [~x(t)] obeys [73]:

df [x(t)]
dt

=
∑
i

Ai(~x, t)∂if(~x) + 1
2
∑
i,j

[B(~x, t),BT (~x, t)]ij∂i∂jf(~x)

+
∑
i,j

Bij(~x, t)∂if(~x)dξj. (4.7)

This last formula illustrates the fact than in Itô calculus changing variables cannot
be done, in general, as in usual calculus. This turns into a difference in the SDE
between both approaches, while in the Itô approach is the one showed in (4.3), and
in the Stratonovich approach is:

dxi
dt

= AStrati (~x) +Bj
i (~x)ξj, (4.8)

where,

AStrati (~x) = Ai(~x)− 1
2
∑
k,j=1

Bkj(~x) ∂

∂xj
Bij(~x). (4.9)

Eqs.(4.3) and (4.8) reproduce the same results, thus the use of one or the other is a
matter of taste.
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5 Nonlinear optics

“Nobody ever figures out what life is all about, and it doesn’t matter. Explore the
world. Nearly everything is really interesting if you go into it deeply enough.”

Richard Feynman 1918-1980

The interaction of an electric field with a medium produce an effect of polarization,
i.e., the molecules of the medium form dipoles aligned with the electric field. If
the electromagnetic field oscillates in the form of a wave, then the formed dipoles
oscillate with the frequency of the electromagnetic field. The oscillation of these
charges produce radiation as the classical electromagnetic theory predicts. Most of
the times, it is said that this polarization it is just proportional to the strength of
the electric field applied. However, when the intensity of the electromagnetic wave
is high enough, the polarization must be expanded in the following form [76]:

P̃ (t) = εo
∞∑
i=1

χ(i)Ẽ(i), (5.1)

Here Ẽ is the electric field, P̃ is the polarization of the medium, εo is the permissi-
bility of vacuum and χ(i) are the nonlinear optical susceptibilities of order i which,
mathematically, are tensors of rank i+ 1.

Figure 5.1: Alignment of electric dipoles in a medium due to an applied electric
field.
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This new expansion allows a great variety of effects which are studied in the so-called
field of nonlinear optics. These effects have awake a great interest for both scientific
and technology progress since its first observation [77, 78, 79, 76, 80, 81].
In order to illustrate the new effects that can be observed lets consider the following
equation derived from Maxwell’s equations:

∇2Ẽ − η2

c2
∂2Ẽ

∂t2
= 1
εoc2

∂2P̃NL

∂t2
, (5.2)

where η is the refractive index, c is the speed of light in vacuum and P̃NL the
nonlinear polarization. Then, if P̃NL oscillates with frequency ω it would became a
source of new radiation with frequency ω.
To illustrate it we shall show the following example:

Second harmonic, sum and difference frequency generation

Lets assume two electromagnetic waves interacting with a non-linear medium with
χ(2) 6= 0. The electromagnetic field can be represented as:

Ẽ = E1e
−iω1t + E2e

−iω2t + c.c. (5.3)

where ω1,2 are optical frequencies that might be, or not, different.
Then, from Eq. (5.1), the second order contribution can be written as:

P̃ (2) = εoχ
(2)Ẽ(2)

= εoχ
(2)(E2

1e
−i2ω1t + E2

2e
−i2ω2t + 2E1E2e

−i(ω1+ω2)t)
+ 2E1E

∗
2e
−i(ω1−ω2)t + c.c.+ E1E

∗
1 + E2E

∗
2 . (5.4)

Thus, analyzing the terms on Eq. (5.4) we might obtain all the oscillating terms for
the polarization. Here, terms with frequencies ω1 + ω2 and ±(ω1 − ω2) correspond
to the processes of sum and difference frequency generation, respectively and 2ωi
the generation of second harmonic.
The nonlinear optics is not restricted to second order nonlinear interactions but to
any order. However, as we go further in the interaction’s order the susceptibility de-
creases and, therefore, the amplitude of the incident wave must be greater in order to
observe the effect. As an example from [76], if χ(1) ≈ 1,then χ(2) ≈ 1.94x10−12m/V
and χ(3) ≈ 3.78x10−24m2/V 2.
In figure 5.2 it is showed a process of third harmonic generation. As it can be seen,
the energy of the generated photons is equal to the incident photons energy. This
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(a) Third harmonic generation.

(b) Energy diagram.

Figure 5.2: a) Representation of a process of third harmonic generation in a non-
linear crystal. b) Energy diagram for third harmonic generation.

lead us to a essential part in the nonlinear optics; the phase-matching conditions. In
order to obtain an efficient process there are two conditions that must be fulfilled:

∑
i

ω
(p)
i =

∑
n

ω(o)
n , (5.5)

∑
i

~k
(p)
i =

∑
n

~kn
(o)
, (5.6)

where ω(p)(ω(o)) are the frequencies of the incident (output) light and ~k(p)(~k(o)) the
wave number vector. Both conditions are no more but conditions of conservation
of energy and linear momentum respectively. If Eq.(5.6) is not fulfilled perfectly,
but the difference is small it is said that the waves are quasi phase-matched. This
may occur by different reasons, from the experimental set up to the dispersion in
the medium. The importance of phase-matching lay in the fact that the greater
the miss-matching the lower the efficiency of the process. This was first showed by
Maker [78], where it is showed that varying the angle of incidence of the light in the
crystal the efficiency varies abruptly.
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6 Physical Model

“Mathematics is only a tool and one should learn to hold the physical ideas in one’s
mind without reference to the mathematical form.”

Paul A.M. Dirac 1902-1984

So far we have discussed the preliminary subjects for this thesis’ work. Now we shall
discuss the model that we studied.
Our goal is to find a platform where three entangled modes of the electromagnetic
field (photons) can be generated. There have been many proposals of how to generate
such states as we have mentioned before. Here we focus on generation of bipartite
and multipartite entangled states by using a third-order non-linear interaction. We
will take different approaches to the problem, i.e., different interaction Hamiltonians,
in order to study quantum correlations between different parts of the system.

6.1 Hamiltonians

Firstly, we consider the case in which there are only two type of modes, high ωp
and low ωo frequency, such that ωp = 3ωo. The first Hamiltonian that we consider
is denoted by Ĥ(1), and corresponds to:

Ĥ(1) = i~κ
3
[
b̂â†3 − b̂†â3

]
, (6.1)

where b̂ (â) is the annihilation operator for ωp (ωo) mode and κ is the effective
nonlinear coupling between the nonlinear medium and the pump beam. Throughout
this thesis we will take ~ = 1. This Hamiltonian corresponds to the degenerate case.
There are two processes which can be described by this Hamiltonian, which are third
harmonic generation (THG) and three-photon-down-conversion (TPDC).
In order to obtain a more general Hamiltonian we separate step by step the low-
frequency modes. Thus, separating one low-frequency mode such that â3 → â2

1â3
we get the following Hamiltonian, denoted by Ĥ(2):

Ĥ(2) = i~κ
[
b̂â†21 â

†
3 − b̂†â2

1â3
]
, (6.2)

here â1 (â3) is the annihilation operator for the ω1 (ω3) mode, where ωp = 2ω1 +ω3.
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Finally, separating all low-frequency modes which is made by taking â3 → â1â2â3,
we get that the Hamiltonian, denoted by Ĥ(3) is:

Ĥ(3) = i~κ
[
b̂â†1â

†
2â
†
3 − b̂†â1â2â3

]
, (6.3)

where âi is the annihilation operator for the ωi mode and ωp = ω1 + ω2 + ω3.

These three interaction Hamiltonians describe either a three-photon-down-conversion
(TPDC) or a Sum frequency generation (SFG) process. Since the analytic solutions
of Eq. (3.20) for these Hamiltonians are not easy to find we use standard methods
for quantum optics [63].
These methods map the time evolution of the density operator to a set of SDE, as
discussed in section (3.3).Below we show this procedure, obtaining the corresponding
SDE for both the positive-P and Wigner functions, for the different Hamiltonians
discussed above.

6.1.1 Positive P function approach

Using Eq. (3.20) and mappings (3.21) we obtain the following time evolution equa-
tion for the positive-P function for Ĥ(1):

∂

∂t
P (1) = κ

[
− ∂

∂α
(α+2

β)− ∂

∂α+ (α2β+) + ∂

∂β

(
α3

3

)

+ ∂

∂β+

(
α+3

3

)
+ 1

2
∂2

∂α2 (2α+β) + 1
2

∂2

∂α+2 (2αβ+)

− 1
6

(
∂3

∂α3 (2β) + ∂3

∂α+3 (2β+)
)]

P (1). (6.4)

It is important to note that α+ is not the complex conjugate of α, in fact they
are different variables. Nevertheless, over a large number of trajectories they both
behave as complex conjugates.
It is easy to realize that if there were no third-order derivatives, the time evolution
differential equation would be a Fokker-Planck type equation. Such that, we would
be able to map this equation directly to a set of SDE. Thus, in order to do so,
we must make some considerations: Firstly, at t = 0, we may say each mode is in
a coherent state, |αo 〉 and |βo 〉 , for ωo and ωp respectively. Therefore, P (1)(t =
0) = δ(α− αo)δ(α+ − α+

o )δ(β − βo)δ(β+ − β+
o ). In the case of SFG (third harmonic

generation since all low-frequency modes have frequency ωo) βo = β∗o = 0. Thus,
at this time third order derivatives vanish. For a time scale where the influence of
third order derivatives is negligible, we can map the resulting FP to a set of SDE.
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This set corresponds to:

dα = κα+2βdt+
√

2κα+βdξ1(t),

dα+ = κα2βdt+
√

2καβ+dξ2(t),

dβ = −κ3α
3dt,

dβ+ = −κ3α
+3dt, (6.5)

Solving these equations numerically over a large number of trajectories, allows us to
calculate all the required expectation values for the witnesses described in Section
(2.3). Following a similar procedure for Ĥ(2) and Ĥ(3), we obtain their corresponding
set of SDE. These are for Ĥ(2):

dα1 = (2κα+
1 α

+
3 )dt− 2

√
iα+

3 βdξ
∗
13,

dα3 = (κα+2
1 )dt+

√√√√iα+2
1 β

α+
3

idξ13,

dα+
1 = (2κα2α3)dt−

√
iα3β+dξ+∗

13 ,

dα+
3 = (κα1α2)dt+

√
iα2

1β
+

α3
idξ+

13,

dβ+ = −α+2
1 α+

3 dt,

dβ = −α2
1α3dt. (6.6)

while for Ĥ(3):

dα1 = (κα+
2 α

+
3 )dt+

√√√√iα+
2 α

+
3 β

α+
1

(−idξ∗12 − dξ∗13),

dα2 = (κα+
1 α

+
3 )dt+

√√√√iα+
3 α

+
1 β

α+
2

(−dξ12 + idξ∗23),

dα3 = (κα+
1 α

+
2 )dt+

√√√√iα+
1 α

+
2 β

α+
3

(idξ13 + dξ23),

dα+
1 = (κα2α3)dt+

√
iα2α3β+

α1
(−idξ+∗

12 − dξ+∗
13 ),

dα+
2 = (κα1α3)dt+

√
iα1α3β+

α2
(−dξ+

12 + idξ+∗
23 ),

dα+
3 = (κα1α2)dt+

√
iα1α2β+

α3
(idξ+

13 + dξ+
23),

dβ+ = −α+
1 α

+
2 α

+
3 dt,

dβ = −α1α2α3dt. (6.7)

31



Chapter 6 Physical Model

6.1.2 Wigner function

In this section we show the set of SDE using the Wigner function for the different
cases under study. These will allow us to compare the results of both representations,
which are the positive-P and the Wigner function.
For H(1), the differential equation for the Wigner representation is:

∂

∂t
W (1) = κ

3

[
(β + 1

2
∂

∂β∗
)(α∗ − 1

2
∂

∂α
)3
]
W (1)

− κ

3

[
(β − 1

2
∂

∂β∗
)(α∗ + 1

2
∂

∂α
)3
]
W (1)

+ C.C. (6.8)

We now take the well-known truncated Wigner approximation, in order to drop
third order derivatives terms. This allow us to find the following differential coupled
equations:

dα

dt
= κα∗2β,

dβ

dt
= −κ3α

3.

The first thing to realize about these equations is that they do not have an explicit
noise term. However, the fluctuations are due to the initial conditions. The Wigner
function at t = 0 is: W (t = 0) = 4

π2 exp(−2|α−αo|2− 2|β−βo|2). Hence, the initial
conditions are given by a Gaussian distribution. Such that, for any single trajectory
the initial conditions will not be the same.
Similarly, for Ĥ(2) we find the following set of equations:

dα1

dt
= 2κα∗1α∗3β,

dα3

dt
= κα∗21 β,

dβ

dt
= −κα2

1α3, (6.9)
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and for Ĥ(3) the set is:

dα1

dt
= κα∗2α

∗
3β,

dα2

dt
= κα∗1α

∗
3β,

dα3

dt
= κα∗1α

∗
2β,

dβ

dt
= −κα1α2α3. (6.10)

6.1.3 Numerical method

In order to solve the last sets of SDE we used the method of central difference. This
method is explained below.
Lets consider a first order differential equation with the form y′ = f(t, y). If we
know y(0) and, on taking y(0) = y0, we can make finite differences such that:

k1 = hf(tn, yn), (6.11)

k2 = hf(tn + h

2 , yn + k1

2 ), (6.12)

k3 = hf(tn + h

2 , yn + k2

2 ), (6.13)

thus the solution yn+1 is:

yn+1 = yn + k3 +O(h3). (6.14)

As we can see the error of this method is of order h3. In that way we can numerically
solve the set of SDE.

6.1.4 Example of method

In order to illustrate how phase-space methods are implemented, we will illustrate
with the following example using the positive-P representation. To this end, lets
consider the following Hamiltonian:

Ĥ = ~κ(â†1â†2â†3 + â1â2â3). (6.15)

This Hamiltonian is the Hamiltonian H(3) under the undepleted approach. Now,
lets consider that one mode behaves as a classical one. Such that â3 = iE3, thus the
Hamiltonian of Eq. (6.15) becomes:

Ĥ2 = iκE3(â1â2 − â†1â
†
2). (6.16)
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For this case, on taking κE3 → κ, analytical solutions for the operators â1,2 in the
Heisenberg approach can be obtained as:

â1 = â1 cosh(κt)− κ

|κ|
â†2 sinh(κt),

â2 = â2 cosh(κt)− κ

|κ|
â†1 sinh(κt), (6.17)

Using the criteria of Duan et al (2.4), and assuming that the initial state is the
vacuum, we find that a violation of the following inequality certifies bipartite entan-
glement:

∆− = 4(cosh2(|κ|t) + sinh2(|κ|t)−
(
κ∗

|κ|
+ κ

|κ|

)
cosh(|κ|t) sinh(|κ|t)) > 4. (6.18)

even more the evolution of the expectation value of the number operator for each
modes, is:〈

â†i âi
〉

= sinh2(t), i = 1, 2. (6.19)

Now, the differential equation for the positive-P representation is given by:

dP

dt
= κ

α1α2 −
(
α+

1 −
∂

∂α1

)(
α+

2 −
∂

∂α2

)

−
(
α1 −

∂

∂α+
1

)(
α2 −

∂

∂α+
2

)
+ α+

1 α
+
2

P. (6.20)

The diffusion matrix, D, for this F-P type equation is:

D =


0 κ 0 0
κ 0 0 0
0 0 0 κ
0 0 κ 0

 , (6.21)

and its factorization B is:

B = −i


0
√
κ 0 0√

κ 0 0 0
0 0 0

√
κ

0 0
√
κ 0

 . (6.22)

Therefore, following the technique explained in chapter 4, this equation can be
mapped to the following set of SDE:

dα1 = −κα+
2 dt− i

√
κdW1,

dα2 = −κα+
1 dt− i

√
κdW+

1 ,

dα+
1 = −κα2dt− i

√
κdW2,

dα+
2 = −κα1dt− i

√
κdW+

2 . (6.23)
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Figure 6.1: Time evolution for the number operator using analytical and numerical
solutions

We now shall show the solutions for
〈
â†i âi

〉
and ∆− using Eqs. (6.23) and the

analytical solutions given in Eqs. (6.18) and (6.19).
As we can see from figures (6.1) and (6.2) the numerical solutions for the set of SDE
obtained for the positive-P representation, either for the witness or the number
operator, are in a good agreement with the analytical ones.
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Figure 6.2: Time evolution of Duan witnessing using analytical and numerical
solution
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7 Results

“It seems to me a fundamental dishonesty, and a fundamental treachery to
intellectual integrity to hold a belief because you think it’s useful and not because

you think it’s true.”

Bertrand Russell 1872-1970

In this Chapter, we show the results for the time evolution of the system under study
for all the different Hamiltonians that were described previously. This will be done
in the following way. First, we discuss the results for Ĥ(1), i.e., all the low-frequency
modes are included in one mode. Then, we explain the case of Hamiltonian Ĥ(2),
where one low-frequency mode was separated for the other two. This means that
two low-frequency modes remain in one mode. At the end, we treat the Hamiltonian
Ĥ(3). As we have mentioned previously, this last Hamiltonian represents the most
general one of the three under consideration. Following this procedure, we ensure the
study of entanglement and steering between modes in any composite or individual
subsystem by using different approaches.
For all these cases, we numerically solve all the different set of SDE, using both
representations the positive-P and the Wigner one. These numerical simulations
were performed over 3× 105 stochastic trajectories, with κ = 10−3.
Even though, most of the results for Ĥ(1) were already reported by Olsen in [48],
using only the positive-P function, we go further by using both phase-space repre-
sentations and on studying the dynamics of the Ent− witness. As we will see, the
addition of that witness will show some significant results.
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0 0.5 1
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1

1.5

2

Figure 7.1: Bipartite correlations for third-harmonic generation using Ĥ(1). Here
|〈α(0)〉 = 104| and the witnesses ∆± and Ent± were normalized, so that the bound
of the inequalities coincide with the one of EPRab (EPRba).
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(a) ∆± criterion.

0 0.5 1

1

2

3

(b) Ent± criterion.

Figure 7.2: Bipartite entanglement witnesses for SFG using Ĥ(2). (a) ∆± criterion.
(b) Ent± criterion. Here |〈α1(0)〉 = 104| and |〈α3(0)〉 = 104/3|.

In Fig. 7.1 the time evolution of the entanglement (∆− and Ent−) and the steer-
ing (EPR) bipartite witnesses are showed. We observe that both modes, b̂ and â,
are entangled and even more they are steerable by each other. These results were
showed by Olsen in [48], using only the positive-P representation and the DGCZ
entanglement criteria ∆−. As we said above, in this thesis we performed the nu-
merical simulations using both phase-space representations which are the Wigner
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Figure 7.3: Bipartite steering criterion for SFG using Ĥ(2). Here |〈α1(0)〉 = 104|
and |〈α3(0)〉 = 104/3|.

and positive-P function, We also considered the entanglement criterion Ent as well.
However, since the results for both representations were the same, here we only
show the results obtained with the Wigner function. The addition of Ent− showed
us that this witness is more robust to certify quantum entanglement than ∆± for
this system.
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(a) ∆± criterion
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1
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(b) Ent± criterion

Figure 7.4: Entanglement bipartite witness for SFG using Ĥ(3). Here
|〈αi(0)〉 = 104/3| and i = 1, 2, 3.

In Fig. 7.2, the bipartite entanglement witnesses for Ĥ(2) is shown. As a first re-
sult, we obtain that all possible combinations of bipartite entanglement between
modes are present. Nevertheless, entanglement witnessing between modes â1 and
â3, is more efficient than witnessing with the mode b̂. Once again, Ent± witness
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certify entanglement longer that ∆±. However, we note that both criteria have a
qualitatively similar behaviour. In Fig. 7.3 the EPR steering criteria is shown.
Here we note that, as a consequence of taking the low frequency modes (â1 and â3)
to be different, we certified two way steering between these two modes. In addition,
the steering holds during all the simulation.
In Fig. 7.4 we plot ∆± and Ent±. Both witnesses certify that all combinations of
bipartite entanglement are possible between the different modes of Ĥ(3). In order
to certify bipartite entanglement, we have to consider both combination of signs(
g(sym) = ±1

)
, for ∆± and Ent±. In addition, entanglement between low-frequency

modes holds during all the simulation. While entanglement witnessing between
modes âi and mode b̂ does not hold.

Figure 7.5: Tripartite entanglement and steering for sum frequency generation
between low-frequency modes for Ĥ(3). Here |〈αi(0)〉 = 104/3| and i = 1, 2, 3

In Fig. 7.5 the time evolution of the tripartite criterion S given in Eq. (2.16) is
shown. We can observe that in the process of SFG, tripartite entanglement and
steering are generated between the low-frequency modes. In Fig. 7.6 we show the
dynamics of bipartite EPR steering and its monogamy relation. In 7.6(a) there
is no bipartite steering witnessing between any of the modes, even when tripartite
steering is present. The actual meaning of this is that the EPRij witness is no
capable to certify steering for this situation, even if it is present. Using Eq. (2.18)
we realized that EPRij has a lower bound as a result of the monogamy relation as
is showed in Fig. 7.6(b). Therefore, it is not possible to certify bipartite steering
using this witness. As before, the results are the same with both representations.
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(a) Time evolution for the EPR criterion.
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(b) Time evolution for the monogamy relation.

Figure 7.6: Time evolution for the EPR criterion and its respective monogamy
relation for Ĥ(3).

Finally, we want to prove that the final state of Hamiltonian H(3) is a four parties
entangled state. In order to do so we will consider the following results:
Result 1. The tripartite state of all the LF modes is genuinely entangled.

Result 2. The HF mode is entangled in pairs with all the LF modes.

Result 1 implies that the density operator for the LF modes ρ̂123 cannot be repre-
sented in a biseparable form [82, 83], which is:

ρ̂123 = σ1
∑
i

ω1
i ρ̂

i
1 ⊗ ρ̂i23 + σ2

∑
j

ω2
j ρ̂

j
2 ⊗ ρ̂

j
13

+ σ3
∑
k

ω3
kρ̂

k
3 ⊗ ρ̂k12, (7.1)

where ∑3
i=1 σi = 1 and ∑j ω

n
j = 1, with n = 1, 2, 3.

Thus if the LF modes and the HF mode are not a four modes entangled state, then
the density operator for the whole system, ρ̂, can be expressed as:

ρ̂ =
∑
j

ωj ρ̂
j
H ⊗ ρ̂

j
123. (7.2)

Here ρ̂H is the density operator of the HF mode and ρ̂j123 are the density operators
of the tripartite entangled state. However, Result 2 implies that ρ̂ cannot be written
as Eq. (7.2). Thus, from Result 2 and considering that the LF modes and the HF
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mode are not a four modes entangled state, the density operator can be written as:

ρ̂ = σ1
∑
i

ω1
i ρ̂

i
H1 ⊗ ρ̂i23 + σ2

∑
j

ω2
j ρ̂

j
H2 ⊗ ρ̂

j
13

+ σ3
∑
k

ω3
kρ̂

k
H3 ⊗ ρ̂k12 + σ4

∑
m

ω4
mρ̂

m
H12 ⊗ ρ̂m3 (7.3)

+ σ5
∑
n

ω5
nρ̂

n
H13 ⊗ ρ̂n2 + σ6

∑
l

ω6
l ρ̂

l
H23 ⊗ ρ̂l1.

Here ∑6
i=1 σi = 1, ρ̂cab , where a and b represents the LF modes, could be the density

operators of either entangled or separable states, and ρ̂cHa are entangled density
operators for the HF mode with the LF modes.
We note that Eq. (7.3) is a biseparable representation of the LF modes. However
as we have mentioned above, ρ̂ cannot be represented as that. Thus, the only way
to satisfy both results is by considering the whole state as an entangled one. Such
that the density operator should be written as:

ρ̂ =
∑
j

ωj ρ̂
j
H123. (7.4)

Therefore, we have shown that the four parties are entangled. This type of entan-
glement is similar to the tripartite state formed by the pump, signal and idler modes
obtained at the output of an optical parametric oscillator (OPO) [84].
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8 Conclusion

“Let me say it again: You must not come lightly to the blank page.”

Stephen King

In this thesis we have studied the capability of a nonlinear optical medium to genera-
te quantum entangled states of light. In order to do this, we have used the quantum
approach to the interaction of light with the nonlinear medium. In particular, we
have observed that these kind of systems can be studied by using the well-known
phase-space methods of quantum optics.
In the results of this thesis, we report that at the output of SFG the three low-
frequency modes are entangled and, even more, present tripartite steering. It was
necessary to make a distinction between low-frequency (â3 → â1â2â3) modes in order
to certify the creation of this tripartite entangled state. In addition, we concluded
that the high-frequency mode is entangled with each of the low-frequency modes
and with the composite system of them. Moreover, using these last results we found
that the output formed by all the modes form a four modes multicolored entangled
state.
Our calculations, showed that, even when third order derivatives where dropped in
order to obtain a Fokker-Planck type equation, all results are consistent and, even
more, satisfies perfectly the monogamy relation. Curiously, even when we observed
that the low-frequency modes are steerable by each other, the witness for bipartite
steering was not able to certify it. We conclude this might be due to the monogamy
relation and not for a lack of bipartite steering.
Finally, since we have observed that this phenomena has a great variety of correla-
tions at different levels, this thesis provides a new way to generate four entangled
multicolored modes and tripartite steerable states in one single experiment.
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