

 POSGRADO INTERINSTITUCIONAL EN CIENCIA Y TECNOLOGÍA

DEEP Q-LEARNING IN ROBOTICS: A

PATH PLANNING ALTERNATIVE

TESIS

QUE PARA OBTENER EL GRADO

ACADÉMICO DE

MAESTRO EN CIENCIA Y TECNOLOGÍA

EN LA ESPECIALIDAD DE

MECATRÓNICA

PRESENTA

ING. GESEM ELIAB GUDIÑO MEJIA

DIRECTOR DE TESIS
DR. GERARDO RAMON FLORES COLUNGA

LEÓN, GUANAJUATO, AGOSTO, 2022.

Deep Q-Learning in Robotics: A path planning
alternative

i

Acknowledgments

To Him who sits on the thrown, to him who lives forever and ever, be all the glory,

be all the honor and be all the power.

Thanks to Consejo Nacional de Ciencia y Tecnología (CONACYT) who granted me the

scholarship with which i was able to develop this work and continue with my professional

formation. To all academic authorities of Centro de Investigaciones en Óptica (CIO). To

Dr. Gerardo Flores, who was my advisor during the development ant thought me valuable

lessons in the way. To my mother who always supported my dreams and ambitions, who

pushed me forward even when i didn’t wanted and gave up her dreams to live her sons.

To my family, friends and colleagues that where beside me on this long and hard journey,

thanks for your support.

ii

Abstract

Literature shows that mobile robot research is an active field of study. An example is [1],

which presents research on Human­Robot collaboration in the field of agriculture, and il­

lustrates how this interaction can improve efficiency in agricultural activities. In addition,

recent advances in the field of artificial intelligence (AI), have made it possible to find more

efficient solutions in the field of robotics and computer vision. However, robotics is partic­

ularly challenging domain for any learning algorithm. A robot learning algorithm should be

able converge quickly since it is difficult to carry out a million trials on such systems. It also

should allow the robot to incrementally improve its performance while it is learning. In this

work a development of such learning algorithms is presented. Using Deep Q­Learning,

this work goes from simple robotic systems that learn how to balance a pendulum to more

complex ones like performing path planning tasks that allow mobile robots to learn new

behaviors in an initially unknown environment. Experiments on simulated environments

have been presented and results have proved to be suitable for real world tests.

iii

Contents

List of Figures vi

List of Tables viii

1 Introduction 2

1.1 Overview and Motivation . 2

1.2 Justification . 3

1.3 Goal of the Thesis . 3

1.4 Problem Definition . 4

2 Theory Fundamentals 5

2.1 Position and Orientation . 6

2.2 Path planning concepts . 7

2.3 An Artificial Intelligence Alternative . 9

2.3.1 Artificial Neural Networks . 10

2.3.2 Reinforcement Learning . 11

2.3.3 Deep Q­Learning . 13

iv

2.3.4 Applications . 15

3 Methods and Results 17

3.1 Experiment A. Inverted Pendulum System 19

3.2 Experiment B. Cubli Robotic System . 21

3.3 Experiment C. 3 DOF Robotic Arm . 24

3.4 Experiment D. Path Planning for a UAV . 27

3.4.1 Experiment D.1 . 29

3.4.2 Experiment D.2 . 31

3.4.3 Experiment D.3 . 31

3.4.4 Experiment D.4 . 33

4 Conclusions and Future Work 38

4.1 Conclusions . 38

4.2 Future Work . 39

5 Bibliography 40

v

List of Figures

2.1 Relative position of point P w.r.t frames A or B. 6

2.2 Diagram showing a simple fully connected ANN. 11

2.3 Figure showing a RL learning cycle, where the agent is the algorithm that

makes the decision of what action to take in an instant of time given a state

and a reward. The environment is everything outside the agent. 12

2.4 Diagram showing the objectives for the target and prediction networks in a

Deep Q­Learning training. 15

3.1 Diagram showing the variables for an inverted pendulum system. 20

3.2 Results obtained for an inverted pendulum system after a training of approx­

imately 100 episodes. 21

3.3 Results obtained for Cubli robotic system after a training of approximately

2000 episodes. 23

3.4 Results obtained for a 3 DOF robotic arm after a training of 5 thousand

episodes. 26

vi

3.5 Image showing a simplified version of the environment used in this experi­

ment. Each red dot represents a position within the UAV workspace defined

by λ , the blue dot represents the target coordinate and the frame shows the

origin point from where the agent should start the planning. 28

3.6 Figure showing results for a workspace with lambda= 0.5m and delta= 0.125m. 31

3.7 Figure showing results for a workspace with λ = 2m, and δ = 0.1m. 32

3.8 Figure showing results for a workspace with λ = 3m, δ = 0.1m and an ob­

stacle O of 1.5m3 represented as a black cube within the workspace. 34

3.9 Figure showing the results obtained after a 3,000 episodes training for a path

planing algorithm with two obstacles in its workspace. 35

3.10 Figure showing a) the Gazebo simulation environment, where a UAV follows

the path generated by the ANN, and b) the visualization environment in RViz,

where the agent generates the path for the UAV. 37

4.1 This figure shows one of the future work applications that can be done by

continuing this work. A 6 DOF robotic arm with the environment that repre­

sents its collision free space can be observed as well, where the red dots

represent the limits of this space, the blue point represents the initial position

for the end­effector and the blue cube represent its goal. 39

vii

List of Tables

3.1 Observation and action spaces for an inverted pendulum system. 19

3.2 Observation and action spaces for Cubli robotic system. 22

3.3 Observation and action spaces fro a 3 DOF robotic arm. 25

3.4 Table showing the ANN architecture fro this experiment. 25

3.5 Table showing 3 different configurations for training. 26

3.6 Comparison table between 4 different sub­experiments 28

3.7 Observations and actions spaces, where (ax,ay,az) represents the agents

position a, and (gx,gy,gz) the goal or targets position g. 29

3.8 ANN architecture for a path planning task training. 30

3.9 Table showing the training parameters used for the training of D.1. 30

3.10 Observation sapce, where (ax,ay,az) represent the position of the agent a,

(gx,gy,gz) the target position g, and the coordinates (Oix ,Oiy ,Oiz) and (O fx ,O fy,O fz)

the two corners defining the obstacle O. 33

viii

3.11 Observations space, where (ax,ay,az) represents the agents a position, (gx,gy,gz)

the targets g position, coordinates (O1x ,O1y) and (O2x ,O2y) the centers of

each obstacle respectively and dO1 and dO2 the Euclidean distances from

the agent to the edge of each obstacle. 35

3.12 Table showing differences between trainings T1 and T2 for this experiment 36

3.13 Table showing a comparison of reliability results between trainings T1 and T2 36

1

CHAPTER 1

Introduction

The general hypothesis of this thesis is to investigate and proof that

Deep reinforcement learning algorithms can be used to train robotic systems to navigate

autonomously in unknown environments and avoid obstacles that can be along their path,

expanding the applications of autonomous robotic systems in the real world.

In order to do that, the following work is presented.

1.1 Overview and Motivation

Automation and mechanization are at a turning point thanks to the recent research growth

in Artificial Intelligence (AI), this allows people to program tasks on computers to enable

complex systems to learn how to perfect their skills through experience, just as we humans

do.

2

In addition, several recent works on Human­AI and Human­Robot collaboration has mo­

tivated this work to investigate solutions for intelligent systems to interact with the world

autonomously. In order to achieve that, very good path planning algorithms like the ones

reviewed in this work have been developed.

1.2 Justification

Enabling robotic systems to interact autonomously in the real world brings enormous ben­

efits, like speeding up manufacturing processes, making them more efficient and more

cost­effective or reducing human danger exposure by developing aerial vehicles that can

inspect high tension electric lines.

1.3 Goal of the Thesis

With this motivation in mind, the main goal of this work is as follows.

To investigate automatic learning methods capable of determining a collision free

path that enables robotic systems to navigate on an unknown environment.

This can be subdivided into four objectives.

1. Exhaustively review the state of the art methods and theory behind automatic learn­

ing for robotics and path planning.

2. To find and study available methods, tools and technologies suitable for obstacle

detection and path planning.

3. To implement the found algorithms in a simulation environment in order to extract

results for evaluation.

4. Finally, to demonstrate the suitability for the application addressed in this thesis.

3

1.4 Problem Definition

Aiming to accomplish the task introduced in section 1.3, this thesis means to coverage the

path planning problem in the particular for the case of an Unmanned Aerial Vehicle. This,

in turn, arises the problem of avoiding obstacles that may be along the path in an unknown

environment.

Therefore, in chapter 2 a review of previews studies on path planning for robotic systems

is done. Then, in chapter 3, the methods along with tools and available technologies to

overcome this problem are presented.

4

CHAPTER 2

Theory Fundamentals

The word ”Robot” was first introduced in a 1921 Czech science fiction play “Rossum’s Uni­

versal Robots” by Karel Capek [2]. Back then, robots where represented as androids while

the Czech word was derived from the word for slave. But it was till 1954 when George C.

Devol created and patented the first machine that we now consider as a robot [3]. The

system was composed by a mechanical arm with a gripper, it was mounted on tracks and

had a sequence of motions encoded by magnetic patterns [4].

Nowadays we understand the concept of a robot as a ”Mechanical system that can sense

its environment and plan a set of actions in order to achieve a goal”. These actions can go

from managing the speed of a quad­rotor’s motors to make it go to a desired position, to

controlling the position of a robotic arm tomake it reach a goal or grasp an object of interest.

In order to plan these sets of actions, the robot must have information about its environ­

ment. The way to achieve that, is through sensors that can obtain, and in some cases,

5

Figure 2.1: Relative position of point P w.r.t frames A or B.

even pre­process the data. Some examples of sensors can be a camera, an optical en­

coder or even a GPS.

After a sensor receives the information about the environment, its usually converted into

an electrical signal that a controller board can read and interpret through a programmed

algorithm. Then, another algorithm is in charge of taking the corresponding actions based

on the robot state (where state refers to the final interpretation of all sensors readings).

2.1 Position and Orientation

A very important point in robotics is to represent objects position and orientation in space.

For simplicity purposes an object can be represented as a point P in a coordinate frame A,

just as it is shown in fig. 2.1.

However, if the same object is referenced under another coordinate system (point of view),

e.g. B, it is necessary to find the homogeneous transformation of frame B w.r.t A as it can

be seen in equation 2.1.

6

pa = T A
B · pb (2.1)

Where pa and pb are the coordinate vectors of point P w.r.t frame A and B respectively,

and T A
B is the homogeneous transformation matrix of frame B w.r.t frame A, representing

the rotation and translation of one frame with respect to the other. Equation 2.2 shows the

general form of a homogeneous transformation matrix between frames A and B.

T A
B =

 R3×3 t3×1

01×3 1

 (2.2)

Where vector t represents the translation of a body w.r.t a frame. In the same way, the

rotation matrix R is used to describe the orientation of a body. This orientation is given in

the form of a 3 dimensional vector containing the respective rotation angle for each of the

rotation axis. This means that there exists three different rotation matrices, one for each

axis [5].

Rx(α) =


1 0 0

0 cosα −sinα

0 sinα cosα

 Ry(β) =


cosβ 0 sinβ

0 1 0

−sinβ 0 cosβ

 Rz(γ) =


cosγ −sinγ 0

sinγ cosγ 0

0 0 1



2.2 Path planning concepts

A basic path planning goal is to generate a set of states that all together connect a start

point or configuration S and a goal configuration G, while avoiding collisions with obsta­

cles [6].

7

A configuration, in this context, describes the pose of a robot or robot state, while a config­

uration space C is the set of all the possible configurations. It’s important to mention that

if, for example, the robot and obstacle geometries are described in a 2D or 3D workspace,

the path could be in a higher­dimensional configuration space. To understand more about

this, look at the following examples.

If the robot can be modeled as a single point in a 2D plane or workspace,C will be as well a

plane. Therefore C can be represented using two parameters (X ,Y). Although, if the robot

can be translated and rotated, even though the workspace is still in 2D,C is part of the spe­

cial Euclidean group SE(2) = R2 ×SO(2), therefore, the configurations can be represented

with parameters (x,y,θ). Another good example is, for instance, a robotic manipulator with

n revolute joints. In this case C will be of n dimensions.

A set of configurations that is not in a collision state with obstacles is defined as a collision

free space or C f , then, C f is the set of all forbidden configurations [7].

Then, a path planning algorithm should be able to find a configuration inC f for the robot. In

order to determine if a given configuration is in C f , algorithms must be able to run collision

detection tests to see if the robot’s geometry is colliding with any part of the environment’s

geometry.

There are very well known algorithms that have been used in the context of this work such

as Probabilistic Route Maps (PRM) [8] and Rapid Random Exploration Random Trees

(RRT) [9]. Also, a large number of algorithms have been improved based on them. Like

SRRT which resulted in a smoother trajectory, and faster exploration [10]. However in

the case of RRT based methods, the randomness of exploration makes the trajectories

planned by this algorithm have little consistency and sometimes be extremely time con­

suming.

8

For this reason, a lot of research has been done trying to find a consistent, fast and optimal

method, such is the case of [11] where the authors present an algorithm called SD­SMAH∗

applied on a 6 degrees of freedom (DOF) robotic manipulator.

2.3 An Artificial Intelligence Alternative

Artificial Intelligence (AI) is the scientific field of computer science that focuses on the

creation of programs and systems, which can exhibit behaviors considered intelligent or

human­like. Typically, an AI system is capable of analyzing large amounts of data in order

to identify patterns and trends. Therefore, it is possible to formulate predictions automati­

cally, quickly and accurately.

Machine Learning (ML), according to Arthur L. Samuel in 1959, is defined as ”A field of

study that gives computers the ability to learn without being explicitly programmed” [12].

There exists three basic types of machine learning:

• Supervised learning: This type of learning maps an input to an output based on given

examples. The algorithm analyzes the training data iterately and produces a function

which can be used for mapping new data.

• Reinforcement learning: Here the algorithm, called agent, takes actions that inter­

act with a certain environment and produces a numerical value called reward. The

general purpose is to find a function that maximizes the cumulative reward.

• Unsupervised learning: The model works on its own to find patterns in the given data.

Unlike supervised learning it doesn’t require labeled data.

9

2.3.1 Artificial Neural Networks

Artificial Neural Networks (ANN) are ML algorithms based on how biological neural net­

works work. Biological neurons receive signals through synapses located on the mem­

brane of the neuron. When the signal received is strong enough, the neuron activates and

emits a signal, this signal might be sent to another synapse, and activate other neurons.

When speaking of artificial neurons, the above concepts are applied in a basic way. Then,

artificial neurons consist basically of inputs, which then aremultiplied by weights to simulate

the strength of the signal, and then computed by a mathematical function that determines

if the neuron activates or not. With this, it can be deduced that by adjusting the weight of

an artificial neuron, a desired output for a specific input can be obtained. The mathemati­

cal operations that these neurons commonly compute are described as follows ϕ(∑n
i wixi)

where wi is the weight of neuron i, xi is the value of neuron i and ϕ is a non­linear activation

function [13].

An ANN then consists of individual artificial neurons located in a series of clusters called

layers that, in some way, are connected to each other. A common architecture is when the

neurons in each layer are connected to neurons in the next layer. Each individual neuron

performs the mathematical computation described above and then transmits its results to

all the nodes to which it is connected [14]. A diagram that shows a common fully connected

ANN is shown in figure 2.2.

This ANN’s typically propagate their signals to the next layer as mentioned above, this

action is known as feeding forward the network. To find the correct set of weights for an

ANN, an algorithm called back­propagation is commonly used. In simple terms, after each

feed forward, the back­propagation method optimizes the network parameters (weights

and biases) using gradient decent over the total error of the network [15]. The total error

of the network can be obtained using the mean square error function.

10

Input Layer

Dense hidden Layers

Output Layer

Artificial Neural Network

Figure 2.2: Diagram showing a simple fully connected ANN.

E =
1
2n

n

∑
i
(yi − ŷi)

2 (2.3)

Where yi is the desired output, ŷi is the ANN output and n is the total number of output neu­

rons. Finally, to update the weights of the network, back­propagationmethod uses gradient

decent over the error with respect to the weights as follows θ t+1 = θ t −α ∂E
∂θ where θ is the

set of all weight in the network, θ t are the weights in step t and α is a learning rate factor.

2.3.2 Reinforcement Learning

When speaking about Reinforcement Learning (RL), the first thing that may pop in to our

minds is an interactive learning, where there is an instructor observing the behavior of a

trainee, and depending on this observation the instructor offers a positive or negative re­

ward, all this while the trainee tries to follow a set of instructions. Well, this is not far from

the actual definition of RL. “RL learns how to map situations to actions so as to maximize

11

a numerical reward signal” [16].

Now, lets define the trainee as an agent, as it is usually called in RL. The ultimate goal of

the agent is to maximize its reward over time. With a correct reward function, the agent can

achieve a good performance on the task that has been given. This function depends on

the observations that come from the interaction of the agent with its environment. So, the

agent on a state st takes an action a that leads it to sate st+1 (interaction with environment),

then given this transition the reward function r computes the corresponding reward, and

so on. This cycle can be observed in fig 2.3.

Agent

Environment

Figure 2.3: Figure showing a RL learning cycle, where the agent is the algorithm that
makes the decision of what action to take in an instant of time given a state and a reward.
The environment is everything outside the agent.

RL can broadly be separated into two main groups: model free and model based algo­

rithms. The main difference between these two algorithms is that model free do not learn

transition functions to make predictions of future states and rewards. Good examples of a

model free algorithms are Q­Learning and Deep Q­Learning.

12

2.3.3 Deep Q­Learning

In Q­Learning one of the main goals is to learn the set of Q­Values for an environment.

The Q­value is determined by bellman’s equation as follows [17].

Q(s,a) = r(s,a)+ γ max
a

Qt+1(st+1,at+1) (2.4)

Where γ is a discount factor which controls the contribution of reward r further in the future,

s and a are current state and action respectively as mentioned in the previous section. In

other words, the Q­value given by Q(s,a) is the immediate reward r plus the highest Q­

value possible from the next state st+1, and serves as an indication for how good it is for

an agent to pick a while being in s. Explicitly choosing the best known action at s is known

as exploitation.

One of the challenges that arise in RL, is the trade­off between exploration and exploitation.

The dilemma is that neither of them can be pursued exclusively, exploitation maximizes

the expected reward on the immediate term, but exploration may produce a better reward

accumulation in the long run.

A common strategy for tackling this problem is the Epsilon Greedy Exploration Strategy.

Given a probability ε, the agent selects a random action (explore), and, with probability

1− ε, it selects the action that has a maximum Q­value (exploit).

In Deep Q­learning, a neural network maps input states to action/Q­value pairs. However,

it is important to note that since in Deep Q­Learning the main objective of the ANN is to get

good action/Q­value pairs, the target ŷi in the loss function E presented in equation 2.3 will

be Q(s,a|θ) where θ still represent the network weights. Then, the complete loss function

will be as follows [18].

13

E = (r(s,a)+ γ max
a

Q(st+1,at+1|θ)−Q(s,a|θ))2 (2.5)

Where the left hand side of the subtraction is the target Q­value and the right hand side is

the predicted Q­value. Since the target is not static, because RL doesn’t use pre­labeled

data, and actually, it is frequently changing as the agent continuously learns the Q­value

and action ground truths. The training is not stable. To overcome this issue, a separate

network is used to estimate the target. This target network has the same architecture but

with frozen weights. Then, every n steps, the weights from the main prediction network

are copied to the target network. This leads to more stable training, keeping the target

function fixed for n steps. Please see figure 2.4 for a better understanding of this process.

Next, to update the prediction and target networks, Deep Q­Learning agents use a tech­

nique called Experience Replay. This means that instead of running the algorithm on each

state/action pair as they occur, the agent stores experiences with the form [s,a,r,st+1] in a

replay buffer and then trains over a small batch that is randomly sampled from it.

Summarizing the Deep Q­Learning process into steps, it will be as follows.

1. Feed the state s to the Deep Q Network.

2. Select an action a using the epsilon­greedy policy, the system will interact with its

environment and return a reward r given the reward function as shown in figure 2.3.

3. Store this transition in with the form [s,a,r,st+1] in a replay buffer.

4. Sample random batch from the replay buffer and compute E using equation 2.5.

5. Update the prediction network weights using back­propagation and gradient decent

algorithm to reduce E.

14

Target ANN Prediction ANN

 Update ? every n
steps

Input (s)

Figure 2.4: Diagram showing the objectives for the target and prediction networks in a
Deep Q­Learning training.

6. Copy the prediction network weights to the target network every n steps

7. Replay until getting the maximum accumulated reward

2.3.4 Applications

RL alongside ANN in robotics has been growing enormously in the past years. Applica­

tions go from robotic arm domain, like learning how to grasp objects in cluttered environ­

ments [19] or perform high precision assembly tasks [20], to autonomous flight domain,

where RL is being used to design controllers for hybrid air crafts like in [21] or [22] where

RL is used for autonomous landing on moving platforms.

Of course, path planning is not the exception. Enabling robots to autonomously navigate

15

in different environments is essential for real­world robotic deployments. Traditional nav­

igation frameworks employ Simultaneous Localization and Mapping (SLAM) [23] to map

an unknown environment to then move to their destination using path planning algorithms.

However, recent works that use Deep RL have shown to be promising for this field, like

in [24] [25] [26] where a mobile robot learns how to move around an unknown environment

using Deep RL.

As it wasmentioned before, an important part of path planning algorithms is obstacle avoid­

ance. A very interesting work on this topic has been presented in [27], where an obstacle

avoidance algorithm based on monocular vision and trained with Deep RL is developed.

However, the use of an image as input for an algorithm often requires bigger computational

power than other sensors. That’s why in [28] a path planning algorithm using 2D­laser data

as input and Deep RL has demonstrated to work on both simulated and real world envi­

ronments.

16

CHAPTER 3

Methods and Results

In this section, the experimental process implemented to achieve the goals stated in sec­

tion 1.3 is described.

As mentioned in the previous chapter, reinforcement learning is a technique based on the

interaction of the system (in this context: Robotic) with an environment. Consequently,

one of the challenges to overcome is the lack of control over the robot’s movements dur­

ing training, which, due to cost and safety issues, has led several research groups around

the world to develop simulation platforms and tools, with which training can be carried out

safely and at lower cost.

Therefore, in this work, a set of open source software tools for robotic simulations and RL

trainings are used. These tools are explained below.

The Open AI developers team has created a set of tools called Gym [29], which has gained

17

popularity among the community of ML algorithm developers. These open source tools

allow the user to use virtual environments to implement their RL algorithms, as well as

compare results with those of a large community of developers around the world.

On the other hand, robotic systems are composed of a large number of sensors and ac­

tuators with different communication protocols, frequencies and data types. That is why,

in this work, it was decided to use the Robotic Operating System (ROS) [30]. This open

source framework provides simulation and data visualization tools, hardware abstraction

functionality, controllers, and communication between modular processes called nodes

through TCP protocol.

Communication in ROS is based on a client­server architecture within a local area network

(LAN), so that different nodes can send structured information through messages in topics,

and, as well, some other process can obtain such data by registering as a subscriber to

that same topic. Thanks to ROS and its large and active community, complex software

architectures can be built while maintaining the advantages of modularity and open source

software.

In [31] a breakthrough in the topic of simulation and learning has been presented, where

tools such as ROS and simulation platforms such as Gazebo are used to extend Gym

capabilities. However, when using virtual environments for training, new challenges are

generated. Sim to real, is a research area that studies how to approximate the behavior

of dynamic systems in a simulation to real systems. In [32] and [33], techniques that get

very close approximations to the behaviors of a real system are presented.

Therefore, this work starts with simple systems training on simulation. As a first experi­

ment, the training of an inverted pendulum system is presented.

18

3.1 Experiment A. Inverted Pendulum System

The inverted pendulum system is a well known mechanism that consists of a rail on which

a cart can slide, and, at the same time, this cart carries a pendulum that can rotate freely.

The system must be instrumented so that the angle of the pendulum with respect to the

normal can be obtained, as well as the position and velocity of the cart. A diagram of such

a system can be seen in figure 3.1.

The goal of this training then, is to keep the pendulum vertical, or, in other words, balanced,

by controlling its displacement along the rail. Having said that, the observation space for

this system will be continuous and consists of the position of the cart along the rail, its

linear velocity and pendulums angle position and angular velocity. As for the action space,

there are two discrete actions, which correspond to a constant velocity in each direction

(X ,Y). Since this is a reinforcement learning simulation, each of the observations has a

range within which the agent can consider that the episode has not ended. These ranges

can be observed in the table 3.1.

Observation Min Max
Cart position (x) ­4.8 4.8
Cart velocity (v) ­∞ ∞
Pendulum angle (θ) ­24 grad 24 grad
Pendulum angle velocity (ω) ­∞ ∞
Action Discrete value
Left movement 0
Right movement 1

Table 3.1: Observation and action spaces for an inverted pendulum system.

For this system’s training, the deep reinforcement learning method known as DeepQ­

learning was used with the following training parameters. γ = 0.95, α = 0.001, εmax = 1.0,

εmin = 0.01, εdecay = 0.95. Where γ represents the discount factor, α represents the learning

rate, and the values of ε represent the maximum and minimum values of the exploration

19

Figure 3.1: Diagram showing the variables for an inverted pendulum system.

factor and its decay factor over training respectively.

Using these values and through a training of about 100 episodes, good results were ob­

tained, accumulating an average reward of 195, which means that that the pendulum re­

mained balanced for an average of 195 steps in each episode. This, given that the reward

function for this experiment was equation 3.1.

R =

1 if −24 < θ < 24

0 else
(3.1)

The result of this training in terms of the accumulated reward per episode can be seen in

figure 3.2a. Likewise, a snapshot of the model in Gazebo simulation environment can be

seen in figure 3.2b.

After obtaining these results in a relatively simple system, with respect to the complexity

of the observation and action spaces and the overall goal, it was decided to continue with

the experiments in a more complex system.

20

(a) Training chart showing the accumulated aver­
age reward per episode.

(b) Figure showing the cart balancing the
pendulum in Gazebos simulation environ­
ment.

Figure 3.2: Results obtained for an inverted pendulum system after a training of approxi­
mately 100 episodes.

3.2 Experiment B. Cubli Robotic System

For the following training, a system known as cubli [34] was used. This system consists of

a cube with 3 rotating disks inside, each of which is designed to control one of the different

euler angles, roll angle ϕ , pitch angle θ , and yaw angle ψ. This small robotic system works

by accelerating each of the momentum disks to then stop and transfer the angular momen­

tum generated to the cubes frame, causing it to rotate in the direction and orientation of

the disk.

In order to keep the experiment simple, only one momentum disk will be used, the one

corresponding to ϕ . Thus, the objective of this training will be to control the rotations di­

rection of the disk, its velocity and whether it brakes or not, this in order to make the cube

advance the greatest amount of distance in the direction corresponding to ϕ represented

as Y . In the same way as in the previous experiment, the system will have constraints that

will define whether an episode is finished or not, these constraints are given by the allowed

ranges for each observation within the observation space. The observations and actions

spaces for this experiment are described in table 3.2.

21

Observations Min Max
Disk velocity ­∞ ∞
Distance in Y 0 2.0 m
Lineal Velocity in Y ­∞ ∞
ϕ 0 2π rad
θ 0 0.2 rad
ψ 0 0.1 rad
Action Discrete value
Rotate the disk cw 0
Rotate the disk ccw 1
Brake disk 2
Increase velocity 3
Decrease velocity 4

Table 3.2: Observation and action spaces for Cubli robotic system.

Once the observation and action spaces were defined, the reward function was defined as

follows

R = ∆Y +VY −|sinψ| (3.2)

where ∆Y represents the displacement along Y and VY is linear velocity in Y .

Next, several training sessions were carried out with the goal of observing and learning

more about the interaction of robotic systems with their environment and how this is re­

lated to reinforcement learning. Being a more complex robotic system due to the number

of observation variables and number of possible actions, the results with respect to the

cumulative reward were less satisfactory than in the previous experiment.

In this experiment it was observed that although a slight improvement in reward accumu­

lation was noticed, the cubli was not able to reach the desired value. However, the system

did increase the traveled distance on Y ­axis as training progressed. This behavior was

because the agent found a sub­optimal solution to the problem. Causing the cubli system

22

to vibrate in the Y direction to achieve the goal.

Given this result, the reward function was modified by adding w1,w2,w3 to appropriately

weight the different observations and influence cublis behavior during the training. The

new reward function is as follows R = ∆Y w1+VY 12−|sinψ|w3. Where values of 2.0,1.0 and

0.5 were assigned for the weights w1,w2,w3 respectively.

After training the model with this new reward function, better results were obtained, making

the cubli system advanced significantly in the Y direction. Likewise, at the end of the train­

ing, the cubli system was able to make some complete turns in ϕ , achieving the training

goal. Please refer to figure 3.3 to see the final training results and a screen capture of the

environment in which the training was performed.

(a) Training chart showing the accumulated aver­
age reward per episode.

(b) Figure showing the Cubli robotic sys­
tem in Gazebo simulation environment.The
Black cube represents Cublis frame and the
red disk represents the momentum disk cor­
responding to ϕ .

Figure 3.3: Results obtained for Cubli robotic system after a training of approximately 2000
episodes.

Through this experiment, the importance of the reward function and the impact it has on

the behavior of the robotic system during training was demonstrated.

23

3.3 Experiment C. 3 DOF Robotic Arm

The goal of this experiment is to make a 3 degrees of freedom (DOF) robotic arm learn a

policy that allows it to position its end effector (e) as close as possible to the goal (g), in

other words, to reduce the distance between both points (d), this through the configuration

of its joints, where each joint has an angular position called θ1,θ2,θ3 respectively.

Figure 3.4b shows a snapshot of the virtual environment used to carry out the training,

where the green dot represents the position e and the red dot the position g. It should be

noted that at the end of each episode the robot must return to an initial position given by a

fixed configuration, called (θ1i,θ2i,θ3i). Likewise g varies randomly within the configuration

space of the robot.

For the development of this experiment, the observations and action spaces were de­

signed. In this case, discrete actions were chose to reduce the complexity of the algorithm

to be used. Then, the actions space is composed of 8 different actions, which correspond

to the increment or decrement of each joint plus the increment or decrement of all the joints

at the same time. This increment is defined as δ . In the other hand, the position of the

goal, the position of the end effector and the Euclidean distance between them were taken

as observations. A list of the actions and observations spaces can be seen in the table 3.3.

Once the observations and actions spaces were defined, the ANN to be used for the train­

ing of the robotic arm was designed. Since the observations space is very small, it was

chosen to design a very simple architecture with few layers to avoid gradient vanishing

problems and reduce the amount of processing required between each action. The ANN

architecture can be seen in the table 3.4.

Recalling that the main goal of the RL is to maximize the long­term reward, the reward

24

Observations Min ­ Max
Goal position (gx,gy,gz) −∞/∞
End effector position (ex,ey,ez) −∞/∞
Distance between end effector and goal (d) −∞/∞
Action Discrete value
Increase joint 1 0
Decrease joint 1 1
Increase joint 2 2
Decrease joint 2 3
Increase joint 3 4
Decrease joint 3 5
Increase all joints 6
Decrease all joints 7

Table 3.3: Observation and action spaces fro a 3 DOF robotic arm.

Layer Neurons Activation function
Input layer 6 ReLU
Dense layer 64 ReLU
Dense layer 64 ReLU
Dense layer 32 ReLU
Output layer 8 SoftMax

Table 3.4: Table showing the ANN architecture fro this experiment.

function is a very important part, as it defines what the agent will consider as good or bad

decisions. Then, given the goal of this experiment, the following reward function was de­

fined.

R =


−1 if dt ≥ dt−1

0 if dt < dt−1

1 if −σ < dt < σ

(3.3)

Where σ represents the tolerance value at which the end­effector is considered to have

reached the goal position. dt and dt−1 are the distances from the end­effector to the target

25

point at time t and t −1 respectively and R is the reward value.

In order to find the correct learning parameters, several trainings were conducted with dif­

ferent configurations. A table with the 3 best configurations is presented in table 3.5.

Training α γ εmax εmin εdecay δ
T1 0.001 0.2 0.7 0.01 0.9995 0.01
T2 0.001 0.9 0.5 0.01 0.9995 0.01
T3 0.001 0.95 0.5 0.01 0.9995 0.05

Table 3.5: Table showing 3 different configurations for training.

Each training was 5 thousand episodes. In the end, a satisfactory result was achieved, the

end effector of the robotic arm was able to reach σ tolerance range for the goal position in

each episode. A comparison of the results obtained in terms of the cumulative reward of

the three trainings can be seen in figure 3.4a.

T2 T3T1

(a) A comparison chart between T1, T2and T3 training
configuration in terms of average cumulative reward
per episode.

(b) Figure showing the virtual environ­
ment used for the training of a 3 DOF
robotic arm

Figure 3.4: Results obtained for a 3 DOF robotic arm after a training of 5 thousand
episodes.

26

It can be observed that the best training was T3, bringing its final average value close to

0, demonstrating that most of the steps within the episodes resulted in a decrease of d

according to the equation 3.3, achieving the objective of positioning e within the σ range.

Next, the last experiment of the work is presented, being a proposal for the solution of the

path planning problem for Unmanned Aerial Vehicles a.k.a UAVs.

3.4 Experiment D. Path Planning for a UAV

The main goal of this experiment is to find an obstacle­free path that a UAV can follow to

avoid collisions. The available inputs or observations are the position of the UAV in space,

and the position of these obstacles with respect to the UAV. In a real case, the position of

these obstacles will be given by sensors that the UAV carries with it, these can be RGB­D

type sensors, stereoscopic cameras, or LiDAR type radars among others. These sensors

are limited by a detection range, this means that the environment in which our agent can

act, taking into account that the positions of the obstacles are required as an observation,

is limited by this range that will be defined as λ .

Given this constraint and for the sake of simplicity, it was decided to model the environ­

ment as a three­dimensional grid, where the size is defined by λ . This in turn allows us to

define the observations and actions spaces as discrete, and further simplifying the prob­

lem. Each cell in this space is separated by a constant distance denoted as δ (not to be

confused with the δ mentioned in the previous experiment). Together, this generates a

network of nodes that each represent a position in space to which the UAV can move. A

simplified version of the above environment can be seen in figure 3.5.

Then, the agent starts at a random position at one end of the cube and is assigned a target

position, with this, the agent must find a sequence of actions (explained below) that at the

27

?

?
?

Figure 3.5: Image showing a simplified version of the environment used in this experiment.
Each red dot represents a position within the UAV workspace defined by λ , the blue dot
represents the target coordinate and the frame shows the origin point from where the agent
should start the planning.

end can constitute a path from the starting point to the target point.

To achieve this goal, this experiment was divided into 4 parts, each one more complex

than the previous one, starting with a small workspace without obstacles, until reaching

a size close to a real world environment, with obstacles with positions that vary in each

episode. The table below shows the main differences between these experiments.

Experiment λ Obstacles δ
D.1 0.5 0 0.125
D.2 2.0 0 0.1
D.3 3.0 1 0.1
D.4 3.0 2 0.1 y 0.5

Table 3.6: Comparison table between 4 different sub­experiments

28

3.4.1 Experiment D.1

This experiment is the simplest, having λ = 0.5m, a δ = 0.125m and no obstacles. Once the

objective and the strategy to be used were defined, the observations and actions spaces

were designed. The action space then consists of 6 different actions corresponding to the

basic displacements (forward, backward, up, down, right, left). On the other hand, the

observations space is composed of the agent’s current position and the target position. It

is important to emphasize that both are always inside the workspace, represented as the

red cube in the figure 3.5. The observation and action spaces are explained in table 3.7.

Observation Min Max
ax 0 λ
ay 0 λ
az 0 λ
gx λ λ
gy 0 λ
gz 0 λ
Action Discrete value
Up 0
Down 1
Left 2
Right 3
Forward 4
Backward 5

Table 3.7: Observations and actions spaces, where (ax,ay,az) represents the agents posi­
tion a, and (gx,gy,gz) the goal or targets position g.

For this experiment, the reward function gives a value of −1 for each step in which the

agent has not reached the target position, in addition, a value of − d
10 is added where d

is the Euclidean distance from the agent’s current position to the target position. This is

done in order to negatively weight the time in which the agent achieves its task and, as

well, negatively weight long distances within the path. Thus, the agent is encouraged to

reach the target in the less amount of steps and traveling the shortest possible distance.

29

On the other hand, a value of 10 is awarded if the agent manages to reach the target. The

reward function is described by the following equation.

R =

−1− dt
10 if dt > σ

10 if dt ≤ σ
(3.4)

Next, and for the same reasons as the previous experiments, it was decided to design a

small neural network with few layers. The architecture can be seen in the table below.

Layer Neurons Activation function
Input layer 6 ReLU
Desne layer 64 ReLU
Desne layer 64 ReLU
Output layer 6 SoftMax

Table 3.8: ANN architecture for a path planning task training.

In addition to the design of the neural network to be used, it is important to define the learn­

ing parameters for training. The list of parameters used for this experiment can be found

in table 3.9.

α γ εmax εmin εdecay
0.001 0.99 1.0 0.01 0.9995

Table 3.9: Table showing the training parameters used for the training of D.1.

Then, the model was trained with the simplified environment shown in figure 3.5. This

training required 2000 episodes with a maximum of 100 steps per episode in about 2min

34sec. The average cumulative reward value at the end of the training was 3.94. These

values can be seen in figure 3.6a and 3.6b.

30

(a) Figure showing the accumulated reward per
episode during the agent’s learning process over
2,000 episodes.

(b) Figure showing the path ob­
tained by the agent after training,
where the set of green nodes rep­
resents the path from the initial
point to the target.

Figure 3.6: Figure showing results for a workspace with lambda = 0.5m and delta = 0.125m.

After obtaining very good results in a relatively short time, it was decided to continue with

the next part of the experiment.

3.4.2 Experiment D.2

For experiment D.2, the training parameters shown in table 3.9 as well as the neural net­

work shown in table 3.8 were used. This training required 3000 episodes with a maximum

of 300 steps per episode in about 31min 20sec. Its average reward value per episode was

­36.72. The results of the training can be seen in figs. 3.7a and 3.7b.

3.4.3 Experiment D.3

For D.3 the workspace was expanded to λ = 3m and δ = 0.1m, and an obstacle O of 1.5m3

was included. It is worth noting that for this experiment the positions of the obstacle and

31

(a) Figure showing the accumulated reward per
episode during the agent’s learning process.

(b) Figure showing the final path
obtained after training, where the
set of green nodes represent the
trajectory from the initial point to
the target.

Figure 3.7: Figure showing results for a workspace with λ = 2m, and δ = 0.1m.

the target vary in each episode, in order to achieve a general policy.

By adding these new variables, it is necessary to update the observations space. So, for

D.3 the observation space is defined in the table 3.10. Being a cube­shaped obstacle, the

position of O must be represented by the two corners that mark its starting and end points,

these corners are denoted as Oi and O f respectively.

In the same way, when adding an obstacle to the environment, it is necessary to define

a collision in the following form Oi < a < O f . It is important to mention that in order to be

a real collision, all the components of the vector a must fulfill the inequality at the same

time. In this case, since the agent is sought to find a collision­free policy, the actions will

be restricted to the collision­free space. This is achieved as follows.

When the selected action brings the agent into a collision state, the agent retains its cur­

rent position, simulating a crash effect, or in other words, it doesn’t decrease d. Thus the

32

Observation Min Max
ax 0 λ
ay 0 λ
az 0 λ
gx λ λ
gy 0 λ
gz 0 λ
Oix 0 λ −1.5
Oiy 0 λ −1.5
Oiz 0 λ −1.5
O fx 1.5 λ
O fy 1.5 λ
O fz 1.5 λ

Table 3.10: Observation sapce, where (ax,ay,az) represent the position of the agent a,
(gx,gy,gz) the target position g, and the coordinates (Oix ,Oiy,Oiz) and (O fx ,O fy,O fz) the two
corners defining the obstacle O.

agent will receive a negative reward given the equation 3.4. This equation motivates the

agent to evade actions that lead to any state that does not reduce d and thus, in this case,

to evade the obstacle.

Following these rules and with the same training parameters and neural network as the

previous experiment, good results were obtained and can be seen in figure 3.8, where the

average cumulative reward value at the end of training was−55.76. To obtain these results,

3,000 episodes with a maximum of 300 steps per episode in about 2hrs 37min were needed.

3.4.4 Experiment D.4

,For this experiment and motivated by the work presented in [35], two cylinder­shaped ob­

stacles with a height of λ and a radius of Θ are included. The design of these obstacles

has two main objectives, 1. to represent the environment in a closer way to reality, trying to

emulate power line poles, trees or any static object that can be represented as a cylinder,

and 2. this design allows to significantly reduce the observations space than if there where

33

(a) Figure showing the accumulated reward per
episode during the agent’s learning process.

(b) Figure showing the final path ob­
tained after training, where the set of
green nodes represent the path from
the initial point to the target.

Figure 3.8: Figure showing results for a workspace with λ = 3m, δ = 0.1m and an obstacle
O of 1.5m3 represented as a black cube within the workspace.

two cube or any other shape obstacles and therefore simplify the learning process.

Then, observations space for this experiment, unlike the previous one, contains the posi­

tions in X and Y of the center of each cylinder and the distance from the position of the

agent to each obstacle edge, this distance is given by dO =
√

(ax −Ox)2 +(ay −Oy)2 −Θ

for each obstacle. The observations space for D.4 can be seen in the table 3.11.

Once the observations space for this experiment was defined, the training was executed in

the same way as the previous one. In order to achieve good results, several training with

different parameters were carried out. The two configurations that gave the best results

are shown in table 3.12.

After T1, learning was improved by significantly reducing the dimension of the action space

by increasing δ by five times as can be seen in table 3.12. This effect resulted in better

34

Observation Min Max
ax 0 λ
ay 0 λ
az 0 λ
gx λ λ
gy 0 λ
gz 0 λ
O1x Θ λ −Θ
O1y Θ λ −Θ
dO1 Θ

√
(λ −Θ)2 +(λ −Θ)2

O2x Θ λ −Θ
O2y Θ λ −Θ
dO2 Θ

√
(λ −Θ)2 +(λ −Θ)2

Table 3.11: Observations space, where (ax,ay,az) represents the agents a position,
(gx,gy,gz) the targets g position, coordinates (O1x ,O1y) and (O2x ,O2y) the centers of each
obstacle respectively and dO1 and dO2 the Euclidean distances from the agent to the edge
of each obstacle.

T1 T2

(a) Figure comparing T1 and T2 trainings in terms of
the average cumulative reward per episode. Differ­
ences between T1 and T2 can be seen in the table
3.12.

(b) Final path obtained after training T2,
where the set of green nodes represent
the path from the initial point to the tar­
get and the black cylinders within the
workspace represent obstacles O1 and
O2.

Figure 3.9: Figure showing the results obtained after a 3,000 episodes training for a path
planing algorithm with two obstacles in its workspace.

training results as seen in figure 3.9a, as well as a reduction in training time by approxi­

mately 3 times lasting a total of 7min 14sec. On the other hand, this modification will not

35

Training α γ εmax εmin εdecay δ
T1 0.001 0.99 1.0 0.01 0.9995 0.1
T2 0.002 0.95 0.5 0.01 0.9975 0.5

Table 3.12: Table showing differences between trainings T1 and T2 for this experiment

affect the overall goal of the experiment, since in a real scenario the UAV’s receive way­

points much farther apart.

In order to test the reliability of the algorithm, the policy (in this case the trained ANN) was

run in 3 trials with 1000 random start and target points each. The results for T1 and T2 are

listed in the table below.

Training Collisions Found path
T1 16.1% 81%
T2 8.5% 94.2%

Table 3.13: Table showing a comparison of reliability results between trainings T1 and T2

Once these results were obtained, it was decided to continue with the proof of concept

(POC) of this work. Using a Gazebo simulation environment for a UAV, the initial obser­

vations were taken, such as the initial position of the UAV after takeoff, the position of the

obstacles in the environment and the target position. Subsequently, the ANN was feed

forwarded with the weights obtained by T2 training to produce the path, which in the end,

was delivered in the form of waypoints to the UAV. An image, showing the environment

used for this POC can be seen in figure 3.10.

36

(a) Gazebo Simulation environment used for
the POC.

(b) RViz Visualization environment used in
this experiment

Figure 3.10: Figure showing a) the Gazebo simulation environment, where a UAV follows
the path generated by the ANN, and b) the visualization environment in RViz, where the
agent generates the path for the UAV.

37

CHAPTER 4

Conclusions and Future Work

4.1 Conclusions

In this thesis a Deep Q­Learning approach for path planning problems was presented. The

experiments in this work go from low to high complexity systems. At the end, a discrete grid

world represents the environment in which a UAV moves, this well abstracted represen­

tation of the environment simplified the path planning problem and solved it using Deep

Q­Learning. Also, the learning was applied to a simulation environment using Gazebo

open source simulation software and proved to be promising for a real world application.

Given the simplicity and generality of this environment representation, this algorithm can

be implemented in other systems, as long as the robot can be represented as particle in

its environment.

38

4.2 Future Work

As future work, this algorithm can be tested in more complex systems, like a 6 DOF robotic

arm (see fig 4.1) or as mentioned above it can be tested in other systems, like for instance

self driving cars or humanoid robots. Also, there is a large amount of new developments in

the field of Deep RL, in the future state of the art ANN and learning policy’s should be im­

planted using the approach presented in this work. From another point of view, the learning

achieved in the experiments presented above, should be tested in real world systems.

Figure 4.1: This figure shows one of the future work applications that can be done by
continuing this work. A 6 DOF robotic arm with the environment that represents its collision
free space can be observed as well, where the red dots represent the limits of this space,
the blue point represents the initial position for the end­effector and the blue cube represent
its goal.

39

CHAPTER 5

Bibliography

[1] J. Vásconez Hurtado, G. Kantor, and F. Auat Cheein, “Human–robot interaction in

agriculture: A survey and current challenges,” Biosystems Engineering, vol. 179, pp.

35–48, 03 2019.

[2] K. Capek, R. U. R.: Rossum’s Universal Robots. Aventinum, 1920.

[3] G. C. Devol Jr., “Programmed article transfer,” Patent 2 988 237, June, 1961.

[Online]. Available: https://www.freepatentsonline.com/2988237.html

[4] P. Corke, Robotics, Vision and Control: Fundamental Algorithms in MATLAB, 1st ed.

Springer Publishing Company, Incorporated, 2013.

[5] . Craig, Introduction to robotics : mechanics & control / John J. Craig. Reading,

Mass.: Addison­Wesley Pub. Co.„ 1986, includes bibliographies and index.

[6] S. M. Lavalle, Planning Algorithms. Cambridge University Press, 2006.

40

https://www.freepatentsonline.com/2988237.html

[7] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. Kavraki, and S. Thrun,

Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press,

May 2005.

[8] L. Kavraki, P. Svestka, J.­C. Latombe, and M. Overmars, “Probabilistic roadmaps

for path planning in high­dimensional configuration spaces,” IEEE Transactions on

Robotics and Automation, vol. 12, no. 4, pp. 566–580, 1996.

[9] S. LaValle, “Rapidly­exploring random trees : a new tool for path planning,” The an­

nual research report, 1998.

[10] K. Wei and B.­y. Ren, “A method on dynamic path planning for robotic manipulator au­

tonomous obstacle avoidance based on an improved rrt algorithm,” Sensors, vol. 18,

p. 571, 02 2018.

[11] K. Mi, J. Zheng, Y. Wang, and J. Hu, “A multi­heuristic a* algorithm based on stag­

nation detection for path planning of manipulators in cluttered environments,” IEEE

Access, vol. 7, pp. 135 870–135881, 2019.

[12] A. L. Samuel, “Some studies in machine learning using the game of checkers,”

IBM J. Res. Dev., vol. 3, no. 3, pp. 210–229, 1959. [Online]. Available:

https://doi.org/10.1147/rd.33.0210

[13] W. Mcculloch and W. Pitts, “A logical calculus of ideas immanent in nervous activity,”

Bulletin of Mathematical Biophysics, vol. 5, pp. 127–147, 1943.

[14] C. C. Aggarwal, Neural Networks and Deep Learning. Cham: Springer, 2018.

[15] D. E. Rumelhart and J. L. McClelland, Parallel Distributed Processing: Explorations

in the Microstructure of Cognition, Vol. 1: Foundations. MIT Press, 1986.

[16] R. S. Sutton, Reinforcement Learning: An Introduction (Adaptive Computation

and Machine Learning series). A Bradford Book, nov 2018. [Online]. Available:

https://www.xarg.org/ref/a/0262039249/

41

https://doi.org/10.1147/rd.33.0210
https://www.xarg.org/ref/a/0262039249/

[17] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. dissertation, King’s Col­

lege, Oxford, 1989.

[18] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and

M. Riedmiller, “Playing atari with deep reinforcement learning,” 2013. [Online].

Available: https://arxiv.org/abs/1312.5602

[19] M. Mohammed, L. Kwek, and S. C. Chua, “Pick and place objects in a cluttered scene

using deep reinforcement learning,” International Journal of Mechanical Mechatron­

ics Engineering, vol. 20, pp. 50–57, 09 2020.

[20] T. Inoue, G. De Magistris, A. Munawar, T. Yokoya, and R. Tachibana, “Deep

reinforcement learning for high precision assembly tasks,” 2017. [Online]. Available:

https://arxiv.org/abs/1708.04033

[21] J. Xu, T. Du, M. Foshey, B. Li, B. Zhu, A. Schulz, and others, “Learning to

fly: computational controller design for hybrid UAVs with reinforcement learning,”

ACM Transactions on, 2019. [Online]. Available: https://dl.acm.org/doi/abs/10.1145/

3306346.3322940

[22] A. Rodriguez­Ramos, C. Sampedro, H. Bavle, I. G. Moreno, and P. Campoy, “A deep

reinforcement learning technique for vision­based autonomous multirotor landing on

a moving platform,” in 2018 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), 2018, pp. 1010–1017.

[23] G. Dissanayake, S. Huang, Z. Wang, and R. Ranasinghe, “A review of recent devel­

opments in simultaneous localization and mapping,” in 2011 6th International Confer­

ence on Industrial and Information Systems, 2011, pp. 477–482.

[24] G. Kahn, A. Villaflor, B. Ding, P. Abbeel, and S. Levine, “Self­supervised deep

reinforcement learning with generalized computation graphs for robot navigation,”

2017. [Online]. Available: https://arxiv.org/abs/1709.10489

42

https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1708.04033
https://dl.acm.org/doi/abs/10.1145/3306346.3322940
https://dl.acm.org/doi/abs/10.1145/3306346.3322940
https://arxiv.org/abs/1709.10489

[25] E. Marchesini and A. Farinelli, “Discrete deep reinforcement learning for mapless nav­

igation,” in 2020 IEEE International Conference on Robotics and Automation (ICRA),

2020, pp. 10 688–10 694.

[26] N. H. M. Sani, S. Phon­Amnuaisuk, T.­W. Au, and E. L. Tan, “Learning to navigate in

3d virtual environment using q­learning,” Advances in Intelligent Systems and Com­

puting, 2018.

[27] L. He, N. Aouf, J. F. Whidborne, and B. Song, “Integrated moment­based lgmd and

deep reinforcement learning for uav obstacle avoidance,” in 2020 IEEE International

Conference on Robotics and Automation (ICRA), 2020, pp. 7491–7497.

[28] C. Sampedro, H. Bavle, A. Rodriguez­Ramos, P. de la Puente, and P. Campoy,

“Laser­based reactive navigation for multirotor aerial robots using deep reinforcement

learning,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Sys­

tems (IROS), 2018, pp. 1024–1031.

[29] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and

W. Zaremba, “Openai gym,” CoRR, vol. abs/1606.01540, 2016. [Online]. Available:

http://arxiv.org/abs/1606.01540

[30] Stanford Artificial Intelligence Laboratory et al., “Robotic operating system.” [Online].

Available: https://www.ros.org

[31] I. Zamora, N. G. Lopez, V. M. Vilches, and A. H. Cordero, “Extending the openai

gym for robotics: a toolkit for reinforcement learning using ros and gazebo,” 2016.

[Online]. Available: https://arxiv.org/abs/1608.05742

[32] J. Matas, S. James, and A. J. Davison, “Sim­to­real reinforcement learning for

deformable object manipulation,” 2018. [Online]. Available: https://arxiv.org/abs/

1806.07851

43

http://arxiv.org/abs/1606.01540
https://www.ros.org
https://arxiv.org/abs/1608.05742
https://arxiv.org/abs/1806.07851
https://arxiv.org/abs/1806.07851

[33] S. James, P. Wohlhart, M. Kalakrishnan, D. Kalashnikov, A. Irpan, J. Ibarz,

S. Levine, R. Hadsell, and K. Bousmalis, “Sim­to­real via sim­to­sim: Data­efficient

robotic grasping via randomized­to­canonical adaptation networks,” 2018. [Online].

Available: https://arxiv.org/abs/1812.07252

[34] M. Gajamohan, M. Merz, I. Thommen, and R. D’Andrea, “The cubli: A cube that

can jump up and balance,” in 2012 IEEE/RSJ International Conference on Intelligent

Robots and Systems, 2012, pp. 3722–3727.

[35] J. Xie, Z. Shao, Y. Li, Y. Guan, and J. Tan, “Deep reinforcement learning with optimized

reward functions for robotic trajectory planning,” IEEE Access, vol. 7, pp. 105 669–

105679, 2019.

44

https://arxiv.org/abs/1812.07252

	List of Figures
	List of Tables
	Introduction
	Overview and Motivation
	Justification
	Goal of the Thesis
	Problem Definition

	Theory Fundamentals
	Position and Orientation
	Path planning concepts
	An Artificial Intelligence Alternative
	Artificial Neural Networks
	Reinforcement Learning
	Deep Q-Learning
	Applications

	Methods and Results
	Experiment A. Inverted Pendulum System
	Experiment B. Cubli Robotic System
	Experiment C. 3 DOF Robotic Arm
	Experiment D. Path Planning for a UAV
	Experiment D.1
	Experiment D.2
	Experiment D.3
	Experiment D.4

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

