

“TELEOPERATION AND CONTROL OF AN AERIAL

MANIPULATOR USING A VIRTUAL REALITY

SYSTEM”

Tesis que para obtener el grado de Maestro en Optomecatrónica
Presenta: Carlos Arturo Rivera Quezada

Director de Tesis: Dr. Gerardo Ramón Flores Colunga

León · Guanajuato · México

Junio de 2022

Contents

Acknowledgements 7

Publications 8

Abstract 9

Introduction 11

1 State of the Art 13

2 Theoretical Knowledge 18

2.1 Mathematical Modelling of a Quadrotor . 18

2.1.1 Position . 18

2.1.2 Attitude . 20

2.1.3 Quadrotor modelling equations . 21

2.2 Lyapunov Stability: Direct Method . 21

2.3 Observers . 25

2.4 Robot Forward Kinematics . 26

2.4.1 Denavit-Hartenberg . 26

2

2.5 Dynamics . 28

2.5.1 Newton-Euler Formulation . 28

2.6 PID controller . 30

2.7 Exponential Coordinates of Rotations . 31

3 Methodology 33

3.1 The control problem . 33

3.2 Aerial Vehicle . 34

3.2.1 Modelling . 34

3.3 Position and Angular Velocity Control equations 34

3.4 Force and Torque Observer . 35

3.4.1 Force and Torque Observer equations 35

3.5 Stability demonstration . 36

3.6 Manipulator . 41

3.6.1 Robot Kinematics . 41

3.6.2 Robot Dynamics . 43

3.6.3 Multi-variable Joint Control . 46

3.6.4 Manipulator PD control stability . 47

4 Experiments and results 49

4.1 Position and Manipulator Controller . 49

4.2 Attitude . 54

4.3 Drone simulation . 57

5 Conclusions 59

Bibliography 60

6 Annex 66

3

List of Figures

2.1 The position and attitude variables of the quadcopter. Also, the force that

each rotor produces. 19

2.2 Angular velocity representation of a coordinate system. 21

2.3 An interpretation of the stability criteria inspired on the geometrical repre-

sentation. Figure a) shows two regions of stability, region A shows stability

and region B shows asymptotic stability. Figure b) is a physical interpretation

of this two regions considering the state x0 as a ball that will not move inside

region A because there’s any force acting on it. However if the ball is inside

region B the gravity force will push the ball to the equilibrium point xe. . . . 23

2.4 Geometrical three dimensional representation of the Lyapunov quadratic func-

tion. 24

2.5 Coordinate frames of a 3DOF manipulator. 27

2.6 Graphical representation of the Denavit-Hartenber parameters. 28

2.7 PID controller block diagram representation. 30

2.8 Vector p(0) with a θ rotation over the ω̂ axis. 31

3.1 Aerial manipulator CAD model. 34

4

3.2 Control block diagram for the position and attitude controller. 35

3.3 Initial position of the 2DOF manipulator. 42

3.4 Torque and force representations in each joint of the manipulator. 44

3.5 Control diagram for the manipulator PD controller 47

4.1 a) position and desired position over time. b) linear velocity value and the

estimated linear velocity. 51

4.2 Force estimation with a load variation at t = 10s. 51

4.3 Manipulator controller of each joint with a desired joint angle qd versus the

computed q. 52

4.4 a) Torque estimation and b) Ω state estimation. 53

4.5 Angular velocity value versus the desired one. 53

4.6 a) actual position in the x,y coordinates and the desired and the actual zd,z

position. b) actual linear velocity and the estimated. The position and veloc-

ity are caused by the rotation of the vehicle. 54

4.7 Force estimation . 55

4.8 Torque and Ω estimation. 56

4.9 Actual angular velocity versus the desired one. 56

4.10 Trajectory made by the Aerial Manipulator during the simulation time 0 ≤
t ≤ 10s. 57

4.11 All the rotations of the vehicle during the simulation time 0 ≤ t ≤ 10s. 58

6.1 a) the operator using the HTC vive device during the simulation. The above

figure in column b) shows the Gazebo simulation and the second image shows

the aerial vehicle in Unity 3D. 67

6.2 Communication system structure of the virtual reality environment. 68

6.3 Physical aerial manipulator belonging to the Laboratory of Perception and

Robotics. 68

5

List of Tables

3.1 Denavit-Hartenberg parameters. 42

4.1 Simulation parameters. 50

6

Acknowledgements

I want to thank all my family for supporting me through these years. I especially want

to thank my parents, whose advice helped me on this road. I also want to thank all my

teachers that guided me with their knowledge. I think every single one of them put a little

piece of knowledge that brought me to this moment right now. Finally, I want to thank all

my schoolmates and friends. I also want to thank my supervisor Gerardo Flores who tried to

guide us when we seemed to be lost.

Nevertheless, I want to thank CONACYT for their scholarship that made it possible to

keep studying for my master’s degree.

Esta tesis ha sido parcialmente apoyada por el proyecto “Generación de estrategias cientı́fico-

tecnológicas con un enfoque multidisciplinario e interinstitucional para afrontar la amenaza

que representan los complejos ambrosiales en los sectores agrı́cola y forestal de México” del

CONACYT-FORDECYT con número 292399.

7

Publications

Conference Papers

• R. Verdin, G. Ramirez, C. Rivera, and G. Flores. “Teleoperated aerial manipulator and

its avatar. Communication, system’s interconnection, and virtual world.” International

Conference on Unmanned Aircraft Systems 2019 (PUBLISHED).

8

Abstract

The present work is about the simulation of an aerial manipulator with a 2DoF robotic

arm. First, the Unmanned Aerial Vehicle (UAV) and robotic arm’s mathematical modeling is

obtained. The UAV model equations consider a force and torque as unknown parameters that

need to be compensated by the controllable inputs which are the UAV thrust force and torque.

The manipulator’s modeling is made through the Newton-Euler algorithm and leads to a La-

grangian expression form. This form is useful to program the manipulators controller and

dynamics. The torque and force are estimated and compensated in the UAV model equations.

To estimate the force and torque nonlinear observers are employed. A geometric controller

on the Special Euclidean group (SE(3)) is designed for angular velocity considering angular

velocity errors that are proven to converge to zero using the Lyapunov direct method. Also,

a position controller is designed to compute the thrust force produced by the rotors so the

UAV tracks the desired position. A Proportional-Derivative (PD) joint controller is designed

to compute the manipulator joint torques to track a desired angular position. Also, manipu-

lator controller stability has been proven using the Lyapunov method. Finally, the controller

simulation results show the controller stability. The position controller tracks the desired po-

sition in the z axis direction and the angular velocity error converges to zero like the torque

and force estimation errors, even with aggressive rotations. The aerial vehicle is simulated in

9

MATLAB and the controller is programmed in MATLAB-SIMULINK. A final simulation is

made by plotting a representation of the UAV with the real measured parameters to simulate

a real-time flight with the obtained values. A future work is presented where a rotation error

will be considered so the UAV tracks a desired x,y position from the desired rotation. Also a

publication related to this work is annexed as a complementary backup.

10

Introduction

Unmanned Aerial Vehicles (UAVs) are used nowadays to execute tasks where places are

not reachable for humans or where the risk is too high. The advantage of an aerial vehicle is

the fact that it can fly and stay suspended in a desired position in the air. Some tasks where

UAVs have been used recently are buildings inspection, mapping tasks using Simultaneous

Localization and Mapping (SLAM) techniques, transportation, and even for military support.

[1,2]. Manipulation devices were added to UAVs to increase the range of possible executable

tasks. This is how aerial manipulators become another alternative to different tasks where

grasping or manipulation is required. Some examples are valve operation, maintenance, and

repair. [3]. The correct operation of these vehicles requires to be analyzed and controlled.

Despite what control theory is in a general form, in this specific case, control is in charge to

make the vehicle move appropriately without falling, crashing, and capable to execute desired

commands.

To understand the behavior of an aerial vehicle system, an interpretation has to be made

in a form of differential equations, which is called the mathematical model. Also linear and

nonlinear terms can be found in these equations. Being an aerial vehicle a nonlinear system, it

is well known in control theory that nonlinear systems have to be analyzed by the use of tools

that become a little more complex than the linear system ones. For this reason, tools like

11

Lyapunov stability analysis are taken to be applied in this work. The mathematical model

describes the behavior of the linear and angular position, velocity, and acceleration of the

vehicle. In this work, a mathematical model is obtained for an aerial manipulator. The model

is obtained in three groups of equations, the position, the attitude, and the manipulator’s

position.

The manipulator produces a force and a torque that affect the system, these two unknown

disturbances are considered in the model to be compensated. To estimate these two dis-

turbances a state estimator (observer) is considered to estimate the manipulator dynamics

(force,torque) and to be added in the control law, which have been proven to be stable us-

ing the Lyapunov direct method. The position controller is designed using also the Lyapunov

method and it will return the desired Thrust force, which is a force produced by the propellers

and normal to the UAV plane. For attitude, an angular velocity controller in the Special Eu-

clidean group SE(3) is designed. The fact that this controller is designed in SE(3) makes

the control consider the rotation and position of the body-fixed frame instead of the 3 Euler

angles (φ ,θ ,ψ) and position individually.

This controller is capable to converge to a desired angular velocity which is obtained from

the desired rotation matrix. Finally, a Proportional-Derivative (PD) position controller is de-

signed for the manipulator that returns the desired torque for each joint so each link can move

to a desired angular position. The simulation of the whole system is made via MATLAB-

Simulink where the entrances are a desired angular velocity and a desired z position divided

in two common scenarios where the vehicle rotates in a small time interval and where the

vehicle is suspended in the air while the manipulator is doing a routine. Results show the

system stability and also the virtual vehicle is simulated.

12

CHAPTER 1

State of the Art

Aerial manipulators face several problems that have been studied in the last years. One of

them is the control problem that leads to some other considerations. The controller must be

capable to stabilize the attitude and the position from some desired values. An aerial vehicle,

with no arm, has 6 degrees of freedom divided into its coordinates and angular positions. The

only variable that can be controlled is a thrust force and torque. Both are directly related to

the speed of each of the rotors. If a robotic arm is added the control input is the same but

the disturbances increase. Therefore they must be considered in the control law to compen-

sate them. To achieve this compensation, two terms belonging to the manipulator, have to be

considered, a force and a torque. Also, from its modeling, it is well known that both are non-

linear terms. In dynamic modeling, adding a manipulator changes the property of symmetry

in the design of the vehicle. The reason why these vehicles are designed like that is that the

center of mass is conveniently placed in the center of the vehicle. If the symmetry is lost,

the center of mass, where all the external forces and torques act, change, and the modeling

of the whole system changes as well. However, in the next references, it can be seen by

the description that the dynamic modeling, control, estimations, and vehicle design are the

13

research areas that might improve aerial vehicles. In reference [4], the problem is stated as

the difficulty for aerial vehicles to access certain places to do manipulating tasks. To face this

problem an augmented adaptive controller and an optimal baseline controller are designed.

Both controllers are placed in the same architecture. The augmented adaptive controller adds

a linear PI controller so it deals with uncertainties that will make the UAV system unstable.

The optimal baseline controller is used to control the gripper and deal with disturbances and

unwanted constant errors. The error convergence is demonstrated based on the Lyapunov

theory. Finally, the controller shows a rapid error convergence, with or without a payload,

compared with other controllers. In reference [5], a new control strategy for a 2DoF Aerial

Vehicle is presented under the fact that by adding a manipulator the center of mass of the

whole vehicle will be displaced. Therefore a backstepping sliding mode controller (BSC)

is added considering the new position of the center of mass. The BSC with the center of

gravity term shows better results than a PID controller and the BSC with no center of mass

term. A control strategy might depend on the perspective of how the Aerial Manipulator is

considered. Like the previous papers, the system can be considered as two separated systems

coupled, each of them with their properties, or one single system. If the modeling considers

some variations as disturbances or if considers those variations as constant terms, that will

lead to different results and control strategies. Another way to model aerial manipulators is

using quaternions like reference [6, 7]. A simple solution to stabilize a mini aerial manip-

ulator is presented in [6], it has to be considered that the smaller distance from the center

of the UAV to the rotor, the less torque can be produced. The controller is based on quater-

nions, due to the modeling and saturation functions, which are already stable as well. Also,

a linear Luenberguer observer is added to the controller to estimate the joint angles from the

robotic arm. This estimation will provide a solution to estimate the torque produced by the

manipulator using its motion equations. Nevertheless in [7], the authors take the torque and

force terms, produced by the manipulator, to be linearized. This linearization simplifies the

internal model control considered in this reference. Robust control is proposed in [8] but the

problem to solve in this reference is the vertical take-off and landing of an aerial manipulator.

Also, the vehicle is an air-ducted fan which has some changes in the motion equations than

14

a quadrotor or a hexacopter. The experimental results show the effect of the manipulator

torque and force on vehicle stability. It can be noticed that even when the vehicle seems to be

different the modeling results are pretty similar to a quadrotor or a hexacopter. The important

terms are the thrust force and the cross product of force and distance that produce a torque.

Flight stability is highly demanded on aerial manipulators (AM) and accuracy takes an im-

portant role like in [9]. The contribution is an accurate controller that provides a safe flight

mode for outdoor tasks. Besides, it allows the manipulator to do more complex tasks during

the flight.

Adaptive controllers became a good choice to control AMs due to their adaptability prop-

erty. Nonlinear adaptive control for the attitude and position is proposed in [10]. This adap-

tive controller adapts to the change of mass and inertias produced by the manipulators. The

adaptability previously mentioned makes the system capable to stabilize under the action of

unknown terms. On the other hand, not only stability is required for some tasks but tracking

the desired trajectory is also demanded. In [11] an adaptive controller provides the solution

for this problem and considers the same unknown disturbances of torque and force (UDTF).

The adaptive controller stabilizes the AM during the tracking of the desired trajectory. An

L 1 adaptive loop is what compensates for the UDTF caused by the manipulator.

Another problem set in [12] is the fact that manipulator force disturbance not only involves its

weight but the payload too. Taking into consideration that the center of gravity is displaced

by the manipulator, it suffers another displacement once a payload is grabbed. An adaptive

fractional-order sliding mode control deals with these mass changes and center of gravity

varying terms. Adding an adaptive correcting mass coefficient in the equations is how these

mass variations are compensated.

As it was already mentioned state estimators are another option to make a good approach

to unknown values. In general, state estimators provide information, that sensors wouldn’t

be able to give, from not measurable state variables. However, there are some estimators

capable to estimate parameters inside the modeling such as disturbances. In [13] an adaptive

output control of an AM is presented to stabilize the aerial vehicle. A PD controller is in-

cluded but requires an error tracking derivative. Therefore a super twisting algorithm is used

15

to estimate the error derivatives and the adaptive gains are adjusted by differential laws. In

reference, [14] an unscented Kalman filter is used as a UDTF estimator. It is explained in this

reference that a conventional Kalman filter is not capable to estimate these variables due to

the nonlinear behavior and complex dynamics. And more specifically Kalman filters are used

as estimators for linear systems. However, the contribution is 2 variants of unscented Kalman

filter that are capable to estimate the nonlinear varying terms. Another reference that uses

state estimators for AMs is [15] but in this case, the estimated state variables are the linear

position and velocity of the vehicle. These variables are included in the control to get better

accuracy in the vehicle position. Other variables are measured using sensors but UDTF are

not considered in the mathematical model.

Stability has been taken into account as the main problem for AMs but once a safe flight

mode is provided the manipulator requires to do specific tasks that might need more than just

flight stability. As an example in reference [16] A force control is designed for an AM. The

contribution is focused on making the end effector to apply a force in the desired direction

with a desired magnitude. A force term is considered in the position controller so the vehicle

accelerates in one direction while the end effector is making contact with a surface until the

desired magnitude is reached.

Applications for AMs are widely proposed but each leads to specific problems, a new design

leads to different dynamics and specific tasks sometimes require more considerations in the

controller. The Aerial Manipulator can be designed with a single-arm, dual-arm, or even col-

laborative [17], [18]. As examples of recent applications in [19] an AM is used for helping

Power Line operators with device installing and delivering tools. In [20] a contact-based in-

spection aerial manipulator is proposed considering forces in the dynamic modeling and [21]

propose a Hybrid Force and a Position controller for AM writing. Artificial Intelligence has

been considered as well in AM stabilization, not replacing a controller but combining algo-

rithms with convectional control tools like [22] where a PID is combined with Fuzzy Logic

and Neural Network to improve the convectional PID controller applied in AMs. Finally but

not less important, the vision systems have been recently combined with AMs like in [23]

where the end-effector of the manipulator uses stereo vision to reach an object or avoid ob-

16

stacles at a certain distance. In [23] a PL-SLAM algorithm is proposed specifically for Aerial

Manipulators for mapping areas and localizing themselves during the flight.

17

CHAPTER 2

Theoretical Knowledge

In this chapter, the theoretical knowledge necessary for this work is presented. The most

important topics are presented so the reader has an idea of what was made in every step in

this work.

2.1 Mathematical Modelling of a Quadrotor

Mathematical modeling is a set of differential equations that describe the behavior of a

system in a certain time lapse [24]. The behavior of an aerial vehicle can be represented in

two parts, the position and the attitude leading to six involved variables (x,y,z,φ ,θ ,ψ).

2.1.1 Position

It is well known from Newton’s Inertia Law that a body will not move until a force is

applied or if the sum of all forces interacting equals zero. Also from Newton’s Second Law,

the sum of all these forces is proportional to the body’s acceleration [26].

18

Figure 2.1: The position and attitude variables of the quadcopter. Also, the force that each
rotor produces. [25]

∑F = ma (2.1)

This acceleration represents the behavior of the velocity which represents the behavior of

the position in a time-lapse. From this expression, the position, velocity, and acceleration of

an Aerial Manipulator can be described mathematically. An Aerial Vehicle has a symmetric

design conveniently so the center of mass is located in the center of the vehicle. This is where

all forces and torques involved will be acting. There’s a thrust force that can be produced by

the rotors shown in fig 2.1. This force combined with its orientation will produce the vehicle

to move. Therefore the modeling can be expressed as follows

a = ge3 −
f
m

Re3 (2.2)

where the vector e3 = (0,0,1)T , the acceleration vector a = (ẍ, ÿ, z̈)T , the gravity accelera-

tion g, the thrust force f and vehicle’s mass m. The thrust force is always normal to the rotors

19

therefore the direction of the force depends on the vehicle’s attitude which can be expressed

by a rotation matrix R.

R =




cθ cψ sφ sθ cψ − cφ sψ cφ sθ cψ + sφ sψ

cθ sψ sφ sθ sψ + cφ cψ cφ sθ sψ − sφ cψ

−sθ sφ cθ cφ cθ


 (2.3)

Where terms c means the cosine function and s the sine function.

2.1.2 Attitude

The attitude of an aerial vehicle can be modified by the rotors spinning. If one rotor spins

faster than the others then a momentum (torque) will be produced by the distance r, which is

the rotor’s link length, times the force Fr, produced by that rotor. Expressed mathematically

τ = r ×Fr. However, the expression that involves the angular acceleration and velocity is

obtained from Newton-Euler equations of motion [26] where the angular momentum of a

body is expressed as

τ = JΩ̇+Ω× JΩ (2.4)

Where the torque vector τ = (τx,τy,τz)
T , the time derivative of the angular velocity Ω̇ =

(Ω̇x,Ω̇y,Ω̇z)
T , the angular velocity Ω = (φ̇ ω̂x, θ̇ ω̂y, ψ̇ω̂z)

T , being ω̂ the unit vector in the Ω

direction, and J represents the inertia matrix [27].

In this way, it can be noticed that the angular velocity of a rigid body relates to the an-

gular rate of change that rotates over the angular velocity direction. The angular velocity

representation can be appreciated in figure 2.2

20

Figure 2.2: Angular velocity representation of a coordinate system. [27]

2.1.3 Quadrotor modelling equations

Finally the mathematical modelling of a quadrotor can be expressed using 2.2 and 2.4 as

ẋ = v (2.5)

v̇ = ge3 −
f
m

Re3 (2.6)

Ṙ = RΩ̂ (2.7)

Ω̇ =−J−1(Ω× Jω)+ J−1τ (2.8)

Where ẋ is the derivative of the position, v̇ is the derivative of the velocity, Ṙ is the time

derivative of the rotation matrix and Ω̂ is the Ω skew-symmetric matrix denoted by

Ω̂ =




0 −Ωz Ωy

Ωz 0 −Ωx

−Ωy Ωx 0




2.2 Lyapunov Stability: Direct Method

In the previous section, it can be appreciated that Quadrotor dynamics contain nonlinear

terms, therefore this system is nonlinear. Nonlinear systems cannot be analyzed with linear

stability theory tools. To analyze this system it is necessary to use different tools such as

Lyapunov stability which is useful for linear and nonlinear systems.

21

First of all, the form that a nonlinear system has is the following [28]

ẋ(t) = f (x(t),u(t)),∀t ≥ 0 (2.9)

where t denotes the time; x(t) denotes the n-dimensional state variables vector; and u(t)

denotes the m-dimensional input vector of the system.

There are three main concepts that describe the stability of a system: stability, asymptotic

stability and instability [28].

Let us consider a system in equilibrium that is not being disturbed and consider that the

total energy of the system is known. There are three possible scenarios. If the energy of

the system, once the disturbance acts, does not increase beyond the magnitude of the energy

added by the disturbance, then the system is stable. Now if the energy of the system decreases

such that eventually, the energy of the system gets to zero, then the system is asymptotically

stable. Finally, if the energy of the system increases continuously with a bigger energy

magnitude than the added by the disturbance, then the system is unstable.

Considering the state variables of a system. An equilibrium point is the value for the state

variables that make ẋ(t) = 0. This equilibrium point represents the solution for x. Lets define

xe as that equilibrium point that makes the system equation ẋ(t) = 0. Lets define the initial

condition x0 and a region A,B around xe. If x0 stays inside the region A but outside region B

then the system is stable like in figure 2.3. If x0 tends to be equal to xe, if it stays inside the

region B the system is asymptotically stable. In other words, asymptotic stability happens if

eventually, the state variable gets near to the center of figure 2.3.

22

A
𝑥0

B
𝑥0 𝑥0

A

B

𝑥0

𝑥𝑒

𝑥𝑒

a) b)

Figure 2.3: An interpretation of the stability criteria inspired on the geometrical representa-
tion in [29]. Figure a) shows two regions of stability, region A shows stability and region
B shows asymptotic stability. Figure b) is a physical interpretation of this two regions con-
sidering the state x0 as a ball that will not move inside region A because there’s any force
acting on it. However if the ball is inside region B the gravity force will push the ball to the
equilibrium point xe.

In the Lyapunov Direct Method, the stability can be proven by selecting a Lyapunov can-

didate function. This function depends on the state variables of the system and it can be

considered as a region where the state variables have certain trajectories. These trajecto-

ries define the stability of the system. The Lyapunov candidate function V must have the

following properties [30]:

• Scalar function

V : Rn → R

• Positive definiteness

V (x)> 0

• Dissipativity
d
dt

V (x) =
∂V
∂x

d(x)
dt

< 0

23

Once the Lyapunov candidate function is selected, the stability of a system can be proven

if V̇ is obtained.

• The system is stable if

V̇ (x)≤ 0

• The system is asymptotically stable if

V̇ (x)< 0

In figure 2.4 it is shown an example of a Lyapunov quadratic function where it is inter-

preted as a region where the bottom is meant to be the equilibrium point. The derivative

represents the slope of the function. If this is analyzed as an energy function, a negative

derivative means the loss of energy of a particle therefore at one point it will be at zero en-

ergy state which is the equilibrium point like was mentioned before. If there’s no slope it

means the particle is not losing energy but is not earning either as a consequence there’s no

energy at all. Finally, if the slope is positive it means the energy is growing which means the

system is not stable.

0

5

5

10

15

20

25

5430 210-1-2-3-4-5 -5

Figure 2.4: Geometrical three dimensional representation of the Lyapunov quadratic func-
tion.

24

2.3 Observers

The systems analyzed in control theory are modeled in an ”ideal” scenario. In reality,

the control input, such as actuators, does not only depend on one single variable but exter-

nal disturbances that most of the time cannot be measured. For example, a flying quadrotor

can be displaced by a disturbance such as wind. This disturbance might not be considered

in mathematical modeling but it is present anyway. If this disturbance has to be measured

whether it is going to be difficult, expensive, or even impossible to get a sensor capable to

do that. If there’s no feedback so the control input compensates for that disturbance then

the system will be unstable, if the magnitude is big enough, or will not be stable asymptot-

ically. Observers are used in control theory as a tool to estimate these unknown variables

from the system. Observers work by taking information from the system combining it with a

measurable feedback signal allowing them to get more precise knowledge of the system be-

havior [31]. In other words, observers take measurable states and use the model equations to

get an approach of the unknown state by comparing the original equations with the estimated.

In the case of nonlinear systems, it is not necessary to consider special observers only for

this type of system. If the error behavior (the difference between the real state and the esti-

mated) is proven to have a linear form then an observer for a linear system can be considered

as a solution. What’s important for an observer is the error dynamics, the observability and

if the states variables can be measured. Using the Lyapunov direct method it can be proven

that an observer will converge to zero using the error equation. And the observability proves

that the variable can be estimated or not.

From [32] a system with the form 2.9 the definition of observability is the following.

ẋ(t) = f (x(t),u(t),y(t), t) (2.10)

x̂(t) = h(x(t),u(t),y(t), t)

Where ˆx(t) is the estimated state and h is the observer equation which is a function that

25

depends on the input u(t), the state x(t), the output y(t) and the time t. Normally observers

have the dynamic equation in the form.

˙̂x(t) = f (x̂(t),u(t))+ k(t,h(x̂(t))− y(t)), with k(t,0) = 0. (2.11)

such that:

1. x̂(0) = x(0)⇒ x̂(t) = x(t),∀t ≥ 0;

2. ||x̂(t)− x(t)|| → 0 as t → ∞;

• If 2 holds for any x(0), x̂(0), the observer is global.

• If 2 holds with exponential convergence, the observer is exponential.

• If 2 holds with a convergence rate which can be tuned, the observer is tunable.

2.4 Robot Forward Kinematics

2.4.1 Denavit-Hartenberg

The Denavit-Hartenberg algorithm provides a homogeneous transformation matrix that

contains information about the translation and rotation of coordinated systems according to

the initial frame. This is a required tool to get the forward kinematics of robotic systems if

every joint is considered as an i-th coordinate system. This forward kinematics will return

the position of each joint taking the base of the robot as the initial frame, like in figure 2.5

every joint has its coordinate frame.

The homogeneous transformation Ai matrix is obtained considering a rotation in the z axis,

a translation in the z,x direction, and a rotation in the x axis in this order [33].

Ai = Rz,θiTz,diTx,ai,Rx,αi (2.12)

26

Figure 2.5: Coordinate frames of a 3DOF manipulator [33].

Ai =




cθi −sθi 0 0

sθi cθi 0 0

0 0 1 0

0 0 0 1







1 0 0 0

0 1 0 0

0 0 1 di

0 0 0 1







1 0 0 ai

0 1 0 0

0 0 1 0

0 0 0 1







1 0 0 0

0 cαi −sαi 0

0 sαi cαi 0

0 0 0 1




Ai =




cθi −sθicαi sθisαi aicθi

sθi cθicαi −cθisαi aisθi

0 sαi cαi di

0 0 0 1




The valuable information that transformation matrix Ai provides is the rotation matrix R

and the translation vector T = (tx, ty, tz) with respect to the initial frame. The matrix Ri is

obtained from the first rows and columns of the matrix Ai and the translation is obtained

taking the 3 first rows of the fourth column.

The parameters (θi,di,ai,αi) must to be obtained to compute the transformation matrix

Ai. As it is described in the expression 2.12 and shown in figure 2.6, θi is the angle around

27

Joint i-1 Link i-1

Joint i

Link i

Joint i+1

Figure 2.6: Graphical representation of the Denavit-Hartenber parameters [34].

the z axis, di is the distance along the z axis, ai is the distance along the x axis and αi is the

angle around the x axes. Every parameter with respect to the next i frame. In other words

this transformation matrix is obtained for each link i and the final transformation matrix is

the multiplication of all the transformation matrices of each link.

2.5 Dynamics

2.5.1 Newton-Euler Formulation

The behavior of mechanical systems as a time function can be derived in a set of dif-

ferential equations called the Euler-Lagrange equations. These equations are derived from

Newton’s second law of motion for a particle in two dimensions. In the case of a robotic

arm, the Euler-Lagrange formulation returns a matrix equation that considers the Coriolis

and Centrifugal effects (C), Mass (M), and Gravity (g) terms as well. The sum of all these

terms return the Torque in each axis (τx,τy,τz) which represent the dynamic modeling of a

manipulator [33].

τ = M(q)q̈+C(q, q̇)q̇+g(q) (2.13)

The physical terms involved in the dynamic modeling of a robotic arm are angular accel-

eration, velocity, and position. For this reason, kinematic modeling is necessary to get the

previous formulation. However, The Euler-Lagrange formulation can be achieved by using

28

a method called Newton-Euler formulation which is expressed in a set of steps that can be

interpreted as an algorithm to be programmed [33].

The difference between the Lagrangian formulation and the Newton-Euler formulation is

the computational efficiency especially for many degrees of freedom manipulators. However,

the resulting equations of motions must be identical [27].

The torque τi and force fi of each link, using the Newton-Euler formulation, are computed

as [33].

τi = Ri+1
i τi+1 − fi × ri,ci +(Ri+1

i fi+1)× ri+1,ci +αi +ωi × (Iiωi) (2.14)

fi = Ri+1
i fi+1 +miac,i −migi (2.15)

Where:

• ac,i : the acceleration of the center of mass of link i

• ae,i: the acceleration at the end of each joint where the next link is connected

• ωi : the angular velocity of frame in joint i with respect to the initial frame (i = 0)

• αi : the angular acceleration of frame in joint i with respect to the initial frame (i = 0)

• gi : the gravity acceleration in frame i

• fi : the force exerted by the previous link i−1 on the next one i

• τi : the torque exerted by link i−1 on link i

• Ri+1
i : the rotation matrix from frame i+1 to frame i

The following terms belong to the manipulator dynamics but they are constant values

therefore they do not depend on the manipulator configuration.

• mi : the mass of link i

29

Figure 2.7: PID controller block diagram representation. [35]

• Ii : the inertia matrix of link i about a frame parallel to frame i whose origin is at the

center of mass of link i

• ri,ci : the vector from joint i to the center of mass of link i.

• ri+1,ci : the vector from joint i

• ri,i+1 : the vector from joint i to joint i+1

2.6 PID controller

A PID controller is a control structure that contains a proportional, integral, and derivative

gain multiplied by an error. PID controllers are still powerful tools for physical systems due

to the fact that PID controllers don’t need information about the modeling (plant). Also,

even if they are used in linear systems they are still useful for nonlinear systems if they are

combined with terms that belong to the modeling. An input u(t), which is the manipulable

variable such as a voltage that moves an actuator, is the term that is also mathematically

manipulable. This input will make the system to be stable in the desired state by using an

error equation and proposing a control law, which is an equation for the system input u(t).

However in figure 2.7 u(t) is shown as an output, this is because the diagram shows how the

input u(t) is being modified by the PID controller before it works as the system input.

The PID controller is then defined in [24] as

u(t) = Kpe(t)+Ki

∫ t

0
e(τ)dτ +Kd

de(t)
dt

(2.16)

30

Figure 2.8: Vector p(0) with a θ rotation over the ω̂ axis. [27]

Where Kp,Ki,Kd are positive constant gains and e(t) is the error that is a differential func-

tion that depends on the desired state and the actual state. The structure of this controller is

represented in 2.7.

2.7 Exponential Coordinates of Rotations

Suposse that a three-dimensional vector p(0) is rotated by θ about ω̂ to p(θ) shown in

figure 2.8. Let p(t) denote the trajectory of the vector. The velocity of p(t) is given by [27].

31

ṗ = ŵ× p (2.17)

This differential equation can be expressed as

ṗ = [ω]p (2.18)

This expression has a linear differential equation form ẋ = Ax which is well known that its

solution is given by x = eAt . Therefore

p(t) = eŵt p(0) (2.19)

.

Taking in consideration the expressions 2.18 and 2.19. A new rotation matrix can be

computed since an angular velocity Ω is computed by the skew-symmetric matrix Ω̂. In

other words, the solution for the differential equation shown in 2.7 is

R = R(0)eΩ̂t (2.20)

Where R(0) represents the initial orientation of the rigid body. This expression can be

solved also by using computational tools.

32

CHAPTER 3

Methodology

In this chapter, the modeling and method to deal with the control problem are presented.

Every subsection details each element that compose the final system.

3.1 The control problem

The control problem comes from the dynamics of the system. An aerial vehicle by itself

requires an attitude and a position controller considering external disturbances such as wind

or drag parameters. However, a robotic arm attached to the center of mass of the UAV can be

considered as an external disturbance as well. To simulate the aerial vehicle, the dynamics

and control have to be programmed. The simulation is divided in two independent elements,

the robotic arm and the aerial vehicle like in figure 3.1. The problem is solved by proposing

an observer for the disturbances caused by the robotic arm which makes it possible to design

a controller.

33

F4

F1

F3

F2

Y

Z
X

Fig. 2: Aerial manipulator CAD model.

B. Control

Let define
ep = x− xd , ev = υ−υd (6)

then we implement the control that is proposed by [29]

f = m‖gê3 +Kvev +Kpep− ẍd‖ (7)

The attitude control is given by

τ =−kReR−KΩeΩ (8)

with

eR =
1
2
(
Rᵀ

dR−RᵀRd
)∨ ∈ R3, eΩ = Ω−RᵀRdΩd ∈ R3. (9)

V. SYSTEM ARCHITECTURE

The first element that needs to be added in VE (Gazebo,
Unity3D) is the aerial manipulator 3D CAD model. Gazebo
and Unity work in different OS, Ubuntu 18.04 and Windows
10 respectively. This environments communicate through
common MAVROS messages that work with specific topics.
The topics to be employed are LocalPosition and Mount-
Control. Inside the LocalPosition topic the element ”pose”
collects the local quadrotor positions through GPS [30]. The
MountControl topic is used to publish and subscribe to the
robotic arm’s orientation. Attitude information is published
from Gazebo and PX4 is the subscriber to display that infor-
mation in the Gazebo simulation. The visual system structure
is described in Fig. 3. The system architecture is divided into
three subsections: A) Virtual Reality environment; B) Control
and software in the loop; C) Communication.

A. Virtual reality environment

The purpose of designing this environment in Unity is to
create a 3D remote teleoperation ground station. It allows
virtual reality devices to visualize the environment and get
a robot’s position feedback in the real world. The aerial ma-
nipulator model in Unity contains several apps. These apps
work individually and interact to create and send the robot’s
states depending on the input information. The Unity model
main reference is placed on the UAV body followed by each
link of the robotic arm. Each revolute joint represent every
degree of freedom that moves individually. The model’s main

reference contains one app to get the vehicle’s position and
another app to communicate Unity and Gazebo. Depending
on the position input, the first code generates the necessary
force to be applied on each rotor to get the desired attitude
(φ ,θ ,ψ). The desired attitude leads to the desired position
values from Gazebo. This virtual environment in Unity3D is
a recreation of the real world where the aerial manipulator
is moving. In Fig. 4 it is shown the virtual reality world and
its two-screen views.

B. Control and software in the loop

Gazebo is a 3D open-source simulator that provides sen-
sors, actuators control, cameras, simulation tools and realistic
dynamics of each model. The purpose of making this second
virtual model is to work on a SITL simulation. Gazebo allows
to test and simulate the aerial manipulator before being
tested in the real world. We program the aerial manipulator’s
Gazebo model with the PX4 firmware being one of the most
used autopilots by the robotics community. PX4 firmware
contains packages that integrate gazebo to perform SITL and
facilitates the vehicle’s design and control implementation.
To communicate with some external software/hardware, a
communication protocol to process the messages is needed.
In this case MAVROS (mavlink/ROS) was the best option
to extract or send information through the PX4-Gazebo via
Python/C++ scripts. In parallel, the ground station Qground-
control is employed as a command center. The created model
is depicted in Fig. 5.

All the necessary commands and prompts to run and
install the environment can be found on our GitHub page,
referenced at the beginning of the document.

C. Communication

MAVROS is a ROS node that allows communication
through mavlink protocols containing several topics. Each
of them contains specific information about sensors and
actuators from the aerial robot. As was previously mentioned,
the required topics are the LocalPosition (subscriber) and
MountControl (publisher).

To get data from LocalPosition a python script was created
using rospy and allows linking python with ROS. Then,
the geometry message is defined to establish communication
with the aerial robot and be published in the servo message.
To allow Unity to get the message a ROSBridge protocol
is used. This protocol, which is a WebSocket, subscribes to
servo message to get the positions messages via the Internet.
To get and read Unity’s message, a script is created to
communicate with Ubuntu using an IP address. The receiving
the data is obtained from the servo message using JSON-
formatted scripts. Once Unity gets the positions it moves
the virtual environment’s vehicle to get to the same position
from the message.

To get the positions from the robotic arm the topic used
is MountControl. Another python script is created to publish
3 variables for each joint of the robotic arm. Gazebo reads
those 3 variables and moves the robotic arm to the desired
position. Unity subscribes to a message called data to get the

Figure 3.1: Aerial manipulator CAD model. [36]

3.2 Aerial Vehicle

3.2.1 Modelling

An aerial vehicle can be modelled by using 2.5-2.8. As it was previously mentioned,

the manipulator is considered as a disturbance or external force/torque terms. To model the

aerial manipulator these force and torque terms are included in the aerial vehicle equations.

Therefore the modeling of the aerial manipulator is the following

ẋ = v (3.1)

v̇ = ge3 −
f
m

Re3 +Fa(t) (3.2)

Ṙ = Rω̂ (3.3)

Ω̇ =−J−1Ω× JΩ+ J−1τ +T (t) (3.4)

where Fa(t), T (t) are the unknown force and torque terms belonging to the manipulator.

3.3 Position and Angular Velocity Control equations

For position controller the input trust is defined as

34

Exponential
Coordinates

Force
Estimator

Position
Controller

Position
Dynamics

Attitude
Controller

Torque
Estimator

Attitude
Dynamics

Figure 3.2: Control block diagram for the position and attitude controller.

f = m||ge3 + kvev + kpep − ẍd + F̂a(t)|| (3.5)

Where velocity and position errors ev,ep are defined in 3.11, F̂a(t) is the manipulator

estimated force, m is the vehicle’s total mass, g is the gravity acceleration and e3 is the unit

vector [0,0,1]T . This controller is in charge to produce a thrust force big enough to stabilize

the Aerial Manipulator at a certain attitude in a certain rotation.

For attitude controller the torque input τ is defined as

τ = J(−K1(Ω̂−Ωd)+ Ω̇d + J−1Ω× JΩ− T̂ (t)) (3.6)

Where J is the inertia matrix, K1 is a positive diagonal matrix, T̂ (t) is the manipulator

estimated torque, and Ω, Ωd are the actual and desired angular velocity. The input torque τ

is in charge to move the aerial vehicle to the desired orientation.

In figure 3.2 the structure of the position and attitude system is represented in a block

diagram.

3.4 Force and Torque Observer

3.4.1 Force and Torque Observer equations

To estimate the force an adaptive observer is designed. An adaptive observer is capable

to estimate unknown parameters that are not considered as state variables with a nonlinear

35

behavior, like in [37] where an adaptive observer has been used to estimate an unknown wave

model parameter. The proposed force observer is given by

˙̂v = ge3 −
u
m

Re3 + F̂a + kve(v− v̂) (3.7)

˙̂Fa = kF(v− v̂) (3.8)

where: F̂a is the estimated force and kve,kF are positive diagonal matrices.

This observer is proposed under the assumption that Ḟa is near to 0. In other words this

means that the force produced by the robotic arm must change slowly even when its behavior

is nonlinear.

The observer for the torque estimation is given by.

˙̂Ω =−K1(Ω̂−Ωd)+ Ω̇d −K2(Ω̂−Ω) (3.9)

˙̂T =−L1(Ω̂−Ω)−L2T̂ (3.10)

where L1(eΩ) = diag
[

lp
1

|ep
Ω|+ε ,

lq
1

|eq
Ω|+ε ,

lr
1

|er
Ω|+ε

]
and L2 = diag [lp

2 , lq
2 , lr

2] with positive real

numbers lp
1 , lq

1 , lr
1 and lp

2 , lq
2 , lr

2. K1 and K2 are diagonal positive real matrices.

3.5 Stability demonstration

As it is shown in equation 3.2 the position x depends on the input force f in the direction

of the rotation matrix R. For the control design of the system 3.1, 3.2 lets define the error as

ep = x− xd,ev = v− vd (3.11)

The error dynamics are given by

ėp = ev = ẋ− ẋd (3.12)

ėv = v̇− v̇d = ge3 −
f
m

Re3 +Fa(t)− ẍd (3.13)

36

f Re3 = m(ge3 +Kvev +K pep − ẍ+ F̂a) (3.14)

The stability can be proven by considering the following candidate Lyapunov function

V (ep,ev) =
1
2

Kp||ep||2 +
1
2
||ev||2 (3.15)

The derivative of the Lyapunov function is

V̇ = K pepev + ev(ge3 −
f
m

Re3 +Fa− ẍd) =−Kve2
v ≤ 0 (3.16)

Substituting the control law 3.14 in 3.16.

V̇ =−Kve2
v ≤ 0 (3.17)

It can be appreciated from 3.17 that this expression proves stability but not asymptotic

stability. The idea is that only for a point (ep = 0,ev = 0) the system will be in equilibrium

therefore will be no longer asymptotically stable but stable due to V̇ = 0. However, any

desired state xd ̸= x leads to (ep ̸= 0,ev ̸= 0) by simply checking the error equations 3.11. In

other words, the derivative of x− xd leads to e2
v > 0. The only case where ep ̸= 0 and ev = 0

is when the desired position is different than the actual but the vehicle is not moving, that

makes ep to be constant which is not possible due to the acceleration of the vehicle provoked

by the input force f proportional to ep.

To prove force observer stability the following Lyapunov candidate function is proposed

similar as 3.15

V (eve,eF) =
1
2

kF ||eve||2 +
1
2
||eF ||2 (3.18)

Where the errors are defined as

eve = v− v̂ eF = Fa − F̂a (3.19)

37

The error dynamics of both errors are obtained, using the observer equations 3.7, 3.8, as

the following

ėve = v̇− ˙̂v = ge3 −
f
m

Re3 +Fa(t)−ge3 +
f
m

Re3 − F̂a − kve(v− v̂) = eF − kveeve (3.20)

Considering that Ḟ ≈ 0

ėF = Ḟ − F̂ =−kFeve (3.21)

Then the derivative of the Lyapunov function 3.18 is

V̇ = kF ˙eveeve + ėFeF = kF(eF − kveeve)eve − kFeveeF (3.22)

V̇ =−kFkvee
2
ve
≤ 0 (3.23)

Similar to 3.17 the system will be asymptotically stable only when eve = 0 however it is

logical that this will happen only when v = v̂ otherwise the system will be asymptotically

stable. In other words, if there exists a difference between v and v̂ the observer will asymp-

totically converge to zero.

For attitude the input torque τ in equation 3.4 is defined as

τ = J
(
−K1(Ω̂−Ωd)+ Ω̇d + J−1(Ω× JΩ)− T̂ (t)

)
(3.24)

Let define the errors

eΩ = Ω̂−Ω, eTa = T̂ −T (3.25)

And the error dynamics of each error are

ėΩ = ˙̂Ω− Ω̇ =−K1(Ω̂−Ωd)+ Ω̇d −K2(Ω̂−Ω)+ J−1(Ω× JΩ)− J−1τ −T (t) (3.26)

38

˙eTa =
˙̂T − Ṫ =−L1(Ω̂−Ω)−L2T̂ − Ṫ (3.27)

The Lyapunov candidate function to prove observer stability is

W = eT
ΩAΩeΩ + eT

Ta
ATaeTa (3.28)

Where AΩ, ATa ∈ R3x3 are diagonal positive matrices, and

eΩ =
[
|ep

Ω|1/2sgn(ep
Ω), |e

q
Ω|1/2sgn(eq

Ω), |er
Ω|1/2sgn(er

Ω)
]

(3.29)

eΩ =
[
|ep

Ta
|1/2sgn(ep

Ta
), |eq

Ta
|1/2sgn(eq

Ta
), |er

Ta
|1/2sgn(er

Ta
)
]

(3.30)

A sign function has an indefinite derivative at the origin, for this reason W is only differ-

entiable at any value except for [eΩ,eTa]
T = [0,0]T . Therefore.

Ẇ = [sgn(ep
Ω),sgn(eq

Ω),sgn(er
Ω)]A

Ω




ėp
Ω

ėq
Ω

ėr
Ω


+[sgn(ep

Ta
),sgn(eq

Ta
),sgn(er

Ta
)]ATa




ėp
Ta

ėq
Ta

ėr
Ta


 (3.31)

Substituting the control input τ from 3.24 and the error dynamics from 3.26, 3.27 in 3.31

Ẇ = sgn(eΩ)AΩ[−K2eΩ + eTa]+ sgn(eTa)A
Ta [−L1(eΩ)−L2(eTa +T)− Ṫ] (3.32)

Assuming bounded torques, i.e.

||T || ≤ c||eTa||,and||Ṫ || ≤ d||eTa || (3.33)

where for a vector x the norm is defined as ||x|| := ∑n
i=1 |xi| is the L1-norm and for a matrix

39

A the induced matrix norm is ||A|| := maxi≤ j≤n ∑m
i=1 |ai j|. Then

Ẇ ≤−sgn(eΩ)AΩK2eΩ+||ATaL1eΩ||−sgn(eTa)A
TaL2eTa +||AΩeTa ||+c||ATaeTa||+d||ATaeTa||

(3.34)

it follows that

Ẇ ≤−eT
ΩAΩK2eΩ + ||ATa ||eT

ΩL1eΩ − eT
Ta

ATaL2eTa +(||AΩ||+ c||ATa||+d||ATa ||)eT
Ta

I3eTa

(3.35)

Ẇ ≤−eT
Ω(A

ΩK2 −||ATa||L1)eΩ − eT
Ta
(ATaL2 −||A||)eTa (3.36)

where A=AΩ+(c+d)ATa . The previous expression holds as long as the matrix inequality

ATaL2 > αI3 holds. This is possible since ATa,L2 are diagonal matrices with free positive

parameters. Matrix inequality AΩK2 > ||ATa||L1(eΩ) holds as long as AΩK2 > ||ATa||L1 where

the constant matrix L1 = diag[lp
1
ε ,

lq
1
ε ,

lr
1
ε]. Since AΩ,K2 and L1 are constant matrices with free

parameters, AΩK2 > ||ATa ||L1(eΩ) holds. Thus

Ẇ ≤−eT
Ω(A

ΩK2)eΩ + eT
Ω(||ATa||L1)eΩ − eT

Ta
(ATaL2)eTa + ||A||eT

Ta
eTa (3.37)

Since

λmin{AΩ}||eΩ||22 ≤WΩ(eΩ)≤ λmax{AΩ}||eΩ||22 (3.38)

λmin{ATa}||eTa||22 ≤WTa(eTa)≤ λmax{ATa}||eTa||22 (3.39)

where ||eΩ||2 is the Euclidean norm, and since

− eT
ΩAΩK2eΩ ≤−λmin{AΩK2}||eΩ||22 ≤−λmin{AΩK2}

λmax{AΩ} WΩ (3.40)

40

− eT
Ta

ATaK2eTa ≤−λmin{ATaL2}||eTa||22 ≤−λmin{ATaL2}
λmax{ATa} WTa (3.41)

and also since ||C|| = λmax(C) for every diagonal matrix Cnxn, and the fact that V ≤
||Cx||||x|| for every Lyapunov function V ≤ xTCx it follows

Ẇ ≤−λmin{AΩK2}
λmax{AΩ} WΩ +

√
λmax(ATaL1)√
λmin(ATaL1)

WΩ − λmin{ATaL2}
λmax{ATa} WTa +

√
λmax(A)√
λmin(A)

WTa (3.42)

Ẇ =−(α1 −α2)WΩ − (β1 −β2)WTa < 0 (3.43)

Choosing α1 > α2, and β1 > β2. And since W is radially unbounded eΩ(t) and eTa(t)

globally converge to zero exponentially.

3.6 Manipulator

A 2 degrees of freedom robotic arm is chosen as the manipulator.

3.6.1 Robot Kinematics

To start with the robot dynamic analysis the kinematics is necessary to get to a Lagrangian

formulation through the iterative Newton-Euler method. The information about translations

and rotations in each joint frame will be needed for further dynamic analysis. The transforma-

tion matrices provided by the Denavit-Hartenber (D-H) algorithm contain this information.

To obtain the transformation matrices The initial configuration of the robotic arm is the

following. An extra degree of freedom is considered in the initial frame as a static rotational

joint so the final coordinates consider the link a0.

From figure 3.3 the Denavit-Hartenberg parameters are shown in table 3.1. The configu-

ration as been chosen in that form to simplify the dynamics expression. It is not necessary to

know the joints position for this work, therefore the UAV frame and the manipulator’s initial

41

Figure 3.3: Initial position of the 2DOF manipulator.

frame are chosen to not be aligned. However the position can be known by just considering

the transformation between the UAV frame and the manipulator frame.

qi di ai αi
0 0 a0 0
q1 +90◦ 0 a1 0
q2 0 a2 0

Table 3.1: Denavit-Hartenberg parameters.

Once the parameters are obtained the transformation matrices are obtained as

A01 =




1 0 0 a0

0 1 0 0

0 0 1 0

0 0 0 1




A12 =




cos(q2 +90) −sin(q2 +90) 0 a1cos(q2 +90)

sin(q2 +90) cos(q2 +90) 0 a1sin(q2 +90)

0 0 1 0

0 0 0 1




42

A23 =




cos(q3) −sin(q3) 0 a2cos(q3)

sin(q3) cos(q3) 0 a2sin(q3)

0 0 1 0

0 0 0 1




The final transformation from the initial frame to the end-effector frame is expressed by

T03 = A01A12A23 =




r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

r41 r42 r43 r44




(3.44)

The end effector coordinates (x,y,z) are the values tx,ty,tz that belong to the positions

r14,r24,r34 from the matrix T03. The rotation matrix from the initial to the end effector frame

is obtained from T03 as

R03 =




r11 r12 r13

r21 r22 r23

r31 r32 r33




Now the orientation and position of the end effector is a known value that depends on the

input joint angles q1,q2.

3.6.2 Robot Dynamics

Once the forward kinematics is solved the Newton-Euler method, to find the torques and

forces exerted in each joint, can be used. The torques, in this case, have to be computed for 3

joints because a third static joint is considered.

For the controller it is required to get the torques τ1,τ2,τ3 and for the UAV controller it

is only required τ1 3.4. This is because the Newton-Euler algorithm returns a function that

depends on all the joints located after that joint. Therefore the joint 1 has a torque function

43

Figure 3.4: Torque and force representations in each joint of the manipulator.

that depends on τ2,τ3. The main step is to find the angular acceleration and angular rate

of each joint (αi,ωi) starting from the first joint to the last one. Once the angular rates and

accelerations are obtained the torques and forces can be obtained for each joint starting from

the last joint to the first one.

τ1,τ2,τ3 are computed using the following equations.

τ3 = R34τ4 − f3 × r3,c3 +(R34 f4)× r4,c3 +α3 +ω3 × (I3ω3) (3.45)

τ2 = R23τ3 − f2 × r2,c2 +(R23 f3)× r3,c2 +α2 +ω2 × (I2ω2) (3.46)

τ1 = R12τ2 − f1 × r1,c1 +(R12 f2)× r2,c1 +α1 +ω1 × (I1ω1) (3.47)

f1, f2, f3 are computed using the following equations

f3 = R34 f4 +m3ac,3 −m3g3 (3.48)

f2 = R23 f3 +m2ac,2 −m2g2 (3.49)

f1 = R12 f2 +m1ac,1 −m1g1 (3.50)

where:

44

R is the rotation matrix from one joint coordinate system to the other (corresponding to a

ZYX rotation).

r is the position vector from the joint to the next joint or the center of gravity of the link.

ac,i is the linear acceleration of each link in the center of gravity.

gi is the gravity vector located in the center of mass of each link.

f4,τ4 are equal to 0 if there’s no an external force/torque applied on the end effector.

The equations to compute the linear accelerations in the center of mass of each link ac,1,

ac,2, ac,3 are the following

ac,1 = RT
01ae,0 + ω̇1 × r1,c1 +ω1 × (ω1 × r1,c1) (3.51)

ac,2 = RT
12ae,1 + ω̇2 × r2,c2 +ω2 × (ω2 × r2,c2) (3.52)

ac,3 = RT
23ae,2 + ω̇3 × r3,c3 +ω3 × (ω3 × r3,c3) (3.53)

The linear accelerations in the end of each link ae,1,ae,2 are computed using the equations.

ae,1 = RT
01ae,0 + ω̇1 × r1,2 +ω1 × (ω1 × r1,2) (3.54)

ae,2 = RT
12ae,1 + ω̇2 × r2,3 +ω2 × (ω2 × r2,3) (3.55)

The angular accelerations α1,α2,α3 are computed using the following equations (q0 = 0

is the static joint).

α1 = ω̇1 = RT
01α0 +RT

01eT
3 q̈0 +ω1 ×RT

01eT
3 q̇0 (3.56)

α2 = ω̇2 = RT
12α1 +RT

02eT
3 q̈1 +ω2 ×RT

02eT
3 q̇1 (3.57)

α3 = ω̇3 = RT
23α2 +RT

03eT
3 q̈2 +ω3 ×RT

03eT
3 q̇2 (3.58)

45

Finally the angular velocities ω1,ω2,ω3 are computed using the following equations.

ω1 = R01ω0 +R01eT
3 (3.59)

ω2 = R12ω1 +R02eT
3 (3.60)

ω3 = R23ω0 +R03eT
3 (3.61)

At this point, it is important to mention that the initial conditions ω0, α0, ae,0 are input

values coming from the UAV. Supposing the UAV is a moving platform then the accelera-

tions and velocities from the UAV will be transmitted to each link of the robotic arm. If the

torque equations are computed symbolically the final expression can be grouped to get to a

Lagrangian formulation that will be needed to apply a controller. The Lagrangian formulation

has the form.

τ = M(q)q̈+C(q, q̇)q̇+g(q) (3.62)

For the record the term M(q) is the nxn inertia matrix, C(q, q̇) is the Coriolis/Centrifugal

matrix and g(q) is the gravitational vector.

3.6.3 Multi-variable Joint Control

In [27, 33] a multi-variable joint control is proposed. The variable that can be controlled

in this case is the torque which is related to the voltage applied to each motor. Therefore the

torque is chosen as the input u and a simple PD controller is applied. Being u = τ then the

dynamics are expressed by

u = M(q)q̈+C(q, q̇)q̇+g(q) (3.63)

By setting u as the input q̈ will be obtained and integrating twice a new angle will be

46

Manipulator
Dynamics

PD
controller

Figure 3.5: Control diagram for the manipulator PD controller

obtained from the torque input. From equation 3.63 q̈, is computed.

q̈new = M(q)−1{u−C(q, q̇)q̇−g(q)} (3.64)

The control law for u as it was mentioned before it is only a PD controller.

u = Kpeq +Kd q̇+g(q) (3.65)

The angular position error eq = qd − q and Kp,Kd are diagonal positive gain matrices.

The last term g(q) is added to compensate for the gravity effects on each link when the

manipulator is not moving.

The control diagram for the manipulator is shown in fig 3.5

3.6.4 Manipulator PD control stability

The stability for 3.63 using the control input 3.65 is proven using a Lyapunov candidate

function

V =
1
2

q̇T M(q)q̇+
1
2

eT
q K peq (3.66)

Considering that M(q) = D(q)+ J where J is constant [33]. The time derivative of the

Lyapunov function is

47

V̇ = q̇T M(q)q̈+
1
2

q̇T Ḋ(q)q̇+ ėq
T Kpeq (3.67)

Considering ėq =−q̇ due to q̇d = 0 and substituting M(q)q̈ using 3.63

V̇ = q̇T (u−C(q, q̇)q̇−g(q))+
1
2

q̇T Ḋq̇− q̇T Kpeq (3.68)

Simplifying

V̇ = q̇T (u−g(q)−Kpeq)+
1
2

q̇T (Ḋ(q)−2C(q, q̇))q̇ (3.69)

From [33] it is proven that Ḋ(q)−2C(q, q̇) is a skew-symmetric matrix therefore q̇T (Ḋ(q)−
2C(q, q̇))q̇ = 0 and substituting the control input 3.65

V̇ =−q̇T KDq̇ ≤ 0 (3.70)

A similar situation to the position of aerial manipulator control is presented here. When

the angular velocity q̇ = 0 the system will be stable but not asymptotically stable. This will

only be possible if the desired position qd ̸= q and the angular speed q̇ = 0. This is not

possible due to the position error eq in the control input. The torque change leads to an

acceleration change that leads to a velocity change as well. For this reason, the system will

be asymptotically stable unless the desired position and the actual are equal.

48

CHAPTER 4

Experiments and results

The experimental results of this work focus mainly on the simulation of all the previous

equations to prove the effectiveness and show the behavior of the state variables. This chapter

will be focused on two simulations that demonstrate attitude stability and position stability.

The following table contains all the parameters used to simulate the Aerial Manipulator. It

is important to mention that these simulations do not consider an xd,yd controller since the

desired rotation is proposed directly without considering the position in x,y when the vehicle

is rotating. This work is not focused on the x,y position controller. However, if the attitude

controller is stable then the position x,y will simply become a function that relates the desired

rotation with the desired position.

4.1 Position and Manipulator Controller

The simulations were programmed in MATLAB Simulink environment using a fixed-step

of 1× 10−5. In this simulation the position controller is considered only in the z direction

because the xd and yd depend on specific desired Euler angles φd,θd,ψd or a desired rotation

49

Parameters Values
UAV physical parameters m = 2.5kg, Jxx = 2.8x10−7, Jyy = 5.3x10−7, Jzz = 2.9x10−7

Manipulator physical parameters l1 = 12.5cm, l2 = 10cm, ml1 = ml2 = 100gr
Position Controller Gains Kp = diag(100), Kv = diag(5)

Force Observer Gains Kve = diag(2), KF = diag(2)
Omega Controller Gains K1 = diag(1000)
Torque Observer Gains K2 = diag(1000), lp

1 = lq
1 = lr

1 = 500, lp
2 = lq

2 = lr
2 = 2000, ε = 1x10−6

Manipulator Controller Gains Kp = diag(100), Kd = diag(20)

Table 4.1: Simulation parameters.

matrix Rd . This rotation matrix is computed on the PX4 firmware, which is the physical

controller device mounted on the UAV. By setting an xd ,yd values a Rd is returned as an

command input. However, in this work, the controller is only considered for the angular

velocity. This simulation is divided into the following steps.

1. For 0 ≤ t ≤ 3s → zd = 3m

2. For 4 ≤ t ≤ 5s the manipulator joint will move to q1d = 40◦. For 7 ≤ t ≤ 8s the manip-

ulator joint will move to q2d = 30◦. In t = 10s and t = 11s q2d and q3d will return to

home respectively. Simulating the trajectory of a manipulator routine.

3. On t = 10s the force is increased simulating the manipulator grabbing an object with a

weight of 100gr.

During the simulations the actual rotation is computed using the exponential coordinates

formula R = R(0)etΩ which is solved via MATLAB.

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-1

0

1
10-3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-1

0

1
10-3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-1

0

1
10-4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-1

0

1
10-3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-1

0

1

2

a) b)

Figure 4.1: a) position and desired position over time. b) linear velocity value and the esti-
mated linear velocity.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-1

0

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-1

0

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-3

-2

-1

0

Figure 4.2: Force estimation with a load variation at t = 10s.

In figure 4.1 it can be appreciated how the position controller makes the aerial vehicle

follow the desired z trajectory and asymptotically converges as the state observer as well. On

51

t = 10 in figure 4.1.b) a velocity disturbance in the z axis can be appreciated showing how the

manipulator mass variation affects the UAV and how this disturbance is being compensated

during a time interval. This compensation is done by considering the estimated force, shown

in figure 4.2 in the controller.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-10

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-10

0

10

20

30

40

Figure 4.3: Manipulator controller of each joint with a desired joint angle qd versus the
computed q.

52

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-1

0

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-5

0

5

10
10-5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-1

0

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-1

0

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.1

0.2

0.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-1

0

1

a) b)

Figure 4.4: a) Torque estimation and b) Ω state estimation.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-1

0

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-5

0

5

10
10-5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-1

0

1

Figure 4.5: Angular velocity value versus the desired one.

In figure 4.3 the PD controller applied makes each joint of the manipulator follow the de-

sired joint angle. The torque disturbance produced by the manipulator can be shown in figure

53

4.4.a) and 4.4.b) where the estimated ω and the estimated τ are affected while the manipula-

tor is moving. Also the rotation is affected in figure 4.5.b) however using the estimated τ in

the attitude controller makes that this disturbance can be compensated. In figure 4.5 it can be

shown that the angular velocity converges to the desired value.

4.2 Attitude

For this simulation the desired angular velocity is proposed as a nonlinear varying function

to show system stability when ”aggressive” rotations have to be made. The desired angular

velocities are proposed as the time varying functions Ωx = 0.05sin(πt), Ωy = 0.05cos(πt),

Ωz = 0

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

1 2 3 4 5 6 7 8 9 10

-0.2

-0.1

0

0.1

0.2

1 2 3 4 5 6 7 8 9 10
-0.05

0

0.05

1 2 3 4 5 6 7 8 9 10
-1

-0.5

0

0.5

1

1 2 3 4 5 6 7 8 9 10
-1

-0.5

0

0.5

1

1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

a) b)

Figure 4.6: a) actual position in the x,y coordinates and the desired and the actual zd,z posi-
tion. b) actual linear velocity and the estimated. The position and velocity are caused by the
rotation of the vehicle.

54

1 2 3 4 5 6 7 8 9 10
-1

-0.5

0

0.5

1

1 2 3 4 5 6 7 8 9 10
-1

-0.5

0

0.5

1

1 2 3 4 5 6 7 8 9 10
-2

-1.5

-1

-0.5

0

Figure 4.7: Force estimation

In figure 4.6.a) it can be appreciated how the angular velocity, that leads to a rotation,

affects the position in the x,y axis. There’s a relationship between these two elements that

can be taken to get to a desired position in the x,y plane from the desired rotation and angular

velocity. In figure 4.6.b) it can be appreciated how the estimated velocity tracks the velocity.

Oscillations in the VZ plot at t = 1 show the change in the direction of the thrust force due to

the rotation of the vehicle. Force estimation is shown in figure 4.7 where only the force in z

is being affected due to the weight of the robotic arm.

55

1 2 3 4 5 6 7 8 9 10
-0.05

0

0.05

1 2 3 4 5 6 7 8 9 10
-0.05

0

0.05

1 2 3 4 5 6 7 8 9 10
-1

-0.5

0

0.5

1

(a)

1 2 3 4 5 6 7 8 9 10

-1

0

1

1 2 3 4 5 6 7 8 9 10

-1

0

1

1 2 3 4 5 6 7 8 9 10
-2

-1

0

1

2

(b)

Figure 4.8: Torque and Ω estimation.

1 2 3 4 5 6 7 8 9 10
-0.05

0

0.05

1 2 3 4 5 6 7 8 9 10
-0.05

0

0.05

1 2 3 4 5 6 7 8 9 10
-1

-0.5

0

0.5

1

Figure 4.9: Actual angular velocity versus the desired one.

Figure 4.8a) shows the estimated angular velocity and the actual where it can be seen that

the difference between both is minimum. Therefore in figure 4.8b) it can be appreciated that

error in the estimated torque is also minimum however oscillations appear due to the oscillat-

56

ing behavior of the angular velocity. In figure 4.9 the angular velocity controller makes the

input τ to track the desired angular velocity value.

4.3 Drone simulation

To visualize the rotations of this simulation the flight of the vehicle was simulated and a set

of screenshots were taken to show the vehicle orientation in different time intervals. To have

a better visualization the unit vectors of the body-fixed frame were displayed to visualize the

orientation that the vehicle has. The simulation in figures 4.11 is made by plotting circles and

vectors for drawing the quadrotor.

Figure 4.10 shows the position x,y,z of the Aerial Manipulator during the simulation time.

The robotic arm is plotted using the direct kinematic equations. All the plotted points are

rotated into the actual rotation of the vehicle in that time interval.

-5

0

10-3

5

0.4
-0.20.2 -0.100.10 0.2

Figure 4.10: Trajectory made by the Aerial Manipulator during the simulation time 0 ≤ t ≤
10s.

57

(a) (b)

(c) (d)

(e) (f)

Figure 4.11: All the rotations of the vehicle during the simulation time 0 ≤ t ≤ 10s.

58

CHAPTER 5

Conclusions

In this work, a position and attitude controller for an Aerial Manipulator is proposed using

state estimators for the Torque and Force produced by the manipulator. The angular veloc-

ity controller is proved to be effective whether in a mathematical form or simulated results.

The position controller is also proved to be effective. The estimated disturbances of torque

and force were effectively estimated. As in references from [4] to [16] the stability has been

proven by making a comparison between the desired input values and the simulation out-

put values and also by a mathematical proof such as using the Lyapunov stability method.

In sections 4.1,4.2 each figure shows that the input desired value and the simulation output

value are almost equal. Also the stability can be appreciated for the controlled and estimated

variables because the output value gets closer to the desired value during a time interval t.

Nevertheless in section 3.5 the mathematical proof is shown for the position, attitude and

estimations. It has been concluded that, in this case, estimators are not only capable to esti-

mate disturbances caused by the manipulator but any external disturbance such as wind that

produce disturbances on the vehicle’s center of mass, the observers will help the controller to

compensate for these disturbances and therefore stability will not be only in charge of the po-

59

sition errors or angular velocity errors. Another conclusion related to the position controller

is the fact that the Thrust force magnitude depends directly on the z component. Otherwise,

the vehicle will not get to the desired altitude therefore it might not be necessary to consider,

in further work, the x,y position errors to compute the thrust force magnitude. Further work

is to modify the attitude control law so the vehicle tracks the desired rotation. Once this is

done and proved the next step would be to propose a function that relates the desired rotation

with a desired x,y position.

60

Bibliography

[1] M. Sivakumar and N. M. TYJ, “A literature survey of unmanned aerial vehicle usage for

civil applications,” Journal of Aerospace Technology and Management, vol. 13, 2021.

[2] C. A. Kozera, “Military use of unmanned aerial vehicles–a historical study,” Safety &

Defense, vol. 4, no. 1, pp. 17–21, 2018.

[3] F. Ruggiero, V. Lippiello, and A. Ollero, “Aerial manipulation: A literature review,”

IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1957–1964, 2018.

[4] Z. A. Ali and X. Li, “Modeling and controlling of quadrotor aerial vehicle equipped

with a gripper,” Measurement and Control, vol. 52, no. 5-6, pp. 577–587, 2019.

[5] R. Jiao, W. Chou, R. Ding, and M. Dong, “Adaptive robust control of quadrotor with a

2-degree-of-freedom robotic arm,” Advances in Mechanical Engineering, vol. 10, no. 8,

p. 1687814018778639, 2018.

[6] J. Alvarez, N. Marchand, J. Guerrero-Castellanos, J. Tellez-Guzman, J. Escareno, and

M. Rakotondrabe, “Rotorcraft with a 3dof rigid manipulator: Quaternion-based mod-

eling and real-time control tolerant to multi-body couplings,” International Journal of

Automation and Computing, vol. 15, pp. 547–558, 10 2018.

61

[7] R. Mo, H. Cai, and S.-L. Dai, “Unit quaternion based attitude control of an

aerial manipulator**this work was supported in part by the national natural science

foundation of china under grant 61803160, in part by the foshan science and

technology innovation team special project under grant 2018it100322, in part by

the science and technology program of nansha district under grant 2017gg006. the

corresponding author is he cai.” IFAC-PapersOnLine, vol. 52, no. 24, pp. 190–194,

2019, 5th IFAC Symposium on Telematics Applications TA 2019. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S2405896319323080

[8] R. Naldi, A. Macchelli, N. Mimmo, and L. Marconi, “Robust control of an

aerial manipulator interacting with the environment**this work has been partially

supported by the european project airborne (ict 780960).” IFAC-PapersOnLine,

vol. 51, no. 13, pp. 537–542, 2018, 2nd IFAC Conference on Modelling,

Identification and Control of Nonlinear Systems MICNON 2018. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S2405896318310905

[9] J. Á. Acosta, C. R. de Cos, and A. Ollero, “Accurate control of aerial manipulators

outdoors. a reliable and self-coordinated nonlinear approach,” Aerospace Science and

Technology, vol. 99, p. 105731, 2020.

[10] E. Yilmaz, H. Zaki, and M. Unel, “Nonlinear adaptive control of an aerial manipulation

system,” in 2019 18th European Control Conference (ECC), 2019, pp. 3916–3921.

[11] H. Beikzadeh and G. Liu, “Trajectory tracking of quadrotor flying manipulators

using l1 adaptive control,” Journal of the Franklin Institute, vol. 355, no. 14, pp.

6239–6261, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/

pii/S0016003218304149

[12] M. Vahdanipour and M. Khodabandeh, “Adaptive fractional order sliding mode control

for a quadrotor with a varying load,” Aerospace Science and Technology, vol. 86, 03

2019.

62

https://www.sciencedirect.com/science/article/pii/S2405896319323080
https://www.sciencedirect.com/science/article/pii/S2405896318310905
https://www.sciencedirect.com/science/article/pii/S0016003218304149
https://www.sciencedirect.com/science/article/pii/S0016003218304149

[13] M. Ballesteros-Escamilla, D. Cruz-Ortiz, I. Chairez, and A. Luviano-Juárez, “Adaptive

output control of a mobile manipulator hanging from a quadcopter unmanned vehicle.”

ISA transactions, 2019.

[14] H. Bonyan Khamseh, S. Ghorbani, and F. Janabi-Sharifi, “Unscented kalman

filter state estimation for manipulating unmanned aerial vehicles,” Aerospace

Science and Technology, vol. 92, pp. 446–463, 2019. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S1270963818315931

[15] A. Khalifa and M. Fanni, “Experimental implementation of a new non-redundant

6-dof quadrotor manipulation system,” ISA Transactions, vol. 104, pp. 345–

355, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S0019057820301890

[16] K. Gkountas, D. Chaikalis, and A. Tzes, “Force control design for a robot manipulator

attached to a uav,” IFAC-PapersOnLine, vol. 51, no. 30, pp. 548–553, 2018, 18th IFAC

Conference on Technology, Culture and International Stability TECIS 2018. [Online].

Available: https://www.sciencedirect.com/science/article/pii/S2405896318329410

[17] F. Ruggiero, V. Lippiello, and A. Ollero, “Introduction to the special issue on aerial

manipulation,” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 2734–2737,

2018.

[18] J. Mendoza-Mendoza, V. J. Gonzalez-Villela, C. Aguilar-Ibañez, M. S. Suarez-

Castañon, and L. Fonseca-Ruiz, “Snake aerial manipulators: A review,” IEEE Access,

vol. 8, pp. 28 222–28 241, 2020.

[19] M. Ryll, D. Bicego, and A. Franchi, “A Truly Redundant Aerial Manipulator

exploiting a Multi-directional Thrust Base,” in 12TH IFAC SYMPOSIUM ON ROBOT

CONTROL (SYROCO 2018), Budapest, Hungary, Aug. 2018, p. 6p. [Online].

Available: https://hal.laas.fr/hal-01846466

63

https://www.sciencedirect.com/science/article/pii/S1270963818315931
https://www.sciencedirect.com/science/article/pii/S0019057820301890
https://www.sciencedirect.com/science/article/pii/S0019057820301890
https://www.sciencedirect.com/science/article/pii/S2405896318329410
https://hal.laas.fr/hal-01846466

[20] V. Nayak, C. Papachristos, and K. Alexis, “Design and control of an aerial manipulator

for contact-based inspection,” ArXiv, vol. abs/1804.03756, 2018.

[21] D. Tzoumanikas, F. Graule, Q. Yan, D. Shah, M. Popovic, and S. Leutenegger, “Aerial

manipulation using hybrid force and position nmpc applied to aerial writing,” ArXiv,

vol. abs/2006.02116, 2020.

[22] X. Qi, J. Wu, and J. Pan, “A compound controller of an aerial manipulator based on

maxout fuzzy neural network,” Complexity, vol. 2020, pp. 1–10, 2020.

[23] C. Kanellakis and G. Nikolakopoulos, “Guidance for autonomous aerial manipulator

using stereo vision,” Journal of Intelligent & Robotic Systems, vol. 100, 12 2020.

[24] K. Ogata, Ingenieria de Control Moderna, 3rd ed. PRENTICE HALL HIS-

PANOAMERICANA, 1998.

[25] K. Valavanis, Advances in Unmanned Aerial Vehicles. Springer, 2007.

[26] M. Ardema, “Newton-euler dynamics,” 01 2005.

[27] K. Lynch and F. Park, Modern Robotics: Mechanics, Planning, and Control. Cam-

bridge Univeristy Press, 2017.

[28] M. Vidyasagar, Nonlinear Systems Analysis, 2nd ed. Society for Industrial and

Applied Mathematics, 2002. [Online]. Available: https://epubs.siam.org/doi/abs/10.

1137/1.9780898719185

[29] H. K. Khalil, Nonlinear systems; 3rd ed. Upper Saddle River, NJ: Prentice-Hall, 2002.

[30] K. Hangos, J. Bokor, and G. Szederkényi, Analysis and Control of Nonlinear Process

Systems, 01 2004.

[31] G. Ellis, Observers in Control System A Practical Guide, 1st ed. Elsevier Science,

2002.

[32] G. Besançon, “Nonlinear observers and applications,” 2007.

64

https://epubs.siam.org/doi/abs/10.1137/1.9780898719185
https://epubs.siam.org/doi/abs/10.1137/1.9780898719185

[33] M. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and Control, 2nd ed.

Wiley, 2020.

[34] A. Barrientos, Fundamentos de Robótica. McGraw-Hill, 2007.

[35] A. Datta, M.-T. Ho, and S. Bhattacharyya, Structure and Synthesis of PID Controllers,

01 2000.

[36] C. R. Rodolfo Verdı́n, Germán Ramı́rez and G. Flores, “Teleoperated aerial manipulator

and its avatar. communication, system’s interconnection, and virtual world,” Interna-

tional Conference on Unmanned Aircraft Systems, 2019.

[37] H. Nijmeijer and T. Fossen, New Directions in Nonlinear Observer Design, 05 1999,

vol. 244.

65

CHAPTER 6

Annex

In the conference paper [36], named ”Teleoperated aerial manipulator and its avatar. Com-

munication, system’s interconnection, and virtual world” and published in the 2019s Interna-

tional Conference of Unmanned Aircraft Systems, the author of this work made a contribu-

tion. In that work, an aerial vehicle is controlled without considering any torque and force

disturbance. The paper is more focused on the development of a virtual world interface where

the user is capable to teleoperate an aerial vehicle using a virtual reality device. The simula-

tion is made by using the PX4 firmware to simulate the micro-controller, Gazebo simulator

is used to be the real-world representation and Unity 3D represents the virtual world that the

user is watching via the virtual reality headset like in figure 6.1.

66

a) b)

Figure 6.1: a) the operator using the HTC vive device during the simulation. The above figure
in column b) shows the Gazebo simulation and the second image shows the aerial vehicle in
Unity 3D [36].

The simulation results include a physical user who is moving the vehicle and the arm

using an HTC Vive device to complete a routine. Information from each software program

is exchanged via MAVROS messages and the output data proves the system stability of the

controller and the successful communication of all the programs. The structure of the whole

communication system is shown in figure 6.2. The author of this work contributed partially to

the communication protocols and Gazebo simulation, he also programmed the control equa-

tions in the PX4 firmware.

67

Figure 6.2: Communication system structure of the virtual reality environment [36].

The Aerial Manipulator, which belongs to the CIO’s Laboratory of Perception and Robotics

in charge of the researcher Gerardo Flores Colunga, is shown in figure 6.3. This Aerial Ma-

nipulator is the model used to get the physical parameters, such as weight, inertia, or link

length, that are used to make whether this work and paper simulations.

Figure 6.3: Physical aerial manipulator belonging to the Laboratory of Perception and
Robotics [36].

68

	Acknowledgements
	Publications
	Abstract
	Introduction
	State of the Art
	Theoretical Knowledge
	Mathematical Modelling of a Quadrotor
	Position
	Attitude
	Quadrotor modelling equations

	Lyapunov Stability: Direct Method
	Observers
	Robot Forward Kinematics
	Denavit-Hartenberg

	Dynamics
	Newton-Euler Formulation

	PID controller
	Exponential Coordinates of Rotations

	Methodology
	The control problem
	Aerial Vehicle
	Modelling

	Position and Angular Velocity Control equations
	Force and Torque Observer
	Force and Torque Observer equations

	Stability demonstration
	Manipulator
	Robot Kinematics
	Robot Dynamics
	Multi-variable Joint Control
	Manipulator PD control stability

	Experiments and results
	Position and Manipulator Controller
	Attitude
	Drone simulation

	Conclusions
	Bibliography
	Annex

