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Ciencia y Tecnoloǵıa), through scholarship No 589138.

Copyright © 2022 by Ulises Ramı́rez Meza.

mailto:ulisesramirez880@gmail.com


Second Harmonic Generation in Nanostructured

Metamaterials

by

Ulises Ramı́rez Meza

Approved:

Dr. Bernardo Mendoza Santoyo

Thesis Advisor

Centro de Investigaciones en Óptica, A.C.
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Abstract

In this thesis, we conduct a theoretical and numerical study on the second-

harmonic (SH) optical response of a nano-structured metamaterial. These meta-

materials are composed of a periodic array of both metallic and dielectric inclusions.

The inclusions and their surrounding matrix are made of centrosymmetrical materi-

als, for which SH is forbidden in the dipole approximation. With a proper choice of

the shape of the inclusions, we may produce a geometrically non-centrosymmetric

system which does allow e�cient SH generation. The linear and quadratic spectra

of the optical response of the metamaterial can be tunned by simple variations in

the geometrical configuration of the inclusions.

A theory that allows the calculation of the nonlinear polarization from the

geometry of the system and its linear dielectric function at the fundamental and

second-harmonic frequencies is developed, and we implement an e�cient scheme

for its numerical computation. Thus, extending a formalism for the calculation of

the macroscopic dielectric function using Haydock’s recursion method.

The formalism obtained is used in order to calculate the optical properties of

di�erent periodic arrays of nanostructures within metallic and nonmetallic matrices.

It can be applied to any combination of materials and geometry for inclusions,

within the long-wavelength regime.
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1 Introduction

1.1 Metamaterials

In recent years, nanophotonics has emerged as a fruitful sub-branch of photonics that

deals with the phenomena involved in light-matter interaction at the nanoscale. [1] The

enormous advances in this area have been reflected in a wide literature about materials

properties and their behavior when interaction with light is present. [2, 3] In this way,

optical metamaterials have been developed to control this interaction, using assemblies

of nanostructures that interact electromagnetically among them and in some case use

their resonant nature1. A metamaterial is a material that has properties that go beyond

the simple mixing of its components. The key point is that metamaterials attain their

properties from the unit structure rather than the constituent materials. Usually, these

composites are called “meta-structures”, since they essentially recreate the atomic-like

structure of matter at the nanoscale. In general, the components of metamaterials

must be smaller than the wavelength of interest, producing an inhomogeneity at this

level. Furthermore, the lattice parameter of the nanostructure must also be subwave-

length in scale. The microscopic inhomogeneity in a metamaterial makes the whole

material macroscopically uniform avoiding the di�raction and interference phenomena,

1Metamaterials has become a field of its own, and there are thousands of publications, for which is
much better to look up directly in the www for the specific topic, instead of giving particular references
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1. Introduction

and the description of its electromagnetic response is given in terms of macroscopic

or homogenized material parameters such as the electric permittivity or the magnetic

permeability. [4]

The arrival of structured metamaterials has allowed for the design of new materials,

with an unprecedented amount of control over their intrinsic properties. [5] Since the

dimensions, shape, as well as nature of its constituents, can be controlled, tailoring,

and customized to exhibit specific phenomena in di�erent ranges of the electromag-

netic spectrum, the determined design of nanostructures will define the interaction of

the materials with light, producing a wide variation in the spectral response and func-

tionalities, and allowing the exploration of several novel phenomena, most of which

cannot be found in nature. [6] The theoretical exploration has been possible due to

the progress in theory of nanostructures, the wide spread use of computational tools,

and numerical methods to simulate and design these new and unprecedented materials.

However, the study of metamaterials is not limited to theoretical analysis of materials

or the predictions of new properties; it is desired to have minimal conditions for their

materialization. In this sense, the rapid advances in nano-fabrication technology dur-

ing the last years, [7] and the development of a plentiful of nano-fabrication techniques

have allowed the manufacture of most of these metamaterials. [8] Some of those tech-

niques include electron-beam lithography, [9] focused ion beam milling, [10] nanoimprint

lithography, [11] interference optical lithography, and nanosphere lithography. [12] All

of these factor have contributed to the huge impact of metamaterials in various areas

of science, technology, and engineering with a plethora of applications and potential

developments. [13]

Initially, the research on metamaterials was motivated by the seminal work of Vese-

lago in 1968 [14], and in 2000 Pendry [15], where they discussed about the possibility

of the construction of materials with a negative refractive index. The capability to

2



1.1. Metamaterials

fabricate this kind of metamaterials was demonstrated by Smith in 2000 [16], with the

fabrication of a metamaterial based on a periodic array of metallic split-ring resonators

within a dielectric matrix, that exhibited a negative refractive index. These metamateri-

als typically are named “left-handed metamaterials”, and they were the detonators in the

development of perfect lenses. Nowadays, metamaterials has become a multidisciplinary

field of optics. It has produced the emerging of multiple key research directions, such

as optical magnetism, optical negative-index materials, giant artificial chirality, super-

resolution with metamaterials, and electromagnetic cloaks of invisibility. Furthermore,

metamaterials have played a crucial role in super- and hyper-lenses for high-resolution

imaging, sensing and filtering, signal processing, and for the development of miniature

antennae, novel waveguides, nanoscale photolithography and photonic circuits. A wide

variety of applications using metamaterials have now been developed. Materials can be

designed to have a negative index of refraction [17]; this has been implemented using

periodic noble metal inclusions within a dielectric matrix [18]. Flat lens-like devices can

be fabricated using metamaterials that can manipulate the propagation of light with

sub-wavelength focusing capabilities; [15] this type of device has been implemented for

cloaking [19–21] and shielding applications [22]. The fabrication of these materials is

not restricted to any range in the electromagnetic spectrum, which allows for the devel-

opment of new devices designed to work in the terahertz regime [23–25]. Such a feature

has made it possible to design active metamaterial devices with various tunable func-

tionalities such as switching and filtering. At microwave frequencies, such reconfigurable

metamaterials can be achieved by introducing power-dependent lumped elements such

as varactor diodes. Several microwave metamaterials based on varactor devices have

been experimentally reported, ranging from tunable split ring resonators (SRRs) as

notch filters to Second-Harmonic Generation in transmission-line NIMs. Thus, we note

the significance of nanophotonics in our days. It has become in one of the most impor-
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1. Introduction

tant branch of the optics and photonics sciences, providing a novel way to study and

develop new materials for future applications.

1.2 Optical Non-Linear Metamaterials

As previously stated, metamaterials display a wide variation of optical phenomena.

This variety includes the nonlinear response of metamaterials, which is very important

in di�erent branches of optics and photonics. [26,27] In conventional materials, the pres-

ence of nonlinear e�ects strongly depends on the intrinsic nonlinear susceptibility or the

intensity of the applied electric field. Furthermore, in macroscopic bulk crystals, the

natural atomic structure plays a primordial role, since nonlinear phenomena are heavily

sensitive to that feature, allowing or forbidding the generation of specific e�ects. For

example, for second harmonic generation (SHG), a second-order phenomenon, the ma-

terial must have a non-centrosymmetric crystalline structure to show an intense dipolar

nonlinear response. On the other hand, third-order phenomena as third-harmonic gen-

eration (THG), does imposes any symmetry condition to the crystalline structure to

exhibit a nonlinear optical response. Metamaterials besides can take advantage of the

physical features in their nanostructure and the local environment of each component,

allowing the presence of nonlinear e�ects at nanoscale. [28, 29] In this way, nonlinear

optics has benefited from research into nonlinear metamaterials; using of metamaterials

in nonlinear experiments avoids the use of extreme intensities of the electric field that

could be detrimental for most of the nonlinear crystals. [30] It is critical to acquire

flexible control over the characteristics of nanostructures in order to achieve the nec-

essary functionality. The capacity to create these tailored nonlinear materials opens

new possibilities for research on nonlinear light-matter interactions at subwavelength

scales, promising many potential applications, for example: the design of nonlinear
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1.2. Optical Non-Linear Metamaterials

nanoantennas, light sources, nanophotonic circuits for nanoscale electronics, biosensing,

nano-lasers, and ultrafast miniature metadevices.

The rapid progress in the study of nonlinear properties of metamaterials has re-

sulted in the meaningful development of new materials able to achieve nonlinear e�ects.

Although SHG and THG have received a lot of attention, nonlinear optics in metama-

terials is not just about those two phenomena. Novel structures have been developed

to show other important nonlinear e�ects, such as three and four-wave mixing e�ects

(TWM and FWM), the optical Kerr e�ect, optical parametric amplification (OPA),

self-phase modulation (SPM), super continuum generation, and stimulated Raman scat-

tering (SRS), to mention a few. There have been numerous theoretical [31–33] and

experimental [22, 34, 35] studies concerning the development of nonlinear devices using

metamaterials. Some examples of nonlinear metamaterials have been fabricated using

split-ring resonators [36, 37] and nano-rod inclusions [38], producing SHG-active, mag-

netic, and left-handed materials. Other inclusions can be intrinsically noncentrosym-

metric [39], thus creating a strong SHG response. Tailored metamaterials allow for the

possibility to tune the nonlinear optical response [40–43] as a function of the geometrical

configuration.

Nanophotonic devices are normally fabricated in the form of diverse types of struc-

tures from metallic, metal-dielectric, and all dielectric materials. In this case the im-

provement of the nonlinear optical e�ects is because of the tight confinement of the

local electromagnetic fields present in subwavelength nanostructures, and the e�ciency

is influenced by the strong light-matter interaction and large enhancement of e�ective

nonlinearities of the nanostructure. [44] In this way metamaterials can be designed using

metallic surfaces and nanoparticles, periodic noble metal inclusions within a dielectric

matrix [18], or a specific combination of them. Most of the attention has been paid

to this type of metamaterials, where the free-carrier oscillations are very important.
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1. Introduction

In a metallic structure or dielectric metal interfaces, exist delocalization and coherent

oscillations of the free electrons at the interface of the components, known as surface

plasmon resonances (SPRs). [45] In general, they are classified in two di�erent cases:

surface plasmon polaritons (SPPs), and localized surface plasmon resonances (LSPRs).

SPPs are considered propagating waves along the metal-dielectric interface, whereas

LSPRs are non propagated modes localized at the surface of the nanoparticle or nanos-

tructure. Specifically, LSPR are associate to oscillations in confined geometries; they

induce a high enhancement of local field, that is expressed as strong localized intensities

in the electric field, commonly observed as “hotspots” in gap regions of nanoantennas

or dimmer nanostructures. These resonances have particular intensity and take place

at specific frequencies, which are determined by the size, shape, and characteristic ge-

ometry of the nanostructure, or particles. For example, gold and silver nanoparticles

have distinct and adjustable optical characteristics at visible frequencies, giving them a

bright coloration. Also, non-resonant geometric e�ects lead to other optical phenomena

in the interaction of light and plasmonic structures, such as scattering, absorption, as

well as various nonlinear optical process, including harmonic generation. Furthermore,

lightning rod e�ects on sharp nanoscale tips and edges can appear. All these mechanisms

provide an extreme enhancement of the electric fields, making plasmonics a powerful

tool for nonlinear optics. It opens the possibility for very high field magnitudes in small

volumes, allowing strong nonlinear enhancement at the nanoscale.

Various nonlinear optical processes, such as SHG, multiphoton excited luminescence,

third-harmonic generation(THG), or four-wave mixing (FWM), have been observed in

plasmonic nanostructures, highlighting their tremendous potential for designing ad-

vanced nonlinear nano-sources of light and manipulating light at small scales. Enhanced

harmonic generation has been seen in a variety of structures, including nano-cones,

nanoscale apertures and dimers, nano-cups, tapered waveguides, and more. Dimer nano
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1.2. Optical Non-Linear Metamaterials

antennas, pairs of metallic cylinders or bars separated by a small gap, typically show

strong field enhancement in the gap, which can be exploited for the study of second and

third harmonic generation. Four-wave mixing (FWM) has also been reported on nano-

structured surfaces. The combination of the strong near-field intensity obtained with

plasmonic systems and the intrinsic nonlinearities of metals readily results in e�cient

nonlinear optical processes, which have given rise to the new research field of nonlinear

plasmonic.

SHG is one of the most common nonlinear optical phenomena investigated due to the

wide range of applications it o�ers; it was first observed by Franken et al. in 1961 [46].

Over the years, many theoretical models and calculations have been reported to explore

SH radiation (scattered and reflected, coherent and incoherent) and the e�ciency of

the conversion process. SHG had taken the benefits of plasmonic e�ects all of previous

conditions are outstanding to achieve that phenomena; it has been observed that for

centrosymmetric nanostructures, the influence of strong absorption is fundamental to

attain a great e�ciency in the nonlinear process, besides that the peak on SHG signal

is located at peak of linear absorption. In particular, SHG from metasurfaces, nanopar-

ticles and nanostructures has been extensively studied experimentally and by diverse

numerical methods such as the finite di�erence in the time domain method (FDTD), [47]

the surface integral equation (SIE) method, the finite element (FEM) technique and the

discrete dipole approximation (DDA). [47,48]

A wide variety of applications using metamaterials have now been developed. Ma-

terials can be designed to have a negative index of refraction [17]; this has been im-

plemented using periodic noble metal inclusions within a dielectric matrix [18]. Flat

lens-like devices can be fabricated using metamaterials that can manipulate the prop-

agation of light with sub-wavelength focusing capabilities; [15] this type of device has

been implemented for cloaking [19–21] and shielding applications [22]. The fabrica-
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1. Introduction

tion of these materials is not restricted to any range in the electromagnetic spectrum,

which allows for the development of new devices designed to work in the terahertz

regime [23–25].

The required physical parameters (namely, the electric permittivity and magnetic

permeability) that are used for calculating the optical response can be obtained via

the homogenization of the electric field [16, 49, 50]. These parameters are also used

in the experimental characterization of the metamaterials studied in this thesis. The

formalism presented in Refs. [51] and [52] is used in this work to describe the macroscopic

response of inhomogeneous systems as an average of the microscopic response of the

system. These quantities can then be used to calculate the linear and non-linear optical

responses of a given metamaterial of arbitrary composition [53–57].

1.3 Scope of the Thesis

In this thesis, we explore the nonlinear SH response of a periodic nanostructured meta-

material comprised of a bulk silver matrix with vacuum inclusions. We mention that

the theoretical approach of this thesis is based on Haydock’s approach which makes it

unique in this respect and thus there are no other articles using this novel technique,

that also includes our own numerical implementation in the PHOTONIC software. [58]

We change the macroscopic structure by varying various geometrical parameters in or-

der to produce, enhance, and vary the SH signal. We systematically study the evolution

of the nonlinear susceptibility tensor due to variations in the shape and position of the

inclusions in the metamaterial. These variations can significantly alter the centrosym-

metry of the material, causing changes in both the position and the intensity of the SHG

resonances. Lastly, we elucidate the origin of the produced SH response by calculating

and analyzing the charge density and polarization field at the metallic surface.
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1.4. Thesis Outline

1.4 Thesis Outline

The thesis is divided into 4 chapters including this introduction. In Chapter 2, using

the dipollium model, we investigate the SHG of nano-structured metamaterials, show-

ing that by controlling the non-centrosymmetry of the structure SHG can be readily

manipulated. We do so by using a silver T-shape nanostructure and the homogeniza-

tion method in order to calculate the e�ective properties in metamaterials, as well as

the implementation of Haydock’s recursive method. In Chapter 3, we present results

for linear response for a variety of three di�erent geometries; gold nano-prisms and U-

shaped gold rectangular Split Ring Resonators. Finally, in Chapter 4 we present our

final observations, remarks and perspectives for future work. Appendix A presents re-

markable details in the homogenization procedure and its connection with the Haydock

recursive method. Appendix B presents the complete, step-by-step derivations for the

SSHG yield. In Appendix C, we show the main achievements of this work in terms

of published articles and attended conferences. Finally, the complete bibliography is

located at the end of the document for easy reference.
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2 Second Harmonic Generation

in Nano-structured

Metamaterials

In this chapter we develop a method to calculate the Second Harmonic Generation

(SHG) of nano-structured metamaterials based on a novel solution of Maxwell’s equa-

tions through the Haydock recursion scheme. [59] The content of this chapter is based

on the article “Second-harmonic generation in nanostructured metamaterials” published

in Physical Review B, 99 (12), 2019, whose authors are Ulises R. Meza, Bernardo S.

Mendoza, and W. Luis Mochán. [60] This article is part of the achievements of the

present doctoral thesis as cited in App. C.

2.1 Introduction

The advent of structured metamaterials has allowed the design of new materials, with

an unprecedented amount of control over their intrinsic properties. These metamate-

rials are typically composite systems that consist of two or more ordinary materials,

that are periodically structured or arranged in such a manner that the resulting prop-
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2. Second Harmonic Generation in Nano-structured Metamaterials

erties di�er from those of the constituent materials. These systems have been widely

explored both theoretically and experimentally, with a plethora of new applications un-

der development [14, 16, 31, 35, 61, 62]. The variety of available fabrication techniques

such as electron-beam lithography [63–65], ion milling [66, 67], and even conventional

3D printing [68–70], allow for extremely precise designs of structured systems featuring

arrays of inclusions (or holes) with specific shapes. These methods allow the possibility

to fabricate new devices with highly tunable optoelectronic properties [15, 16]. A wide

variety of applications using metamaterials have now been developed. Materials can be

designed to have a negative index of refraction [17]; this has been implemented using

periodic noble metal inclusions within a dielectric matrix [18]. Flat lens-like devices can

be fabricated using metamaterials that can manipulate the propagation of light with

sub-wavelength focusing capabilities; [15] this type of device has been implemented for

cloaking [19–21] and shielding applications [22]. The fabrication of these materials is

not restricted to specific ranges of the electromagnetic spectrum, which allows for the

development of new devices designed to work in the terahertz regime [23–25].

Metamaterials display a wide variety of optical phenomena [71]; of particular interest

to us are their nonlinear optical properties. The nonlinear response is strongly sensitive

to the natural atomic structure; for second-harmonic generation (SHG), the material

must have a non-centrosymmetric crystalline structure in order to have a strong dipolar

nonlinear response. Structured metamaterials, that can be designed with almost limit-

less configurations, make for a promising alternative for nonlinear optical applications.

There have been numerous theoretical [31–33] and experimental [22,34,35] studies con-

cerning the development of nonlinear devices using metamaterials. Some examples of

nonlinear metamaterials have been fabricated using split-ring resonators [36, 37] and

nano-rod inclusions [38], producing SHG-active, magnetic, and left-handed materials.

Other inclusions can be intrinsically noncentrosymmetric [39], thus creating a strong
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2.1. Introduction

SHG response. Tailored metamaterials allow for the possibility to tune the nonlin-

ear optical response [40–43] as a function of the geometrical configuration. Plasmonic

metamaterials may further enhance the nonlinearities through the field amplification

associated to plasmonic resonances. These systems can be varied geometrically, chang-

ing their degree of non-centrosymmetry, thus allowing for the second-harmonic (SH)

signal to be enhanced.

An even richer set of possibilities opens up when 2D plasmonic metasurfaces are con-

sidered. These are made of arrays of structures with a sub-wavelength thickness known

as meta-atoms, which permit the manipulation of the polarization, amplitude and phase

of light. For example, a simple rotation of a non-centrosymmetric pseudo-atom allows a

change of phase of the second harmonic field it generates, so that a metasurface whose

atoms have a position dependent orientation may produce SHG beams propagating into

specific angles according to its polarization. For a review of phenomena such as giant

circular dichroism, nonlinear Berry phase and wavefront engineering and many others

at non-linear plasmonic metasurfaces see Ref. [72]. Instead of plasmonic systems, for

which dissipation may be problematic, all dielectric structures made of materials with

a high index of refraction (high n) have also been proposed, where there are Mie like

resonances which yield large localized field amplitudes which produce non-linear optical

e�ects. Devices based on these resonances include controllable directional radiators due

to the interference of electric and magnetic multipolar resonances, high e�ciency metal-

enses, metasurface holograms and active nanophotonics. [73,74] It has been shown that

in metasurfaces made of non-centrosymmetric high n meta-molecules, made of pairs of

slightly di�erent meta-atoms, quasi-bound electromagnetic modes that coexist with the

continuum of propagating electromagnetic waves may be excited, where the bound char-

acter arises due to the destructive interference between the far field of two modes whose

frequencies display an avoided crossing as the geometric parameters of the system are
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varied. In this situation, the electric field in the neighbourhood of the meta-molecule

is amplified, producing non-linear e�ects, and in particular, very large enhancement of

the SHG. [75]

The required physical parameters (namely, the electric permittivity and magnetic

permeability) that are used for calculating the linear optical response can be obtained via

a homogenization procedure [16,49,50]. The formalism presented in Refs. [51] and [52] is

used in this work to describe the macroscopic linear response of inhomogeneous systems

in terms of an average of certain specific microscopic response functions of the system.

We first extend this formalism to calculate not only the linear but also the non-linear

optical second order susceptibility of metamaterials of arbitrary composition [53–56] in

terms of its linear response and allowing for dispersion and dissipation. We illustrate

the formalism exploring the nonlinear SH response of a periodic nano-structured 2D

metamaterial comprised of an array of holes of a non-centrosymmetric shape within a

matrix made of a centrosymmetric material, for which we chose silver. In this case,

the SH generation from a homogeneous matrix would be strongly suppressed, but the

noncentrosymmetric geometry of the holes allows a strong signal whose resonances may

be tuned and enhanced through variations of the geometrical parameters [76, 77]. We

systematically study the evolution of the nonlinear susceptibility tensor due to variations

in the shape and position of the holes. Lastly, we elucidate the origin of the produced SH

response by calculating and analyzing the charge density and polarization field at the

metallic surface. We have built computational packages for the calculation of the surface

and bulk nonlinear polarization of nano-structured metamaterials and we have added

them to the publicly available modular computational software Photonic developed by

our group.

The chapter is organized as follows. In Sec. 2.2 we present the theoretical approach

used to calculate the dielectric response of the metamaterial that is then used to obtain
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the nonlinear SH polarization. In Sec. 2.3 we present results for a nanostructured

metamaterial consisting of empty holes within a silver matrix. We explore a variety

of geometric configurations to fine-tune the SH response. We mention that the work

presented in this chapter is published in Ref. [60].

2.2 Theory

The quadratic polarization forced at the second-harmonic (SH) frequency 2Ê by an in-

homogeneous fundamental field EÊ at frequency Ê within an isotropic centrosymmetric

material system made of polarizable entities within the non-retarded regime may be

written as [78]

P f (2Ê) = np(2Ê) ≠
1
2Ò · nQ(2Ê) (2.1)

where n is the number density of polarizable entities, p(2Ê) is their electric dipole

moment and is given within the dipolium model [79] by

p(2Ê) = ≠
n

2e
–(Ê)–(2Ê)ÒE2(Ê), (2.2)

Q(2Ê) is their electric quadrupole moment, given by

Q(2Ê) = 1
2e

n–2(Ê)E(Ê)E(Ê), (2.3)

and –(‹Ê) are the the linear polarizabilities of each entity at the fundamental (‹ = 1)

and at the SH (‹ = 2), related to the dielectric function ‘(‹Ê) through

‘(‹Ê) = 1 + 4fin–(‹Ê). (2.4)

The non-linear current density may be obtained from the polarization through jf =

ˆP f /ˆt. We could expect an additional contribution cÒ ◊ M f from a magnetization

M f = nm, with m the second order magnetic dipole moment for each polarizable
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2. Second Harmonic Generation in Nano-structured Metamaterials

entity. However, within the dipolium model the quadratic magnetic dipole induced in

each polarizable entity is null for SHG. [80–82]

We allow the density n, the polarizability –, the dielectric response ‘ and the field

to depend on position. The total polarization induced at the SH is then

P (2Ê) =n–(2Ê)E(2Ê) + P f (2Ê) (2.5)

=n–(2Ê)E(2Ê) ≠
n

2e
–(Ê)–(2Ê)ÒE2(Ê) (2.6)

+ 1
2e

Ò · n–2(Ê)E(Ê)E(Ê), (2.7)

where we added to Eq. (2.1) the polarization linearly induced by the electric field E(2Ê)

produced (self consistently) by the total polarization P (2Ê).

The equations above were developed for an insulating material, for which the polariz-

able entities are atoms whose electronic dynamics are described by harmonic forces, but

by writing the linear polarizability at the fundamental and second harmonic frequencies

in terms of the dielectric function of the material, they can be applied to arbitrary

insulators or semiconductors. An alternative model for the description of metals starts

from the Euler hydrodynamic equation for their conduction electrons,

nm
3

ˆ

ˆt
v + v · Òv + v

·

4
= ≠enE ≠ ne

v

c
◊ B (2.8)

where n, v, and · are the electronic density, velocity and lifetime respectively, and in

which the non-linearity arises from the magnetic interaction and the convective con-

tribution to the time derivative. It has been shown that this model yields the same

result as the dipolium model when we identify j = ≠nev with the time derivative of the

polarization j = ˆP /ˆt and write the resulting response in terms of the linear dielec-

tric function [80]. Thus, Eq.(2.5) describes the contributions of both, bound and free

electrons to the nonlinear polarization and can be used for metallic as well as dielectric

systems.
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We want to apply the equations above to obtain the nonlinear susceptibility of a

binary metamaterial consisting of two phases: a host made up some material A in which

inclusions made up of a material B are embedded forming a periodic lattice. In our

actual calculations we will replace material B by vacuum. We denote by ‘“ , –“ and

n“ the dielectric function, polarizability and number density corresponding to material

“ = A, B. We may describe the geometry of the metamaterial through a periodic

characteristic function B(r) = B(r + R) which takes the values 1 or 0, according to

whether the position r lies within the region occupied by material B or A, respectively,

and where R is a lattice vector. Thus, we may write the dielectric function as

‘(r) = ‘A

u
(u ≠ B(r)), (2.9)

where we introduced the spectral variable

u = 1
1 ≠ ‘B/‘A

, (2.10)

which takes complex values in general and accounts for the composition of the materials

and for their frequency dependent response.

In the long-wavelength approximation, assuming that the unit cell of the meta-

material is small compared to the wavelength of light in vacuum and the wave- or

decay-length within each of its components, the spatial fluctuations of the electric field

are longitudinal [51] and the transverse or longitudinal nature of macroscopic field is

irrelevant, so we may take the electric field within a single cell as longitudinal E = EL

and we may identify the longitudinal part DL of the displacement field D as an ex-

ternal field, which therefore has no fluctuations originated in the spatial texture of the

metamaterial, and is thus a macroscopic field DL = DL
M . Then, if we excite the system

with a longitudinal external field we may write

E = (‘̂LL)≠1DL, (2.11)
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and

EM = (‘̂LL
M )≠1DL

M , (2.12)

where ‘̂LL = P̂
L‘̂P̂L is the longitudinal projection of the dielectric function ‘ interpreted

as a linear operator,

(‘̂LL
M )≠1 =

e
(‘̂LL)≠1

f
, (2.13)

is the inverse of the macroscopic longitudinal dielectric operator, given by the spatial

average [51,52] È. . .Í, of the microscopic inverse longitudinal dielectric operator, and P̂
L

is the longitudinal projector operator, which may be represented in reciprocal space by

the matrix

PGGÕ = ĜĜ”GGÕ , (2.14)

where G and GÕ are reciprocal vectors of the metamaterial, ”GGÕ is Kronecker’s delta,

Ĝ = k + G

||k + G||
(2.15)

is a unit vector in the direction of the wavevector k + G, and k the conserved Bloch’s

vector of the linear field which we interpret as the relatively small wavevector of the

macroscopic field.

From Eq. (2.9) we may write

(‘̂LL)≠1 = u

‘A
(uP̂

L
≠ B̂LL)≠1, (2.16)

in which we may interpret the inverse of the operator within parenthesis in terms of a

Green’s function,

Ĝ(u) = (u ≠ Ĥ)≠1, (2.17)

the resolvent of a Hermitian operator Ĥ with matrix elements

HGGÕ = Ĝ · B(G ≠ GÕ)ĜÕ (2.18)
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in reciprocal space, where B(G ≠ GÕ) is the Fourier coe�cient of the periodic char-

acteristic function B(r) with wavevector (G ≠ GÕ). Notice that BLL
GGÕ = ĜHGGÕĜÕ,

(‘LL)≠1
GGÕ = (u/‘A)ĜĜ(u)ĜÕ, and that (‘LL

M )≠1 = (u/‘A)k̂ÈĜ(u)Ík̂.

To obtain the macroscopic dielectric response and the microscopic electric field we

proceed as follows. We define a normalized macroscopic state |0Í that represents a

longitudinal field propagating with the given small wavevector k and we act repeatedly

on this state with the operator Ĥ to generate an orthonormal basis set {|nÍ} through

Haydock’s [59] recursion

Ĥ|nÍ = bn+1|n + 1Í + an|nÍ + bn|n ≠ 1Í. (2.19)

In this basis, Ĥ may be represented by a tridiagonal matrix with elements

(HnnÕ) =

Q

cccccccccccca

a0 b1 0 0 · · ·

b1 a1 b2 0 · · ·

0 b2 a2 b3 · · ·

0 0 b3 a3 · · ·

...
...

...
... . . .

R

ddddddddddddb

(2.20)

given by Haydock’s coe�cients an and bn. Thus, the macroscopic inverse longitudinal

response may be obtained as a continued fraction [54,55]

(‘̂LL
M )≠1 = k̂k̂

u

‘A
È0|(u ≠ Ĥ)≠1

|0Í

= k̂k̂
u

‘A

1
u ≠ a0 ≠

b2
1

u≠a1≠
b2
2

u≠a2≠
b2
3

...

(2.21)

and the microscopic electric field (2.11) may be represented in reciprocal space by

EG =
ÿ

’nÈG|nÍ (2.22)
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2. Second Harmonic Generation in Nano-structured Metamaterials

with coe�cients ’n obtained by solving the tridiagonal system

ÿ

nÕ
(u”nnÕ ≠ HnnÕ)’nÕ = ”n0DL, (2.23)

where we write the fields in real space as

DL(r) = k̂DLeik·r (2.24)

and

E(r) =
ÿ

G

ĜEGei(k+G)·r. (2.25)

Notice that the results of the calculation above depend on the direction k̂ chosen as

the propagation direction of the external field. As we may identify

(‘̂LL
M )≠1 = k̂k̂

k̂.‘̂LL
M · k̂

, (2.26)

all the components of the macroscopic dielectric tensor may be e�ciently obtained

from Eq. (2.21) by repeating the calculation of its longitudinal projection for di�erent

propagation directions k̂, such as along all independent combinations êi + êj of pairs of

Cartesian directions êi and êj (i, j = x, y or z).

We remark that the small-scale fluctuations of the electric field within a nano-

structured system within the long-wavelength regime are mostly longitudinal, as the

transverse contributions are of an order a2/⁄2 smaller (45,46), where a is the lattice

parameter and ⁄ the free-space wavelength. On the other hand, the macroscopic field

is almost constant within the small unit cell, so its transverse or longitudinal character

is irrelevant. For these reasons, after having identified all of the components of the

dielectric tensor, the results above are suitable for the common case of electromagnetic

waves for which the macroscopic field is actually transverse, not longitudinal. These

remarks have been verified by comparing the full numerical solution of the wave equation

within a metamaterial with the e�cient solution proposed above [53,83]
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2.3. Non-linear Susceptibility ‰(2)

2.3 Non-linear Susceptibility ‰(2)

Once we obtain the microscopic field from Eqs. (2.22), (2.23) and (2.25), we may

substitute it in Eqs. (2.1)-(2.3) to obtain the forced SH polarization, which we may

then substitute in Eq. (2.5) to obtain the self consistent quadratic polarization in the

SH. However, in order to solve Eq. (2.5) we need the selfconsistent SH field, which in

the long wavelength approximation is simply given by the depolarization field

E(2Ê) = ≠4fiP L(2Ê) (2.27)

produced only by the longitudinal part of the SH polarization. Thus we write Eq. (2.5)

as

P (2Ê) = ≠4fin–(2Ê)P L(2Ê) + P f (2Ê). (2.28)

By taking the longitudinal projection we obtain a closed equation for P L(2Ê) which we

solve formally as

P L(2Ê) = (‘̂LL(2Ê))≠1P fL(2Ê) (2.29)

using Eq. (2.4). Plugging this result back into Eq. (2.28), we finally obtain the SH

polarization P (2Ê).

In order to perform the operation indicated in Eq. (2.29) we perform a Haydock

recursion as in Eq. (2.19) but using P fL(2Ê) to construct a new initial normalized state

|0̃Í, with components ÈG|0̃Í in reciprocal given by

P fL
G (2Ê) = ĜÈG|0̃Íf, (2.30)

where f is a normalization constant, and from it, a new Haydock orthonormal basis

|ñÍ using the same procedure as in Eq. (2.19). Thus, we write the self consistent

longitudinal SH polarization as

P L(2Ê; r) =
ÿ

G

P L
G(2Ê)Ĝei(k+G)·r. (2.31)
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with

P L
G(2Ê) = u2

‘A2

ÿ

ñ

›ñÈG|ñÍ (2.32)

and with coe�cients ›ñ obtained by solving the tridiagonal system

ÿ

ñÕ
(u2”ññÕ ≠ HññÕ)›ñÕ = ”ñ0̃f, (2.33)

where u2 and ‘A2 are the spectral variable (2.10) and the dielectric response ‘A but

evaluated at the SH frequency 2Ê.

Substitution of ›ñ from Eq. (2.33) into Eqs. (2.32) and (2.31) yields the SH longi-

tudinal polarization, which may then be substituted into Eq. (2.28) to obtain the total

SH polarization in the long-wavelength limit when the system is excited by a longitu-

dinal external field along k̂. Averaging the result, or equivalently, taking the G = 0

contribution in reciprocal space, we obtain the macroscopic SH polarization PM (2Ê) .

Notice that we may not obtain yet the non-linear quadratic susceptibility from this po-

larization, as it contains a contribution from the linear response to the second harmonic

electric field. Thus, we write

PM (2Ê) = 1
4fi

(‘M (2Ê) ≠ 1)EM (2Ê) + P f
M (2Ê), (2.34)

where the first term is the contribution of the linear response to the SH macroscopic

field, and the second term

P f
M (2Ê) = ‰(2)

M : EM (2Ê)EM (2Ê) (2.35)

is the sought after SH macroscopic polarization forced by the SH macroscopic electric

field, and ‰(2)
M is the corresponding SH quadratic macroscopic susceptibility, given by a

third rank tensor. Within our long-wavelength longitudinal calculation the macroscopic

field EM (2Ê) is simply given by the longitudinal depolarization field

EM (2Ê) = EL
M (2Ê) = ≠4fiP L

M (2Ê), (2.36)
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so that, taking the longitudinal projection of Eq. (2.34) we obtain

P fL
M (2Ê) = k̂k̂ · P f

M (2Ê) = ‘LL
M (2Ê)P L

M (2Ê). (2.37)

Substituting P fL
M (2Ê) from Eq. (2.37) into (2.36) and then into (2.34) we obtain the

macroscopic forced quadratic SH polarization P f
M (2Ê) produced by a longitudinal ex-

ternal DL field pointing along k̂. As in the linear case, we finally repeat the calculation

above, for several independent directions of propagation k̂ so that the corresponding

Eqs. (2.35) become a system of linear equations in the unknown Cartesian components

‰(2)
M ijk (i, j, k = x, y, or z) which we solve to obtain the third rank second order suscep-

tibility tensor ‰(2)
M of the metamaterial. Notice that a quadratic macroscopic electric

quadrupolar density, as well as a possible quadratic macroscopic magnetic dipolar den-

sity could also produce a non-local contribution to the polarization, described by a

fourth order tensor which acts on EM ÒEM . This terms would be negligible within the

long-wavelength regime, except for centrosymmetric systems with a centrosymmetric

geometry, for which the local contribution is suppressed.

In summary, to obtain the quadratic response we first obtain the non-retarded mi-

croscopic field and the macroscopic dielectric tensor using a Haydock’s recursion starting

from a macroscopic external longitudinal field, then we use the dipolium model to obtain

the microscopic source of the SH polarization, which we screen using again Haydock’s

scheme to obtain the full microscopic polarization, which we average to obtain the full

macroscopic SH polarization. As this includes a contribution from the macroscopic

SH depolarization field, we subtract it before identifying the quadratic susceptibility

tensor projected onto the longitudinal direction. We repeat the calculation along di�er-

ent independent directions so that we can extract all the components of the quadratic

susceptibility.

In the process above we assumed that the unit cell of the metamaterial is small with

respect to the wavelength at frequency Ê, and thus we introduced a long-wavelength
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approximation and assumed the external field and the electric field to be longitudinal.

After obtaining all the components of the macroscopic response, we should not con-

cern ourselves anymore with the texture of the metamaterial; the unit cell disappears

from any further use we give to the macroscopic susceptibility. Thus, we can solve

any macroscopic SH related electromagnetic problem using the suceptibiity obtained

above without using again the long wavelength approximation. Once we have the full

macroscopic susceptibility tensor we may use it to calculate the response to transverse

as well as longitudinal fields. Thus, we may use our susceptibility above to study the

generation of electromagnetic waves at the SH from a propagating fundamental wave, in

which case the macroscopic fields should no longer be assumed to be longitudinal; it is

only their spatial fluctuations, which have been homogenized away, that are necessarily

longitudinal.

2.4 Results

In the present section we apply the formalism developed in the previous section to obtain

the nonlinear response of a system with a simple geometry for which we can control

the degree of centrosymmetry. To that end, we incorporated the scheme described

in the previous section into the publicly available package Photonic [58], which is a

modular, object oriented system based on the Perlprogramming language, its Perl Data

Language (PDL) [84] extension for e�cient numerical calculations, and the Moose [85]

object system. The package implements Haydock’s recursive procedure to calculate

optical properties of structured metamaterials in the non-retarded as well as in the

retarded regime.

Our system consists of a square array of pairs of holes in the shape of prisms with

a rectangular cross section within a metallic host (Fig. 2.1). Each rectangle is aligned
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Figure 2.1: Unit cell of a metamaterial made up of a horizontal and a
vertical rectangular hole within a conducting matrix. We indicate the
lattice parameter a of the square array, the length L— and width W— of
each rectangle (— = h, v) and the o�set O of the vertical rectangle with
respect to the center of the horizontal one. We indicate the directions
x, y of the crystalline axes. The shaded regions correspond to masks
of width �m used to single out the surface and the edge contribution
to the SH response

with one of the crystalline axes x, y of the metamaterial and is characterized by its

length Lh or Lv and its width Wh or Wv, where h denotes horizontal (along x) and v

vertical (along y) alignment. The center of the vertical rectangle is shifted horizontally

with respect to the center of the horizontal rectangle by an o�set O. Thus, when O = 0

our system is centrosymmetric and as O increases it becomes non-centrosymmetric in

varying degrees.

We remark that we have chosen an essentially 2D system, assuming full translational

invariance along the third dimension, as this choice allows a full analysis of the ensuing

results below. Nevertheless, our formalism may also be applied to periodical binary
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1D and 3D systems [54]. Furthermore, we can generalize our results to systems with

an arbitrary number of phases [86] and we can apply them to finite systems such as

metasurfaces.

In order to simplify our analysis, we have chosen a system that has mirror symmetry

y ¡ ≠y with respect to the center of the rectangles. Thus, the only in-plane non-null

components of the SH susceptibility are [87] ‰xxx, ‰xyy, and ‰yxy = ‰yyx. We omit the

sub-index M and the super-index (2) that indicate these are components of the quadratic

macroscopic susceptibility in order to simplify the notation, as this yields no confusion.

In Fig. 2.2 we show the spectra of the magnitude of these non-null components for

an Ag host [88] and for di�erent values of the o�set O. The parameters we used were

Wh = Wv = a/6, Lh = Lv = a/2, O = 0 . . . a/3. Notice that when O = 0 the system

is centrosymmetric and there is no SH signal. As O increases towards ±a/3 the system

becomes noncentrosymmetric. Two resonances become clearly visible and they grow in

size as O increases and the system moves farther away from the centrosymmetric case.

The lower energy resonance of ‰yyx is at a di�erent frequency as those of ‰xyy and ‰yyy

and is red shifted as the o�set increases. If O increases beyond a/3 (not shown) the two

rectangles would cease to overlap and the quadratic suceptibility would rapidly decay,

until O = a/2 for which the system becomes exactly centrosymmetric again and the

quadratic susceptibility becomes exactly null.

According to Fig. 2.2, the order of magnitude of the SH susceptibility at the reso-

nance is around 102/nea, where n is the electron density, e is the electron charge and

a, as mentioned above is the lattice parameter of the square array. For typical non-

centrosymmetrical materials, such as quartz, AlGaAs or LiNbO3, the corresponding

order of magnitude is around 1/neaB, where aB is the Bohr radius [89], which means

a factor of 102 smaller than for the metamaterial. Thus, a centrosymmetric metallic

material with a non-centrosymmetric geometry can achieve at resonance susceptibilities
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Figure 2.2: Normalized absolute value of the non-null components of
the SH susceptibility nea‰ijk with ijk = xxx (upper left), xyy (upper
right), and yyx = yxy (lower left), for a square lattice of rectangular
holes, as in Fig. 2.1, within Ag, with geometrical parameters Lh =
Lv = a/2, Wh = Wv = a/6, for di�erent values of the o�set O =
0 . . . a/3. The lower right panel displays the geometry corresponding
to the largest o�set. Notice that for these cases the holes overlap.

as large as 102aB/a times that of non-centrosymmetrical materials, even accounting for

their large dissipation: for a unit cell of around 100nm this would be just one order of

magnitude below those of the above mentioned systems1.

1Much higher susceptibilities have been found in carefully tailored multiple quantum well structures
made of noncentrosymmetric materials whose intersubband transitions where coupled to resonances of
a plasmonic metasurface. See Ref. [90]
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In order to understand the origin of the structure of the spectra discussed above,

in Fig. 2.3 we plot the non-null components ‘xx
M and ‘yy

M of the macroscopic linear di-

electric tensor ‘M of a metamaterial made up of a square lattice of single rectangular

holes with a horizontal orientation. Notice that there is a very weak resonance close

3.4 eV corresponding to polarization along the length of the rectangle (x direction) and

a strong resonance corresponding to polarization along the width of the rectangle (y

direction) at a slightly smaller frequency. Although there is a strong linear resonance in

the y direction, this system is centrosymmetrical and would yield no SH signal. When

we combine horizontal and vertical rectangles with a null o�set O = 0 to make a cen-

trosymmetric array of crosses, both resonances appear for both polarizations, although

they now interact, partially exchange their strengths and repel so that both become

clearly visible close to 3.4 eV and 3.2 eV (Fig. 2.4).

As the o�set O (Fig. 2.1) increases there are only small changes to the spectra

corresponding to ‘xx
M . However, a new mode develops in the spectra of ‘yy

M . This mode

is due to the strong coupling of a quadrupolar oscillation in the vertical rectangle to

the vertical dipolar oscillation of the horizontal rectangle. The quadrupole may be

visualized as a horizontal polarization in the upper part of the vertical rectangle and a

horizontal polarization in the opposite direction in the lower part of the rectangle, as

illustrated by Fig. 2.5. The coupling is symmetry allowed as for a finite o�set O ”= 0

the system looses the x ¡ ≠x symmetry.

We expect the resonant structure of the quadratic susceptibility to have peaks cor-

responding to the resonances of the linear response at the fundamental or at the SH

frequency. Thus, we expect peaks at the fundamental and at the sub-harmonics of

those of the linear response. As Fig. 2.4 shows no structure at all in the the region

from 1.4 eV to 1.9 eV shown in Fig. 2.2, in this case we can only expect structure at the

sub-harmonics, due to a resonant excitation of the polarization at the SH frequency.
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Figure 2.3: Non-null components of the macroscopic dielectric re-
sponse, ‘xx

M and ‘yy
M , of a metamaterial made up of a square array of

horizontally oriented single rectangular holes of length Lh = a/2 and
width Wh = a/6, with a the lattice parameter within an Ag matrix.

For a macroscopic field oriented along the Cartesian directions x or y the SH harmonic

polarization can only point along the x direction, due to the y ¡ ≠y mirror symmetry

of our system. Thus, the sub-harmonics of the resonances of ‘xx
M (Fig. 2.4) appear in

the susceptibility components ‰xxx and ‰xyy (Fig. 2.2). On the other hand, a macro-

scopic field that points along an intermediate direction between x and y may excite a

quadratic polarization along y. Thus, the sub-harmonics of the resonances of ‘yy
M (Fig.

2.4) appear in the susceptibility components ‰yxy = ‰yyx (Fig. 2.2).

To gain further insight into the nature of the resonances, in Fig. 2.6 we show the

polarization maps evaluated at the maxima of the SH spectra corresponding to di�erent

directions of the macroscopic linear field, and for the o�set O = a/3 that yields the

largest signals.
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Figure 2.4: Non-null components ‘xx
M and ‘yy

M of the macroscopic
dielectric tensor ‘M of a metamaterial made up of a square array of
pairs of horizontally and vertically oriented single rectangular holes
of length L— = a/2 and width W— = a/6 (— = h, v), with a the
lattice parameter within an Ag matrix for di�erent values of the o�set
O = 0 . . . a/3 (see Fig. 2.1).

We notice that when the fundamental macroscopic field points along the x direction,

the magnitude of the SH polarization is symmetric with respect to the mirror plane.

However, the y component of the polarization points towards opposite directions on

either side of the mirror plane, yielding a macroscopic SH polarization along x. In this

case, the polarization has maxima near the four concave vertices of the vertical rectan-

gle. When the fundamental macroscopic field points along y the quadratic polarization

strength is again symmetrical around the horizontal symmetry and its y component

above cancels its y component below the symmetry plane, so that the resulting macro-

scopic SH polarization points along x. In this case, the polarization is strongest at

the convex vertex where the horizontal and vertical rectangles meet, and it is slightly

smaller at the other corners. On the other hand, when the fundamental macroscopic

field points along the direction of x̂ + ŷ, the resulting quadratic polarization has no
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Figure 2.5: Microscopic linear electric field (left) and induced charge
density fl (right) for a metamaterial made of a square lattice of rectan-
gular holes (Fig. 2.1 within an Ag matrix, with L— = a/2, W— = a/6
(— = h, v) with an o�set O = a/3, with a the lattice parameter, ex-
cited by a macroscopic field along the y (vertical) direction with an
energy ~Ê ¥ 3 eV corresponding to the leftmost peak in ‘yy

M in Fig.
2.4. The field and the charge distribution correspond to a vertical
polarization for the horizontal rectangle, a vertical polarization for
the vertical rectangle and a non-diagonal quadrupole with opposite
horizontal polarizations above and below the symmetry plane.

symmetry at all, and it yields a macroscopic SH polarization that has a y component.

Finally, in Fig. 2.7 we illustrate the contributions of the surface region to the total

quadratic susceptibility by adding only the contributions within a band of width �

around the surface. We notice that although there is a very strong surface polarization,

its contribution to the macroscopic quadratic susceptibility is relatively small, as it is
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EM k x̂ @ ~! = 1.62 eV EM k ŷ @ ~! = 1.62 eV

EM k x̂+ ŷ @ ~! = 1.5 eV EM k x̂+ ŷ @ ~! = 1.72 eV

Figure 2.6: Magnitude and direction of the quadratic polarization
induced in the same system as in Fig. 2.2 for the largest o�set O = a/3
at the resonant energies ~Ê = 1.72 eV for the fundamental macroscopic
field EM along the direction x̂ + ŷ (upper left panel), ~Ê = 1.62 eV
and EM along x̂ (upper right), and for ~Ê = 1.62 eV and EM along
y.

confined to a very narrow region and it is partially canceled by the polarization at other

parts of the surface, so that for the geometry studied here, most of the SH signal comes

from the bulk of the host.
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3 Comparison with Other

Works

In this Chapter, we compare our method of calculation, which includes not only the

theoretical approach through the Haydock method but also its numerical implementa-

tion, with two methods implemented in other studies. The first one studies rectangular

split ring resonators, [91] and the second one hexagonal arrays of nano prisms. [92] The

results of the numerical calculations of these systems were compared with theoretical re-

sults obtained by Zeng. This comparison readily shows how our method is more flexible

and has the great advantage of being implemented in open source software.

3.1 Rectangular Split Ring Resonators

3.1.1 Linear Response

We present results for a metamaterial with a geometry based in a gold nano Split

Ring Resonators (SSR) metamaterial. In order to calculate the linear properties of this

metamaterial, we used the scheme shown in Chapter 2 to obtain the dielectric function.

Then, we proceeded to use that into the characteristic matrix approach, [93] to calculate

the reflection, transmission and absortion by a thin film of the metamaterial.
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Figure 3.1: Unit cell of a periodic array of SRR. The length ¸ and
width w are a fraction of the lattice parameter indicated with a. We
indicate the directions x,y of the crystaline axes.

The metamaterial consists of a periodic array of a square unit cell, where gold

SSR is placed on a thin film of indium-tin-oxide (ITO) as the host, with a dielectric

function ‘ = 3.8, the dielectric function of gold was taken from [94], and the thickness

of the SRR and ITO films are 25 and 5nm respectively. These layers are supported by

an infinite glass with ‘ = 2.25. Each SRR can be seen as a set of three rectangular

gold particles overlapping between them, where the centrosymetry of the system in

one principal direction is broken. In order to optimize the geometry, we explored over

di�erent configurations of size, length, width and separation of every rectangular particle

that compose the unit cell of the array. We matched these results to reach the principal

resonance at 1500 nm presented in previous works [37,91,95,96]. For this propose, the

parameters of the SRR were w = 9
40a, ¸ = 4

5a and � = a
10 , with ¸ and w the length and

the width of a single rectangle of SRR respectively, a the lattice parameter of the square

cell and � the separation between two contiguous unit cells in the x or y directions and

it would be the same at every corner of the square cell. The parameters of the unit cell

are shown in Fig. 3.1.
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Figure 3.2: Complex dielectric function ‘ii for a U-shaped Split Ring
Resonator (SRR) metamaterial. The yellow region denotes Au and
the gray area is the ITO thin film which is dielectric. The blue arrows
in the inset of the unit cell indicates the polarization direction of the
fundamental electric field E(Ê). ‘yy(Ê) was multiplied by 10 so the
resonances below 700 nm could be seen.

In Fig. 3.2, we show in the top row the dielectric function ‘xx(Ê) and ‘yy(Ê) as a

function of the wavelength for two diferent polarizations of the incident electric field,

one along x̂ and the other along ŷ, for a infinite 2D array of the SSR sown in Fig. 3.1.

When the system is excited with an electric field polarized in the x̂ direction, there are

two resonances clearly seen in the imaginary part of ‘xx(Ê), one around 1521 nm and

the other around 797 nm. This could be understood from the fact that along x̂ there

are to regions where the electric field could resonante, one inside the U-shape and the

other in the horizontal region of neighbor unit cells . Also, for an incident ŷ polarized
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electric field, there are two resonances in the imaginary part of ‘yy(Ê) one around 610

nm ane the other around 870 nm; however, in this case the regions responsible for these

resonances of the electric field are between the vertical regions of neighboring unit cells,

one at the bottom of the U-shape and one at the top of the two arms of the U-shape

unit cell.

In the botton row of Fig. 3.2, we show the corresponding transmission (T ) and

reflectance (R) of the U-shaped SRR metamaterial. The resonances in the dielectric

function are seen in the reflection (R) as peaks and in the transmission (T) as deeps, as

seen in Fig. 3.2. It is interesting to see how both T and R are related to a fine interference

of the real and imaginary parts of the dielectric function, as we could clearly see in the

small deeps riding along R and T related to sharp changes of ‘yy(Ê).

For a more complete analysis, we confirm that our method based on Haydock’s ap-

proach comply with Babinet’s principle. [97]. Indeed, in Fig. 3.3 we show the comple-

mentary structure to that of Fig. 3.2 where the Au and ITO film have been interchanged,

and the geometry is kept identical. For this complementary C-SRR metamaterial we

have a “complementary” spectrum, where the reflection and transmission have been in-

terchanged; we could take the left (right) column results of Fig. 3.2 and compare them

with the right (left) column results of Fig. 3.3 to se that they are almost identical.

Indeed, Babinet’s principle holds true for ideal perfect conductors, [97] whereas in our

case we have a real Au conductor, that nevertheless at infrared wavelengths behaves like

an almost ideal conductor. Therefore, knowing the optical behavior of a given metallic

metamaterial through Babinet’s principle we can extract complementary information

about the behavior of the optical response.

Finally, in Fig. 3.4 and 3.5 we show the comparison of our results to those of Ref. [91]

where a classical electrodynamic model for the conduction electrons was carried out

using a classical Coulomb interacting gas that responds to the electromagnetic field
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Figure 3.3: Complex dielectric function ‘ii for a complementary U-
shaped Split Ring Resonator (SRR) metamaterial, where the yellow
Au region and the gray ITO thin film have been interchanged with
those of Fig. 3.2. The blue arrows in the inset of the unit cell indicates
the polarization direction of the fundamental electric field E(Ê).

through the so called plasma equations. Once more, our Haydock’s solution to the

Maxwell Equations captures the correct physics an reproduces quite accurately the

results of Ref. [91]. Moreover, we see that our results have a much better resolution.

For example, in the reflection (blue line) of the right-bottom panel an small dip around

880 nm can be observed, that comes from the interplay of the resonances at the corners

of the arms of the U-shaped SRR, similar to those shown in Fig. 2.5. To get such dip,

we had to use a 600 ◊ 600 matrix of pixels to described correctly the geometry of the

unit cell in order to get converged results. We do not present the analysis since it takes

a lengthy explanation along with several figures that go out of the scope of the present
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Figure 3.4: T and R comparison of the theoretical results of Ref. [91]
(top figures) with our results of Fig. 3.2 (bottom figures). We see
very good agreement. The blue arrow in the inset cell of every plot
indicates the polarization direction of the fundamental electric field.
The x axis scale is the same for all the plots.

Chapter. We could not comment why Ref. [91] does not get such spectroscopic details,

as they do not talk about the convergence of their calculation. Our results should be

verified by the corresponding experiments.

3.1.2 Second Harmonic Response.

To calculate the SH response, we used the dipolium model [79] to retrieve the nonlinear

susceptibilities trough the nonlinear polarization. Then, we used the two-layer or Fresnel

model to calculate the transmission SH field in optical surfaces. The complete derivation

of the SH response is presented in Appendix B.

Our analysis is simplified because we have a system that has a mirror symmetry

x ¡ ≠x with respect to the center of the unit cell. Thus, the only in-plane non-zero

components of the SH susceptibility are [87] ‰yyy, ‰yxx, and ‰xxy = ‰xyx. We omitted
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Figure 3.5: Complementary T and R comparison of the theoretical
results of Ref. [91] (top figures) with our results of Fig. 3.3 (bottom
figures). We see very good agreement. The blue arrow in the inset cell
of every plot indicates the polarization direction of the fundamental
electric field.

the subindex M and the super-index (2) that indicate these are components of the

quadratic macroscopic susceptibility in order to simplify the notation, as this yields

no confusion. We calculate the non-zero components for ‰ijk in an energy range from

0.6 eV to 1.7 eV for the fundamental field. The absolute value of these components

are presented in Fig. 3.6, where two main resonances appear at 0.715 eV and 0.815

eV in the yxx component of ‰ijk. The highest resonance located at 0.815 eV matches

with the corresponding resonance in the dielectric function for the fundamental fields

polarized in the x direction. We expect strong nonlinear response at the double of

these frequencies, due to the dipolar character of this resonance, since the structure is

non centrosymmetric and the main contribution to the SH polarization is given by the

dipolar moment at this energy. Also, several less intense resonances are seen from 1.4

to 1.6 eV, related to the linear resonances of ‘ii around 1.5 eV as seen in Fig. 3.2.

Once we have the non-zero components of ‰ijk, we are able to explore multiples
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only the non-zero components of ‰ijk due to the symmetry of the
system.

aspects of the SH radiation, one of them is the angular dependence of the transmitted SH

with respect to the polarization of the fundamental field. For this purpose we consider

normal incidence of the incoming fundamental field and the four common polarization

combination such as TpP , TpS , TsP , TsS , where the lowercase subindex indicates the

incoming polarization of the field and the uppercase subindex indicates the outgoing

SH field. The angular dependence in the SHG radiation is observed in Fig. 3.7. As

it is shown, the SH field will be polarized in the perpendicular direction with respect

to the fundamental field. This result agrees with previous experimental [37, 39, 95]

and the theoretical work of Ref. [91], as seen Fig. 3.8. We mention that the rotation

of the experimental SHG polar radiation pattern, as explained in [37, 39, 95] may be

related to the fact that the geometry of the experimental U-shaped SRR, as shown in

Fig. 3.8, has some minor deviations from the theoretical U-shaped SRR. Nevertheless,
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3.2. Gold Nano-prisms

the agreement of our calculation based on Haydock’s approach is quite good. Needless to

say, our method could have used the experimental U-shaped SRR, but this goes beyond

the scope of the present work. It should be remarked, tough, that our method yields

spectroscopic results that could guide experimentalist to optimize desired experimental

applications.

h̄!=0.815eV
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Figure 3.7: Normalized SH transmission field for a SRR with the pa-
rameters specified in the text.

3.2 Gold Nano-prisms

In Ref. [92] 2D arrays of metallic Au nano prisms were fabricated using a nano sphere

lithography technique described in detailed in Ref. [8]. In summary, a mask of polystyrene

nano spheres of 522 nm in diameter are self-assembled in an hexagonal honeycomb struc-

ture on the surface of a clean silica glass substrate forming a colloidal layer. Then, Au
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Figure 3.8: Normalized SH transmission intensity for p-in and P-out
polarization of the external electric field for a SRR with the parameters
specified in the text. The left-top panel shows four representative U-
shaped SRR used in the 2D experimental array and the right-top panel
shows the normalized SHG radiation patern measured in Ref. [91]. The
left bottom panel corresponds to Fig. 2 of the theoretical results given
in Ref. [91], and the right bottom panel shows our results. See text
for details.

is sprayed by thermal evaporation on the colloidal layer in such a way that the gold

only goes to the substate through the intersticial spaces left by the non-overlapping

regions of the spheres. In this way, the Au prisms are composed by intersecting circular

sections induced by the “circular curvature” of the spheres. Finally the nano spheres are

removed by using a solvent, and a silica layer is deposited by magnetron sputtering on

the resulting Au nano prisms to prevent possible oxidation e�ects and physical damage

of the nano array. The resulting hexagonal nano structure of gold nano prisms were
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3.2. Gold Nano-prisms

observed using a field emission scanning electron microscope as shown at the top of

Fig. 3.9.

The measured absorption spectrum of the gold nano prisms sample was taken with

unpolarized incident light in Ref. [92] and is shown in Fig. 3.9 with the green line.

The spectrum shows a well defined absorption band centered around 1030 nm, which

corresponds to the dipolar localized surface plasmon resonance (LSPR) of the nano

prisms. The other absorption features at shorter wavelengths correspond to higher

order multipolar LSPRs. This assignment of the resonances has been shown by Finite

Element Method (FEM) simulations previously performed on similar arrays in Ref. [98].

In Fig. 3.9 we show the micrograph of the experimental system of Ref. [92], along

with the theoretical absorbance results as calculated through the Haydock method pre-

sented in Chapter 2. In the left middle panel, we show the theoretical unit cell composed

by the curvilinear nano prisms, just as those used for the experiment as shown in the

top panel. The theoretical absorbance results for these curvilinear gold prisms shown

in the right middle panel coincide rather well with the experimental results. Indeed, we

see good qualitative agreement in the shape of both the experimental and the theoret-

ical spectra. The dipolar resonance at 1030 nm coincides in wavelength and intensity

as do the quadrupolar resonances centered around 700 nm. The overall theoretical

absorbance spectrum follows the trend of the experimental absorbance rather well. The

di�erences could be related to imperfections of the experimental array that are unavoid-

able.

To confirm that on one hand the geometry of the prisms is crucial for the good

agreement with the experiment, and on the other hand, that our theoretical Haydock

treatment captures such geometry with great detail, in the botom panel of Fig. 3.9 we

show the theoretical absorbance for a unit cell of triangular prisms. As can bee seen

from the comparison with the experimental results which are for curvilinear prisms, the
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Figure 3.9: We show the experimental micrograph of the system (top
panel) used in the absorbance measurements (green line in the middel
an bottom panels) presented in Ref. [92]. The red line shows our
theoretical absorbance results for the curvilinear (middle panel) and
triangular (bottom panel) prisms. See text for details. The unit cells
for each calculation are shown in the left column.

disagreement is remarkable. The theoretical result for the triangular prisms only shows

the dipolar resonance at 600 nm, in clear disagreement with the experimental results.

Our Haydock method is perfectly suited for any shape of both the unit cell and the nano
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Figure 3.10: We show Fig. 4 of Ref. [92], where the absorbance ob-
tained by the comercial package used by the authors, COMSOL, dis-
agrees with their experimental results shown in Fig. 3.9.

prisms, for which the prisms of Ref. [92] are well reproduced. Therefore, our Haydock

approach captures most of the spectral details of the experimental absorbance since we

can readily use the correct curvilinear geometry of the prisms.

It is worth mentioning that the simulation done in Ref. [92] considers triangular

prisms as the comercial package used by the authors, COMSOL, is incapable of handling

curved prisms. Indeed, in Fig. 3.10 we show Fig. 4 of Ref. [92], where the theoretical

absorbance calculated with COMSOL is shown. As it can be seen, it disagrees with the

experimental results 1 We see how the geometry of the nanoprisms is crucial in order to

get agreement with the experiment. Thus, our solution of Maxwell’s equations readily

captures the physics of such a nice experiment done in Ref. [92].

1We mention that the authors claim very good agreement of their numerical results, however as one
can see our theoretical scheme reproduces with much more accuracy no only the intensity but also the
spectral shape of the experimental results measured by the same authors.
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4 Conclusions and Final

Remarks

4.1 Conclusions

We have developed a formalism for the calculation of the second-order susceptibility

of structured binary metamaterials formed by a lattice of particles embedded within a

host, for the case where both components consists of centrosymmetric materials, but

where the geometry of the inclusion is not centrosymmetric. Although SH is strongly

suppressed within a homogeneous centrosymmetric material, the noncentrosymmetric

surface is capable of sustaining a surface nonlinear polarization and inducing a strongly

varying linear field which produces a multipolar nonlinear polarization within the meta-

material components.

We implemented our formalism using the Haydock recursive scheme within the freely

available PHOTONIC modular package and applied it to the calculation of the second

order nonlinear susceptibility of a structured metamaterial composed of a homogeneous

Ag host with a lattice of pairs of rectangular holes. Although the chosen system is 2D,

the formalism may be applied as well to 1D or 3D systems and may be generalized to

multicomponent finite systems such as metasurfaces. By modifying the geometry of the
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holes, we modify the degree of noncentrosymmetry of the material, allowing us to fine

tune both the peak position and intensity of the SH response. The SH signal is very

sensitive to changes in the geometrical parameters of the structure.

After establishing the inclusion shape that most enhances this signal, we analyzed

the polarization field and showed that the SH response is largest at resonance close

to the concave and convex corners but it extends well into the host material. The

order of magnitude of the susceptibility obtained in this calculation is comparable to

that of typical noncentrosymmetric materials. Although this study was carried out

for one particular combination of materials, the employed procedure is equally valid

for calculating the nonlinear properties for any metamaterial composed of arbitrary

materials and inclusions. Only a priori knowledge of the dielectric function of each

constituent material is required. This approach a�ords the opportunity to quickly and

e�ciently study a limitless range of possible geometrical configurations in order to

optimize the linear and non-linear optical response.

In this sense, we have explored other configurations in the geometry and the compo-

sition of the metamaterials, using a nanostructure based on a split-ring resonator and

another one based on gold nanoprisms. We show that PHOTONIC is capable of re-

producing linear and nonlinear optical experimental results as was shown in Chapter 3.

Indeed, we were able to reproduce the experimental results of the split-ring resonators

in both the linear and non-linear optical response. Also, we probe that PHOTONIC

is better for the calculation of the linear optical response of triangular nano prisms as

it can take into account curvilinear shapes, which for instance, COMSOL is incapable

of doing. Our solution to Maxwell’s equations through the Haydock method is a pro-

ficient theoretical and numerical tool for the study of the linear and nonlinear optical

properties of nanostructured metamaterials.
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4.2 Future work

Further research is required in order to explain some extra details about the origin of

the nonlinear optical response in certain metamaterials, specifically in the resonances

showed by the nanoresonators. The objective is to expand the Haydock recursive method

for the nonlinear response into the retarded regime. This approach could give extra

information about the phenomena involved in this response, may capable to extract the

magnetic contribution to SH response. Additionally, the pro� of Babinet’s principle is

also needed since this approach could give complementary properties of nanostructured

without all the work that it implies. Then, we can analize this principle for the nonlinear

response.

As we have mentioned in the introduction of this thesis, we can observe a plethora

of nonlinear e�ects exhibited in metamaterials. Then, it is significant to explore other

nonlinear phenomena, using our approach to solve Maxwell’s equations in metamate-

rials. Finally, collaboration with experimental groups would be very relevant for the

validation of this thesis. It will also open the possibility to design and fabricate our

metamaterials with a specific objective, for example, to use them in nonlinear hologra-

phy or biosensing.
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A Homogenization Procedure

and Haydock Recursive Method

In this section, we will explain some relevant details about the homogenization procedure,

that was developed by Mochán and Barrera. [51,52] In these two articles, they take into

account the fluctuations in the electric field due to the inhomogenity of the material in

the calculation of macroscopic properties. Then, we will explain the Haydock Recursion

Methodwhich is used in the calculation of the optical response of a nanostructured

metamaterial. This Method was developed by Roger Haydock in 1980 [59], originally as

an alternative to the computational solution of the Schrodinger equation. It basically

consists on the partial transformation of the Hamiltonian to a tridiagonal matrix works,

and what is the analogy between its original porpuse and our approach.

A.1 General Homogenization Procedure

A.1.1 Macroscopic dielectric function

We would like to calculate the e�ective dielectric response of a periodic composite in

the long-wavelength approximation. Simply put, we would like to relate the microscopic
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dielectric response ‘̂, to the macroscopic dielectric response ‘̂M , both defined through

D = ‘̂E, (A.1)

and

Da = ‘̂M Ea, (A.2)

where D (Da) denote the total (average a) displacement field and E (Ea) the total

(average) electric field. The caret refers to the operator character of both ‘̂ and ‘̂M ,

which in the space-time representation takes the form

D(r; t) =
⁄

dtÕ
⁄

drÕ‘(r, rÕ; t ≠ tÕ) · E(rÕ, tÕ), (A.3)

where translational invariance in time has been assumed, and we notice that in general

the microscopic dielectric tensor is non-local. A similar expression is satisfied by ‘̂M

with D (E) replaced by Da (Ea). We remark that we leave open the possibility for ‘ and

‘M to be tensors in Cartesian coordinates, i.e. ‘ and ‘M , respectively. In general, the

total fields possess microscopic fluctuations, induced by the microscopic inhomogeneities

of the system, which are coupled to the macroscopic fields by the fluctuations of ‘̂. Since

the macroscopic operator ‘̂M relates the average parts of the displacement and electric

fields, and averaging procedures is needed to relate ‘̂ to ‘̂M . Such procedure was put

forward by Mochán and Barrera, [51] and they showed that in the case of the long

wavelength approximation

‘̂M = ‘̂aa ≠ ‘̂af (‘̂LL
ff )≠1‘̂fa, (A.4)

where f denotes the fluctuating part of ‘̂ and L is related to the longitudinal part of

the fields.

The system in question is represented by an arbitrary real space unit cell of volume

�, with T representing the lattice translational vectors. We use N unit cells to fill a
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A.1. General Homogenization Procedure

volume V = N� and then take the limit of V æ Œ to get the infinite periodic system.

Along with the real-space lattice, we introduce the reciprocal lattice expanded by the

reciprocal lattice vectors G, that satisfy the standard exp(iG·T) = 1 property. Without

loss of generality, the time dependence of the fields is chosen to be harmonic, then from

Eq. (A.3) we get

D(r; Ê) =
⁄

dtÕ
⁄

drÕ‘(r, rÕ; Ê) · E(rÕ, Ê), (A.5)

where Ê is the angular (time) frequency of the fields. From now on, we take the Ê

dependence of the fields implicit, and only show it explicitly in the dielectric function.

The real space invariance requires that

‘(r + T, rÕ + T; Ê) = ‘(r, rÕ; Ê), (A.6)

and allow us to write

E(r) = �
(2fi)3

⁄

BZ
dk

ÿ

G
Ek(G)ei(k+G)·r, (A.7)

and similar equations for the other field of interest, where k is the Bloch wave vector,

whose integral is over the first Brillouin zone. Using Eq. (A.7) and its equivalent for

D(r) in Eq. (A.3) we obtain that

Dk(G) =
ÿ

GÕ
‘k(G, GÕ; Ê)Ek(GÕ), (A.8)

where we find the dielectric matrix (in G space) as

‘k(G, GÕ; Ê) = 1
V

⁄

Ê
dr

⁄

Ê
drÕ ÿ

T
‘(r + T, rÕ; Ê)e≠i[(k+G)·(r+T)≠(k+GÕ)·rÕ]. (A.9)

To proceed further, we assume that the microscopic dielectric function is local, i.e.

‘(r, rÕ; Ê) = ‘(r; Ê)”(r ≠ rÕ), (A.10)

still with ‘(r; Ê) = ‘(r + T; Ê). Using Eq. (A.10) in Eq. (A.9), we obtain

‘k(G, GÕ; Ê) = 1
�

⁄

�
dr‘(r; Ê)e≠i(G≠GÕ)·r, (A.11)
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where we used
q

T exp(iG · T) = N , and we notice that the there is no dependence on

k in view of the locality of ‘, and thus we drop it from the sub-index.

Following Mochán and Barrera, [52] we chose as an averaging procedure a truncation

that eliminates all the wave vectors outside the first Brillouin zone, then the average

for any function Fk(G) is simply given by

(Fa)k(G) © Fk(G = 0)”G,0. (A.12)

Therefore, in very simple words, the G = 0 term give the (a) average values, whereas

the G ”= 0 terms give the (f) fluctuating values, with which we easily write Eq. (A.4)

as

‘M (Ê) = ‘(G = 0, GÕ = 0; Ê)≠
ÿ

G,GÕ( ”=0)
‘(G = 0, G; Ê)[‘LL(G, GÕ; Ê; k)]≠1‘(GÕ, G = 0; Ê).

(A.13)

Now, in this reciprocal lattice representation, we introduce, PL
k(G),

PL
k(G) = k + G

|k + G|

k + G
|k + G|

, (A.14)

as a longitudinal projector, such that

‘LL(G, GÕ; Ê; k) = PL
k(G) · ‘(G, GÕ; Ê) · PL

k(GÕ), (A.15)

is the longitudinal-longitudinal component of ‘(G, GÕ; Ê). Then, applying PL
k(G) to

Eq. (A.13), and putting the G as sub-indices, we get

‘M,LL(Ê) = ‘LL
00 (Ê) ≠

ÿ

G,GÕ( ”=0)
‘LL

0G(Ê)[‘LL
GGÕ(Ê; k)]≠1‘LL

GÕ0(Ê), (A.16)

where from Eq. (A.11)

‘GGÕ(Ê) = 1
�

⁄

�
dr‘(r; Ê)e≠i(G≠GÕ)·r. (A.17)
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According to Eq. (A.4), the matrix to be inverted is that of the fluctuating-fluctuating

contributions, and we see that form Eq. (A.16), that ‘LL
GGÕ(Ê; k) should be constructed

only for all the values for which G and GÕ are di�erent from zero, i.e. only the fluctuating

terms, and then, it should be inverted.

In general, Eq. (A.16) could be solved as follows. We write, in G space,

‘LL
GGÕ =

Q

ca
‘LL

00 ‘LL
0GÕ

‘LL
G0 ‘LL

GGÕ

R

db , (A.18)

and its inverse as

(‘LL
GGÕ)≠1 =

Q

ca
a b

c d

R

db , (A.19)

where it should be clear that for all the sub-indices not explicitly written as zero,

G, GÕ
”= 0. In particular a = [‘LL

GGÕ ]≠1
|00 . Since,

q
GÕÕ(‘LL

GGÕÕ)≠1‘LL
GÕÕGÕ = ”GGÕ , we can

formally solve for a, b, c, and d. For instance, we get that

‘LL
00 a + ‘LL

0GÕc = 1, (A.20a)

‘LL
G0a + ‘LL

GGÕc = 0. (A.20b)

From Eq. (A.20b), we solve for c, and substitute into Eq. (A.20a) to find

a≠1 = ‘LL
00 ≠

ÿ

G,GÕ ”=0
‘LL

0G‘LL
GGÕ‘LL

GÕ0. (A.21)

Now, comparing with the right hand side of Eq. (A.16), we see that ‘M,LL = a≠1, or

[‘M,LL]≠1 =
1
‘LL

GGÕ

2≠1
----
00

, (A.22)

where one has to construct ‘LL
GGÕ for all values of G, GÕ, invert and then take the

G = GÕ = 0 component. As discussed by Mochán and Barrera, [52] this results was

first obtained by Alder [99] and Wiser [100].

57



A. Homogenization Procedure and Haydock Recursive Method

From Eq. (A.22) and Eq. (A.17) we see that all we need to compute the macroscopic

dielectric function, ‘M (Eq. (A.22)), within the long wave length approximation, is

the knowledge of ‘(r; Ê) and the specification of the real-space unit cell (that it turns

determines the reciprocal lattice vectors G).

A.1.2 Two-component system

We consider, without loss of generality, a two-component system with an arbitrary

unit cell, where the host (the interstitial region) is characterized with ‘b(Ê), and the

inclusion, with volume v and arbitrary shape, is characterized with ‘a(Ê). (see Fig.

A.1). Then, from Eq. (A.17)

‘GGÕ(Ê) = ‘a(Ê) ≠ ‘b(Ê)
�

⁄

v
dreir·(G≠GÕ) + ‘b(Ê)

�

⁄

�
dreir·(G≠GÕ)

= ‘ab(Ê)FGGÕ + ‘b(Ê)”GGÕ , (A.23)

where ‘ab(Ê) = ‘a(Ê) ≠ ‘b(Ê), and

FGGÕ = 1
�

⁄

v
eir·(G≠GÕ)dr, (A.24)

as the Fourier coe�cient of the inclusion. Indeed, we can write

FGGÕ = 1
�

⁄

�
F (r)eir·(G≠GÕ)dr, (A.25)

where

F (r) =

Y
_]

_[

1 if r œ inclusion

0 other wise
, (A.26)

Note that in particular

F00 = 1
�

⁄

v
dr = v

� © f. (A.27)

with f = v/� the filling fraction of the inclusions. We notice that in real-space F (r) is

a scalar function, whereas in reciprocal space FGGÕ is a matrix.

58



A.1. General Homogenization Procedure

Figure A.1: (color online) We show the 2D unit cell of the system.
The inclusion (interstitial) is represented by ‘a (‘b). The elongated
rectangles represent the two extreme cases for the inclusion as we
deform it keeping the filling fraction fixed (see text for details).

Projecting the longitudinal part of Eq. (A.23), (applying Eq. (A.14)) we obtain,

‘LL
GGÕ(Ê) = ĜĜ · ‘GGÕ(Ê) · ĜÕĜÕ = Ĝ‘LL

GGÕ(Ê)ĜÕ, (A.28)

with Ĝ = G/|G|. Here, ‘LL
GGÕ(Ê) is given by

‘LL
GGÕ(Ê) = ‘b(Ê)”GGÕ + ‘ab(Ê)FLL

GGÕ , (A.29)

with

FLL
GGÕ = ĜFGGÕĜÕ. (A.30)

Now, the inverse

[‘LL
GGÕ(Ê)]≠1 = Ĝ[Ĝ · ‘GGÕ(Ê) · ĜÕ]

≠1
ĜÕ = Ĝ[‘LL

GGÕ(Ê)]≠1ĜÕ, (A.31)

gives the expected result
q

GÕÕ ‘LL
GGÕÕ(Ê)[‘LL

GÕÕGÕ(Ê)]≠1 = ĜĜ”GGÕ . From Eq. (A.29) we

write

[‘LL
GGÕ(Ê)]≠1 = [‘ab

1
(‘ab)≠1‘b(Ê)”GGÕ + FLL

GGÕ

2
]≠1, (A.32)

that for optically isotropic host and inclusion, reduces to

[‘LL
GGÕ(Ê)]≠1 = 1

‘ab(Ê) [u(Ê)”GGÕ + FLL
GGÕ ]≠1, (A.33)
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where u(Ê) = ‘b(Ê)/‘ab(Ê).

1
‘LL
M

= u(Ê)
‘b(Ê) [u(Ê)”GGÕ + FLL

GGÕ ]≠1
---
00

, (A.34)

A.1.3 Haydock’s method Fundamentals

Suppose we have a Hamiltonian H for which one would like to calculate a given expec-

tation value of the Green function, i.e.

È0|(E ≠ H)≠1
|0Í, (A.35)

where E are the associated eigenvalues. The Haydock’s method basically consist of

changing to a new basis (in the Hilbert space) in which the Hamiltonian is a tridiagonal

matrix. Thus we start from the ket of interest, i.e. |0Í, and construct a new ket as

follows:

|1̃Í = H|0Í, (A.36)

where we write

|1̃Í = a0|0Í + b1|1Í, (A.37)

as a linear combination of “regular” kets |0Í and |1Í. These regular kets are orthonor-

malized, Èi|jÍ = ”ij . Then

a0 = È0|H|0Í, (A.38)

and from the norm

È1̃|1̃Í = a2
0 + b2

1 = ÎH|0ÍÎ
2, (A.39)

we obtain b1, and from Eq. (A.37) we obtain

|1Í = |1̃Í ≠ a0|0Í

b1
, (A.40)
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that is properly normalized. Recall that ÎH|0ÍÎ
2 = È0|H†H|0Í and that H = H†

(hermitian operator).

Now, we construct our second ket,

|2̃Í = H|1Í, (A.41)

and

|2̃Í = b1|0Í + a1|1Í + b2|2Í, (A.42)

where

a1 = È1|2̃Í = È1|H|1Í, (A.43)

b1 = È0|2̃Í = È0|H|1Í, (A.44)

and from the norm

È2̃|2̃Í = a2
0 + b2

1 + b2
2, (A.45)

we solve for b2, and then from Eq. (A.42)

|2Í = |2̃Í ≠ b1|0Í ≠ a1|1Í

b2
. (A.46)

We finally move the third ket

|3̃Í = H|2Í, (A.47)

but before writing it as a linear combination of regular kets, we notice that

È0|3̃Í = È0|H|2Í = È1̃|2Í = (a0È0| + b1È1|)|2Í = 0, (A.48)

where we used the transpose of Eq. (A.36) and Eq. (A.37), so the new kets only couple

nearest neighbors kets. Then,

|3̃Í = b2|1Í + a2|2Í + b3|3Í, (A.49)

where

a2 = È2|3̃Í = È2|H|2Í, (A.50)
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b2 = È1|3̃Í = È1|H|2Í, (A.51)

and from the norm

È3̃|3̃Í = b2
2 + a2

2 + b2
3, (A.52)

we solve for b3, and then from Eq. (A.49)

|3Í = |3̃Í ≠ b2|1Í ≠ a2|2Í

b3
. (A.53)

From this point on, the method just keeps repeating, so we can write that in general,

that

| ]n + 1Í = H|nÍ, (A.54)

an = Èn| ]n + 1Í = Èn|H|nÍ, (A.55)

bn = Èn ≠ 1| ]n + 1Í = Èn ≠ 1|H|nÍ, (A.56)

and

Èn ≠ m| ]n + 1Í = 0 ’m2, (A.57)

with which

| ]n + 1Í = bn|n ≠ 1Í + an|nÍ + bn+1|n + 1Í. (A.58)

From,
...| ]n + 1Í

...
2

= b2
n + a2

n + b2
n+1, (A.59)

we find the bn+1 term. Indeed, we do not need to use Eq. (A.56) for the bn terms,

instead we use Eq. (A.59) to find first b1 = Î|1̃ÍÎ
2

≠ a2
0, since by construction b0 = 0,

where |1̃Í = H|0Í, and we chose what |0Í should be. Then, we can iterate Eq. (A.59)

once more for b2, once we have calculated a2 form Eq. (A.55), and we proceed likewise

for all the bn>2. From Eq. (A.58) we finally obtain

|n + 1Í = | ]n + 1Í ≠ bn|n ≠ 1Í ≠ an|nÍ

bn+1
, (A.60)
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where by construction | ≠ 1Í = 0. Using the |nÍ basis we can write the Hamiltonian as

H =

Q

cccccccccccca

a0 b1 0 0 0 · · ·

b1 a1 b2 0 0 · · ·

0 b2 a2 b3 0 · · ·

0 0 b3 a3 b4 · · ·

...
... . . . . . . . . .

R

ddddddddddddb

, (A.61)

which is a tridiagonal matrix.

Now, let us take the function, G = E ≠ H, which is written as

G0 =

Q

cccccccccccca

E ≠ a0 ≠b1 0 0 0 · · ·

≠b1 E ≠ a1 ≠b2 0 0 · · ·

0 ≠b2 E ≠ a2 ≠b3 0 · · ·

0 0 ≠b3 E ≠ a3 ≠b4 · · ·

...
... . . . . . . . . .

R

ddddddddddddb

, (A.62)

and rewritten as

G0 =

Q

ca
A0 B1

BT
1 G1

R

db , (A.63)

where A0 = E ≠ a0, B1 = (≠b1, 0, 0, · · · ) and

G1 =

Q

cccccccca

E ≠ a1 ≠b2 0 0 · · ·

≠b2 E ≠ a2 ≠b3 0 · · ·

0 ≠b3 E ≠ a3 ≠b4 · · ·

...
... . . . . . . . . .

R

ddddddddb

. (A.64)

So we see that we can generalize this block representation to

Gn =

Q

ca
An Bn+1

BT
n+1 Gn+1

R

db , (A.65)
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where An = E ≠ an, Bn = (≠bn, 0, 0, · · · ) and

Gn =

Q

cccccccca

E ≠ an ≠bn+1 0 0 · · ·

≠bn+1 E ≠ an+1 ≠bn+2 0 · · ·

0 ≠bn+2 E ≠ an+2 ≠bn+3 · · ·

...
... . . . . . . . . .

R

ddddddddb

. (A.66)

We can invert any given Gn as follows. Call Mn its inverse, and write

Mn =

Q

ca
Rn Pn

Qn Sn

R

db , (A.67)

where it follows, that in particular,

AnRn + Bn+1Qn = 1, (A.68a)

BT
n+1Rn + Gn+1Qn = 0, (A.68b)

Eq. (A.68b) gives Qn = ≠G≠1
n+1BT

n+1R, that when substituted in Eq. (A.68a) leads to

Rn = (An ≠ Bn+1G≠1
n+1BT

n+1)≠1

= 1
An ≠ Bn+1G≠1

n+1BT
n+1

, (A.69)

where we see that the n-order solution is linked to the n + 1-order solution, since G≠1
n+1

is unknown, but the same recursive solution, would give its value, in terms of the next

term, where G≠1
n+2 is again unknown, and so forth. Note that An is a simple scalar

function and after proper multiplication, Bn+1G≠1
n+1BT

n+1 is also scalar.

Going back to our original problem, we see that

È0|(E ≠ H)≠1
|0Í © [(E ≠ H)≠1]00 = R0, (A.70)
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but since R0 is related R1 and this to R2 and so forth, is easy to see that the final

results is given by

È0|(E ≠ H)≠1
|0Í = 1

E ≠ a0 ≠
b2

1

E≠a1≠
b2
2

E≠a2≠
b2
3
...

, (A.71)

which is a continued fraction (Haydock) expansion “ad-infinitum”. In practice, the

continued fraction converges to a fixed value after n-terms. In summary the method

consist of evaluating the Haydock coe�cients of Eq. (A.55) and Eq. (A.56), following the

prescription explained above, and use these an and bn coe�cients in above expansion.

If one would like to proceed with direct inversion of the Green’s function, the problem

could be numerically very costly, whereas evaluating hundreds of Haydock coe�cients,

typically enough to converge the continued fraction, is numerically very cheap.

A.1.4 Implementation of the Haydock method

In this subsection we show how to implement Haydock’s method for the calculation of

Eq. (A.34). Indeed, the mapping of our problem to the Haydock’s method is rather

straightforward, once we identify

|0Í Ω ”G0 u Ω E FLL
GGÕ Ω H, (A.72)

and the Hilbert space with the reciprocal-lattice (G) space, where the kets are orthonor-

malized, i.e. ÈG|GÕ
Í = ”GGÕ . Thus we get,

1
‘M,LL

= u(Ê)
‘b(Ê)

1
u(Ê) ≠ a0 ≠

b2
1

u(Ê)≠a1≠
b2
2

u(Ê)≠a2≠
b2
3
...

, (A.73)
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so all we have to do is generate the Haydock coe�cients an and bn. We remark that with

this method, one separates the geometry of the unit cell and the inclusion from the opti-

cal properties of the host and the inclusion. Indeed, the Haydock coe�cients an and bn

solely depend on such geometry, whereas the optical response of the constituent materi-

als only enters above expression through ‘a(Ê) and ‘b(Ê) (u(Ê) = ‘b(Ê)/‘ab(Ê)). Thus,

for a given geometry one can trivially explore a whole set of very di�erent materials.

We start with the calculation of an = Èn| ]n + 1Í. So we take,

| ]n + 1Í = H|nÍ =
ÿ

GGÕ
|GÍÈG|H|GÕ

ÍÈGÕ
|nÍ

=
ÿ

GGÕ
|GÍFLL

GGÕÏn(GÕ)

=
ÿ

GGÕ
|GÍĜ · FGGÕ · ĜÕÏn(GÕ)

=
ÿ

GGÕ
|GÍĜ · FGGÕĮ̈n(GÕ)

=
ÿ

G
|GÍĜ · Ą̂n(G), (A.74)

using the closure relation
q

G |GÍÈG| = 1, Eq. (A.30), and defining,

Ïn(G) = ÈG|nÍ, (A.75)

Į̈n(G) = ĜÏn(G), (A.76)

and

Ą̂n(G) =
ÿ

GÕ
FGGÕĮ̈n(GÕ), (A.77)

where the arrow denotes a vector in G-space. Now,

ÈG|H|nÍ = ÈG| ]n + 1Í = Ï]n+1(G) = Ĝ · Ą̂n(G), (A.78)
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where the second equality comes from the definition of Eq. (A.75), and the last equality

comes from Eq. (A.74). Therefore,

an = Èn| ]n + 1Í =
ÿ

G
Èn|GÍÈG|H|nÍ

=
ÿ

G
Ï†

n(G)Ï]n+1(G), (A.79)

with which we obtain bn+1 through Eq. (A.59), and from Eq. (A.58)

Ïn+1(G) =
Ï]n+1(G) ≠ anÏn(G) ≠ bnÏn≠1(G)

bn+1
, (A.80)

that should be used iteratively starting from n = 0, once we have chosen the initial state

Ï0(G). Since we are interested in the G = 0-G = 0 component, we chose Ï0(G) =

ÈG|0Í = ”G0.

A.1.4.1 Numerical Shortcut

We interpret Į̈n(G) and Ą̂n(G) as the Fourier coe�cients of a real-space functions Į̈n(r)

and Ą̂n(r), respectively, such that

Į̈n(G) =
⁄

drĮ̈n(r)eiG·r, (A.81)

and

Ą̂n(G) =
⁄

drĄ̂n(r)eiG·r. (A.82)

But now, from Eq. (A.25) we see that FGGÕ = F(G ≠ GÕ), and thus Eq. (A.77) is

the convolution of Ą̂n(r) = Į̈n(r)F (r), where F (r) is given in Eq. (A.26). This result

is of great numerical importance, since instead of calculating the usually complicated

F(G ≠ GÕ) and doing the sum over GÕ, as required by Eq. (A.77) for every G, we can

multiply in real-space F (r) and Į̈n(r), and the transform back to Fourier space (G) to

obtain Ą̂n(G). Thus, we can basically define any shape of the inclusion in real-space

without even knowing how its Fourier transform looks like!

67



A. Homogenization Procedure and Haydock Recursive Method

Once we have Ą̂n(G) we dot product it with Ĝ to get Ï]n+1(G). Now, Ïn(G) is

generated according to Eq. (A.60), starting from the initial sate ÈG|0Í = ”G0. The

state Ïn(G) is Fourier transformed to get Ïn(r). Then, above procedure give us a

complete set of equations to recursively obtain all the Haydock’s coe�cients and thus

the macroscopic dielectric function.

A.1.4.2 Continued Fraction

To obtain a fast scheme to compute the continued fraction of Eq. (A.73) we use the

following matrix multiplication,
Q

ca
pn pn≠1

qn qn≠1

R

db =

Q

ca
u ≠ ao 1

1 0

R

db

Q

ca
u ≠ a1 1

≠b2
1 0

R

db · · ·

Q

ca
u ≠ an 1

≠b2
n 0

R

db , (A.83)

from which it follows that

pn

qn
= u ≠ a0 ≠

b2
1

u ≠ a1 ≠
b2

2

u≠a2≠
b2
2
...

. (A.84)

Then from Eq. (A.73) we obtain that

‘M,LL = ‘a(Ê)
u

lim
næŒ

pn

qn
, (A.85)

where in practice a large but finite n is needed to achieve convergence of the limit.
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B Derivations for the

transmission SHG yield in

metamaterials

B.1 SHG for metamaterials

We know that the SHG yield is defined by

T (2Ê) = I(2Ê)
I(Ê) , (B.1)

with the intensity given by

I(Ê) = c

2fi
n(Ê)|E(Ê)|2, (B.2)

where n(Ê) = [‘(Ê)]1/2 is the refraction index with ‘(Ê) as the dielectric function, and

c the speed of light in vacuum.

As in Ref. [101], we assume a polarization sheet of the form of

P(r, t) = PeiŸ̂·Re≠iÊt”(z ≠ z—) + c.c., (B.3)

where R = (x, y), Ÿ̂ is the component of the wave vector ‹— parallel to the surface, z—

is the position of the sheet within the medium —, and P is the position-independent

polarization.
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B. Derivations for the transmission SHG yield in metamaterials

Ref. [102] demonstrate that the solution of Maxwell’s equations for the radiated

fields E—,p± and E—,s with P(r, t) as a source at points z ”= 0 can be written as

E—,s± = 2fiiỄ2

w̃—
ŝ · P ,

E—,p± = 2fiiỄ2

w̃—
p̂—,± · P ,

(B.4)

where Ễ = Ê/c. The supscripts ± are describing an upward (+) or downward (≠) wave

within the medium —. The vectors ŝ and p̂—± are the unit vectors for the s and p

polarization of the radiated field. Also,

p̂—± = Ÿ(Ê)ẑ û w̃—(Ê)Ÿ̂
Ễn—(Ê) = sin ◊0ẑ û w—(Ê)Ÿ̂

n—(Ê) , (B.5)

with

w— = [‘— ≠ sin2 ◊0]1/2, (B.6)

where ◊0 is the angle of incidence of the wave, Ÿ(Ê) = Ễ sin ◊0, n—(Ê) = [‘—(Ê)]1/2 is the

refractive index of the medium —, and z is the direction perpendicular to the suface.

For simplicity, we can consider the vector Ÿ̂ in the x direction. If we consider the plane

of incidence along the Ÿz plane, then

Ÿ̂ = cos „x̂ + sin „ŷ (B.7)

and

ŝ = sin „x̂ ≠ cos „ŷ (B.8)

where „ is the azimuthal angle with respect to the x axis. The nonlinear polarization

is givne by

P i = ‰(2)
ijk(2Ê)E(Ê)jE(Ê)k, (B.9)
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B.1. SHG for metamaterials

where ‰(2)
ijk(2Ê) is the nonlinear susceptibility tensor. As in Ref. [101] we condider a

polarization sheet oscillating at some frequency Ê to express in a proper manner. We

use Êexclusively to denote de fundamental frequency and Ÿ̂ to denote de component of

the incident wave vector parallel to the surface. The generated nonlinear polarization is

oscillating at � = 2Ê, and will be characterized by a wave vector parallel to the surface

K = 2Ÿ. We can carry over Eqs. (B.4)-(B.7) simply y replacing the lowercase symbols

(Ê, Ễ, Ÿ, n—, w̃—, w—, p̂—±, ŝ) with uppercase symbols (�, �̃, K, N—, W̃—, W—, P̂—±, Ŝ), all

evaluated at 2Ê. Of course, we have Ŝ = ŝ. We proceeded to analyze the radiated fields

in transmission.

B.1.1 SHG radiated fields

Now, we are interesnting in calculate the fields due to a polarization sheet al z = 0+

(see ref. [101]), where we are considering a SH field generated in the vacuum and it is

propagated in de medium, then it is transmitted to the second vacuum region. In this

way, we find the SH fiel radiated downward, is in the medium given by

E2Ê(r) = 2fii�̃2

W0
Hm

· Pe[i(Kx≠W z)], (B.10)

where

Hm = (ŜT s
0mŜ + P̂ ≠T p

0mP̂ 0≠), (B.11)

with W = [‘(2Ê)�̃2
≠ K2]1/2. The e�ects of the firts interface are describing by de

Fresnel coe�cients. As we say before, this field is propagated to the second interface

and then cross back out to the vacuum. We express the output field at 2Ê by

E2Ê
out(r) = 2fii�̃2

W0
Hm0

· P(e[i(Kx+W z)]
◊ e[≠iW0(z+T )]), (B.12)

where

Hm0 = (ŜT s
0mT s

m0Ŝ + P̂ 0≠T p
0mT p

m0P̂ 0≠). (B.13)
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B. Derivations for the transmission SHG yield in metamaterials

If we choose a specific polarization to detect denoted by êout, we get the amplitude

E2Ê
out =2fii�̃2

W0
êout

· Hm0
· Pe≠[i(W0≠W )T ]

=2fii�̃2

W0
e2Ê

· Pe≠[i(W0≠W )T ]
(B.14)

where

e2Ê = êout
· Hm0. (B.15)

We can neglected the absortion of second harmonic field in the transversing slab, and

finally obtain

I(2Ê) = 32fi3Ê2

c3 sec ◊0|e2Ê,F
·‰:eÊ,ieÊ,i

|
2I2(2Ê), (B.16)

then, from Eq. (B.1) we obtain

TiF = 32fi3Ê2

c3 sec ◊0|TiF |
2 (B.17)

where we have defined

TiF = e2Ê,F
·‰:eÊ,ieÊ,i, (B.18)

and the subscripts i = s, p and F = S, P , were introduced to denote the direction of the

incident field êin, and the second harmonic field êout respectively. Now, we are able to

calculate TiF for the most common incoming and outcoming polarizations.

B.1.2 TpP (p-in, P-out)

We start with the procedure to calculate TpP , it means we have the unit vector êin =

êp = p̂0≠ for the incoming field, and êout = êP = P̂0≠ for the outcoming field. For

that, it is needed to find the explicit expression TpP = e2Ê,P
·‰:eÊ,peÊ,p. We replace Eq.

(B.13) into (B.15), we obtain

e2Ê = êout
· Hm0 = P̂ 0≠ · (ŜT s

0mT s
m0Ŝ + P̂ 0≠T p

0mT p
m0P̂ 0≠), (B.19)
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B.1. SHG for metamaterials

Table B.1: Fresnel Coe�cients

At Ê At � = 2Ê

ts
ij = 2wi

wi+wj
T s

ij = 2Wi
Wi+Wj

tp
ij = 2wi[‘i(Ê)‘j(Ê)]1/2

wi‘j(Ê)+wj‘i(Ê) T p
ij = 2Wi[‘i(2Ê)‘j(2Ê)]1/2

Wi‘j(2Ê)+Wj‘i(2Ê)

where the Fresnel coe�cients for the transmission at are given in Table B.1.

In this way we obtain

T s
0m = 2W0

W0 + Wm
,

T s
m0 = 2Wm

Wm + W0
,

(B.20)

for s polarization, and

T p
0m = 2W0[N0(2Ê)Nm(2Ê)]1/2

W0Nm(2Ê) + WmN0(2Ê) ,

T p
m0 = 2Wm[Nm(2Ê)N0(2Ê)]1/2

WmN0(2Ê) + W0Nm(2Ê) ,

(B.21)

For this case by Eqs. (B.5) and (B.7)

P̂ 0≠ = sin ◊0ẑ + W0Ÿ̂

N0
= sin ◊0ẑ + W0 cos „x̂ + W0 sin „ŷ. (B.22)
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B. Derivations for the transmission SHG yield in metamaterials

Then for the second harmonic field

e2Ê = êout
·

A

ŜT s
0mT s

0mŜ + P̂0≠T p
0mT p

m0P̂0≠

B

= P̂0≠ ·

A

ŜT s
0mT s

0mŜ + P̂0≠T p
0mT p

m0P̂0≠

B

= T p
0mT p

m0P̂0≠,

(B.23)

with Eq. (B.22)

e2Ê =
A

T p
0mT p

m0

BA

sin ◊ẑ + W0 cos „x̂ + W0 sin „ŷ
B

. (B.24)

For the incident fields

eÊ = (ŝts
0mŝ + p̂≠tp

0mp̂0≠) · êin

= (ŝts
0mŝ + p̂≠tp

0mp̂0≠) · p̂0≠

= (p̂≠tp
0mp̂0≠) · p̂0≠ = p̂≠tp

0m,

(B.25)

and substituting Eq.(B.22) again, for p̂≠

eÊ =
A

tp
0m

nm

B

(sin ◊ẑ + wm cos „x̂ + wm sin „ŷ). (B.26)

Taking the product between the two incident fields

eÊeÊ =
A

tp
0m

nm

B21
w2

m cos2 „x̂x̂ + 2w2
m cos „ sin „x̂ŷ

+ 2wm sin ◊ cos „x̂ẑ + w2
m sin2 „ŷŷ

+ 2wm sin ◊ sin „ẑŷ + sin2 ◊ẑẑ
2
.

(B.27)
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B.1. SHG for metamaterials

With these expressions we can proceed to calculate

e2Ê
· ‰s:eÊeÊ = TpP

C

W0w2
m cos3 „‰xxx

+ 2W0w2
m cos2 „ sin „‰xxy

+ 2W0wm sin ◊ cos2 „‰xxz

+ 2W0w2
m cos „ sin2 „‰xyy

+ 2W0wm sin ◊ cos „ sin „‰xyz

+ W0 sin2 ◊ cos „‰xzz

+ W0w2
m cos2 „ sin „‰yxx

+ 2W0w2
m cos „ sin2 „‰yxy

+ 2W0wm sin ◊ cos „ sin „‰yxz

+ W0w2
m sin3 „‰yyy

+ 2W0wm sin ◊ sin2 „‰yyz

+ W0 sin2 ◊ sin „‰yzz

+ w2
m sin ◊ cos2 „‰zxx

+ 2wm sin2 ◊ cos „‰zxz

+ 2w2
m sin ◊ cos „ sin „‰zxy

+ w2
m sin ◊ sin2 „‰zyy

+ 2wm sin2 ◊ sin „‰zzy

+ sin3 ◊‰zzz

D

,

(B.28)

where

TpP =
A

T p
0mT p

m0

BA
tp
0m

nm

B2
. (B.29)

Considering the symmetry of the metamaterial, we have that the only non-zero compo-
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B. Derivations for the transmission SHG yield in metamaterials

nents of ‰ijk are ‰xxy, ‰yxx and ‰yyy, then Eq.(B.28) is reduced to

TpP = W0w2
mTpP

5
2 cos2 „ sin „‰xxy + cos2 „ sin „‰yxx + sin3 „‰yyy

6
, (B.30)

and after some algebra

TpP = W0w2
m

2 TpP

5
sin „

3
‰xxy + ‰yxx + ‰yyy

2

4

+ sin 3„
3

‰xxy + ‰yxx ≠
‰yyy

2

46
.

(B.31)

TpP = W0w2
m

4 TpP

5
sin „

3
2‰xxy + ‰yxx + 3‰yyy

4

+ sin 3„
3

2‰xxy + ‰yxx ≠ ‰yyy

46
.

(B.32)

B.1.3 TpS (p-in, S-out)

Now, we follow the same procedure as before, where now, we want to calculate TpS , with

êin = êp = p̂0≠ for the incoming field, and êout = êS = Ŝ for the outcoming field. It is

needed to find the explicit expression TpP = e2Ê,S
·‰:eÊ,peÊ,p. We replace Eq. (B.13)

into (B.15) again, and obtain

e2Ê = êout
· Hm0 = Ŝ · (ŜT s

0mT s
m0Ŝ + P̂ 0≠T p

0mT p
m0P̂ 0≠), (B.33)

where the Fresnel coe�cients for the transmission at are given in Table B.1. We have

for the second harmonic field

e2Ê = êout
·

A

ŜT s
0mT s

0mŜ + P̂0≠T p
0mT p

m0P̂0≠

B

= Ŝ ·

A

ŜT s
0mT s

0mŜ + P̂0≠T p
0mT p

m0P̂0≠

B

= T s
0mT s

m0Ŝ

(B.34)
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B.1. SHG for metamaterials

Using Eq. (B.8),

e2Ê =
A

T s
0mT s

m0

BA

sin „x̂ ≠ cos „ŷ
B

. (B.35)

Now, for the incident fields

eÊ = (ŝts
0mŝ + p̂≠tp

0mp̂0≠) · êin

= (ŝts
0mŝ + p̂≠tp

0mp̂0≠) · p̂0≠

= (p̂≠tp
0mp̂0≠) · p̂0≠ = p̂≠tp

0m,

(B.36)

with Eq.(B.22), we actually recover Eq.(B.56) and Eq.(B.22), for the incident fields and

their product. With these expressions we calculate

e2Ê
· ‰s:eÊeÊ = TpS

C

w2
m cos2 „ sin „‰xxx

+ 2w2
m cos „ sin2 „‰xxy

+ 2wm sin ◊ cos „ sin „‰xxz

+ w2
m sin3 „‰xyy

+ 2wm sin ◊ sin2 „‰xyz

+ sin2 ◊ sin „‰xzz

≠ w2
m cos3 „‰yxx

≠ 2w2
m cos2 „ sin „‰yxy

≠ 2wm sin ◊ cos2 „‰yxz

≠ w2
m cos „ sin2 „‰yyy

≠ 2wm sin ◊ cos „ sin „‰yyz

≠ sin2 ◊ cos „‰yzz

D

,

(B.37)

where,

TpS =
A

T s
0mT s

m0

BA
tp
0m

nm

B2
. (B.38)
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B. Derivations for the transmission SHG yield in metamaterials

As in the previous section, we only consider the non-zero components of ‰ijk, they are

‰xxy, ‰yxx and ‰yyy, then Eq.(B.37) is reduced to

TpS = w2
mTpS

5
2 cos „ sin2 „‰xxy ≠ cos3 „‰yxx ≠ cos „ sin2 „‰yyy

6
, (B.39)

and after some algebra, we obtain

TpS = w2
m

4 TpS

5
cos „

1
2‰xxy ≠ ‰yyy ≠ 3‰yxx

2

+ cos 3„
1
‰yyy ≠ 2‰xxy ≠ ‰yxx

26
.

(B.40)

B.1.4 TsS (s-in, S-out)

Now, we follow the same procedure as before, where now, we want to calculate TsS ,

with êin = ês = ŝ for the incoming field, and êout = êS = Ŝ for the outcoming field. It

is needed to find the explicit expression TsS = e2Ê,S
·‰:eÊ,seÊ,s. We replace Eq. (B.13)

into (B.15) again, and obtain

e2Ê = êout
· Hm0 = Ŝ · (ŜT s

0mT s
m0Ŝ + P̂ 0≠T p

0mT p
m0P̂ 0≠), (B.41)

where the Fresnel coe�cients for the transmission at are given in Table B.1. We have

for the second harmonic field

e2Ê = êout
·

A

ŜT s
0mT s

0mŜ + P̂0≠T p
0mT p

m0P̂0≠

B

= Ŝ ·

A

ŜT s
0mT s

0mŜ + P̂0≠T p
0mT p

m0P̂0≠

B

= T s
0mT s

m0Ŝ.

(B.42)

Using Eq. (B.8),

e2Ê =
A

T s
0mT s

m0

BA

sin „x̂ ≠ cos „ŷ
B

. (B.43)
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B.1. SHG for metamaterials

Now, for the incoming fields

eÊ = (ŝts
0mŝ + p̂≠tp

0mp̂0≠) · êin

= (ŝts
0mŝ + p̂≠tp

0mp̂0≠) · ŝ

= (ŝts
0mŝ) · ŝ = ŝts

0m,

(B.44)

and using Eq. (B.8) again, we obtain

eÊ =
A

ts
0m

BA

sin „x̂ ≠ cos „ŷ
B

, (B.45)

and the product of the incident fields

eÊeÊ =
A

ts
0m

B2A

sin2 „x̂x̂ ≠ 2 sin „ cos „x̂ŷ + cos2 „ŷŷ
B

. (B.46)

With these expressions we calculate

e2Ê
· ‰s:eÊeÊ = TsS

C

sin3 „‰xxx

≠ 2 sin2 „ cos „‰xxy

+ sin „ cos2 „‰xyy

≠ sin2 „ cos „‰yxx

+ 2 sin „ cos2 „‰yxy

≠ cos3 „‰yyy

D

,

(B.47)

where,

TsS =
A

T s
0mT s

m0

BA

ts
0m

B2
. (B.48)

Considering the non-zero components of ‰ijk, they are ‰xxy, ‰yxx and ‰yyy, then

Eq.(B.47) is reduced to

TsS = TsS

C

≠ 2 sin2 „ cos „‰xxy ≠ sin2 „ cos „‰yxx ≠ cos3 „‰yyy

D

, (B.49)
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B. Derivations for the transmission SHG yield in metamaterials

and after some algebra, we obtain

TsS = TsS

4

C

cos 3„
3

2‰xxy + ‰yxx ≠ ‰yyy

4
≠ cos „

3
2‰xxy + ‰yxx + 3‰yyy

4D

, (B.50)

B.1.5 TsP (s-in, P-out)

Now, we follow the same procedure as before, where now, we want to calculate TsP , with

êin = ês = ŝ for the incoming field, and êout = êP = P̂0≠ for the outcoming field. It

is needed to find the explicit expression TsP = e2Ê,p
·‰:eÊ,seÊ,s. We replace Eq. (B.13)

into (B.15) again, and obtain

e2Ê = êout
· Hm0 = P̂ 0≠ · (ŜT s

0mT s
m0Ŝ + P̂ 0≠T p

0mT p
m0P̂ 0≠), (B.51)

where the Fresnel coe�cients for the transmission at are given in Table B.1. We have

for the second harmonic field

e2Ê = êout
·

A

ŜT s
0mT s

0mŜ + P̂0≠T p
0mT p

m0P̂0≠

B

= P̂0≠ ·

A

ŜT s
0mT s

0mŜ + P̂0≠T p
0mT p

m0P̂0≠

B

= T p
0mT p

m0P̂0≠,

(B.52)

with Eq. (B.22)

e2Ê =
A

T p
0mT p

m0

BA

sin ◊ẑ + W0 cos „x̂ + W0 sin „ŷ
B

. (B.53)

For the incident fields

eÊ = (ŝts
0mŝ + p̂≠tp

0mp̂0≠) · êin

= (ŝts
0mŝ + p̂≠tp

0mp̂0≠) · ŝ

= (ŝts
0mŝ) · ŝ = ŝts

0m,

(B.54)
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and using Eq. (B.8) again, we obtain

eÊ =
A

ts
0m

BA

sin „x̂ ≠ cos „ŷ
B

, (B.55)

and the product of the incident fields

eÊeÊ =
A

ts
0m

B2A

sin2 „x̂x̂ ≠ 2 sin „ cos „x̂ŷ + cos2 „ŷŷ
B

. (B.56)

With these expressions we calculate

e2Ê
· ‰s:eÊeÊ = TsP

C

W0 cos „ sin2 „‰xxx

≠ 2W0 cos2 „ sin „‰xxy

+ W0 cos3 „‰xyy

+ W0 sin3 „‰yxx

≠ 2W0 cos „ sin2 „‰yxy

+ W0 cos2 „ sin „‰yyy

+ sin ◊ sin2 „‰zxx

≠ 2 sin ◊ cos „ sin „‰zxy

+ sin ◊ cos2 „‰zyy

D

.

(B.57)

Where,

TsP =
A

T p
0mT p

m0

BA

ts
0m

B2
(B.58)

Considering the non-zero components of ‰ijk, they are ‰xxy, ‰yxx and ‰yyy, then

Eq.(B.57) is reduced to

TsP = TsP

C

≠ 2W0 cos2 „ sin „‰xxy + W0 sin3 „‰yxx + W0 cos2 „ sin „‰yyy

D

, (B.59)

81



B. Derivations for the transmission SHG yield in metamaterials

and after some algebra, we obtain

TsP = W0
4 TsP

C

sin „
3

‰yyy ≠ 2‰xxy + 3‰yxx

4
+ sin 3„

3
‰yyy ≠ 2‰xxy ≠ ‰yxx

4D

,

(B.60)
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[3] Francesco Monticone and Andrea Alù. Metamaterial, plasmonic and nanophotonic

devices. Reports on Progress in Physics, 80(3):036401, 2017.

[4] Wenshan Cai and Vladimir Shalaev. Optical Metamaterials. Springer New York,

2010.

[5] Adnan Ali, Anirban Mitra, and Brahim Aı̈ssa. Metamaterials and metasurfaces: A

review from the perspectives of materials, mechanisms and advanced metadevices.

Nanomaterials, 12(6):1027, 2022. Number: 6 Publisher: Multidisciplinary Digital

Publishing Institute.

85



Bibliography

[6] Yongmin Liu and Xiang Zhang. Metamaterials: a new frontier of science and tech-

nology. Chem. Soc. Rev., 40(5):2494–2507, 2011. Publisher: The Royal Society of

Chemistry.

[7] Abhijit Biswas, Ilker S. Bayer, Alexandru S. Biris, Tao Wang, Enkeleda Dervishi,

and Franz Faupel. Advances in top–down and bottom–up surface nanofabrication:

Techniques, applications & future prospects. Advances in Colloid and Interface

Science, 170(1):2–27, 2012.

[8] Tiziana Cesca, Niccolò Michieli, Boris Kalinic, Ana Sánchez-Espinoza, Marco

Rattin, Valentina Russo, Valentina Mattarello, Carlo Scian, Paolo Mazzoldi, and

Giovanni Mattei. Nonlinear absorption tuning by composition control in bimetallic

plasmonic nanoprism arrays. Nanoscale, 7:12411–12418, 2015.

[9] Yifang Chen. Nanofabrication by electron beam lithography and its applications:

A review. Microelectronic Engineering, 135:57–72, 2015.

[10] Priscila Romagnoli, Maki Maeda, Jonathan M. Ward, Viet Giang Truong, and
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Lemarchand, Antonin Moreau, Ivan Voznyuk, and Julien Lumeau. Hyperbolic

metamaterials based on metal-dielectric thin layers. In Advances in Optical Thin

Films VI, volume 10691, page 106911T. International Society for Optics and Pho-

tonics, 2018.

[71] Huanyang Chen, Che Ting Chan, and Ping Sheng. Transformation optics and

metamaterials. Nature Materials, 9(5):387, 2010.

[72] Guixin Li, Shuang Zhang, and Thomas Zentgraf. Nonlinear photonic metasur-

faces. Nature Reviews Materials, 2(5):1–14, 2017. Number: 5 Publisher: Nature

Publishing Group.

[73] Sergey Kruk and Yuri Kivshar. Functional meta-optics and nanophotonics gov-

erned by mie resonances. ACS Photonics, 4(11):2638–2649, 2017. Publisher:

American Chemical Society.

[74] Yuri Kivshar. All-dielectric meta-optics and non-linear nanophotonics. National

Science Review, 5(2):144–158, 2018.

[75] Kirill Koshelev, Andrey Bogdanov, and Yuri Kivshar. Meta-optics and bound

states in the continuum. Science Bulletin, 64(12):836–842, 2019.

[76] Jeremy Butet, Benjamin Gallinet, Krishnan Thyagarajan, and Olivier JF Marti.

Second-harmonic generation from periodic arrays of arbitrary shape plasmonic

nanostructures: A surface integral approach. J. Opt. Soc. Am B, 30(11):2970–

2979, 2013.

[77] Jeremy Butet, Pierre-Francois Brevet, and Olivier J. F. Martin. Optical second

harmonic generation in plasmonic nanostructures: From fundamental principles

to advanced applications. ACS Nano, 9(11):10545–10562, 2015.

94



Bibliography

[78] J. D. Jackson. Classical Electrodynamics, 3rd Edition. Wiley-VCH, 3rd edition

edition, 1998.

[79] Bernardo S Mendoza and W Luis Mochán. Exactly solvable model of surface

second-harmonic generation. Physical Review B, 53(8):4999, 1996.
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[86] Lucila Juárez-Reyes, Bernardo S. Mendoza, and W. Luis Mochán. Mie scattering

in the macroscopic response and the photonic bands of metamaterials. physica

status solidi (b), 257(5):1900557, 2020.

[87] SV Popov. Susceptibility Tensors for Nonlinear Optics. Routledge, 2017.

95



Bibliography

[88] Honghua U. Yang, Je�rey D’Archangel, Michael L. Sundheimer, Eric Tucker,

Glenn D. Boreman, and Markus B. Raschke. Optical dielectric function of silver.

Physical Review B, 91(23), June 2015.

[89] Robert W Boyd. Nonlinear Optics. Elsevier, 2003.

[90] Jongwon Lee, Mykhailo Tymchenko, Christos Argyropoulos, Pai-Yen Chen, Feng

Lu, Frederic Demmerle, Gerhard Boehm, Markus-Christian Amann, Andrea Alù,
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colò Michieli, Boris Kalinic, Juan Manuel Gómez-Cervantes, Raul Rangel-Rojo,
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