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Abstract

This thesis presents the control of a simulation of a quadruped robot that mimics the
locomotion of a cheetah. This robot has the capability of mimicking many gait patterns
of real quadrupeds such as trot, pronk, gallop, and pace. In order to mimic the gaits of
the quadruped, a robot was used for the software in the loop (SIL) visualization, this robot
was the Laikago[19] robot from the Chinese company Unitree Robotics which has proved to
demonstrate an outstanding performance. This robot is capable of responding to external
disturbances using the control technique of Model Predictive Control (MPC). The majority
of quadruped robots have used the Model Predictive Control technique for their control
scheme because of their feasibility in their performance and their capability to respond to
external disturbances.

In the state of the art, in simulation and in real quadrupeds, quadruped robots use two
controllers for the locomotion of their legs, one for the stance phase and another one for
the swing phase. For the stance phase, they have used MPC, and its variations in order to
test the locomotion of quadrupeds in simulation as well as with the real quadrupeds. On
the other hand for the swing phase, there has been used a PD controller with a feedforward
term. In order to test something different, a quadruped leg was designed, as well as a new
proposed controller for the locomotion of its swing phase. The objective of this work is to
test its performance in simulation using the Simulink software. The main contribution of
this controller is that in literature it has been tested a controller with another approach,
while it will be proposed another controller with a feedforward term as well, using a different
approach. This controller was tested in simulation in order to prove its behavior and its per-
formance. With these tests it will be possible to contribute to the controller of a quadruped
robot using a different approach, leading to an analytical solution. In the future, the pro-
posed controller can be tested firstly in a real robot leg, and after testing its performance, in
a whole quadruped using a platform with the SIL technique, and later, after having a good
functionality in simulation, test the controllers in a real quadruped.
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Chapter 1: Introduction

Robots have been used by mankind in order to help them to solve problems that are
very hard to solve by a single person. As the needs and technology advanced, a new kind of
system appeared, which corresponded to systems rigidly connected to the ground such as a
robotic arm; this is the conventional kind of robot used in the industrial field. As technology
progressed, a new class of systems surfaced in the form of floating-based systems. The classic
example of floating base systems is the Unmanned Aerial Vehicle (UAV) robots, which were
popularized with the usage of drones. With investigation and tests, it was feasible to build
another kind of floating base system in the form of quadruped robots. The objective of
making these kinds of robots is to help to aid the humans in tasks that are not as feasible
to do for the humans themselves, but there are some challenges that each kind of robot
faces in order to achieve its goal. For example, wheeled robots have difficulty traversing
uneven terrain or climbing stairs, whilst legged robots have difficulty adapting to uneven
terrains, so it is important to keep improving their structure and their control to have a
good performance.

For usage of quadruped robots, the user gives them a commanded trajectory and in
order to maintain this given trajectory, these systems use control techniques in order to
reach stability, with the objective that the robot follows the commanded trajectory in spite
of the disturbances. Many enterprises have developed legged robots in order to fulfill the
necessities that emerge from the environment. Each enterprise has developed a robot with
a control scheme for its robot. For example, one of the applications of quadruped robots
in the last years is that due to the pandemic caused by the SARS CoV-2, a legged robot
with a surveillance camera was developed by the company Boston Dynamics[7] in order
to measure the distance between two persons with a sensor, in order to keep them apart
enough from each other with the goal to help the diminishing of the spread of the virus. In
the following subsection, it is going to be described some of the robots that these companies
have developed.

1.1 State of art

For the last two decades, enterprises have made quadruped robots with different energy
supplies and different actuation systems. These enterprises have improved the efficiency of
both the energy and the actuation systems, so it will be mentioned the first quadruped robots
that were in the form of hydraulic robots, and progress through the most recent robots that
are in the form of electric robots.
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CHAPTER 1. INTRODUCTION

1.1.1 Hydraulic robots

One of the first hydraulic actuated quadruped robot was the Boston Dynamics Big
Dog[15] shown in Figure 1.1, which used the Inverted Pendulum[2] approach in its con-
trol. This robot had 4 Degrees of Freedom (DOF) in each leg, and used a gasoline system as
its energy source. Because it required a lot of maintenance and had a heavy motor, it was
discontinued in 2015.

Figure 1.1: Big Dog robot.

Other hydraulic actuated robot was developed in Europe from the Italian Institute of
Technology. It proposed a feedforward-feedback strategy that uses the inverse dynamics
approach in the robot HyQ[17] shown in Figure 1.2. This robot has 3 revolute joints in each
leg, finishing with a prismatic joint.

Figure 1.2: HyQ robot.

With further advances in technology and robotics, it emerged the brushless motors and
the battery supply for the robots which gave them a better capability to move and to
have more efficiency in its energy. With the energy improvements, many companies began
developing more robots with the use of more complex control techniques in the form of
electric robots.

2



CHAPTER 1. INTRODUCTION

1.1.2 Electric robots

One of the electric robots was developed in the MIT, with the name of MIT Cheetah[10]
shown in Figure 1.3 which uses the hierarchical locomotion. This robot has three motors in
each leg, giving it three degrees of freedom on each leg and a large variety of movements.
Due to the low-inertia of the robot, it is capable of making fast, dynamic maneuvers, even
being capable of making a complete backflip.

Figure 1.3: MIT cheetah.

Other electric robot was developed in the ETH, with the name of ANYMal[8] shown
in Figure 1.4. This robot also uses a hierarchical quadruped locomotion. It has torque-
controllable actuators and it is capable of climbing difficult terrains and stairs.

Figure 1.4: ANYMal.

More recently, Boston Dynamics added innovation in its electric actuated robot, incor-
porating in its robot Spot[7] shown in Figure 1.5, a robotic arm on the top of the robot
with five DOF capable of grabbing and manipulating objects. This arm is capable of doing
complex movements being capable of manipulating a doorknob to open the door, being one
of the most advanced floating base robots of modern time. This robot is capable of even
doing autonomous navigation for surveillance purposes and has recently been put on sale for
commercial purposes.

It has recently appeared an electric actuated robot from the Chinese company Unitree
Robotics with the name of Laikago as seen in Figure 1.6, this robot has 3 DOF en each leg,

3



CHAPTER 1. INTRODUCTION

Figure 1.5: Spot.

and has the ability to reach up to 0.8 m/s with a battery that could last up to 4 hours. This
robot uses for its locomotion the motion imitation from the movements of real animals, it
stores this motion in a database called motion data. This data is the reference motion of the
robot, which will be reproduced by a robot in a simulation doing the motion imitation. And
finally, it can do Reinforcement Learning, in which the real robot imitates the locomotion of
the simulation.

Figure 1.6: Laikago.

There are many control techniques that are used in robots, but a predominant technique
that has been used in quadruped robots is the Model Predictive Control, which has been a
success in both the simulations and in the real robots, so due to its importance in quadruped
robots, in the following subsection it is going to be deepened.

4



CHAPTER 1. INTRODUCTION

1.2 Model Predictive Control

Model Predictive Control[14] (MPC) uses an optimizer, which has the task to compute
the lowest quantity of the inputs that are able to achieve the desired output. In the case of
the locomotion of quadruped robots, the optimized variables are the contact forces, corre-
sponding to the inputs of the system, that will affect directly in the state of the outputs of
the system.

In figure 1.7 is shown a simplified functionality of MPC using one input and one output,
which will help the understanding of MPC.

Figure 1.7: Basic functionality of Model Predictive Control.

Even though there are complex dynamics in the legged robots, with the usage of predictive
optimization techniques, they can handle the kinematic and dynamic limitations of the
robot such as torque limits, self collisions, and contact friction through constraints and
cost functions. In simulation many software is being developed to test the locomotion of a
given robot, using the software in the loop (SIL) technique, where it integrates the compiled
production source code into a model simulation. One of the SIL [4] environments that
are being used in robotics is the platform Pybullet. This platform integrates the compiled
production of source code into a mathematical model simulation, it eases a virtual simulation
environment for developing and testing control strategies of complex systems.

With the usage of the Pybullet platform, it is possible to mimic the locomotion of a
real quadruped robot using the MPC technique. One robot that can be used in SIL is the
Laikago from Unitree Robotics, described in the previous subsection. In the SIL simulation,

5



CHAPTER 1. INTRODUCTION

the user can manipulate the linear velocity and the angular velocity of the robot´s COM in
previously established time intervals.

In figure 1.8 there can be visualized an image of a simulation of the Laikago Robot using
the Pybullet software. It is worth mentioning that many quadruped robots can be used in
the platform, but for this thesis purposes, the Laikago from Unitree Robotics was the main
used quadruped.

Figure 1.8: Pybullet Software in the loop using the Laikago quadruped from Unitree
Robotics.

6



CHAPTER 1. INTRODUCTION

1.3 Contribution, objectives and structure of the the-

sis

The main contribution of this work is to propose a controller that calculates an analytical
solution for the swing phase controller of the leg of a quadruped robot, differing from the
one that has been used in literature.

1.3.1 Main Objective

The main objective of this work is to develop and test a swing phase controller that
differs from the ones that are proposed in the literature.

1.3.2 Specific Objectives

• Test the SIL performance that uses the MPC control technique for its development.

• Test different gaits of the quadruped using the SIL.

• Test the newly proposed adaptive PD control with a feedforward torque term for the
swing phase of the quadruped.

1.3.3 Structure of the thesis

This thesis is structured with chapter 1 describing the background that quadruped robots
have developed in the past, followed by chapter 2 describing the models and the theoretical
bases that were involved to work in this thesis. In chapter 3 are described the experiments
and simulations that were developed, using the theory previously described in chapter 2.

In chapter 4, the conclusions that were gotten in this thesis are described, in chapter 5
is enlisted the tasks that can be achieved in future work, and finally, an appendix is referred
at the end of this thesis where the reader can review the proper references.

7



Chapter 2: Models and theoretical bases
used

2.1 Kinematics model

For the kinematics model, quadruped robots can be modeled as a robot with a solid
base with four legs with three degrees of freedom in each leg[1]. For the locomotion of each
leg, it has three motors that effectuate the torques in the joints of the legs to provide the
locomotion of the whole body. Due to the relatively low mass of the legs, which is roughly
10% of the whole robot, the legs have very low inertia, and the motor could rapidly swing
the legs in the air.

The majority of the quadruped robots can be modeled as floating base systems with
linked rigid bodies that are attached to the shoulder and the hip joints. The quadruped
kinematics can be modeled as a tree structure to have a relation between all the links that
conform to the robot. Basically, the whole robot can be modeled as a floating base connected
to four legs, visualizing each leg as a Kinematic Chain as it can be seen in figure 2.1.

Figure 2.1: The quadruped can be defined as a floating base with a Kinematic Chain repre-
senting each leg.

8



CHAPTER 2. MODELS AND THEORETICAL BASES USED

2.2 Frames of the quadruped robot

In order to have a work space on which the robot is referred, there are necessary to
have reference frames of the robot; these frames are the geometric points whose position is
identified mathematically and physically.

There are two frames considered for the point of view of the robot, the world frame, which
has a reference outside of the body of the robot, and the body frame which its reference is
in the COM of the robot as shown in figure 2.2. Its important to mention that in simulation
and in the real robot, the user visualizes and manipulates the robot from the world frame,
while the body frame is often to refer to the robot itself.

Figure 2.2: Frames of the quadruped robot.

2.2.1 Single Leg Frames

A robotic leg can be viewed as a Kinematic Chain, to analyze it, it is important to have
a proper convention of the frames that are involved in the Kinematic Chain. To have a
relationship between the joints of a single leg, its important to take into account the parts
of which a single leg is composed. For a quadruped, each leg is composed basically of three
links, which are the hip, the thigh and the calf, as well as three joints corresponding to the
horizontal hip joint, the vertical hip joint and the knee joint. In figure 2.3 is shown the main
parts of a quadruped leg.

For a robotic leg, the end effector is located at the bottom of the leg, corresponding to
the foot, its important to mention this, because the horizontal hip joint should be identified

9



CHAPTER 2. MODELS AND THEORETICAL BASES USED

as the start of the kinemakic chain and not the foot, as it is often done.

Figure 2.3: Frames of the leg of the robot.

For each leg there are 3 DOF, 1 joint makes the abduction and adduction movements,
such as in figure 2.4. These movements are made by the horizontal hip joint.

The vertical hip joint makes the flexion and extension movements of the thigh, while the
knee joint makes the flexion and extension movements of the calf. These movements can be
viewed in figure 2.5.

Between each frame of the system, there can be two movements between the frames which
are rotation movements and translation movements. To have a mathematical relationship
between these frames there is a tool called the transformation matrix. To have a transfor-
mation matrix that involves all the rotations and translations in every frame of the robot it
is important to have a convention that involves the rotations as well as the translations in
every frame.

The rotation around the x axis is determined by the α angle, the rotation around the y
axis is determined by the φ angle and the rotation around the z axis is determined by the θ
angle.

10



CHAPTER 2. MODELS AND THEORETICAL BASES USED

Figure 2.4: Abduction and adduction movements. This image was taken from [13].

Figure 2.5: Flexion and extension movements. This image was taken from [9].

The rotation matrix of the robot for the α angle is with equation 2.1 as:

Rx(α) =

1 0 0
0 cos(α) −sin(α)
0 sin(α) cos(α)

 (2.1)

11
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The rotation matrix of the robot for the φ angle is with equation 2.2 as:

Ry(φ) =

 cos(φ) 0 sin(φ)
0 1 0

−sin(φ) 0 cos(φ)

 (2.2)

And finally the rotation matrix for the θ angle is with equation 2.3 as:

Rz(θ) =

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 (2.3)

For the translation matrices, they are represented with the letter a for the translation
across the x axis, with the letter c for the translation across the y axis, and the letter d for
the translation across the z axis.

The translation matrix for the a distance is defined with equation 2.4 as:

Px =

a0
0

 (2.4)

The translation matrix for the c distance is defined with equation 2.5 as:

Py =

0
c
0

 (2.5)

The translation matrix for the d distance is with equation 2.6 as:

Pz =

0
0
d

 (2.6)

With the rotation and the translation matrices, it is possible to build a homogeneous
transformation matrix along each axis, yielding to the transformation matrices for each axis.

The transformation matrix along the x axis, incorporating the θ angle and the d distance

12
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is defined by equation 2.7:

Tx(α) =


1 0 0 a
0 cos(α) −sin(α) 0
0 sin(α) cos(α) 0
0 0 0 1

 (2.7)

The transformation matrix along the y axis, incorporating the ψ angle and the c distance
is defined by equation 2.8:

Ty(φ) =


cos(φ) 0 sin(φ) 0

0 1 0 c
−sin(φ) 0 cos(φ) 0

0 0 0 1

 (2.8)

The transformation matrix along the z axis, incorporating the α angle and the a distance
is defined by equation 2.9:

Tz(θ) =


cos(θ) −sin(θ) 0 0
sin(θ) cos(θ) 0 0

0 0 1 d
0 0 0 1

 (2.9)

With these three transformations, a transformation matrix involving the three rotations
and the three translations involved within every frame of the system can be computed with
equation 2.10.

T ii−1 = Tz(α)Ty(φ)Tx(θ) =


T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44

 (2.10)

In Appendix A it can be reviewed the developed transformation matrix of the multipli-
cation of the matrices involving the three angles.

To have a proper relationship between the frames that are involved in the Kinematic
Chain, it is important to have a convention that integrates the frames that are involved in
the Kinematic Chain. The rules that involve the relationship between each frame are the
following:

13
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• Establish a right-handed orthonormal coordinate frame O0 at the base of the system
with Z0 lying along joint 1 motion axis.

• The Zi axis is directed along the axis of motion of joint (i+ 1), which means that link
(i+ 1) rotates about or translates along Zi.

• Locate the origin of the ith coordinate at the intersection of Zi and Zi−1 or the inter-
section of common normal between the Zi and the Zi−1 axis.

• The Xi axis lies along the common normal from the Zi−1 axis to the Zi axis.

• Assign the Yi axis to complete the right-handed coordinate system.

In the following figure the frames of a Kinematic Chain can be referred to such as in
figure 2.6:

Figure 2.6: Frames of a Kinematic Chain.

After defining the link coordinate frames, it is important to have a relationship of the
link and joint parameters that are used in the Denavit Hartenberg (DH) convention. These
parameters are the following:

• Joint angle θi: This is the angle of rotation from the Xi−1 axis to the Xi axis about
the Zi−1 axis.

• Joint distance di: This is the distance from the origin of the (i− 1) coordinate system
to the intersection of the Zi−1 axis and the Xi axis along the Zi−1 axis.

14
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• Link length ai: This is the distance from the intersection of the Zi−1 axis and the Xi

axis to the origin of the ith coordinate system along the Xi axis.

• Link twist angle αi: This is the angle of rotation from the Zi−1 axis to the Zi axis
about the Xi axis.

For the figure that was used, the DH parameters that represent the Kinematic Chain of
figure 2.6 are the following:

Denavit Hartenberg Parameters of example
Joint θi di αi ai

A1
0 θ0 0 0° a0

A2
1 θ1 0 -90° a1

A3
2 θ2 d2 0 0

Table 2.1: DH parameters that involve the frames of the example of the Kinematic Chain of
figure 2.6.

With the usage of the DH parameters and a proper relationship between the frames of
the robotic leg it is possible to relation the end effector and frame 0, which corresponds to
the frame that is attached to the main body. Beginning with the frame of A1

0, equation 2.8
is applied with a φ angle of 90° and a c distance of 0. It´s important this rotation matrix,
because normally the end effector of a Kinematic Chain is on the top of its base, while
working on a robot leg, its end effector is at the bottom of its base. For the rest of the
frames, table 2.2 was used to work applying the DH convention in order to have the linkage
coordinate system[16] where the leg of the robot is developed.

Denavit Hartenberg Parameters of Quadruped Leg
Joint θi di αi ai

A2
1 θ1 0 90° L1

A3
2 θ2 0 0° L2

A4
3 θ3 0 0° L3

Table 2.2: DH parameters that involve the frames of the leg of the quadruped robot.

Its important to remark that the frames of the robot, are referenced to the frame 0 of
the robot, which corresponds to the horizontal hip joint, as it can be seen in figure 2.7:

15
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Figure 2.7: Frames of a single leg.

Using equation 2.10, it is possible to calculate the transformation matrices for each frame
of the leg of the robot, using the D-H parameters of Table 2.2. Beginning with the first
transformation matrix, there is a rotation of 90° along the y axis, yielding to equation 2.11.

A1
0 =


0 0 1 0
0 1 0 0
−1 0 0 0
0 0 0 1

 (2.11)

For the second transformation matrix, there is a rotation of 90° along the x axis, a
translation of the length L1 along the x axis, corresponding to the length of the hip, and a

16
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rotation of θ1 along the z axis, which yields to equation 2.12.

A2
1 =


cos(θ1) 0 sin(θ1) L1cos(θ1)
sin(θ1) 1 −cos(θ1) L1sin(θ1)

0 1 0 0
0 0 0 1

 (2.12)

For the third transformation matrix, there is a rotation along the z axis and a translation
of the length L2 along the x axis, corresponding to the length of the thigh, which yields to
equation 2.13.

A3
2 =


cos(θ2) −sin(θ2) 0 L2cos(θ2)
sin(θ2) cos(θ2) 0 L2sin(θ2)

0 0 1 0
0 0 0 1

 (2.13)

For the fourth transformation matrix, there is a rotation along the z axis and a translation
of the length L3 along the x axis, corresponding to the length of the calf, which yields to
equation 2.14.

A4
3 =


cos(θ3) −sin(θ3) 0 L3cos(θ3)
sin(θ3) cos(θ3) 0 L3sin(θ3)

0 0 1 0
0 0 0 1

 (2.14)

With these equations, a matrix composition can be obtained, multiplying the 4 transfor-
mation matrices from the foot frame to the base frame with equation 2.15.

T 4
0 = A1

0A
2
1A

3
2A

4
3 (2.15)

After doing the multiplication of these matrices, a rotation matrix, as well as a position
matrix involving the end effector with respect to frame (w.r.t.) 0 is obtained like equation
2.16.

T 4
0 =

[
R P
0 1

]
(2.16)

In equation 2.16, the resulting rotation matrix R is a R3X3 matrix, while the position
matrix P is a R3X1 matrix.
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Where:

R=

 sin(θ2 + θ3) cos(θ2 + θ3) 0
cos(θ2 + θ3)sin(θ1) −sin(θ2 + θ3)sin(θ1) −cos(θ1)
−cos(θ2 + θ3)cos(θ1) sin(θ2 + θ3)cos(θ1) −sin(θ1)



P=

PxPy
Pz

=

 L3sin(θ2 + θ3) + L2sin(θ2)
sin(θ1)(L1 + L3cos(θ2 + θ3) + L2cos(θ2))
−cos(θ1)(L1 + L3cos(θ2 + θ3) + L2cos(θ2))


Obtaining P matrix, the Forward Kinematics of the system is obtained with a relationship

of the end effector w.r.t. frame 0, these matrices will be used in the following section to
calculate the dynamic model of the leg. Contrary to the Forward Kinematics, an Inverse
Kinematics analysis could be applied in which the main objective is to have a reference of the
trajectory of the end effector where Cartesian references are used to have resulting angles,
after using Inverse Kinematics. The necessary parameters that are needed to calculate the
Inverse Kinematics are represented in table 2.3, these parameters can be visualized also in
figure 2.7.

Inverse kinematics parameters
Parameter Meaning

Px Position x4 of the end-effector w.r.t. frame 0.
Py Position y4 of the end-effector w.r.t. frame 0.
Pz Position z4 of the end-effector w.r.t. frame 0.
L1 Length of the hip.
L2 Length of the thigh.
L3 Length of the calf.
L Length of the body.
W Width of the body.
HB Height of the body.

Table 2.3: Parameters used to calculate the Inverse Kinematics.

With the usage of Inverse Kinematics algorithm, the leg can compute the angles to trace
the reference trajectory with its foot. After doing some algebraic operations which are out
of the purpose of this work, but can get a reference in [3], the joint angles which result for
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this leg are represented by Θ = [θ1 θ2 θ3]T with equation 2.17:

Θ = IK(BPFOOT ) = FK(q) =



tan−1
(
Py+W

2

Pz+
HB
2

)
−ξ + tan−1 Px−L

2√(
Py + W

2

)2
+
(
Pz + HB

2

)2
−L1

L2+L3

L3
ξ


(2.17)

Where:

ξ = cos−1
L2
2+
(
Px − L

2

)2
+
(
Py + W

2
− L1sinθ1

)2
+
(
Pz + HB

2
+ L1sinθ1

)2
−L2

3

2L2

√(
Px − L

2

)2
+
(
Py + W

2
− L1sinθ1

)2
+
(
Pz + HB

2
+ L1sinθ1

)2
After having expressions that have used the Forward Kinematics and the Inverse Kine-

matics is important to have an expression that links the position of the end effector with
each angle in which the leg rotates. This expression is obtained by partially deriving the
position of the end effector w.r.t. each of the angles. This expression is called the contact
Jacobian and is calculated with equation 2.18:

Jc =


∂x
∂θ1

∂x
∂θ2

∂x
∂θ3

∂y
∂θ1

∂y
∂θ2

∂y
∂θ3

∂z
∂θ1

∂z
∂θ2

∂z
∂θ3

 (2.18)

After doing the partial derivatives of the Θ angles that are obtained from equation 2.17,
it yields to equation 2.19:

Jc =

 0 L2c2 + L3c23 L3c23

L1c1 + L2c1c2 + L3c1c23 −L2s1s2 − L3s1s23 −L3s1s23

L1s1 + L2s1c2 + L3s1c23 L2c1s2 − L3c1s23 L3c1s23

 (2.19)

In equation 2.19 si, ci stand for sinθi and cosθi respectively, while sij, cij stand for sin(θi+
θj) and cos(θi + θj) respectively. The contact Jacobian is a matrix that was used in the
experiments in order to test the controllers, so it is important to have a proper calculation
of this matrix in order to have a proper behavior of the controllers.
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2.3 Phases of the legs

To have proper control of the locomotion of the legs, it is important to consider the
phases [20] of the legs that are involved during the locomotion of the quadruped. These
phases are the swing phase and stance phase, both phases need to have proper coordination
to have proper locomotion of the whole body.

The most important difference between the swing phase and the stance phase is that
during the swing phase, it doesn’t make contact with the ground, meaning that there is no
contact force during this phase of the locomotion, while during the stance phase there is
a contact force. It is very important to consider this difference because there needs to be
applied a different controller in each phase to have proper control of each phase, meaning a
control for the whole phases of locomotion. In figure 2.8 it can be seen the main phases of
locomotion.

Figure 2.8: Locomotion of a robot leg during stance phase and swing phase. The blue dashed
line represents the finish position at the end of swing phase and stance phase respectively.
The yellow dashed line represents the trajectory of a foot during swing phase.

As it can be seen in figure 2.8, during the Stance Phase, the foot doesn’t move from its
position at the beginning of the Stance Phase, but the main body moves. On the other hand
during Swing Phase, both the foot and the body move from their original position at the
beginning of the Swing Phase.

2.4 Force Distribution

So that the whole quadruped has stability in its position, it is important to have a correct
force distribution in each leg that is involved in making contact with the ground. When the
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leg is in the stance phase it computes the correct amount of the contact force, to reach
stability for the whole quadruped. The force on each foot has 3 components[21] which are
represented in equations 2.20, 2.21 and 2.22 considering only the feet that are making contact
with the ground as nc at a specific time:

∑
Fx =

nc∑
i=1

Fxi (2.20)

∑
Fy =

nc∑
i=1

Fyi (2.21)

∑
Fz =

nc∑
i=1

Fzi (2.22)

Where:

fi = [Fxi Fyi Fzi]
T

With this relation, when the robot is making contact with its four legs, four forces are
obtained, which can be visualized in figure 2.9:

Figure 2.9: Force Distribution of 4 contact forces along the quadruped robot.

It´s very important to consider these contact forces because these forces affect the loco-
motion of the whole robot, which will be discussed deeper in the following section, in which
fi has a very important role.
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2.5 Leg Dynamics Model in Swing Phase

During the swing phase, there needs to be a dynamic model to compute the joint torques.
Accounting that there are no contact forces during the swing phase, the dynamics model
can be described by the model of equation 2.23:

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ (2.23)

Here M(q) ∈ R3X3 represents the torque caused by the inertia tensors of the links of the
robot, C(q, q̇) ∈ R3X3 is a matrix that represents the torque due to the Coriolis forces and
the centrifugal forces, G(q) ∈ R3X1 is a matrix that represents the torque due to the Gravity
force, and finally τ ∈ R3X1 is a matrix that represents the torques of the joint motors of the
robotic leg. Each leg has 3 DOF, in which the main function of the motor from the horizontal
hip joint is to make the movements of abduction and adduction of the leg, the angle of these
movements is represented with θ1, while the motors of the vertical hip joint and the knee
joint make the function of flexion and extension of the thigh and the calf respectively, these
angles are represented with θ2 and θ3 respectively. The three angles in which the leg makes
its movements can be represented as a vector-like in equation 2.24:

q =


θ1

θ2

θ3

 (2.24)

With their respective velocities as in equation 2.25:

q̇ =


θ̇1

θ̇2

θ̇3

 (2.25)

To compute the matrices of the dynamic model, the first step is to calculate the position
COM of the 3 links w.r.t. frame 0, which corresponds to the horizontal hip joint. The
COM of the links can be obtained with the aid of the previously computed transformation
matrices. For the hip link, the COM of the hip link can be obtained by multiplying the
transformation matrices A1

0A
2
1 and taking the first, second, and third elements of the fourth

column, after dividing them by two it yields to the position of the COM of the hip link w.r.t.
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frame 0, like in equation 2.26:

r1c =


0

L1 sin(θ1)
2

−L1 cos(θ1)
2

 (2.26)

Similarly, the coordinates of the COM of the thigh can be obtained multiplying the
transformation matrices A1

0A
2
1A

3
2, taking as well the first three rows of the fourth column of

the resulting matrix. It’s important to mention that for the COM of the thigh, it’s considered
the full length of the hip plus the terms involving L2 divided by 2 resulting in the position
of the COM of the thigh w.r.t. frame 0, which yields to equation 2.27:

r2c =


L2 sin(θ2)

2

L1 sin (θ1) + L2 cos(θ2) sin(θ1)
2

−L1 cos (θ1)− L2 cos(θ1) cos(θ2)
2

 (2.27)

Finally, the coordinates of the COM of the calf, are obtained by multiplying the matrices
A1

0A
2
1A

3
2A

4
3, considering the first three rows of the fourth column of the resulting matrix.

Also, it´s important to mention that for the COM of the calf, it considered the full length of
the hip, and the full length of the thigh plus the terms involving L3 divided by 2 resulting
in the position of the COM of the calf w.r.t. frame 0, which yields to 2.28:

r3c =


L3 sin(θ2+θ3)

2
+ L2 sin (θ2)

sin(θ1) (2L1+L3 cos(θ2+θ3)+2L2 cos(θ2))
2

− cos(θ1) (2L1+L3 cos(θ2+θ3)+2L2 cos(θ2))
2

 (2.28)

The next part is to calculate the linear velocities of the COM of the links referred to
frame 0, which can be calculated by a partial derivative of the position of the COM w.r.t.
each of the angles of the vector q which can be seen in equation 2.29:

drn =
∂rc

∂q
(2.29)

After applying equation 2.29 into equation 2.26, it is possible to represent the velocity of
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the COM of the hip as in 2.30:

dr1c =


0

L1 θ̇1 cos(θ1)
2

L1 θ̇1 sin(θ1)
2

 (2.30)

Similarly, equation 2.29 can be applied into equation 2.27, to obtain the velocity of the
COM of the thigh as in 2.31:

dr2c =


L2 θ̇2 cos(θ2)

2

θ̇1

(
L1 cos (θ1) + L2 cos(θ1) cos(θ2)

2

)
− L2 θ̇2 sin(θ1) sin(θ2)

2

θ̇1

(
L1 sin (θ1) + L2 cos(θ2) sin(θ1)

2

)
+ L2 θ̇2 cos(θ1) sin(θ2)

2

 (2.31)

Finally, equation 2.29 can be applied into equation 2.28, to obtain the velocity of the
COM of the calf as in 2.32:

dr3c =


θ̇2

(
L3 cos(θ2+θ3)

2
+ L2 cos (θ2)

)
+ L3 θ̇3 cos(θ2+θ3)

2

θ̇1 cos(θ1) (2L1+L3 cos(θ2+θ3)+2L2 cos(θ2))
2

− θ̇2 sin(θ1) (L3 sin(θ2+θ3)+2L2 sin(θ2))
2

− L3 θ̇3 sin(θ2+θ3) sin(θ1)
2

θ̇2 cos(θ1) (L3 sin(θ2+θ3)+2L2 sin(θ2))
2

+ θ̇1 sin(θ1) (2L1+L3 cos(θ2+θ3)+2L2 cos(θ2))
2

+ L3 θ̇3 sin(θ2+θ3) cos(θ1)
2


(2.32)

After obtaining the positions and the velocities of the COM of the links of the system, an
Euler-Lagrange method was developed to obtain the kinematic and the potential energy of
the system. The Lagrangian can be calculated with the sum of the kinematic energy, minus
the potential energy of the system as expressed with equation 2.33:

L = T − U (2.33)

In the case of the kinematic energy, is calculated considering the translational, as well as
the rotational contributions for each link such as in equation 2.34:

T =
1

2
midr

T
ndrn +

1

2
wTi I∆wi (2.34)
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It’s important to mention that the links of the system are considered as rigid bars with
a circular section, considering their inertia tensors I∆ as in equation 2.35.

I∆ =


Ixx 0 0

0 Iyy 0

0 0 Izz

 =


mL2

12
0 0

0 mL2

12
0

0 0 mL2

12

 (2.35)

Each link contributes to the Kinematic Energy for the whole system. With equation
2.34 it is possible to calculate the contribution of the Kinematic energy for each link. After
calculating the kinematic energy of the three links it is possible to have the kinematic energy
of the whole system with equation 2.36:

T = T1 + T2 + T3 (2.36)

The developed matrix T can be viewed in Appendix B, with the contribution of the
kinematic energy of the three links.

The next part is to calculate the contribution for the Potential Energy of each link, which
can be calculated with equation 2.37:

U = −mig
T rn (2.37)

With the contribution of the three links it is possible to sum the whole potential energy
U of the whole leg with equation 2.38:

U = U1 + U2 + U3 (2.38)

The developed matrix U can be viewed in Appendix C, with the contribution of the
potential energy of the three links.

With the whole contribution of the kinematic energy, as well as of the potential energy,
the next step is to calculate the matrices of the Dynamic Model that is presented in equation
2.23. Beginning with the M matrix, this matrix contains the inertia tensor terms of the links
of the leg, this matrix is calculated doing a derivative of the kinematic energy such as in
equation 2.39:

M(q) =
∂

∂dq

(
∂T

∂dq

)
(2.39)
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The developed M matrix involving all the terms of the M matrix can be reviewed in
Appendix D.

After calculating the M matrix, the next matrix to be calculated is the C matrix. This
matrix takes into account the torques due to the Coriolis and Centrifugal terms, this could be
calculated using the Christoffel Symbols of the first kind; to calculate them, it is necessary the
M(q) matrix that was recently obtained, the C(q, q̇) matrix can be calculated with equation
2.40:

C(q, q̇) =
1

2

(
∂Mkj

∂qi
+
∂Mki

∂qj
− ∂Mij

∂qk

)
(2.40)

The developed C matrix involving all the terms of the C matrix can be reviewed in
Appendix E.

Finally, to calculate the torques due to the gravitational forces, the G matrix can be
calculated deriving the total potential energy w.r.t. each angle of the vector q, resulting in
equation 2.41:

G(q) =
∂U

∂qi
(2.41)

The developed G matrix involving all the terms of the G matrix can be reviewed in
Appendix F.

2.6 Models used for the whole body

2.6.1 Lumped Mass Model

After having a dynamic model for each leg of the quadruped during the swing phase, it’s
important to have a model that involves the whole quadruped. The first step to find this
model is to use the second law of Newton to account for the reaction forces of the robot
considering the legs that are making contact with the ground. The reaction forces are found
with the lumped mass model[6] with equations 2.42 and 2.43:

mp̈ =
nc∑
i=1

fi − cg (2.42)
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d

dt
(IRw) =

nc∑
i=1

ri × fi (2.43)

Where:

p ∈ R3: Vector representing the position of the robot w.r.t. the world frame.

p̈ ∈ R3: Vector representing the acceleration of the robot w.r.t. the world frame.

fi ∈ R3: Vector representing the reaction forces of the robot w.r.t. the world frame.

nc: Is the number of legs that are in contact with the ground.

cg ∈ R3: Vector representing the gravitational acceleration w.r.t. the world frame.

m: Is the total mass of the robot.

IR ∈ R3×3: Is the rotational inertia tensor.

w ∈ R3: Is the angular velocity of the body of the robot.

ri ∈ R3: Is the position of the i-th contact point w.r.t. the COM of the robot.

It is assumed that the w × (Iw) is small for bodies with small angular velocities, so it
can be neglected. Accounting this, equation 2.43 can be approximated with equation 2.44:

d

dt
(IRw) = IRẇ + w × (IRw) = IRẇ (2.44)

With the last assumption the acceleration and the angular velocity of the robot’s COM
can be represented with the equations

p̈ =

nc∑
i=1

fi − cg

m
(2.45)

ẇ = I−1
R

nc∑
i=1

ri × fi (2.46)

The reaction forces found by each contact leg fi are then used in the Multi-Body Dy-
namics Model to compute the torques of the joints of each leg.
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2.6.2 Multi-body Dynamics Model

The reaction forces fi of the contact legs obtained from the lumped mass model are used
to calculate torque commands of each leg with the usage of the Multi-Body Dynamics Model.
The vector of acceleration obtained from the lumped mass model p̈ matches with the vector
q̈ from the multibody dynamics model.

In the case of the movement of each leg, a parabola is used to determine the position of
each foot during the swing phase, where the swing leg moves faster and finishes the first half
of the full swing trajectory in the first half of the full swing trajectory. By doing this each
foot has an acceleration vector qj where it is considered in the multi-body dynamics model
to calculate the torques of the joints.

The multi-body dynamics model [11] is described as equation 2.47:

S

[
τf

τj

]
= Aq̈ + b+ g − JTc fi (2.47)

Where:

S =
[
0njxnf Inj

]
: This selection matrix separates the nj joint coordinates from the

unactuated floating base coordinates nf .

q =

[
qj
qf

]
.

qf = (x, y, z, φ, θ, ψ)T .

qf ∈ R6: Unactuated floating base coordinates.

qj :∈ Rnj : Actuated joint coordinates.

nj: Number of joints.

A ∈ R3×3: Generalized mass matrix.

q̈ ∈ R3: Vector representing the acceleration of the robot w.r.t. the world frame, and
the vector of joint accelerations w.r.t. the world frame.

b ∈ R3: Coriolis force.

g ∈ R3: Gravitation force.

Jc ∈ R3×3: Contact Jacobian.
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fi ∈ R3: Reaction force obtained from the lumped mass model.

τf ∈ R3: Floating base torque.

τj ∈ R3: Joint torque.

2.7 COM orientation and angular velocity

The orientation of the COM of the robot can be expressed with the Euler angles Θ =
[φ θ ψ]T . Here φ is roll, θ is pitch and ψ is yaw. In figure 2.10 it can be visualized the COM
with its rotation angles. These angles are crucial for building the rotation matrix in which
the body coordinates could be transformed into world coordinates.

Figure 2.10: COM orientation.

With these matrices, a rotation matrix for every axis can be defined for every angle in
which the robot performs its rotations. The rotation matrix of the robot for the φ angle is
defined with equation 2.48 as:

Rx(φ) =


1 0 0

0 cos(φ) −sin(φ)

0 sin(φ) cos(φ)

 (2.48)
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The rotation matrix of the robot for the θ angle is defined with equation 2.49 as:

Ry(θ) =


cos(θ) 0 −sin(θ)

0 1 0

sin(θ) 0 cos(θ)

 (2.49)

And finally the rotation matrix for the ψ angle is defined with equation 2.50 as:

Rz(ψ) =


cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

 (2.50)

With these rotations matrices, the rotation matrix can be defined, where it transforms
from body to world coordinates, such as in equation 2.51:

R = Rz(ψ)Ry(θ)Rx(φ) (2.51)

With the first derivative of the COM orientation, it is possible to obtain the COM angular
velocity. To obtain the COM angular velocity viewed from the world frame, the previously
calculated rotation matrix R has to be transposed in the form of RT . This can be expressed
with equation 2.52 where the RT matrix multiplies the COM angular velocity.


φ̇

θ̇

ψ̇

 =


cos(ψ)/cos(θ) sin(ψ)/cos(θ) 0

−sin(ψ) cos(ψ) 0

cos(ψ)tan(θ) sin(ψ)tan(θ) 1

w (2.52)

Normally in practice roll, and pitch angles (φ, and θ) are really small, so the terms
involving cos(θ) and cos(φ) can be simplified to 1, while sin(θ) and sin(φ) can be simplified
to 0. Also because of the relationship of the tangent function is tan(x) = sin(x)/cos(x), the
terms involving tan(θ) and tan(φ) are simplified to 0. With these simplifications, the COM’s
angular velocity can be expressed using all the mentioned simplifications, reaching a simpler
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equation for COM’s angular velocity viewed from the world frame with equation 2.53:


φ̇

θ̇

ψ̇

 =


cos(ψ) sin(ψ) 0

−sin(ψ) cos(ψ) 0

0 0 1

w (2.53)

This is equivalent to equation 2.54:


φ̇

θ̇

ψ̇

 = Rz(ψ)Tw (2.54)

As mentioned before, the quadruped can be viewed from the body frame, and from the
world frame, to represent the inertia tensor viewed from the world frame, the rotation matrix
can be used to have a relationship between these two frames which can be represented in
equation 2.55:

Îw = Rz(ψ)BIRz(ψ)T (2.55)

2.8 Simplified Robot Dynamics

With the usage of the obtained equations of the lumped mass model and the equations
of the COM orientation and angular velocity, it is possible to have the dynamics of the
quadruped. With the usage of a state-space representation the dynamics of the whole robot
can be written in the form of equation 2.56:

d

dt


Θ̂

p̂

ω̂

˙̂p

 =


03 03 Rz(ψ)T 03

03 03 03 13

03 03 03 03

03 03 03 03




Θ̂

p̂

ω̂

˙̂p

+


03 ... 03

03 ... 03

Î−1
w [r1]× ... Î−1

w [rn]×

13/m ... 13/m



f1

:

:

fn

+


0

0

0

g

 (2.56)

The developed dynamic model involving the expanded matrices of equation 2.56 can be
viewed in Appendix G.
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To find the term of Î−1
w [r1]× the first thing to do is to calculate the inertia matrix viewed

from the world frame, as referred to equation 2.55, the inertia matrix viewed from the world
frame can be calculated with equation 2.57:

Îw =


cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1



Ixx 0 0

0 Iyy 0

0 0 Izz



cos(ψ) sin(ψ) 0

−sin(ψ) cos(ψ) 0

0 0 1

 (2.57)

After doing the appropriate matrix multiplications, the inertia matrix from the world
frame can be viewed like in equation 2.58:

Îw =


Ixxcos(ψ)2 + Iyysin(ψ)2 Ixxcos(ψ)sin(ψ)− Iyycos(ψ)sin(ψ) 0

Ixxcos(ψ)sin(ψ)− Iyycos(ψ)sin(ψ) Iyycos(ψ)2 + Ixxsin(ψ)2 0

0 0 Izz


(2.58)

Then, after getting the inverse transform viewed from the world frame, yields to equation
2.59:

Î−1
w =


Ixx − Ixxsin(ψ)2 + Iyysin(ψ)2 sin(2ψ)(Ixx−Iyy)

2
0

sin(2ψ)(Ixx−Iyy)

2
Iyy + Ixxsin(ψ)2 − Iyysin(ψ)2 0

0 0 Izz

 (2.59)

The next step is to calculate the skew matrix for a given position of a foot r1, given its
position with the vector r1 = [a1 b1 c1], its skew matrix can be represented like in equation
2.60:

[r1]× =

 0 −c1 b1

c1 0 −a1

−b1 a1 0

 (2.60)

Finally, after making the multiplication of the inverse inertia matrix viewed from the
world frame with the skew matrix of the foot position, it is obtained an expression that
appears in Appendix H:

It is important to mention that a new state of gravity was added to have a convenient
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state-space representation equation, which expanded in all its components, yields to equation
2.61:

ẋ(t) = Ac(ψ)x(t) +Bc(r1, ..., rn, ψ)u(t) (2.61)

In this equation Ac ∈ R13×13 and Bc ∈ R13×3n. Here it can be seen that this state-space
representation depends on the ψ angle and the foot locations. With the proper dynamics
model, it is possible to apply control and make the experiments using diverse platforms.
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Chapter 3: Experiments and Simula-
tion

For the experiments, it was done mainly doing a simulation of the whole quadruped using
a previously proposed control, and then a simulation of a single leg using the newly proposed
controller. For the simulation of the whole quadruped robot, it was tested in SIL using the
Pybullet Platform. After testing the quadruped in the Pybullet platform, a Simulation with
Simulink was made for the swing phase.

3.1 Software in the Loop

For the simulation of the robot, the quadruped imitates the gaits of real animals, so it is
very important to analyze the pattern of locomotion of the legs to have a good simulation of
the quadruped. To have proper locomotion of the robot, each leg must have two phases of
locomotion. The first analyzed phase is the stance phase; in this phase, the leg is in direct
contact with the ground, where a reaction force is generated. The other phase of the leg is
the swing phase, in which the leg is not in contact with the ground, contrary to the stance
phase, with this phase there is no contact force with the ground.

To perform these gaits some parameters are needed to take into account to alternate
between the two phases. One of these parameters is the nominal stance duration, which
is the duration of the stance phase w.r.t. the total cycle, which for the experiment is 0.3,
representing 30 % of the cycle. Another important parameter that needs to be considered
is the duty factor, which has a relationship that involves the stance duration divided by the
total gait cycle. This parameter is important to achieve the desired gaits of locomotion of
the quadruped. With these parameters, the swing duration can be calculated with equation
3.1, in which it considers the stance duration as well as the duty factor.

Swingduration = Stanceduration/Dutyfactor − Stanceduration (3.1)

It is possible to implement in a robot the gaits, alternating correctly the stance phase
and the swing phase of each leg. In figure 3.1 it is shown the four main gaits of locomotion
which are trot, gallop, pace, and pronk in which the blue spaces represent the contact points
of each leg during the stance phase, while the blank spaces represent the swing phase. The
first letter of the leg determines the frontal, or back position of the leg, for a frontal leg is
designated the F, and for a back leg it is designated the B; whereas for the position of the
right or the left leg is referenced in the second letter, for the right leg is designated with the
R, and for the left leg is designated with the L.

Considering the two main phases of locomotion of the legs of the quadruped, the torques
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(a) Pronk Gait (b) Pace Gait

(c) Trot Gait (d) Gallop Gait

Figure 3.1: Quadruped gaits.

of the motor can be computed using a PD controller like in equation 3.2 with the parameters
of table 3.1.

τi = Kp(θd − θ)i +Kd(θ̇d − θ̇)i + additional torquesi (3.2)

Gains applied to each quadruped leg
Joint Kp Kd

Horizontal Hip Joint 220 1
Vertical Hip Joint 220 2

Knee Joint 220 2

Table 3.1: Gains used in the swing leg controller of the quadruped.

It is important to consider that during the swing phase, the motor torques are computed
using the PD controller of equation 3.2, while during the stance phase, the term additional
torques are calculated with the aid of MPC, which uses a Quadratic Programming (QP)
solver to compute the contact forces of the legs of the robot. The QP solver helps to
optimize the correct contact forces to obtain the minimal forces that are necessary to keep
the quadruped in the desired state of its COM. The QP solver used in the simulation is the
OSQP solver[18] which solves convex quadratic programming problems of the form:

minimize 1
2
xTPx + qT + x

subject to l ≤ Ax ≤ u

Here x ∈ Rn is the variable that is planned to be optimized. The matrix that is the
objective of the optimization is defined as a positive semidefinite matrix P ∈ Sn and a
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vector q ∈ Rn. The linear constraints of the equation are defined by a matrix A ∈ Rmxn

and also by the vectors l and u in order to let li ∈ R−∞ and ui ∈ R+∞ for all i ∈ 1, ...,m.
The objective of OSQP is to compute the optimal contact forces for a given center of mass
trajectory and a predefined gait pattern. These contact forces are really important because,
with them, the motor torques are calculated in the stance phase of the locomotion. The
parameters that are considered for computing the contact forces are: COM position, COM
velocity, COM rpy, COM angular velocity, foot contact states, foot positions in the body
frame, foot friction coefficients, desired COM position, desired COM velocity, desired COM
rpy and desired COM angular velocity.

Through the simulation, some matrices need to be updated to have an accurate optimiza-
tion process. These matrices are the state, the desired states, the contact states of the legs,
foot positions from the base frame, foot friction coefficients, rotation matrix, inertia world
frame, A matrix, and B matrix from the dynamic model of equation 2.61. To update these
matrices, the MPC plans 10 horizon steps with a planning timestep of 0.25, which means
that the QP solver plans within a frame of 2.5 seconds the correct quantity of contact forces
so that the quadruped has the desired position and velocity of its COM. Also, it is worth
mentioning that the bullet solver makes 30 iterations with a simulation time step of 0.001
seconds, which means that to execute the SIL simulation, the platform has to make 30,000
iterations in one second.

As it was mentioned before, the quadruped has mainly two frames, the world frame, and
the body frame, so the user can appreciate the locomotion of the robot within the world
frame, where it can rotate the camera to view the robot in different angles. The user can
input a desired trajectory of the COM, that is a velocity in the x axis vx, a velocity in the y
axis vy or an angular velocity in the z axis wz in 5 seconds for each change of trajectory. To
watch the SIL simulation, it was used the platform Pybullet, with the robot Laikago from
Unitree Robotics .

One test of the SIL is to compare the desired COM position in the z axis with the actual
COM position in the z axis. In figure 3.2 is displayed the position of the COM of the
quadruped during a simulation.
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Figure 3.2: Actual COM position vs desired COM position of the z axis.

It is important to note that during the change of the trajectory of the COM, the actual
COM Position changes as can be seen in the graph around second 20. Even though that
the COM changes from its desired state with a change of trajectory, it still manages to keep
close to the desired COM position. The objective of this control is to have stability in the
COM, as it can be seen in figure 3.3 when the quadruped is subjected to a disturbance.

Figure 3.3: Actual COM position vs desired COM position of the z axis when the quadruped
is subjected to a disturbance.

Another state that was observed using SIL was the COM velocity, comparing the state
of the desired COM velocity in the z axis with the actual COM velocity in the z axis. In
figure 3.4 is displayed the velocity of the COM of the quadruped during a simulation.
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Figure 3.4: Actual COM velocity vs desired COM velocity of the z axis.

It can be seen that even though it oscillates through all the simulation, it still handles to
be around the desired velocity of the z axis which is 0 m/s. With the usage of this control, it
can still respond to disturbances, as it can be seen in figure 3.5, after an applied disturbance,
the control actuates to keep the quadruped in the desired velocity.

Figure 3.5: Actual COM velocity vs desired COM velocity of the z axis after applying a
disturbance.

It can be seen that with a disturbance, the COM velocity still oscillates in the z plane,
but it still manages to be around the desired COM velocity in z, which is 0 m/s.

To keep the robot stable is important that each of the legs contribute to the control to
keep the robot stable. For a leg with 3 motors, each of the motors computes the right torques
to keep the quadruped stable. In figure 3.6 it is compared the desired position vs the actual
position of the motors of a leg. Each motor, compute the right torques to keep the robot
stable according to equation 3.2.
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Figure 3.6: Actual position vs desired position of the motors of a leg of the quadruped in
simulation.

It is important to mention, after the control law of equation 3.2 is applied to the motors,
they compute the torques to have stability in the quadruped. In figure 3.7 it is shown the
torques of 3 motors of a robot leg over a period of time during a simulation.

Figure 3.7: Motor torques of a leg of the quadruped in simulation.

With the usage of the Hybrid motor model, it is feasible that each of the motors reaches
the desired position and the desired velocities to compute the right torques that are needed
to have the proper states of the COM. With the correct appliance of motor torques, the
robot is robust to disturbances where the user can input them in the body or any of the legs
of the quadruped.

For the SIL simulation, it can be used an even terrain, where the quadruped can walk
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freely without any irregularities in the ground as can be seen in figure 3.8. This is the most
recommended ground to begin to work with the quadruped and to test the gaits of the
quadruped.

Figure 3.8: Quadruped in even terrain.

In the SIL simulation, the quadruped also has an algorithm in which it reacts to the
terrain disturbances, in which the quadruped may behave correctly in uneven terrain. When
it is in Swing Phase and it detects an obstacle before it finishes executing the Swing Phase,
it enters an Early Contact detection State, where it changes immediately to Stance Phase.
Also in the Stance Phase, when the leg loses contact before the scheduled time for the
Stance Phase it enters a Loose Contact Detection State, where the leg enters the Swing
Phase immediately. In figure 3.9 it can be seen the test that was made with the quadruped
Laikago in uneven terrain.

Figure 3.9: Quadruped in uneven terrain.
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After testing the robot in even and in uneven terrain, the next part is to test the walking
gaits of the quadruped. To achieve each of the gaits of the quadruped, it is necessary to
alter the initial gait state of each leg, its initial phase of the cycle, and the duty factor.
In table 3.2 it is summarized the parameters that were used to achieve the desired gaits of
the quadruped in an even terrain. The leg which is referenced for each parameter is in the
following order: FR, FL, BR, and BL. In the initial state of the leg, SW stands for Swing,
while ST stands for Stance.

Gait parameters
Gait Duty factor Initial phase Initial State
Pronk 0.8, 0.8, 0.8, 0.8 0.9, 0.9, 0.9, 0.9 SW, SW, SW, SW
Pace 0.6, 0.6, 0.6, 0.6 0.9, 0, 0.9, 0 SW, ST, SW, ST

Gallop 0.73, 0.73, 0.73, 0.73 0.9, 0.9, 0, 0 SW, SW , ST, ST
Trot 0.6, 0.6, 0.6, 0.6 0.9, 0, 0, 0.9 SW, ST, ST, SW

Table 3.2: Parameters used to achieve the different gaits of the quadruped.

For the pronk gait, it was tested with its corresponding parameters from table 3.2, where
a SIL simulation was previously made to test the performance of the gait. In figure 3.10
it can be seen a series of images taken from a video of a simulation of the pronk gait. A
distinctive quality of this gait is that the four legs change of phases at the same time.

(a) FR, FL, BR, BL
legs are in stance phase

(b) FR, FL, BR, BL
legs are in swing phase

(c) FR, FL, BR, BL
legs in stance phase

(d) FR, FL, BR, BL
legs are back in stance
phase

Figure 3.10: Pronk gait simulation using Pybullet software where it shows the significant
frames of the simulation.

For the pace gait, it was tested with its corresponding parameters from table 3.2, where
a SIL simulation was previously made to test the performance of the gait. In figure 3.11
it can be seen a series of images taken from a video of a simulation of the pace gait. A
characteristic of this gait is that it changes of phases between the legs that are located in
the left, from the legs that are located on the right.
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(a) FL, and BL are in
stance phase, FR, and
BR legs are in swing
phase

(b) FR and BR legs
finish the swing phase

(c) FR, and BR are in
stance phase, FL, and
BL legs are in swing
phase

(d) FL and BL legs fin-
ish the swing phase

Figure 3.11: Pace gait simulation using Pybullet software where it shows the significant
frames of the simulation.

For the gallop gait, it was tested with its corresponding parameters from table 3.2, where
a SIL simulation was previously made to test the performance of the gait. In figure 3.12
it can be seen a series of images taken from a video of a simulation of the gallop gait. A
characteristic of this gait is that it changes of phases between the legs that are located in
the front, from the legs that are on the back.

(a) FR, and FL are in
stance phase, BL, and
BR legs are in swing
phase

(b) BR and BL legs
finish the swing phase

(c) BR, and BL are in
stance phase, FR, and
FL legs are in swing
phase

(d) FR and FL legs fin-
ish the swing phase

Figure 3.12: Gallop gait simulation using Pybullet software where it shows the significant
frames of the simulation.

For the trot gait, it was tested with its corresponding parameters from table 3.2, where a
SIL simulation was previously made to test the performance of the gait. In figure 3.13 it can
be seen a series of images taken from a video of a simulation of the trot gait. A characteristic
of this gait is that it changes of phases between the legs that are located crisscrossed.
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(a) BR, and FL are in
stance phase, BL, and
FR legs are in swing
phase

(b) FR and BL legs
finish the swing phase

(c) FR, and BL are in
stance phase, BR, and
FL legs are in swing
phase

(d) BR and FL legs
finish the swing phase

Figure 3.13: Trot gait simulation using Pybullet software where it shows the significant
frames of the simulation.

3.2 Simulation of swing phase controller

For this experiment, a Swing control was proposed to test the leg in the swing phase of
the locomotion. For the simulation of a robotic leg, it is used the dynamic model of the leg
of 3 DOF with 3 links. With the proposed model of section 2.5 for the dynamics of the leg,
the vector of q̈ can be obtained to implement it on the control, the equation of the actual
acceleration of the torques of the motors is obtained with equation 3.3:

q̈ = M(q)−1(τ − C(q, q̇)q̇ −G(q)) (3.3)

With the vector of the actual acceleration, an integration can be applied to obtain a
vector of the actual velocity of the motors represented by q̇, and an integration to the vector
of the velocities can be applied as well, to obtain a vector of the actual position of the motors
represented by the vector q, in figure 3.14 it can be seen how these vectors are obtained using
Simulink. It is important to consider this vectors, because they are used in the model and
in the proposed control.

Figure 3.14: Representation of the acceleration, velocity and position in Simulink.
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To begin the experiment a robot leg was designed using the Denavit Hartenberg conven-
tion of table 2.2 using the Peter Corke Toolbox[5] to design the leg. The parameters for the
dimensions of the leg were chosen to resemble the leg used in simulation, which can be seen
in table 3.3.

Leg parameters
Link Length [m] Mass [kg]

Hip L1 0.08 0.1
Thigh L2 0.2 0.5
Calf L3 0.2 0.5

Table 3.3: Parameters used to design the leg of the quadruped.

With the usage of the Peter Corke Toolbox, the parameters from table 3.3 can be used
to design a FR leg, which can be visualized as in figure 3.15.

Figure 3.15: Robot leg created using the Peter Corke library.

For the experiment, a reference trajectory was used of the foot w.r.t. frame 0. The
proposed reference simulates the robot making a swing trajectory with the form of a circle.
The reference trajectory can be visualized in figure 3.16. It is worth mentioning that a
circular trajectory was selected because it was observed that during an abrupt change of
direction of a reference trajectory, a large acceleration was needed in order to reach the
desired trajectory. The proposed trajectory is a circle of 2.5 cm of radius, and the end
effector has to complete the proposed trajectory in ' 1second.
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Figure 3.16: Reference of trajectory of the end effector in the X-Z plane.

To follow the given trajectory of the end effector, an Inverse Kinematics algorithm must
be implemented in order that the angles are calculated and the joints make their respective
angle. It is important to mention that in order to reach a point for a 3 DOF system there are
multiple solutions that the joints can make in order to reach the desired point. In order to
compute the desired trajectory, an Inverse Kinematics function used from the Peter Corke
Robotics Toolbox was implemented to calculate the joint angles to follow a trajectory. With
the Inverse Kinematics equations, the reference of the angles can be acquired with a qref
vector that can be used to test the control. It’s important to mention that in order to
acquire these reference angles, all the points of 3.16 were taken into account and the Inverse
Kinematics command of the Peter Corke library was used to get the reference angles.

By deriving the qref vector, a vector of reference velocities can be obtained designated by
q̇ref , and by having a derivative reference velocity, a vector of reference accelerations can be
obtained, which is designated by q̈ref . It is observed that if the reference of the velocity q̇ref ,
and of the acceleration q̈ref is of a small quantity, it is easier to have a controllable system.
In figure 3.17 it can be seen the reference of the angles.
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Figure 3.17: Reference of the angles of the θ vector.

In figure 3.18, after deriving the reference position of the angles, the vector of reference
velocities can be obtained, it can be seen the reference of the velocities of the motors used
in the simulation.

Figure 3.18: Reference of the velocities of the θ̇ vector.

The proposed model for the dynamics is derived from equation 2.56, and its implemen-
tation in Simulink can be seen in figure Appendix I.
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Originally a control proposed in [6] with the form of τ = J(q)T (−Kp(qref−q)−Kd(q̇ref−
q̇)) +FFT was proposed, but after tests, the control was divergent leading to results like in
figure 3.19. In this part of the experiment, it was compared the θ̇1 with the reference of the
θ̇1.

Figure 3.19: Divergent system of the control proposed in [6].

To correct this, a control applied to the model can be applied using equation 3.4. It is
important to mention that the control proposed in [6] was changed so that the M matrix
multiplies the control instead of the transposed Jacobian.

τ = M(q)(−Kp(qref − q)−Kd(q̇ref − q̇)) + FFT (3.4)

The FFT is a feedforward term that is used to compensate the torques due to the
acceleration, these torques can be calculated with the following equation 3.5:

FFT = (J(q)T ∗∆)(q̈ref − ˙J(q)q̇) + C(q, q̇)q̇ +G(q) (3.5)

The Operational Space Inertia Matrix OSIM [12] matrix can be represented with letter ∆
is determined by the equation 3.6 in which it involves the M(q) matrix previously calculated,
the Jacobian J(q), and the transposed Jacobian J(q)T :

∆ = (J(q)M−1(q)JT (q))−1 (3.6)
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It’s important to mention that during the experiments in Simulink, when the system
finds a singularity, the ∆ matrix becomes extremely large and the control can’t converge,
so it´s important to take into account a correct trajectory for the end effector to have a
feasible system that can be controlled. To track the trajectory of the end effector, the right
torques must be computed to follow the desired trajectory. The control implemented in the
Simulink software can be visualized in Appendix J.

After the simulation, there were displayed some graphs of the angles of the system com-
paring the reference with the real angle that is being followed during the simulation. The
θ1 angle during simulation represented the behavior of the horizontal hip joint, where it can
be seen that even though the reference angle is zero for the whole simulation, it still makes
small movements in reality as can be seen in figure 3.20.

Figure 3.20: Real θ1 angle vs the reference θ1 during simulation.
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The θ2 angle during simulation represents the behavior of the vertical hip joint, following
the desired reference trajectory as it can be seen in figure 3.21.

Figure 3.21: Real θ2 angle vs the reference θ2 during simulation.

The θ3 angle during simulation represents the behavior of the knee joint, following the
desired reference trajectory as it can be seen in figure 3.22.

Figure 3.22: Real θ3 angle vs the reference θ3 during simulation.

The θ̇1 angular velocity during simulation represented the angular velocity of the hori-
zontal hip joint, where it can be seen that even though the reference angular velocity is zero
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for the whole simulation, it still makes small movements in reality as it can be seen in figure
3.23.

Figure 3.23: Real θ̇1 vs the reference θ̇1 during simulation.

The θ̇2 angular velocity during simulation represents the angular velocity of the vertical
hip joint, following the desired reference trajectory as it can be seen in figure 3.24.

Figure 3.24: Real θ̇2 vs the reference θ̇2 during simulation.

The θ̇3 angular velocity during simulation represents the angular velocity of the knee
joint, following the desired reference trajectory as it can be seen in figure 3.25.
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Figure 3.25: Real θ̇3 vs the reference θ̇3 during simulation.

After applying the control to the system and having a good track following the reference
angles for each of the joints, the resulting torques can be seen in figure 3.26.

Figure 3.26: Motor torques during simulation.

In order to reach these desired positions and to have a correct tracking of the position
of the joints, the gains of the PD controller had to be adjusted to in order to have a proper
track of the control. These parameters can be shown in table 3.4.
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Gains applied to the quadruped leg
Joint Kp Kd

Horizontal Hip Joint 400 180
Vertical Hip Joint 700 190

Knee Joint 350 250

Table 3.4: Gains used in the swing leg controller of the quadruped.

To prove the correct locomotion of the leg, after obtaining the real angles in simulation,
the Forward Kinematics equation obtained in equation 2.16 of the position P of the end
effector was applied at the leg using the Peter Corke Toolbox, to visualize the proper track
of the angles of the joints, as it can be seen in figure 3.27.

(a) FR leg at the be-
ginning of the simula-
tion

(b) FR leg reaching its
maximum position in
the Z plane during sim-
ulation

(c) FR leg descending
during simulation

(d) FR leg finishing its
trajectory during sim-
ulation

Figure 3.27: FR leg of a robot during simulation in the Simulink software.

Also after applying the Forward Kinematics equations it can be compared the proposed
reference trajectory with the actual trajectory after the control is applied. In figure 3.28 it
can be seen that the maximum displacement between the reference trajectory and the actual
trajectory is around ' to 1 cm, which can be seen signaled with an arrow in figure 3.28.
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Figure 3.28: Reference position vs Real position of the end effector during simulation.
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Chapter 4: Conclusions

It was observed that using the SIL simulation, a quadruped could be controlled using
the Pybullet platform. It is feasible to prove the locomotion of a quadruped robot using the
MPC control technique for the whole quadruped. It was seen that the controllers worked
well in the SIL simulation, alternating between the phases of the locomotion of the robot,
reaching stability in both phases. With the appropriate usage of the parameters of the duty
factor, as well as the initial phase of the state of the leg, the basic gaits of the quadruped
robot could be visualized using the SIL technique.

In the case of the Simulink simulation, it is important to mention that to have a proper
model of the leg, the most appropriate approach to obtain the model is with the usage
of the Euler-Lagrange method. It is observed that to avoid singularities it is important to
command for a proper trajectory that avoids these singularities because if a matrix involving
the control becomes non-invertible it will lead to a singularity and will lose the track of the
control. After applying the controller to the quadruped leg, it was observed that it was more
difficult to track the reference trajectory as the reference velocity increased, so the gains of
the control needed to be adjusted more precisely to track the reference trajectory. It was
observed that if there is given a reference trajectory with a sudden change, it will generate
a large acceleration and it is more difficult to keep track of the control, so to have a proper
track of the control, a trajectory with smooth changes must be followed to have a good track
of the control and for the trajectory.

It is important to mention that to test the full performance of the locomotion of a leg it’s
important to design and implement another controller for the stance phase of the leg, and
to alternate both controllers to see the full performance. With the usage of both controllers,
they could be implemented in other walking robots such as humanoid robots.
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Chapter 5: Future Work

There are many opportunity areas in which it is possible to prove the designed controllers
in a real robot. In order to do this, there are some steps in order to make this possible:

• Design and implement a controller for the stance phase, alternating the controllers for
the stance phase and the swing phase.

• Design a real quadruped robot, that is going to be rendered in a platform using the
SIL technique.

• Once the quadruped is simulated, the designed controllers can be tested in the quadruped
using a simulator like Pybullet.

• After being tested in simulation, the next step is to test the controllers in a real robot
leg, in order to test the motors of the robot leg.

• After being tested in the motors of the legs, the final step is to test it in the whole
robot, in order to prove the stability of the controllers in a real quadruped.

• After having good results in the real robot, it will be possible to make publications to
international journals and congress papers.
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[8] Péter Fankhauser and Marco Hutter. Anymal: a unique quadruped robot conquering
harsh environments. Research Features, (126):54–57, 2018.

[9] Oliver Jones. Anatomical terms of movement. https://teachmeanatomy.info/

the-basics/anatomical-terminology/terms-of-movement/, 2020.

[10] B. Katz, J. Carlo, and Sangbae Kim. Mini cheetah: A platform for pushing the limits of
dynamic quadruped control. 2019 International Conference on Robotics and Automation
(ICRA), pages 6295–6301, 2019.

[11] Donghyun Kim, Jared Di Carlo, Benjamin Katz, Gerardo Bledt, and Sangbae Kim.
Highly dynamic quadruped locomotion via whole-body impulse control and model pre-
dictive control. arXiv preprint arXiv:1909.06586, 2019.

[12] KW Lilly and DE Orin. O (n) recursive algorithm for the operational space inertia
matrix of a robot manipulator. IFAC Proceedings Volumes, 23(8):275–279, 1990.

[13] MachineDesign. What’s the difference between abduction and adduc-
tion? https://www.machinedesign.com/markets/medical/article/21831782/

whats-the-difference-between-abduction-and-adduction-biomechanics, 2014.

56

https://www.bostondynamics.com/spot
https://teachmeanatomy.info/the-basics/anatomical-terminology/terms-of-movement/
https://teachmeanatomy.info/the-basics/anatomical-terminology/terms-of-movement/
https://www.machinedesign.com/markets/medical/article/21831782/whats-the-difference-between-abduction-and-adduction-biomechanics
https://www.machinedesign.com/markets/medical/article/21831782/whats-the-difference-between-abduction-and-adduction-biomechanics


BIBLIOGRAPHY

[14] Manfred Morari and Jay H Lee. Model predictive control: past, present and future.
Computers & Chemical Engineering, 23(4-5):667–682, 1999.

[15] M. Raibert, Kevin Blankespoor, G. Nelson, and R. Playter. Bigdog, the rough-terrain
quadruped robot. IFAC Proceedings Volumes, 41:10822–10825, 2008.

[16] Xue Wen Rong, Yi Bin Li, Jiu Hong Ruan, and Hong Jun Song. Kinematics analysis
and simulation of a quadruped robot. In Applied Mechanics and Materials, volume 26,
pages 517–522. Trans Tech Publ, 2010.

[17] C Semini, N G Tsagarakis, E Guglielmino, M Focchi, F Cannella, and D G Caldwell.
Design of hyq – a hydraulically and electrically actuated quadruped robot. Proceedings
of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control
Engineering, 225(6):831–849, 2011.

[18] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd. OSQP: an opera-
tor splitting solver for quadratic programs. Mathematical Programming Computation,
12(4):637–672, 2020.

[19] Unitree. Laikago. http://www.unitree.cc/e/action/ShowInfo.php?classid=6&id=
1, 2020.

[20] Xingming Wu, Long Teng, Weihai Chen, Guanjiao Ren, Yan Jin, and gwei Li. Cpgs
with continuous adjustment of phase difference for locomotion control. International
Journal of Advanced Robotic Systems, 10(6):269, 2013.

[21] Xianpeng Zhang, Lin Lang, Jian Wang, and Hongxu Ma. The quadruped robot loco-
motion based on force control. In The 27th Chinese Control and Decision Conference
(2015 CCDC), pages 5440–5445. IEEE, 2015.

57

http://www.unitree.cc/e/action/ShowInfo.php?classid=6&id=1
http://www.unitree.cc/e/action/ShowInfo.php?classid=6&id=1


Appendix

Appendix A

Developed transformation matrix involving the three angles

T ii−1 = Tz(α)Ty(φ)Tx(θ) =


T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44


Where:

T11 = cos (φ) cos (θ)

T12 = sin (α) cos (θ) sin (φ)− cos (α) sin (θ)

T13 = sin (α) sin (θ) + cos (α) cos (θ) sin (φ)

T14 = a cos (φ) cos (θ)− c sin (θ)

T21 = cos (φ) sin (θ)

T22 = cos (α) cos (θ) + sin (α) sin (φ) sin (θ)

T23 = cos (α) sin (φ) sin (θ)− sin (α) cos (θ)

T24 = c cos (θ) + a cos (φ) sin (θ)

T31 = − sin (φ)

T32 = cos (φ) sin (α)

T33 = cos (α) cos (φ)

T34 = d− a sin (φ)

T41 = 0

T42 = 0

T43 = 0

T44 = 1
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Appendix B

Kinematic Energy of the three links

For the hip the Kinematic energy can be calculated with the following expression:

T1 =
θ̇21 (m1 L1

2+4 Ixx1)
8

For the thigh the Kinematic energy is calculated with the following expression:

T2 =
Ixx2 θ̇

2
1

2
+

Iyy2 θ̇
2
2

2
+

m2(θ̇1(L1cos(θ1)+
L2cos(θ1)cos(θ2)

2
)−L2θ̇2sin(θ1)sin(θ2)

2
)2

2

+
m2((θ̇1(L1sin(θ1)+

L2cos(θ2)sin(θ1)
2

)+
L2θ̇2cos(θ1)sin(θ2)

2
)2+

L2
2θ̇

2
2cos(θ2)

2

4
)

2

For the calf, the kinematic energy is calculated with the following expression:

T3 =
Ixx3 θ̇

2
1

2
+

Iyy3 θ̇
2
2

2
+

Iyy3 θ̇
2
3

2
+

L1
2m3 θ̇21

2
+

L2
2m3 θ̇21

4
+

L2
2m3 θ̇22

2
+

L3
2m3 θ̇21
16

+
L3

2m3 θ̇22
8

+
L3

2m3 θ̇23
8

+Iyy3 θ̇2 θ̇3 + L3
2m3 θ̇2 θ̇3

4
+

L2
2m3 θ̇21 cos(2 θ2)

4
+

L3
2m3 θ̇21 cos(2 θ2+2 θ3)

16
+L1 L2m3 θ̇

2
1 cos (θ2)+

L2 L3m3 θ̇21 cos(θ3)

4
+

L2 L3m3 θ̇22 cos(θ3)

2
+

L2 L3m3 θ̇21 cos(2 θ2+θ3)

4
+

L1 L3m3 θ̇21 cos(θ2+θ3)

2
+ L2 L3m3 θ̇2 θ̇3 cos(θ3)

2

Appendix C

Potential Energy of the three links

The contribution of the hip, the potential energy can be calculated with the following
expression:

U1 = L1 gm1 cos(θ1)
2

For the contribution of the thigh, the potential energy can be calculated with the following
expression:

U2 = −g m2

(
L1 cos (θ1) + L2 cos(θ1) cos(θ2)

2

)
For the contribution of the calf, the potential energy can be calculated with the following

expression:

U3 = −gm3 cos(θ1) (2L1+L3 cos(θ2+θ3)+2L2 cos(θ2))
2
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Appendix D

M matrix of the dynamic model

M(q) =


m11 m12 m13

m21 m22 m23

m31 m32 m33


With:

m11 = Ixx1 + Ixx2 + Ixx3 + (L2
1 ∗m1)/4 +L2

1 ∗m2 +L2
1 ∗m3 + (L2

2 ∗m2)/8 + (L2
2 ∗m3)/2 +

(L2
3 ∗m3)/8 + (L2

2 ∗m2 ∗ cos(2 ∗ θ2))/8 + (L2
2 ∗m3 ∗ cos(2 ∗ θ2))/2 + (L2

3 ∗m3 ∗ cos(2 ∗ θ2 +
2 ∗ θ3))/8 + L1 ∗ L3 ∗m3 ∗ cos(θ2 + θ3) + L1 ∗ L2 ∗m2 ∗ cos(θ2) + 2 ∗ L1 ∗ L2 ∗m3 ∗ cos(θ2) +
(L2 ∗ L3 ∗m3 ∗ cos(θ3))/2 + (L2 ∗ L3 ∗m3 ∗ cos(2 ∗ θ2 + θ3))/2

m12 = 0

m13 = 0

m21 = 0

m22 = Iyy2 + Iyy3 + (L2
2 ∗m2)/4 + L2

2 ∗m3 + (L2
3 ∗m3)/4 + L2 ∗ L3 ∗m3 ∗ cos(θ3)

m23 = (m3 ∗ L2
3)/4 + (L2 ∗m3 ∗ cos(θ3) ∗ L3)/2 + Iyy3

m31 = 0

m32 = (m3 ∗ L2
3)/4 + (L2 ∗m3 ∗ cos(θ3) ∗ L3)/2 + Iyy3

m33 = (m3 ∗ L2
3)/4 + Iyy3
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Appendix E

C matrix of the dynamic model

C(q, q̇) =


c11 c12 c13

c21 c22 c23

c31 c32 c33


With:

c11 = −θ̇2 ∗ ((L2
2 ∗m2 ∗ sin(2∗ θ2))/8 + (L2

2 ∗m3 ∗ sin(2∗ θ2))/2 + (L2
3 ∗m3 ∗ sin(2∗ θ2 + 2∗

θ3))/8 + (L1 ∗L3 ∗m3 ∗ sin(θ2 + θ3))/2 + (L1 ∗L2 ∗m2 ∗ sin(θ2))/2 +L1 ∗L2 ∗m3 ∗ sin(θ2) +
(L2 ∗L3 ∗m3 ∗ sin(2 ∗ θ2 + θ3))/2)− (L3 ∗m3 ∗ θ̇3 ∗ (L3 ∗ sin(2 ∗ θ2 + 2 ∗ θ3) + 4 ∗L1 ∗ sin(θ2 +
θ3) + 2 ∗ L2 ∗ sin(θ3) + 2 ∗ L2 ∗ sin(2 ∗ θ2 + θ3)))/8

c12 = −θ̇1 ∗ ((L2
2 ∗m2 ∗ sin(2∗ θ2))/8 + (L2

2 ∗m3 ∗ sin(2∗ θ2))/2 + (L2
3 ∗m3 ∗ sin(2∗ θ2 + 2∗

θ3))/8 + (L1 ∗L3 ∗m3 ∗ sin(θ2 + θ3))/2 + (L1 ∗L2 ∗m2 ∗ sin(θ2))/2 +L1 ∗L2 ∗m3 ∗ sin(θ2) +
(L2 ∗ L3 ∗m3 ∗ sin(2 ∗ θ2 + θ3))/2)

c13 = −(L3 ∗m3 ∗ θ̇1 ∗ (L3 ∗ sin(2 ∗ θ2 + 2 ∗ θ3) + 4 ∗ L1 ∗ sin(θ2 + θ3) + 2 ∗ L2 ∗ sin(θ3) +
2 ∗ L2 ∗ sin(2 ∗ θ2 + θ3)))/8

c21 = θ̇1 ∗ ((L2
2 ∗m2 ∗ sin(2 ∗ θ2))/8 + (L2

2 ∗m3 ∗ sin(2 ∗ θ2))/2 + (L2
3 ∗m3 ∗ sin(2 ∗ θ2 + 2 ∗

θ3))/8 + (L1 ∗L3 ∗m3 ∗ sin(θ2 + θ3))/2 + (L1 ∗L2 ∗m2 ∗ sin(θ2))/2 +L1 ∗L2 ∗m3 ∗ sin(θ2) +
(L2 ∗ L3 ∗m3 ∗ sin(2 ∗ θ2 + θ3))/2)

c22 = −(L2 ∗ L3 ∗m3 ∗ θ̇3 ∗ sin(θ3))/2

c23 = −(L2 ∗ L3 ∗m3 ∗ sin(θ3) ∗ (θ̇2 + θ̇3))/2

c31 = (L3 ∗m3 ∗ θ̇1 ∗ (L3 ∗ sin(2 ∗ θ2 + 2 ∗ θ3) + 4 ∗ L1 ∗ sin(θ2 + θ3) + 2 ∗ L2 ∗ sin(θ3) +
2 ∗ L2 ∗ sin(2 ∗ θ2 + θ3)))/8

c32 = (L2 ∗ L3 ∗m3 ∗ θ̇2 ∗ sin(θ3))/2

c33 = 0
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Appendix F

G matrix of the dynamic model

G(q) =


G1

G2

G3


With:

G1 = (g ∗ sin(θ1) ∗ (L1 ∗m1 + 2 ∗ L1 ∗m2 + 2 ∗ L1 ∗m3 + L3 ∗m3 ∗ cos(θ2 + θ3) + L2 ∗
m2 ∗ cos(θ2) + 2 ∗ L2 ∗m3 ∗ cos(θ2)))/2

G2 = (g ∗ cos(θ1) ∗ (L2 ∗m2 ∗ sin(θ2) + 2 ∗ L2 ∗m3 ∗ sin(θ2) + L3 ∗m3 ∗ sin(θ2 + θ3)))/2

G3 = (L3 ∗ g ∗m3 ∗ sin(θ2 + θ3) ∗ cos(θ1))/2
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Appendix G

Developed dynamic model

d

dt



φ̂

θ̂

ψ̂

x̂

ŷ

ẑ

ŵx

ŵy

ŵz

ˆ̇x

ˆ̇y

ˆ̇z

ĝ



=



0 0 0 0 0 0 cos(ψ) −sin(ψ) 0 0 0 0 0
0 0 0 0 0 0 sin(ψ) cos(ψ) 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0





φ̂

θ̂

ψ̂

x̂

ŷ

ẑ

ŵx

ŵy

ŵz

ˆ̇x

ˆ̇y

ˆ̇z

ĝ



+



0 0 0 ... 0 0 0

0 0 0 ... 0 0 0

0 0 0 ... 0 0 0

0 0 0 ... 0 0 0

0 0 0 ... 0 0 0

0 0 0 ... 0 0 0

− c1σ2
σ1

− c1σ3
σ1

−a1σ2
σ1

+ b1σ3
σ1

... − cnσ2
σ1

− cnσ3
σ1

−anσ2
σ1

+ bnσ3
σ1

c1σ4
σ1

c1σ2
σ1

− b1σ2
σ1
− a1σ4

σ1
... − cnσ4

σ1

cnσ2
σ1

− bnσ2
σ1
− anσ4

σ1

− b1
Izz

a1
Izz

0 ... − bn
Izz

an
Izz

0

1
m

0 0 ... 1
m

0 0

0 1
m

0 ... 0 1
m

0

0 0 1
m

... 0 0 1
m

0 0 0 ... 0 0 0





f1x

f1y

f1z

:

:

:

:

:

:

:

fnx

fny

fnz


Where:
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σ1 = IxxIyycos(ψ)4 + 2IxxIyycos(ψ)2sin(ψ)2 + IxxIyysin(ψ)4

σ2 = Ixxcos(ψ)sin(ψ)− Iyycos(ψ)sin(ψ)
σ3 = Iyycos(ψ)2 + Ixxsin(ψ)2

σ4 = Ixxcos(ψ)2 + Iyysin(ψ)2

Appendix H

Developed inertia tensor viewed from the world frame multiplied by the skew
matrix

ˆI−1
w [r1]× =


i11 i12 i13

i21 i22 i23

i31 i32 i33


Where:

i11 = (c ∗ sin(2 ∗ psi) ∗ (Ixx − Iyy))/2

i12 = −c ∗ (Ixx − Ixx ∗ sin(psi)2 + Iyy ∗ sin(psi)2)

i13 = b ∗ (Ixx − Ixx ∗ sin(psi)2 + Iyy ∗ sin(psi)2)− (a ∗ sin(2 ∗ psi) ∗ (Ixx − Iyy))/2

i21 = c ∗ (Iyy + Ixx ∗ sin(psi)2 − Iyy ∗ sin(psi)2)

i22 = −(c ∗ sin(2 ∗ psi) ∗ (Ixx − Iyy))/2

i23 = (b ∗ sin(2 ∗ psi) ∗ (Ixx − Iyy))/2− a ∗ (Iyy + Ixx ∗ sin(psi)2 − Iyy ∗ sin(psi)2)

i31 = Izz ∗ b

i32 = Izz ∗ a

i33 = 0
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Appendix I

Control of the Swing Leg Controller used in Simulink

(a) (b)

Model from equation 10 implemented in the Simulink software.
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Appendix J

Model of the Swing Leg Controller used in Simulink

Control implemented in the Simulink software in order to control the torques of the links.

66


	Acknowledgements
	Abstract
	List of Acronyms
	Introduction
	State of art
	Hydraulic robots
	Electric robots

	Model Predictive Control
	Contribution, objectives and structure of the thesis
	Main Objective
	Specific Objectives
	Structure of the thesis


	Models and theoretical bases used 
	Kinematics model
	Frames of the quadruped robot
	Single Leg Frames

	Phases of the legs
	Force Distribution
	Leg Dynamics Model in Swing Phase
	Models used for the whole body
	Lumped Mass Model
	Multi-body Dynamics Model

	COM orientation and angular velocity
	Simplified Robot Dynamics

	Experiments and Simulation
	Software in the Loop
	Simulation of swing phase controller

	Conclusions
	Future Work
	Appendix

