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Abstract

In recent years numerous investigations have focused on the problem of fringe pattern de-

modulation, which has become one of the main challenges in the areas of optical metrology

and computer vision. Currently, there is no known method capable of obtaining accurate

measurements, especially in transient events with the presence of noise, under-sampling and

closed fringes. There are encouraging results through the use of optimization models, such

as genetic algorithms, which have demonstrated their efficiency, and, it is a line of research

that has gained some momentum in recent decades due to technological progress.

In this work, an investigation of complex fringe pattern recovery using evolutionary computa-

tion techniques, in particular the metaheuristics known as Simulated Annealing and Variable

Mesh Optimization, is presented. A new system of automatic phase field partitioning of the

fringe pattern without overlap, based on the spatial frequency, is introduced, which facilitates

the demodulation process, especially in those models that use a polynomial adjustment to

approximate the fringe pattern.

Another important aspect presented in this research is the modeling of the objective function

using Bézier surfaces as a fitting function, thus generating a novel approach to this type of

problems, thanks to the versatility of Bézier surfaces in the area of Computer Vision.

On the other hand, this technique allowed us to characterize and optimize the input parame-

ters of the metaheuristics, as well as to restrict the search space and considerably reduce the

demodulation times, which was one of the main challenges of these models using Artificial

Intelligence techniques. Finally, the advantage of using Bézier surfaces compared to the

use of Zernike polynomials and two-dimensional polynomials reported in the state of the



v

art is highlighted, and some future works are discussed that may contribute to a substantial

improvement of the problem presented here.
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Chapter 1

Introduction

Over the past few years, a wide variety of technological advances have been achieved that

have led to the rapid evolution of optical metrology techniques for 3D surface measurement.

Some of these techniques have been used for a long time and have been greatly enhanced

with the transformation from screens and photographic plates to digitized intensity patterns.

Some others techniques have taken advantage of these new technologies in order to establish

new kinds of profilometry measurements, such as confocal microscopy, and time of fly

profilometry [2–4].

The developed solutions are traditionally categorized into contact and non-contact techniques.

Contact measurement techniques have been used for a long time in reverse engineering and

industrial inspections. This type of technique basically has contact with the object of interest,

resulting in slow data acquisition and possible damage to the material depending on the

strength of the scanner. However, due to the nature of the object of interest to be digitized,

this type of technique should be the most feasible.

Non-contact techniques works in such a way that it is not necessary to physically touch

the object, using some kind of radiation either emitted by the scanner (active methods), or

captured directly from the environment (passive methods).

Among the passive methods are the case of stereo vision, which are generally low-cost setups.

However, limited measurement accuracy in depth and computationally intensive digital signal

processing requirements reduce their usability in real time profilometric settings [5, 6].
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Active methods require laser and/or structured light technology. They can be applied on static

objects and require several images to recover the shape or other physical quantities from the

digital image. Structured Light Projection (SLP) and Moiré profilometry are examples of

this type of method. In Moiré profilometry, mechanical interference is induced by placing

a demodulation grating identical but slightly misaligned to the original projection grating

between the object and the camera. Contours of equal height can then be extracted from the

resulting interference pattern. From a practical perspective, however, the need for a physical

demodulation grid complicates the hardware configuration of the experimental setup [7, 8].

More recently, several SLP techniques have been reported that employ the same projector-

camera configuration as Moiré techniques, but lack the demodulation grating. Instead, surface

height information is extracted directly from the analysis of the deformed grating pattern. By

eliminating the demodulation grating, SLP techniques allow designing a simpler and more

stable experimental setup. In addition, the extraction of specific depth can be performed in

several ways, depending on the nature and amount of projection [9–11].

The development of algorithms in the area of Robot Vision (RV) requires the study, knowledge

and understanding of the physics of image formation. Knowing the physics of image

formation, we realize that different objects can produce the same two-dimensional images

[12–14], which generates ill posed problems, i.e., those in which there is a multiplicity of

solutions. In this case, it is necessary to add in the mathematical models a priori information

about the objects under study, or to add a greater number of images that describe in more

detail and particularize the characteristics of the object, in order to further restrict the solution.

In this way, it is possible to limit the solution space to those that most closely match the

physical property of the object. Among the main techniques in which it is possible to include

a priori information in its mathematical modeling, eliminating those solutions that do not

adapt to the previous information are the techniques of Regularized Phase Tracking [15],

Evolutionary Computation [16], Neural Networks [17], and in general the Computational

Intelligence Algorithms (Soft-computing).

In the areas of Optical Metrology (OM), Computer Vision (CV) and Digital Image Processing

(DIP), the problem of recovering physical quantities that are encoded in fringe pattern images
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can be classified as a highly complex problem, due to the large number of physical variables

involved. Variables such as background illumination, irradiance and reflectance of the object,

fringe frequency and additionally the noise generated by the illumination source, as well as

the optics and electronics used in the experiment, make mathematical and computational

modeling difficult for the calculation of the measurement of physical quantities. Sometimes

the object under test may be in motion, increasing the difficulty of the problem. Since it is

only possible to obtain an image to perform the quantification of the physical quantity due to

the number of physical variables that contribute to the formation of the image, Computational

Intelligence techniques are adequate and useful when it is desired to solve ill-posed and

highly complex problems.

1.1 Hypothesis

It is possible to model and solve mathematically and computationally, by using Computational

Intelligence methods, highly complex problems of OM, improve the reported results, related

to the handling of under-sampled images, loss of information in phase images coming from

interferometric techniques, structured light projection and pattern recognition.

To this end, the project was broken down into the following specific objectives:

1.2 Objectives

Research, study and develop Computational Intelligence algorithms to solve highly complex

problems in the analysis of images generated by the projection, reflection and transmission

of structured light to perform 3D reconstruction and pattern recognition in solid, transparent

and opaque materials.
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To this end, the project was broken down into the following specific objectives:

✓ Dynamically adjust windows in structured light images based on their frequency

content.

✓ Establish window sweeping strategies (sub-images) according to frequency content,

using the Quad-tree technique.

✓ Model and solve OM problems with subsampled images that do not meet the Nyquist

criterion.

✓ Comparative analysis of metaheuristics applied to fringe demodulation problems using

structured light projection and interferometry.

1.3 Justification

In recent years, a wide variety of technological advances have been developed in digital

projection, image manipulation, and processing hardware, which has caused MO techniques

for 3D surface measurement to evolve rapidly. The use of fast, high-resolution, non-contact

measurement systems has a direct impact on the medical, industrial and entertainment sectors

and has motivated manufacturers and academic research groups to design a wide variety of

optical profilometry techniques (Optical Profilometry).

In recent years they have worked on intelligent techniques that can solve such problems

in an efficient and general way. For this reason, the research line proposed in the project

establishes an adequate and feasible technique for three-dimensional reconstruction through

the use of Metaheuristics and Intelligent Algorithms.

1.4 Scientific contributions

The main contributions achieved during this thesis project are as follows:

✓ Introduction of a novel methodology for three-dimensional reconstruction of objects

using Bezier surfaces.
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✓ Two metaheuristics were introduced to implement the optimization process ( RS and

VMO)

✓ Improvement of the window unification method using spline cubic extrapolation.

✓ Application of automatic window partitioning based on frequency content using

Quadtree technique.

✓ Capability to demodulate small fringe patterns at different resolutions even if it does

not meet the Nyquist criterion

1.5 State of the art

Over the past few years, a new group of search and optimization algorithms has been used to

solve many real world problems ( advanced engineering, data analysis, scientific problems,

etc.), which have been formulated as optimization problems [18–20]. Among the areas that

stand out is optical engineering, fundamentally optical metrology, which is a non-destructive

optical technique used to measure physical quantities such as optical aberrations, deforma-

tions, stress,temperature, and the like.

In OM, the reliable measuring of the surface profile of a test object from a fringe pattern

is an important problem [21], and generally, a group of optical metrologic techniques such

as Interferometry, Digital Holography, Shadow Moire among others, are applied for these

measurements [7, 8, 22–36].

In what follows, we present a chronologically ordered review of the research works that have

proposed a solution to the problem using soft computing techniques.

Phase Unwrapping by means of Genetic Algorithms [37]:

In February 1998, this article was submitted to J. Opt. Soc. Am., by Antonio Collaro,

Giorgio Franceschetti, Francesco Palmieri, and Maria Sedes. It posed the problem of phase

unwrapping within a range of −π to π . A novel solution was proposed which consisted

in performing a randomized path search under a local approach using a genetic algorithm.
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Although no computation time is reported, the use of parallel computation is proposed as an

alternative, which turned out to be a weakness for this method.

A parametric method applied to phase recovery from fringe pattern base on a

Genetic Algorithm [38]:

Published in March 2002 in the journal Optics Communications by F. Cuevas, J.H. Sossa-

Azuela, and M. Servin. This article presented the mathematical model that represents the

interference phenomenon, which can be formulated as a fringe pattern with a cosine profile:

I(x,y) = A(x,y)+B(x,y)cos(wxx+wyy+φ(x,y))+η(x,y), (1.1)

where A represents the background illumination, B the modulation amplitude, wx and wy are

the carrier frequencies on the respective axes, φ is the phase term which is related to the

physical quantity and η represents the additive noise.

The demodulation problem was modeled as an optimization problem, whose objective was

to recover the term φ from the fringe pattern. The objective function used is detailed in

Equation 1.2,

U(ap) = α−
R−1

∑
y=1

C−1

∑
x=1

{
(IN(x,y)− cos(wxx+wyy+ f (ap,x,y)))2 (1.2)

+λ
[
( f (ap,x,y)− f (ap,x−1,y))2 +( f (ap,x,y)− f (ap,x,y−1))2]}m(x,y),

which evaluates the p-esimo chromosome ap of the population, x and y are the integer values

representing the pixel position indices within the interferogram. The superindex p is an

integer between 1 and P , which indicates the number of chromosomes or individuals in the

population, IN(x,y) means the normalized irradiance, wx and wy are the carrier frequencies,

the function f (:) is the fitting function selected to perform the phase approximation, λ

represents a smoothing weight factor, and m(x,y) is a binary mask defining the valid area

within the fringe pair. The parameter α is used in order to convert the problem from

minimization to maximization.
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In addition, the possibility of handling different fitting functions was mentioned, although a

two-dimensional fourth order polynomial of the form was used:

φ(a,x,y) = a0 +a1x+a2y+a3xy+a4x2 +a5y2 + . . .+a (n+1)(n+2)
2 −1

yn. (1.3)

Obtaining the phase of an interferogram by use an evolution strategy [39]:

This article was published in June 2002 in the journal Applied Optics Vol. 41 by Sergio

Vásquez Montiel, Juan Sánchez Escobar, and Olac Fuentes, it consisted in obtaining the

phase of a simulated interferogram with a certain level of noise, finding the wave front

aberrations by fixing the coefficients of a polynomial presented as an optimization problem,

which was solved by an evolutionary algorithm.

To approximate the phase term a polynomial equation of the type:

W (x,y) = A(x2 + y2)+B(x2 + y2)+C(x2 +3y2)+D(x2 + y2)+Ey +Fy, (1.4)

where A is the spherical aberration coefficient, B is the coma coefficient, C is the astigmatism

coefficient, D is the defocus coefficient, and E and F represent the tilt in y and x respectively.

This function is known as Seidel or Kingslake polynomial for more information it is possible

to find it in [40].

Experimental Interferogram analysis using an automatic polynomial fitting method

based on evolutionary computation [41]

In April 2005 J. Sanchez and S. Vásquez Montiel published this paper in the Optical Engi-

neering journal, Vol 44. This work proposes a least squares method to obtain the phase in

real interferograms. Basically, the proposed method focuses on obtaining the parameters

of a polynomial modeled as an optimization problem. Another aspect of relevance is that

it performs a comparison between the least-squares method using Z-squared polynomials

method using 3rd order Zernike polynomials with an evolutionary algorithm using 3rd order

Seidel polynomials.
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Window fringe pattern demodulation by multi-functional fitting using a genetic

algorithm [42]

In December 2005, F. Cuevas, F. Mendoza, M.Servin, J.H. Sossa-Azuela published this paper

in the Optics Communications journal, and introduces a new way of demodulating fringe

patterns of higher complexity, which is based on the divide-and-conquer technique, in which

the fringe pattern is divided into small, partially overlapping sub-images. As a result of this

process there is a lower dimension, which opens the possibility of reducing the time and

demodulation is more efficient.

This process is performed sequentially until the entire interferogram is swept. The phase

of each sub-image is modeled as an analytical function whose parameters are optimized by

means of a genetic algorithm.

Demodulation of Closed Fringe Patterns using a Genetic Algorithm (Master The-

sis)[43]:

In December 2005, Otoniel Gonzalez presented a Genetic Algorithm using a cost function

defined by Cuevas in [38]. The proposed method has the advantage of working with a

single image or with open or closed fringe patterns unlike the Phase Shifting method and the

Fourier Transform method, and it does not need a phase unwrapping algorithm because the

polynomial approximation finds the phase term directly.

Fast algorithm for phase retrieval of a single interferogram with open and closed

fringes (Master Thesis) [44]:

This work was presented in August 2006 by Oscar Dalmau Cedeño and Mariano Rivera. This

project presents a two stage algorithm to recover the initial phase using a method based on

the use of quadrature filters, it also uses the local orientation information and defines a new

entity in the image that will guide the process of formation of the initial phase, the second

stage consists of a refinement using Gaussian pyramids.

Among the main advantages reported in the work is a very efficient algorithm from the

computational point of view, improving considerably the times in algorithms of the same
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type. Good results were obtained both in images with a pattern of open and closed fringes,

as well as in synthetic images with a moderate noise level and in real images.

Demodulation of Interferograms of Closed Fringes by Zernike Polynomials using a

technique of Soft Computing [45]:

In August 2007, Mancilla, Carpio, and Cuevas published this paper in Engineering Letters,

in which introduced a novel way to recover the phase of interferograms of closed fringes by

Zernike polynomials using a soft computing technique, applying genetic algorithms (AG) and

an optimization fitness function based with Zernike polynomials. The Zernike polynomials

are used to obtain the interferogram phase that phase is shown as a surface and due to the

orthogonal characteristics of the Zernike polynomials, these are very suitable to carry out the

fitting of that surface. By other way, the parameters of the Zernike polynomials have direct

relation with the physics properties as: aberration spherical coefficient, come coefficient,

astigmatism coefficient, focus shift coefficient, tilt in y, and tilt in x, so on.

Optical Metrology by Fringe Processing on Independent Windows Using a Genetic

Algorithm [46]:

Published in January 2008 by Toledo and Cuevas, this paper presents a method to recover the

phase map of a fringe pattern based on the demodulation technique per window of a fringe

pattern. This method, unlike the one proposed by Cuevas in [42], eliminates the overlap area

similarity criterion used in the objective function and replaces it with a second smoothness

criterion. This method can measure physical quantities from closed fringe patterns close to

the subsampling limit.

The interferogram is divided into a set of partially overlapping windows. In these sub-images

the estimated phase is modeled as a parametric function, and its parameters are optimized

by a genetic algorithm (GA). This function is used to estimate the phase in the area framed

by the window. The phases of all the windows are spliced sequentially to recover the entire

phase field. A low-pass filter is applied over the entire phase field. The phases of all windows



10 Introduction

are spliced sequentially to recover the entire phase field joints between windows.

A Parametric Method Applied to Phase Recovery from a Fringe Pattern Based on a

Particle Swarm Optimization [47]:

This paper was published in December 2011 by J. Jimenez, H. Sossa, F. Cuevas, and L.

Gómez. The authors presented a parametric method to carried out fringe pattern demodula-

tion by means of a particle swarm optimization. The phase is approximated by the parametric

estimation of an nth-grade polynomial so that no further unwrapping is required. A particle

swarm is codified with the parameters of the function that estimates the phase. A fitness

function is established to evaluate the particles, which considers: (a) the closeness between

the observed fringes and the recovered fringes, (b) the phase smoothness, (c) the prior knowl-

edge of the object as its shape and size.

Frequency guide Sequential Demodulation(FSD)-Harmony Search Optimization

(HSO) Algorithm for Closed Fringes Interferogram Demodulation[48]:

This work was presented in March 2016 by U. Rodríguez, M. Mora, J. Muños, and T. Ramírez,

introducing a new hybrid mathematical optimization model for phase extraction. The

combination of frequency guide sequential demodulation and harmony search optimization

algorithms is used for demodulating closed fringes patterns in order to find the phase of

interferogram applications.

1.6 Organization of the thesis

The following is a summary of the points developed throughout the document, with the

objective of orienting the reader on a specific topic.

Conventional fringe analysis techniques

Chapter 2 gives a brief overview of the main techniques used for interferogram demodulation.

It covers in detail the mathematical analysis involved in the determination of the object
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topology. In addition, a new approach using intelligent algorithms for the phase demodulation

problem will be discussed.

Metaheuristics

Chapter 3 presents the theoretical foundations of the global optimization algorithms that is

presented in thesis. Firstly, we start analyzing the operation and modeling of the metaheuristic

known as Simulated Annealing, and in a similar way we refer to the optimization algorithm

named Variable Mesh Optimization. This chapter will provide the reader with the necessary

concepts to be able to implement and understand the used metaheuristics.

Parallel methods applied to fringe pattern demodulating

Chapter 4 is dedicated to the development of the mathematical model used for the adjustment

of the object topology. Among the main aspects that we are dealing with will be related to

the fitting function, solution coding, solution space, among other details.

Experimental Results

Chapter 5 presents different experimental tests, both with simulated and computer-generated

fringe patterns. A comparison of the results with some techniques reported in the state of the

art is made, highlighting some of the potentialities of the presented project.

Conclusions and future work

This chapter shows the contributions and proposals for future work supported by the results,

giving the reader a perspective of the main lines of research related to the thesis project.



Chapter 2

Conventional fringe analysis techniques

2.1 Introduction

In MO, optical interferometers are generally used to measure a wide range of physical

quantities. Depending on the application, different types of interferometers may be used,

but their common goal is to produce a fringe pattern where the phase is modulated by the

measured physical quantity. Interferometric methods allow us to measure the shape of an

optical surface with high accuracy, using wavelength as a measure of length.

There are different techniques to approximate the phase term, among them: electronic and

analytical. The tools to obtain the phase electronically are characterized by the use of special

hardware, such as zero crossing detector circuits, phase lock loops (PLL) and counters

(up-down), used to monitor current data on the interferograms.[49]. On the other hand,

analytical techniques are characterized by being digitally captured to be processed by any

type of computational algorithm, currently this type of technique is widely used for phase

term recovery.

The great technological progress in image processing and acquisition has brought with it

the development of interferometric metrology, as well as an increase in phase extraction

algorithms, among the best known of which are the Fourier Transform method [50, 51], and

the phase shift algorithm [52, 53]. Based on this motivation, the main objective of this chapter
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is to present an overview of the interference phenomenon, as well as the main interferometric

techniques used in phase field recovery.

2.2 Interference Pattern

The formation of an image relies on the complex interplay between two critical optical

phenomena: diffraction and interference. Light passing through the specimen is scattered and

diffracted into divergent waves by tiny details and features present in the specimen. Some

of the divergent light scattered by the specimen is captured by the objective and focused

onto the intermediate image plane, where the superimposed light waves are recombined or

summed through the process of interference to produce a magnified image of the specimen.

Basically, wave interference is the phenomenon that occurs when two coherent waves are

traveling through the same medium with the same frequency and wavelength, and must not

exceed the allowed optical path length (OPL) [54, 40].

Among the best known interferometers is the Michelson interferometer, where the amplitude

of the incident light field is divided by a beam splitter to split the light from a coherent

light source into two beams which are directed through two different pathways to a single

detector where the two light waves are recombined producing an interference pattern. The

distance between the fringes in the interference pattern can be used to measure very small

displacements and distances such as the different lengths of the two light paths or very short

time differences. Figure 2.1 shows a scheme of the interferometer configuration.

In practice the light source emits a coherent beam of white light which is split by a half

silvered mirror into two separate paths perpendicular to eachother. These two light beams

impinge on two further mirrors (1 and 2), at right angles to each other and are reflected back

through the beam splitter which recombines them into a single beam and directs the beam

into a detector.

Based on the interference phenomenon [54], a fringe pattern can be considered as a fluctuation

of a cosinusoidal signal in bidimensional space. Fringe pattern analysis refers to the complete

recovery of the original characteristics of a fringe pattern. In this process the only measurable
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Fig. 2.1 Michelson interferometer.

quantity is the intensity I(x,y), which can be represented through its cosine profile as:

I(x,y) = a(x,y)+b(x,y)cos(wxx+wyy+φ(x,y))+n(x,y), (2.1)

where the term a(x,y) represents the background illumination, b(x,y) the contrast or mod-

ulation of the signal, wx and wy the carrier frequency on the corresponding axes, φ(x,y)

symbolizes the phase term which is linked to the physical quantity to be quantified, and n(x,y)

represents additive noise which is added to the relevant signal during capture or transmission

[55–57].

Fringe pattern analysis refers to the complete recovery of the original characteristics of a

fringe pattern. In recent years, this topic has become a field of application in digital signal

(or image) processing. Being a problem related to digital image processing, it is not exempt

from the challenges of this branch, i.e., the phase recovery problem is categorized as an

ill-posed problem, which is why it is necessary to establish certain conditions to obtain a

unique solution. Among the main difficulties that we can find:

1. Ambiguity of the phase in 2π , due to the cosine periodicity.

2. Ambiguity of the sign, due to the parity of cosine.
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3. In real cases, the presence of some kind of noise.

2.3 Structured light

With modern advancements in computational methods, optics, and graphics computing,

3D scanning is rapidly becoming more prevalently adopted in society. Among the most

popular are structured light scanning system, which represents an extension of the one-point

projection technique.

Among the best known methods is the fringe projection method, which has the advantage

that in some techniques only a single image is needed to carry out an adequate reconstruction

of the object. It also has the advantage that objects of different dimensions can be measured

by modifying the frequency of the fringes [58, 59].

The relationship between the phase and the intensity observed in a cosine profile pattern can

be approximated by the following expression:

I(x,y) = a(x,y)+b(x,y)cos(ϕ(x,y)), (2.2)

where a(x,y) describes the background illumination, b(x,y) represents the reflectance varia-

tions of the object, and ϕ(x,y) is given by:

ϕ(x,y) = 2π f0(x,y)+φ(x,y), (2.3)

where f0 corresponds to the spatial frequency of the carrier signal, and φ(x,y) is the associated

phase term, which will be used to approximate the shape of the object.

Considering the case where the optical axes of the grating and the camera are parallel along

the z-axis (Figure 2.2), where the x and y axes are horizontal and vertical to the reference

plane (z = 0), respectively. The projected grating lines are also parallel to the reference

plane. The pupil centers of the projector P and the camera C are located at a distance d0

from the reference plane and are located on the same z-position. By placing an object on

the reference plane, the depth of the object can be calculated using the phase extraction



16 Conventional fringe analysis techniques

b)a)

c)

b)a)

c)

b)a)

c)

b)a)

Metaheuristic

Global Search

Evolutionary

Constructive

Unique solution for
each iteration

Set of solutions
at each iteration

Start from an initial solution
and add components until
they build a solution

Simulated Annealing
Tabu search
...

Genetic algorithm
Scatter search
Memetic algorithm
Particle swarm optimization
...

GRASP
Ant colony optimization
Heuristic Concentration
...

CCD
White light

grating

lighting
grid shadow

Grid shadow

Reference
 plane Object

z(x,y)

CCD Projector

Grating

Fig. 2.2 Geometry of fringe projection.

techniques mentioned above. If the distance d0 is relatively large with respect to d1, then the

grating projected onto the object will be irregular with frequency changes in the x direction,

in which case the phase observed at O(φO) will be very similar to the phase at A(φA) and

points O and B on the object will be projected onto the image plane at the same point B
′
. The

distance AB can then be expressed as:

AB =
φA−φO

2π f
, (2.4)

where f is the spatial frequency of the grating over the reference plane and φB is the phase

at point B. In equation 2.4, it can be seen that the distance AB is proportional to the phase

difference produced by the presence of the object. By analyzing the triangles PCO and ABO

in Figure 2.2, we obtain the relation:

z(x,y) =
AB ·d0

d1 +AB
. (2.5)
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After a mathematical expansion, and assuming that the period of the projected grating as

p = 1/ f and ∆φ = φB−φ0, we can express the above equation as a function of the angle α

between the projector and the camera as:

z(x,y) =
∆φ(x,y)

2π

p
sinα

. (2.6)

When the projected fringes with period p are viewed at an angle α have a spacing d

perpendicular to the viewing direction given by:

d =
p

cosα
. (2.7)

Assuming normal view, the height of the object above the reference plane will be:

z(x,y) =
∆φ(x,y)

2π

p
sinα

=
∆φ(x,y)

2π

d
tanα

. (2.8)

It should be noted that if the pattern is generated synthetically by software, the period p must

still undergo a transformation from image coordinates to world coordinates, this task can be

accomplished by a proper calibration of the projector camera system.

2.4 Shadow moire method

The moire effect is composed of a set of optical techniques that allow the three-dimensional

digitization of the topography of a surface. Obtaining the three-dimensional shape of an

object has several applications in various areas such as: in medicine for the manufacture of

prostheses and diagnosis of diseases; in archeology for digital preservation or reconstruction

of archaeological pieces.

This effect occurs when the interference of two gratings that are related at an angle or have

different sizes is perceived. In other words, it occurs when two distinct patterns or shapes are

superimposed on each other to form a visual effect. Moire techniques go back many years,
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and although there are many different moire methods, one of the best known is the Shadow

moire technique.

2.4.1 Shadow moire

Shadow Moire technique was applied for the first time by Weller and Shepherd, who placed

a grid in front of an object, this to determine its shape, they observed that moire’s stripes

were visible on it [52].

Shadow moire technique uses a single grid, which is illuminated in front of the object,

producing a shadow on it known as moire fringes due to the superposition of the grid and its

shadow on the object. This fringe pattern represents the out-of-plane elevation of the surface

and is essentially a contour map of the object under study.

To explain moire’s shadow phenomenon, it is necessary to consider the following arrangement

shown in Figure 2.3 which corresponds to a profile of the object which is obtained by making

a cross section of the object. It is considered a source whose rays form an angle α with the

optical axis, the lighting creates a shadow of the grid on the surface of the object, the shadow

of the grid is represented by a line segment which lengthens when incident on the surface,

the elongation depends on the inclination of the surface of the object, the angle of incidence

α and the distance from the grating to the object.

2.5 Fringe analysis methods

Many techniques have been employed for analytical phase retrieval, among these are temporal

phase measurement methods, which use more than one interferogram, methods based on

pixel intensity analysis using numerical interpolation techniques, and those based on spatial

phase measurement among which the best known are the phase shifting method [40], the

Fourier Takeda method [50, 51], and the regularized phase tracking system [15].
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2.5.1 Phase shifting interferometry (PSI)

The development of this technique dates back to the work of Carre [60]; later work appeared

with Crane [61], Brunning et al. [62], Hardy et al. [63], Brunning [64], and Malacara [40].

Many optical interferometers use this technique because PSI provides a highly accurate,

rapid way of getting the interferogram information into a computer. Actually, PSI techniques

have been developed allowing the study of static [65, 52] and transient events by employing

systems that allow the capture of several interferograms simultaneously retrieving optical

phase variation instantaneously [66–68].

PSI is one of the most popular techniques among those that require multiple images to obtain

the phase map. Conventionally, this method generates phase shifts by stages, that is, N

images are obtained. By means of the generated interferograms, the optical phase can be

calculated to be associated later with the physical parameters of the sample under study. To

better understand the process, an example of a conceptually and analytically simple algorithm

of the variant popularly known as the 4-step method is shown below.
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Four step method

The four-step method, as the name implies, requires four interferograms that are totally

independent of the object under test; the interferograms must be recorded or digitized. An

optical phase shift of π

2 is introduced into the reference beam between each sequentially

recorded interferogram.

Assuming that the irradiance values Ii are measured from their initial value φ(x,y) and

increased by a constant amount δi, we have that:

Ii(x,y) = a(x,y)+b(x,y)cos(φ(x,y)+ iδi) i ∈ [0..N−1] , (2.9)

where N indicates the number of fringe patterns to be acquired. For the number of samples

equal to N, the phase increment is given by the following expression:

δi =
2π

N
. (2.10)

Basically, the larger the number of samples, the lower the level of random noise, which

decreases by a factor 1√
N

, although in practice the most commonly used sample number for

the phase shift method is N = 4, which results in a phase shift of δi =
π

2 .

Substituting the values in equation 1.3 we obtain 4 equations describing the intensity patterns

of the measured interferograms:

I1(x,y) = a(x,y)+b(x,y)cos(φ(x,y)), (2.11)

I2(x,y) = a(x,y)+b(x,y)cos(φ(x,y)+
π

2
), (2.12)

I3(x,y) = a(x,y)+b(x,y)cos(φ(x,y)+π), (2.13)

I4(x,y) = a(x,y)+b(x,y)cos(φ(x,y)+
3π

2
). (2.14)
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Solving algebraically the above system of equations, we can conclude that the phase term

can be obtained from the following expression:

φ(x,y) = tan−1
[

I2(x,y)− I4(x,y)
I1(x,y)− I3(x,y)

]
. (2.15)

The advantage of this method is that it is based on pixel-level operations which does not

sacrifice spatial resolution and the accuracy of the computation can be improved by increasing

the number of fringes. On the other hand, like other techniques, this method requires a phase

unwrapping algorithm because the object profilometry involves a trigonometric function.

2.5.2 Fourier interferometry

The Fourier fringe demodulation technique, initially developed for the analysis of spatial

carrier fringes, was proposed and experimentally demonstrated in the early 1980s [50, 51].The

use of this type of spatial analysis techniques has become very popular in recent years,

especially in fringe analysis, because phase information can be obtained from a single image.

In this epigraph we will focus on the technique known as the Fourier transform method for

fringe analysis (FTM).

Fourier transform method

We will begin with a brief description of the theoretical principles of FTM, whose objective

is to recover the phase function in the spatial frequency plane. The type of fringe pattern is

similar to the fundamental equation describing a fringe pattern in most optical tests, with the

only difference being the introduction of a spatial carrier frequency f0 which is set by tilting

one of the interfering beams, as shown in the following equation:

g(x,y) = a(x,y)+ c(x,y)exp(2π f0x)+ c∗(x,y)exp(−2π f0x), (2.16)
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where

c(x,y) =
1
2

b(x,y)exp(iφ(x,y)), (2.17)

and c∗(x,y) represents the complex conjugate.

Applying the fast Fourier transform to Equation 2.16 with respect to x we obtain:

G(x,y) = A( f ,y)+C( f − f0,y)+C∗( f + f0,y), (2.18)

where the capital letters denote the Fourier spectrum, and f is the spatial frequency in the x

direction. The three spectra in Equation 2.18 are separated from each other by the spatial

carrier frequency as shown in Figure 2.4a. Using either of the two spectra on the carrier

C( f − f0,y), and moving it on the frequency axis towards the origin we obtain C( f ,y) as

shown in the Figure 2.4b.

(a) Fourier spectrum. (b) Fourier spectrum shifted to origin.

Fig. 2.4 Fourier spectra of an interferogram.

On the other hand, it can be seen that the background variations a(x,y) have been filtered

out at this stage. We now compute the inverse Fourier transform for the C( f ,y) term with

respect to f , obtaining c(x,y) defined in Equation 2.17. Computing a complex logarithm of

Equation 2.17, we have

log[c(x,y)] = log[
1
2

b(x,y)]+ iφ(x,y), (2.19)
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where the real and imaginary parts give, respectively, the logarithmic amplitude and phase of

the independently separated fringe signal.Another approach to obtain the phase from b(x,y)

is to apply the function:

φ(x,y) = tan−1 Im [c(x,y)]
Re [c(x,y)]

. (2.20)

The phase obtained from the imaginary part of Equation 2.20 is wrapped into the principal

value [−π,π], therefore, a phase unwrapping algorithm is necessary to recover the desired

phase map [69].

2.5.3 Regularized phase tracking (RPT)

RPT is a phase and frequency tracking system capable of demodulating noisy broadband

interferograms bounded by arbitrarily shaped pupils without introducing edge distortion.

Proposed by Servin in [15], it is considered to be a nonlinear technique that allows phase

demodulation of single-image closed-fringes interferogram. Another advantage of this

method is that the phase obtained by the RPT system is continuous which does not require

an unwrapping process. This is the first robust method capable of demodulating the phase of

the closed fringe pattern in a fully automatic way.

Method

One of the main problems when dealing with this type of technique is, that there is no single

solution due to the parity of the cosine function involved in the interference pattern. For this

it is subjected to a regularization process to find an appropriate cost function that uses at least

two terms that contribute to constraining the estimated phase field in a smooth way. These

terms are related with the following information:

1. Fidelity between the estimated function and the observation.

2. Smoothness of the modulated phase field.
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Specifically, in the RPT technique it is assumed that its irradiance may be modeled as a

cosinusoidal function phase modulated by a plane. The amplitude of this cosinusoidal

function must be close to the observed irradiance, and the second term of the proposed cost

function refers to the expected smoothness and continuity of the estimated phase. In details,

the proposed cost function to be minimized by the estimated phase φ0(x,y) is:

UT = ∑
(x,y)∈L

Ux,y(φ0,ωx,ωy), (2.21)

where

Ux,y(φ0,ωx,ωy) = ∑
(ε,η)∈(Nx,y∩L)

({I′(ε,η)− cos[φe(x,y,ε,η)]}2 (2.22)

+λ [φ0(ε,η)−φe(x,y,ε,η)]2m(ε,η)),

and

φe(x,y,ε,η) = φ0(x,y)+ωx(x,y)(x− ε)+ωy(x,y)(y−η), (2.23)

where L is a two-dimensional network that has the information of the fringes, Nx,y is the

neighborhood associated with the point (x,y), m(x,y) is a field indicator that equals to 1 if at

location (x,y) the phase has been calculated and 0 otherwise, ωx and ωy represent the local

frequencies calculated along the x and y directions, respectively. The fringe pattern I′(ε,η)

is a high-pass filtered version of intensity pattern (Equation 2.1). This operation is done

in order to eliminate the low-frequency background a(x,y). Finally, λ is the regularizing

parameter that controls the smoothness of the detected phase.

The first term of Equation 2.22 attempts to determine the fidelity between the found and

observed fringe, the second term controls the level of smoothness and continuity of the fringe

when demodulated in the least squares sense. To demodulate a fringe pattern it is necessary

to find the minimum of the cost function U(x,y) with respect to the fields φ0(x,y), ωx and

ωy, for this it is necessary to use the algorithm described in [15].
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The results described by Servin demonstrate the demodulation capability of a single fringe

pattern that has either closed or open fringes and can detect the modulating phase of noisy

closed-fringe patterns in a fully automatic manner.



Chapter 3

Metaheuristics

3.1 Introduction

Metaheuristic procedures [70] were introduced in 1986 by Glover and this term derive from

the composition of two Greek words heuristic which means "to find", and meta, which

means "beyond, on a higher level". For this reason, metaheuristics are defined as intelligent

algorithms to design or improve general heuristic procedures [71], that is, they are a class

of approximation methods that are designed to solve difficult combinatorial optimization

problems, as well as providing a general framework to create new hybrid algorithms combin-

ing different concepts derived from artificial intelligence, biological evolution and statistical

methods.

Most combinatorial optimization problems are in practice generally difficult to solve. These

problems are included in the class of NP-hard problems [72],since there are no exact algo-

rithms with polynomial complexity known to solve them. Due to their intractability, a large

number of approximate methods have been designed, which find good solutions in reasonable

computational times. In this class of problems, the search for a solution requires an organized

exploration through the search space: a search without a guide is extremely inefficient.

Many engineering problems can be formulated as optimization problems over an objective

function defined over a domain Rn of attainable solutions. Solving them involves finding,

within a defined domain, the solution that minimizes the objective function (global optimum).
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This problem arises in many research and engineering problems, when it is necessary to

obtain, from a set of solutions, the best one for a given problem, and a criterion capable of

measuring the quality of each solution is available.

From a mathematical point of view, an optimization problem can be formulated as a term

( f ,χ,Rn), where f is the function to be optimized; χ is the set of feasible solutions, and Rn

is the solution space, i.e. the goal is to find a global optimum x∗ such that:

x∗ = argminx∈Rn f (x), (3.1)

with

x∗ = (x0,x1, . . . ,xn)
T (3.2)

subject to a set of constraints that make up the feasible region χ .

Optimization models can be classified into 3 main groups:

✓ exact methods that are characterized by obtaining the optimal solution but are compu-

tationally slow.

✓ heuristics are those methods that are based on specific information of the problem and

obtain sub-optimal solutions.

✓ metaheuristics establish general frameworks valid for any optimization problem ob-

taining approximate solutions (Figure 3.1).

In the development of metaheuristic procedures, it is important to take into consideration the

definition of the operators that are in charge of directing the search to promising areas of the

solution space. For this, two important factors must be taken into account [73]:

✓ Exploration, also called diversification in the literature, is the process of guiding the

search towards unexplored regions. An algorithm that performs insufficient exploration

could miss entire regions, so if the optimum were found in one of those regions, it

would have no chance of being found.
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they build a solution

Simulated Annealing
Tabu search
...

Genetic algorithm
Scatter search
Memetic algorithm
Particle swarm optimization
...

GRASP
Ant colony optimization
Heuristic Concentration
...

Fig. 3.1 Metaheuristics classification.

✓ Exploitation, also called intensification in the literature, is the process of conducting

a thorough and intense search for better solutions in an environment close to good

solutions already found (considering that they are more promising areas). This process

is essential to obtain greater precision in the solutions found.

In the specific case of metaheuristics, they are considered as a strategy that guides different

subordinate heuristics to exploit and explore the solution space, so they are considered as

intelligent strategies with high performance that do not guarantee optimality, but can yield

feasible solutions in a reasonable time. This chapter provides a detailed description of the

main metaheuristics used to address the problem proposed in Chapter 1.

3.2 Simulated annealing

The SA algorithm is considered within the category of local search, because they work with an

initial solution, which is transformed into other better solutions as the search progresses. This

is achieved by small perturbations in the current solution. If the changes improve the current

solution, it is replaced by the new solution found. This process continues until no better
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solution can be found or a stopping criterion is met. The solution found is not necessarily

the global optimum. This type of basic local search algorithm has the disadvantage that it is

susceptible to being easily trapped in local optima.

To avoid this problem, some moves are usually allowed to produce configurations that make

the current solution worse. Such moves help to escape local optima, but they must be

performed in a controlled manner. In RS this is done in a probabilistic manner due to its

stochastic search approach.

This technique was formulated by Kirkpatrick et al. in 1983 [74], and has since proven its

efficiency in solving a number of optimization problems applied to science and engineering.

Its name is based on an algorithm developed in 1953 [75], where a Monte Carlo method was

implemented to calculate the properties of any material or substance composed of individually

interacting molecules.

SA has great impact in the field of metaheuristics due to its simplicity and efficiency in

solving combinatorial optimization problems. It is inspired by the annealing process of

metals, in which it is required to subject them to high temperatures and then slowly cool them.

The cooling process has a great impact on the strength of the metal. If the cooling rate is slow,

a strong metal will be obtained. On the other hand, if the initial initial temperature is not

sufficiently high, a state called metastable is reached, in which the metal has imperfections

and lacks strength [13].

3.2.1 Basic description

The SA algorithm starts from a solution, and a high initial temperature. From this level

the temperature is slowly lowered, at each level a number N of solutions is explored in a

predefined neighborhood, which are accepted if they outperform the starting solution in

fitness. Otherwise, they are admitted as new solutions with a certain probability:

p(∆ f ,T ) = e−
∆ f
T , (3.3)
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where ∆ f = fCandidate− fCurrent and represents the increment of the fitness function, while T

indicates the temperature level. This function is known as the Metropolis acceptance criterion

[75].

The probability p of accepting a solution far from the optimum solution is directly propor-

tional to the temperature; this variant causes RS to avoid stagnation in local optima. The

above process is repeated until a stopping condition is satisfied. The pseudocode of the RS

algorithm is shown in Algorithm 1.

Algorithm 1 Simulated Annealing
1: procedure SIMULATED ANNEALING

2: f (S)→ Fitness function
3: N(S))→ Neighborhood
4: S0→ Initial Solution
5: T0→ Initial temperature
6: α → Temperature Function
7: nrep→ Iterations per level of temperature
8: STOP→ Stopping Condition
9: while STOP Conditions do

10: Generate a random solution S ∈ N(S)
11: ∆ f = f (S)− f (S0)
12: for i : nrep do
13: if ∆ f ≤ 0 then
14: S0← S
15: else
16: Randomly generated u ∈U(0,1)
17: if u≤ e−

∆ f
T then

18: S0← S
19: end if
20: end if
21: end for
22: T = α(T )
23: end while
24: Return the best solution
25: end procedure
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3.3 Variable mesh optimization

Variable mesh optimization (VMO) is a population-based metaheuristic with evolutionary

characteristics where a set of nodes representing potential solutions to an optimization

problem form a mesh (population) that dynamically grows and moves through the search

space (evolves) [76]. For this, an expansion process is performed in each cycle, where new

nodes are generated in the direction of the local extremes (nodes of the mesh with better

quality in different neighborhoods) and the global extreme (node obtained with better quality

in the whole process developed); as well as from the border nodes of the mesh. Then, a mesh

contraction process is performed, where the best representatives of each exploited zone of the

search space are selected as the initial mesh for the next iteration. The general formulation of

the meta heuristic covers both continuous and discrete optimization problems, in our case we

will emphasize continuous problems.

3.3.1 Metaheuristic overview

The essence of the VMO method is to create a mesh of points in the m dimensional space,

where the optimization process of a function F(x1,x2, . . . ,xm) is performed; which is moved

by a process of expansion towards other regions of the search space. This mesh becomes

"finer" in those areas that seem to be more promising. It is variable in the sense that the mesh

changes its size (number of nodes) and configuration during the search process. The nodes

are represented as vectors of the form n(x1,x2, . . . ,xm).

The node generation process in each cycle comprises the following steps:

✓ Initial mesh generation.

✓ Generation of nodes in the direction of the local extremes (nl).

✓ Generation of nodes in the direction of the global extremes (ng).

✓ Node generation from mesh boundaries (n f ).

The method includes the following parameters:
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✓ Number of nodes of the initial mesh (P).

✓ Maximum number of new nodes required in the expansion process (T ) , where 3P≤ T .

✓ Size of the neighborhood (k).

✓ Stopping condition (C) maximum number of fitness evaluations.

A more detailed description of each of the VMO steps in the process of generating new nodes

(expansion) is presented below:

Initial mesh generation

The initial mesh consists of P nodes, which in the first iteration are generated randomly or by

another method that guarantees to obtain different solutions.

Nodes generation towards local extremes in the neighborhood

The first type of exploration performed in VMO is carried out in the neighborhoods of each

of the nodes of the initial mesh. This step is responsible for performing an intensification of

the search in the neighborhood of each node to calculate the nearest neighbors of each node

of the mesh using the Euclidean distance as the distance function, defined by:

Deuclidean(n1,n2) =

√
M

∑
i=1

(n1(i)−n2(i))2 . (3.4)

The proximity of the new node to the current or local end depends on a factor (Pr), calculated

on the basis of the values reached by the F at each of the nodes involved.

The greater the difference between the F values in the involved nodes, the greater the

closeness or similarity of n to nl; this is guaranteed by the Pr factor, calculated using the

following equation:

Pr(n,nl) =
1

1+ |Fitness(n)−Fitness(nl)|
. (3.5)
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This way of calculating Pr can be used to minimize as well as to maximize an objective

function, since it only measures the separability ratio between two values, the case of study

is not of interest.

Then the component values of the new node are calculated using the equation:

n∗ (i) = F(n(i),nl(i),Pr), (3.6)

where the function F for the generation of new nodes from each node of the initial mesh,

other than local extremes, and best neighbors, is defined by the equation:

n∗(i) =


mi, if |mi−ne(i)|> ξ & U [0,1]≤ Pr(ni,n∗i ),

ne(i)+U [−ξ ,ξ ], if |mi−ne(i)|> ξ ,

U [mi,ne(i)], other case.

(3.7)

where mi represents the mean value between the current node (n), and the local end (ne) for

the ith dimension and is calculated as:

mi =
n(i)+ne(i)

2
. (3.8)

Furthermore, U [a,b] represent a random value in the interval [a,b], and ξ is an adaptive

distance coordinate and is calculated according to Equation 3.8:

ξ j =



range(ai,bi)
4 if j < 15%C

range(ai,bi)
8 if 15%C ≤ j < 30%C

range(ai,bi)
16 if 30%C ≤ j < 60%C

range(ai,bi)
50 if 60%C ≤ j < 80%C

range(ai,bi)
100 if j ≥ 80%C

, (3.9)

where C denotes the maximum value of evaluations of the objective function, j the current

evaluation, range(ai,bi) denotes the domain amplitude (ai,bi) of each component. On the
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other hand, depending on the percent of the total represented by the current evaluation,

distance values representing parts of the allowed interval are defined.

Node generation in the direction of the global extreme

In this step of the generation, new nodes are created from each node of the initial mesh in

the direction of the global extreme (ng) with the objective of accelerating the convergence

algorithm. The new node (n∗g) is generated using Equation 3.10:

n∗g = G(n(i),ng(i),Pr(n,ng)), (3.10)

In Equation 3.11 we present the G function used in this work, where n∗g(i) represents the

values computed for each component of the new nodes n∗g.

n∗g(i) =

average(n(i),ng(i)) if U [0,1]≤ Pr(n,ng)

U [average(n(i),ng(i)),ng(i)], otherwise.
(3.11)

Nodes generation starting from the frontier nodes of mesh

In this step, the total number of nodes that the mesh should have is completed, starting from

the border nodes. To detect this type of nodes we use, for this case study, the value of the

norm of each one, defined by

∥n∥=

√
m

∑
i=1

n(i)2. (3.12)

The higher norm nodes are those located on the contour of the initial mesh (ns), and those of

a lower norm are considered to be the nodes closest to the origin (nu). Starting from these

sets, new nodes are created (one for each frontier node) using the function H (see Equation

3.13).

n f = H(ns|u,w). (3.13)
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The function H allows to generate new nodes in the direction of the boundaries defined for

this case study, by means of the expressions:

For the outermost nodes:

ns(i)∗ =
{

ns(i)+U [−1,1]w. (3.14)

For the innermost nodes:

nu(i)∗ =
{

nu(i)+U [−1,1]w, (3.15)

where the displacement wi is calculated as:

wi = (w0
i −w1

i )
C− c

C
+w1

i , (3.16)

where the parameter C, and the variable c, are closely related and cause the variations in

the value of wi; the first represents the total number of evaluations of the objective function,

and the second denotes the number of the current evaluation. In turn, w j represents a

displacement for each component ith, where the variables w0
j and w1

j represents the initial

and final displacement value. In order to obtain decreasing displacements w0
j > w1

j and its

values are calculated as: w0
j =

range(ai,bi)
10 and w1

j =
range(ai,bi)

100 .

Mesh contraction process

The contraction operation selects those individuals that will be used for the next algorithm

iteration. Thus, based on an elitist strategy, nodes are sorted by their fitness values in such

a way that survivor selection begins for that node with the best fitness. Before selection,

a clearing operator is applied to keep a minimum distance between the mesh node. This

mechanism considers two important elements, the node qualities and their places in the

solution space, and increases the method’s exploitation level and makes it stronger.



Chapter 4

Parallel methods applied to fringe pattern

demodulating

4.1 Introduction

During the last years, several fringe analysis algorithms that using soft computing like neural

networks and optimization models have been proposed. Among the main approaches that use

the neural network technique is the works presented by Cuevas et al. [77, 78], where a multi-

layer neural network is trained by using fringe patterns and the phase gradients associated

with them, from calibrated objects. Methods using an optimization model approximate the

phase through the estimation of parametric functions, for example soft computing techniques

applied to Zernike polynomials [45], combination of Genetic Algorithms and parametric

methods[38, 42, 46], Particle Swarm Optimization [79], and Harmony Search Optimization

[48], among others.

In the present chapter, a method is proposed to obtain a parametric approach, using the

Simulated Annealing (SA) technique, to determine the phase term φ(x,y) from a single

fringe pattern using parallel computing. This method represents a modification of the Fringe

Processing on Independent Windows (FPIW) proposed by Toledo and Cuevas [46] to demod-

ulate complicated fringe patterns using SA to fit a polynomial on sub-sampled images.

Another important aspect to be discussed in this chapter is the introduction of a new model
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for the demodulation of fringe patterns using an optimization algorithm. This model has the

particularity that it implements the new population metaheuristic called “Variable Mesh Opti-

mization” (VMO) [76], and introduces a novel methodology using Bernstein polynomials

to fit the phase and estimate the points control of the mesh generated by the Bezier surface

using a global optimization algorithm.

4.2 Parallel Demodulation Algorithm

In the proposed method, a fringe pattern is partitioned into independent windows that contain

a number of fringes less than or equal to a value provided as a parameter. Then, a polynomial

function is fitted to approximate the phase field of each window using SA algorithm as

a global optimization method. This procedure is applied in parallel over all sub-images

partitioned. At the end, a splicing procedure is required to connect different SA fitted phase

windows and determine the whole phase field φ(x,y). The complete parallel demodulation

process is overriding in the next subsection.

4.2.1 Algorithm for automatic partition of an interferogram (API)

The first part of this work is based on implementing an algorithm which can autonomously

divide an fringe pattern into the maximum number of fringes desired in each window. This

process consists of obtaining the lowest amount of subimages consistent with the number of

allowed fringes. For this purpose, a tree-type data structure was implemented [80], where

each leaf of the tree represents a partition of the fringe pattern. Figure 4.1 shows the general

scheme of the employed data structure.

API is a recursive method that implements a post-order traversal and verifies that each sheet

complies with the number of fringes restriction. The algorithm verifies if the node has a child,

and if so, the recursive method with all the children is called again. Otherwise, the node is a

leaf, and it is verified whether it complies with the number of fringes restriction. If it does,

the process for that window is stopped; otherwise, the interferogram is partitioned into 4
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Fig. 4.1 Diagram of the data structure used to store the windows of the interferograms divided
by the algorithm.(Image was taken from [1])

subimages. The process is repeated until all sheets have the maximum number of required

fringes. Algorithm 2 shows the pseudo-code for API.

4.2.2 Parallel analysis of fringe patterns using a SA algorithm

The analysis of fringe patterns mainly focuses on the precision, automaticity, and speed.

There are two ways to accelerate the speed of an algorithm, the first one is decreasing the

computational complexity of the algorithm, and the second by hardware.

The presented technique aims to address the concept of parallel computing and its applications

in the analysis of fringe patterns by modeling the problem in such a way that it can be divided

into n independent tasks. In this work a fringe pattern is partitioned into independent windows,

which are fitted to approximate the phase field of each subimage by means of a parametric

function. A SA is used to find the functions parameters by the optimization of an Objective
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Algorithm 2 API Algorithm
1: procedure WINPARTITIONR
2: Input:
3: Node→ Fringe pattern
4: N→ Fringes Number
5: Tree→ Data Structure
6: if Node != null then
7: FirstSon = Node.getFirst_Son
8: while FirstSon != null do
9: FirstSon = FirstSon.getFollow_Brother

10: WinPartitionR(FirstSon,N,Tree)
11: end while
12: if Node.getFirst_Son == null then
13: if Node.getFringes > N then
14: arraySons = Partition(Nodo)
15: Tree.add(arraySons)
16: end if
17: end if
18: end if
19: Output: Tree
20: end procedure

Function (F) [38]. The fitness function is composed of two terms: the first term refers to the

fringe similarity criterion, and the second indicates the smoothness criterion where the sum

of the cross-gradients that yield soft solutions is penalized. When the information about the

shape of the object φ(x,y) is unknown, a polynomial adjustment is recommended. An F for

each sub-image is used to obtain the fitness value; it can be written as:

F =
R

∑
y=1

C

∑
x=1

{ (
I(x,y)− (128−127cos [φ(x,y)])

)2

+ µ
[(

φ(x,y)−φ(x+1,y+1)
)2

+
(
φ(x+1,y)−φ(x,y+1)

)2]}, (4.1)

where x and y are integer values that indicate the position of the pixels in the fringe pattern,

µ is the smoothness factor, which penalizes high sums of gradients to provoke smooth

solutions, I(x,y) is the intensity value detected at the point (x,y) and φ(x,y) represents the

two-dimensional polynomial approximation of degree n, which during the optimization
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process given by:

φ(x,y) = s0 + s1x+ s2y+ s3xy+ s4x2 + s5y2 + · · ·+ s (n+1)(n+2)
2 −1

yn, (4.2)

where the terms si represent the coefficients of the polynomial that approximate the phase

term.

4.2.3 Initial solution

For this study, random generation of the initial solution S is used, which is a vector of

n-parameters, where each si term indicates a coefficient of a possible approximation, from

Equation 4.4:

S =
[
s0,s1,s2, . . . ,s (n+1)(n+2)

2

]
, (4.3)

where each si term is a real value within a range defined by the user [In fi,Supi]. These values

can be taken from prior knowledge, if it is available.

To define the search interval it is necessary to involve the a priori knowledge of the problem

in question. It is known that the equation that models an interference pattern has a cosine

profile which indicates that between each maximum or minimum of the cosine function there

are 2π radians, this means, in each interval of 2π radians there is one white and one black

fringe. This implies that each term si contributes to the total of radians within the fringe

pattern which is related by:

max(φ(x,y))−min(φ(x,y)) = 2πF , (4.4)

where F represents the number of interferogram fringes.

Assuming the maximum values of the variables x and y, and making an iterative process

where one coefficient is taken and the rest of the coefficients are made zero, it can find the
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interval of each coefficient from the following mathematical statements:

s0 = 2πF → s0 ∈ [−2πF,2πF ] ,

s1 =
2πF
Xmax

→ s1 ∈
[
−2πF

Xmax
,

2πF
Xmax

]
,

s2 =
2πF
Ymax

→ s2 ∈
[
−2πF

Ymax
,
2πF
Ymax

]
,

...
...

s (n+1)(n+2)
2 −1

=
2πF

(Ymax)n → sn ∈
[
− 2πF
(Ymax)n ,

2πF
(Ymax)n

]
, (4.5)

where Ymax and Xmax represent the number of rows and columns of the fringe pattern.

4.2.4 Neighborhood solution

One of the factors that influence the efficiency of the SA algorithm is the vicinity function

used during the optimization process [81]. The objective of the vicinity function is to provide

a solution si+1 through an operator of movements, which slightly alters the solution si. For

this purpose, it is necessary to establish how to get the solutions that make up the vicinity

given a particular solution and how to select one of them as a candidate for a new solution.

In this work, a greedy search is performed to generate N neighboring solutions. New local

solutions are generated by varying each coefficient sn of the initial solution, and thus obtaining

a neighborhood from which the best element is selected. The current coefficients sn are

modified using the following equation:

si = si +U [αi ∗ai, αi ∗bi], (4.6)

where U [a,b] generates a random number with a uniform distribution in the range [a, b],

ai and bi represent the upper and lower limits of the allowable space for each coefficient,

respectively, and α is a parameter that depends on the Boltzmann temperature function,

because its objective is to delimit the interval of each coefficient and just as the temperature
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function, α decrements the interval in each iteration. In addition, if a coefficient exceeds the

definition limits, it is penalized and a new random value is generated in the allowable space.

4.2.5 Cooling schedule and stop conditions

The cooling scheme in the SA must provide a good compromise between the execution time

and the quality of the final solution. There are several studies focused on cooling programs,

among which [82] and [83] are noteworthy. In this case, a function is defined which ensures

that the temperature gradually decreases with the number of iterations ensuring that the

temperature reaches its minimum value in the last iteration. The following equation shows

the implemented temperature function:

T (i) = e−10−6∗i2+
log(

10∗Tf
T0

)

N +N∗10−6+log(T0), (4.7)

where i represents the current iteration, N the number of iterations, T0 and Tf indicate the

initial and final temperatures of the model. For instance, having N = 800, T0 = 12000 y

Tf = 1, Equation 4.7 has the following behavior, shown in Figure 4.2. The temperature

function is related to the number of iterations and the limits of desired temperature, the SA

does not stop until both conditions are met.

Another cooling mechanism used in this project was that presented by Toledo and Cuevas in

[46]. Basically, it consists of starting from a temperature value large enough for the system

to reach its steady state for that temperature. In this way, there is the opportunity to explore

all the space of solution, so the probability of falling in a local minimum is decreased. T is

varied by:

T (i) = T0 exp(−i/k), (4.8)

where k is a constant that indicate in which generation T (i)≈ T0/3.
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Fig. 4.2 Temperature function generated from Equation 4.7

4.2.6 Unification of the phase from the independent windows

The phase demodulation is achieved by window segmentation of the fringe pattern and

is executed in separate tasks and in parallel. The splicing procedure used constitutes an

improvement of the method presented by Toledo and Cuevas [46], because it avoids the use

of overlapping regions in neighboring windows. Basically the phase windows linking method

is composed of the following steps:

1. The phase of the first window adjusted by SA is taken as reference.

2. The neighboring phase φ(x,y) is selected and its phase is calculated with inverted

concavity φ(x,y)
′
.

3. The modification consists in that the overlapping region that is chosen from the

reference image, and it is done through polynomial approximation using cubic spline

[84]. In other words, if the bordering region of the reference phase is the last row or

column, or both, extrapolation is done to find the n+1 row or column corresponding

to the current phase. Fig. 4.3 illustrate the procedure and a scheme of the extrapolation

process.
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Fig. 4.3 Representation of the overlap region between neighboring windows. (Image have
been taken from [1])

The DC or height difference between the frontier region for φ(x,y) and φ(x,y)′ is

calculated by the following expressions:

DC1 =
∑x,y∈N(Θ(x,y)−φ(x,y))

A
,

DC2 =
∑x,y∈N(Θ(x,y)−φ(x,y)′)

A
, (4.9)

where Θ(x,y) is the region extrapolated by spline cubic, N is the border region, and A

is the area (pixel2) of the region.

4. The mean squared error for both alternatives is calculated as follows, with the aim of

making a comparison between both.

RMS1 =
∑x,y∈N(Θ(x,y)−φ(x,y)−DC1)

2

A
,

RMS2 =
∑x,y∈N(Θ(x,y)−φ(x,y)′−DC2)

2

A
. (4.10)
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The phase with the lowest RMS will be displaced by a value of φ(x,y)+DC1 or

φ(x,y)′+DC2 to place it at the level of the reference phase map.

5. The process is repeated until each phase map has been moved.

4.2.7 Surface smoothing

Low pass filtering (aka smoothing), is employed to remove high spatial frequency noise

from a digital image. The low-pass filters usually employ moving window operator which

affects one pixel of the image at a time, changing its value by some function of a local

region (window) of pixels. The operator moves over the image to affect all the pixels in the

image. For this work, these filters are used to smooth the phase surface, especially in those

regions where neighboring windows are feathered. This process is performed at the end of

the unification process of all independently demodulated windows.

4.3 Demodulation of fringe pattern using Bezier surface

This section presents a method to demodulate complex fringe images, based on the parallel

demodulation algorithm [1]. Our model has the particularity that it implements the new

population meta-heuristic called “Variable Mesh Optimization” (VMO) [76], and introduces

a novel methodology using Bernstein polynomials to fit the phase and estimate the control

points of the mesh generated by the Bezier surface using a global optimization algorithm.

4.3.1 Bernstein polynomials

In mathematics, the Bernstein polynomial is a polynomial that is a linear combination of

Bernstein basis polynomials. The idea was introduced by Joseph Bernstein [85, 86] and

Mikio Sato and Takuro Shintani [87]. Probably, polynomials in Bernstein form were first used

by Bernstein in a constructive proof for the Weierstrass approximation theorem. With the

advent of computer graphics, Bernstein polynomials, restricted to the interval [0,1], became

in one of the most practical uses of the Bernstein polynomials (Bézier curves and surfaces),
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which can be used to approximate any curve or surface to a high degree of accuracy.

The Bernstein polynomials Bn
i of degree n form a basis for the vector space of polynomials

of degree lower than or equal to n over the interval [0, 1] and are defined by:

Bn
i =

(
n
i

)
t i(1− t)n−i i = 1,2, · · · ,n, (4.11)

where t is a variable, which can be generalized to cover an arbitrary interval [a,b] by

standardizing t over interval, t = (x−a)/(b−a). Consequently, any polynomial curve f (x)

of a degree lower than or equal to n has a single representation of Bézier, which can be

represented as a linear combination of the Bernstein polynomials of degree n,

f (x) =
n

∑
i=0

Bn
i (x)Pj, (4.12)

where Pj is a set of coefficients known as control points. Generalizing this concept over R3

in the arbitrary interval [a,b]× [c,d], we can define Bezier’s surface as the tensor product of

Bernstein polynomials bases:

f (x,y) =
n

∑
i=0

m

∑
j=0

Bn
i (x)B

m
j (y)Pi, j, (4.13)

where Pi, j is a control point matrix, and the surface is defined by (n+1)× (m+1) Bernstein

polynomials bases. Thus, the resulting surface parameterization will be a bi-grade surface

(m,n), and will be described by a control mesh (Pi j) of (m+1)× (n+1) vertices (see Figure

4.4).
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Fig. 4.4 Parametric representation of a Bezier surface.
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4.3.2 Bezier surface properties

Bezier surfaces are a natural generalization of polynomial curves; that is why many of their

properties remain [88]. Among the main useful properties in diverse applications are:

• The surface intuitively follows the general shape of the defining control mesh. This

property is important for the posed problem, because sometimes, the shape of the

object is known, and it is possible to generate an initial solution that defines a convex

envelope of the object and facilitates the search process.

• The extreme vertices of the surface coincide with the corners of the control mesh, a

property that leads to the rows and columns of the edge of the mesh describing the

edge of the surface, i.e.

f (0,y) =
n

∑
i=0

m

∑
j=0

Bn
i (0)B

m
j (y)Pi, j =

m

∑
i=0

Bm
j (y)P0, j. (4.14)

• The surface is invariant when affine transforms are applied to either the control points

or the parameterized surface.

• Local control is a property present on Bezier surfaces; therefore, a generic vertex of

the control mesh affects most (m+1)× (n+1) sections of the surface. Obviously, a

vertex near the edge affects fewer sections.

• The Bernstein polynomials of degree n can be defined by blending two Bernstein

polynomials of degree n−1. That is, the ith nth-degree Bernstein polynomial can be

written as:

Bn
i = (1− t)Bn−1

i + tBn−1
i−1 (t). (4.15)

• The Bernstein Polynomials are all Non-Negative over the interval [0,1]. To show this

we use the recursive definition property presented in 4.15, and mathematical induction.

It is easily seen that the functions B1
0(t) = 1− t and B1

1(t) = t are both non-negative
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for 0 ≤ t ≤ 1. If we assume that all Bernstein polynomials of degree less than k

are non-negative, then by using the recursive definition of the Bernstein polynomial,

we can argue that Bn
i (t) is also non-negative for 0 ≤ t ≤ 1, since all components on

the right-hand side of the equation are non-negative components for 0 ≤ t ≤ 1. By

induction, all Bernstein polynomials are non-negative for 0≤ t ≤ 1.

4.3.3 VMO applied to demodulation interferogram

The present technique is based on the concept of parallel demodulation presented in the

previous work [1]. A fringe pattern is subjected to a process of normalization with the aim

of eliminating back lighting and modulating the signal amplitude; generically a low-pass

filter is applied using the Fourier transform. After this, the resolution of the fringe pattern

can be reduced to a resolution where the number of fringes in each window is maintained,

thus speeding up the search system of the algorithm. Next, the fringe pattern is partitioned

using the Algorithm for Automatic Partition of an Interferogram [1], which is used to divide

an interferogram with a maximum limit of fringes in each window. Then, a demodulation

method is applied simultaneously over each partition to approximate the phase field by

means of the Bezier surface using VMO [89]. Finally, each corresponding real phase field

is connected with different VMO fitted phase windows to determine the whole phase field

φ(x,y) using the splicing procedure presented in [1].

4.3.3.1 Fringe pattern analysis using Bezier surface

Taking advantage of Bézier’s surface properties, it is possible to obtain the edges of the

control mesh by approximating the edges of the surfaces with the knowledge that the ends of

the edges coincide with those of the surface, a property that facilitates the search process.

This process is totally independent, and therefore, it is carried out in a parallel way. The

next step is to eliminate the differences between the edges to form the outside of the control

mesh. Finally, a search process is carried out from the limits of the control mesh. Figure 4.5

illustrates the scheme of the demodulation process using Bezier surfaces.

In this method, VMO is proposed to carry out the optimization process, where a parametric
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Fig. 4.5 Scheme of demodulation process using Bezier surfaces

estimation using Bezier surfaces is suggested to adjust the shape of the object involved in a

fringe pattern. The fitness function, which is used to evaluate the quality of each node of the

mesh, was proposed by Cuevas in [38] and it is shown in Equation 4.1. The only difference

between the two functions is the fitting function that approximates the phase map; which

was previously modeled by a polynomial fit and in this project we present a fit using Bézier

surfaces. In conclusion, the demodulation process produces a phase map through a global

optimization algorithm, where the main objective is to find a Bezier surface that generates a

fringe pattern as similar as possible to the input interferogram.
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4.3.4 Initial mesh generation and search interval

The initial population for the first iteration is composed of N nodes that are randomly

generated with uniform distribution. This mesh is composed of N nodes (s1,s2, . . . ,sN),

which represent potentials solutions in the search region. Each node is codified as a matrix

P of (n+ 1)× (m+ 1) elements that defines the control mesh which generates the Bezier

surface that fits the phase map of the fringe pattern, where n and m indicate the degree of the

Bernstein polynomial on the x and y axes respectively,

P =


P00 P01 P02 . . . P0n

P10 P11 P12 . . . P1n
...

...
... . . . ...

Pm0 Pm1 Pm2 . . . Pmn

 , (4.16)

where each term Pi, j is a real value within a defined range.

To define the search interval of each coefficient of the control matrix, it is necessary to use

the a priori knowledge. Based on the property that the control mesh represents a convex

envelope of the surface, and that the pattern of fringes has a cosine profile through which it is

possible to know the phase difference from a fringe count, we can define each coefficient

of the mesh in the interval [−4πF, 4πF ], where F represents the number of interferogram

fringes.
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Experimental Results

5.1 Introduction

To validate the effectiveness of the proposed methods, an experimental analysis was carried

out, involving synthetic fringe patterns. In these cases, an analysis is performed in terms

of solution quality, convergence time and adjustment of the metaheuristic parameters. In

addition, tests of real images obtained from an optical arrangement were included. All the

experiments were tested in a standard node that has 24 cores (2 sockets Intel Xeon E5-2680

v3 at 2.5 GHz with 12 cores per socket) and 128 GB of shared RAM.

To define the quality of the solutions, Root Mean Squared (RMS) was selected as a metric,

which is a frequently used measure of the differences between values (sample) predicted by

a model or an estimator and the observed values. The RMS represents the square root of the

second sample moment of the differences between predicted values and observed values or

the quadratic mean of these differences. Equation 5.1 represents the error calculated for each

approximation.

RMS =

√
∑

R
y=1 ∑

C
x=1( f (x,y)−φ(x,y))2

R∗C
, (5.1)

where R and C correspond to the number of rows and columns of the fringe pattern, f and φ

define the original phase map and the one recovered by the model, respectively.
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Finally, a comparative study was carried out with computer simulated fringe patterns pub-

lished in related works to prove the effectiveness of the method presented.

5.2 Parallel demodulation algorithm using Simulated An-

nealing

5.2.1 Stability and sensitivity analysis

The simulation 5.2.1 consisted of approximating a computer simulated pattern, where the

mathematical model of the original phase map is given by:

f (x,y) = (1.0052×10−3(0.4x−40)(0.4y−50)

+ 1.9284×10−4(0.4x−40)(0.4y−50)2) (5.2)

× cos(
−0.8x+0.00816y2

5
)sin(

−0.8y+ .00336x2

7
); x,y ∈ [−15,15],

The objective of this experiment is to demonstrate the stability of the algorithm and to make

a sensitivity study of parameters. The computer generated closed fringe pattern used as input

of the algorithm has a resolution of 42×42 pixels.

The first step of the model is to apply the automatic partitioning, using as parameter a

maximum number of fringes in each window equal to 3. The result of applying the API

algorithm is shown in Figure 5.1.

Fig. 5.1 Result of the automatic partition obtained by API.
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Phase demodulation is achieved by segmenting the fringe pattern windows, using SA for each

window independently, so this process is carried out in parallel. A total of 9 executions were

made to perform a sensitivity analysis of the algorithm. Table 5.1 shows the configuration

parameters used by SA and the results obtained in each execution.

Runs Iterations
Generation

per Iterations
(nrep)

Initial
Temperature

Smoot
factor

RMS
(radians)

Time
(s)

1 300 50 900 5 0.0086 33
2 400 50 900 5 0.0061 44
3 500 50 900 5 0.0133 54
4 300 75 900 5 0.0060 49
5 400 75 900 5 0.0103 65
6 500 75 900 5 0.0065 82
7 300 100 900 5 0.0057 65
8 400 100 900 5 0.0051 87
9 500 100 900 5 0.0069 108

Average 0.007611 65.2
Table 5.1 Results of 9 runs approximating the shape represented by Equation 5.2.

The resulting fringe pattern, related to the demodulated phase, and a comparison between

both phase maps, corresponding to the execution number 8, are shown in Figure 5.2.

5.2.2 Sub-sampled fringe pattern

The computer generated fringe pattern 5.2.2 consisted of approximating a computer simulated

interferogram, where the mathematical model of the original phase map is given by:

f (x,y) = (0.1x−0.02y+0.01xy−0.02x2)cos(
x+ y

8
); (5.3)

x ∈ [−32,−10] and y ∈ [−15,20].

The objective of this experiment is to demonstrate the ability of the algorithm to recover

phase in low resolution fringe patterns, even when the Nyquist criterion is not met. The
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b)a)

c)

b)a)

c)

Fig. 5.2 a) Fringe pattern recovered by the method. b) Demodulated phase map. c) Error
graph between original and demodulated phases.

computer simulation was reduced to a resolution of 36 × 36 pixels to be used as input to the

algorithm and to apply an automatic partitioning with a maximum number of fringes equal to

5. The result of applying the API algorithm is shown in Figure 5.3.

Phase demodulation is achieved by segmenting the fringe pattern windows, using SA for

each window independently, so this process is carried out in parallel. Each window was

demodulated by adjusting a third degree polynomial during 200 iterations, with a generation

of 50 neighboring solutions at each temperature level for a time of 109 seconds. The values

of the initial temperature and the softness factor were 9000 and 15 respectively.
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b)a)

c)

b)a)

c)

Fig. 5.3 Result of the automatic partition obtained by API in low resolution.

The resulting fringe pattern, related to the demodulated phase, and a comparison between

both phase maps in high resolution, are shown in Figure 5.4. The root mean square (RMS)

between the two phase maps was of 0.0073.

5.2.3 Computer simulated proposed by Toledo and Cuevas

The proposed method was tested to approximate the phase of a computer simulated fringe

pattern suggested in [46]. The fringe pattern was sampled to produce an image of 54 × 54

pixels (Figure 5.5-a) and the result of applying the API algorithm, using a maximum number

of fringes per window equal to 3, is shown in Figure 5.5-b.

A third degree polynomial was used to interpolate every partition. The values of the pa-

rameters used to achieve SA convergence were: generation number (N) of 300, starting

temperature T0 = 11000, the softness factor µ = 5 and the number of neighboring solutions

generated at each temperature level was 175.

The resulting fringe pattern and the map phase recovered by the method are shown in Figures

5.6-a and 5.6-b. For illustrative purposes, the difference between the computer simulated

phase map and the one obtained during demodulation is shown in Figure 5.6-c. The root

mean square (RMS) was used to measure the differences between simulated phase map and
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b)a)
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b)a)

c)
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c)

Fig. 5.4 a) Fringe pattern recovered by the method. b) Error graph between original and high
resolution demodulated phases. c) High resolution demodulated and simulated phase map.

the one predicted by the model. The RMS error is 0.007 rad, this measurement is lower than

the reported in [46] of 0.154 rad.

It is important to note that the main advantage of the proposed method over the traditional

methods, is that in the recovery of fringe patterns that do not meet the Nyquist’s criterion (i.e.

when fringes are not fully sampled), this method is able to recover the phase term. When a

comparative analysis with the model proposed by Toledo in [46] is carried out, the proposed

method is able to obtain the phase map correctly reconstructed, in addition to introducing a

new model of window partition, based on the frequency of the fringes per partition, which

facilitates the use of the same configuration of SA parameters for each window. Another
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(a) (b)

Fig. 5.5 (a) Sampled fringe pattern 54 × 54 pixel. (b) Result of the automatic partition
obtained by API.

aspect to compare is that the proposed method does not use the concept of overlapped region

between neighboring windows, offering as an advantage the fact that the same region is

demodulated more than once. The last criterion that was compared was the speed, where the

proposed model has a parallel implementation, as opposed to the serial implementation of

[46], due to the fact that the process is divided into different independent tasks.

5.2.4 Semi-spherical surface obtained with shadow moire technique

This fringe pattern, taken into account in the experimental validation, corresponds to a fringe

pattern obtained from a shadow moire experiment (Figure 5.7a). A hemi-spherical object

was located behind a Ronchi ruling and was illuminated by a collimated beam. To reduce

the search space of the algorithm, the resolution of the interferogram was reduced to 37x43

pixels and the image was binarized using the Otsu method [90] in small neighborhoods to

ensure that background illumination and amplitude modulation were constant; and was later

partitioned by the API algorithm, using a maximum number of fringes per window equal

4 (Figure 5.7b). The binarization process was performed in each window independently
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(a) (b)

( c)

Fig. 5.6 (a) Fringe pattern recovered by the method. (b) Phase map demodulated. (c) Error
graph between original and demodulated phase.

due to the different contrast variations in different positions, product of the lighting. The

SA algorithm evolved during 3000 iterations to fit a second-degree polynomial to each

sub-image in a period of 29 seconds. Thirty neighbors were generated in each iteration, the

initial temperature used was 900, and the softness factor was 5. Figure 5.8 shows the results

obtained by the demodulation process. It is worth noting that, a low-pass filter was applied to

the phase map obtained after applying the unification algorithm of the windows to eliminate

the roughness between the limits of the windows.
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(a) (b)

( c)

(a) (b)

Fig. 5.7 (a) The shadow fringe pattern generated by a hemi-spherical object with resolution
of 244 × 281 pixels. (b) Independent windows partition carried out by IPA.

(a) (b)

( c)

(a) (b) (a) (b)

Fig. 5.8 (a) Fringe pattern generated from the calculated phase field by the method. (b) Phase
map recovered during the demodulation process.

5.2.5 Shadow moire experiment

The next fringe pattern used to test the model corresponds to a real shadow moire application

(Figure 5.9 a), in which a low-pass filter is applied to eliminate the high frequencies produced

by the grid. The original image was reduced to a resolution of 35 x 41 pixels and binarized

using the Otsu method to serve as an input to the algorithm (Figure 5.9 b) , which was

partitioned into windows with a maximum number of fringes equal to 4.

The SA algorithm needed 200 iterations and 50 neighbors in each loop to adjust a third-degree

polynomial to each window, and it took 65 seconds to get the solution. The initial temperature
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Fig. 5.9 a) Original shadow Moire fringe pattern, with resolution of 831 × 971 pixel. b)
Independent windows partition, carried out by IPA with resolution of 35 × 41 pixels.

and the softness factor had the same configuration as in the second interferogram to acquire

the phase map. The resulting graph obtained by this method is shown in Figure 5.10.

(a) (b)

( c)

(a) (b)

(a) (b)

(a) (b)

(a) (b)

Fig. 5.10 a) Fringe image obtained from the proposed method. b) Phase map recovered from
the interferogram of Figure 5.9 b.

5.2.6 Speckle interferometry experiment

The fifth experiment corresponds to a real interferogram, which presented a greater amount

of noise, since it was obtained from a speckle interferometry experiment. The results of

applying the algorithm are shown in Figure 5.11.
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Fig. 5.11 Original interferogram with resolution of 390×307 pixels. b) Filtered and parti-
tioned fringe pattern, recovered in low resolution. c) Recovered fringe pattern. d) Recovered
phase map.

5.3 VMO using Bezier surface

Experimental tests were carried out to prove the effectiveness of the method, by means of

a comparative analysis with computer simulated fringe patterns published in related works

[45, 79, 46, 1]. The definition of VMO parameters was selected from an internal analysis

presented in [76]. In all cases, the total expansion size used for these studies is T = 3
2N, the

vicinity (k) is 3, and the initial size of the population is (N = 12). The only parameters that

were modified, depending on the complexity, were the number of evaluations of the fitness
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function (C), the smoothness factor, and the dimension of the control mesh in their respective

axes.

5.3.1 Computer simulated demodulated using Zernike polynomials

The proposed method was tested with a simulated image, which was demodulated using the

bases of the Zernike polynomials to approximate the phase map of the object. This fringe

pattern was taken from the experiments published by Mancilla [45](Figure 5.12-a). In this

demodulation process, the control mesh was adjusted by a matrix of 4× 4 points in each

window, until reaching 2 000 generations of feasible solutions. The used smoothness factor

was 5 units, and the time consumed to achieve convergence in each execution was 9 seconds.

The resulting graphs obtained through this method are shown in Figure 5.12.
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Fig. 5.12 a) Subdivided input pattern using a maximum number of window fringes equal
to 4, with a resolution of 30×30 pixels. b) Fringe pattern, recovered by VMO method. c)
Recovered phase map with an RMS value of 0.002661 rad.

5.3.2 Simulated pattern demodulated using a Particle Swarm Algo-

rithm as optimization model

The fringe pattern used in this test was taken from the experiments published by Jimenez in

[79] (Figure 5.13-d). This fringe pattern implemented a simple polynomial adjustment to
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approximate the phase map of the object, using a Particle Swarm Algorithm as optimization

model. In this demodulation process VMO parameters were the same as those used in

Experiment 5.3.1. The resulting graphs obtained through this method are shown in Figure

5.13

e)

Fig. 5.13 a) Input fringe pattern, without applying automatic partitioning, with a resolution of
20×20 pixels. b) Fringe pattern generated during search process. c) Phase map recovered by
the demodulation process, with an RMS error of 0.012316 rad. d) High-resolution simulated
fringe pattern. e) Estimated fringe pattern by VMO, with a resolution of 250×250 pixels

5.3.3 Sub-sample fringe pattern

The following simulation is intended to demonstrate the ability of the algorithm to recover

phase in low resolution fringe pattern, even when the Nyquist criterion is not met. The

computer simulation corresponds to a fringe pattern presented in [1](Experiment 5.2.2), with
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a resolution of 28×28 pixels. The result of applying the automatic partition method, with a

maximum number of fringes per window of 6, is shown in Figure 5.14. Each window was

b)a)

c)

b)a)

c)

b)a)

c)

b)a)

Fig. 5.14 Partitioned fringe pattern with a resolution of 28×28 pixels.

demodulated by adjusting a square matrix of 4×4 control points, up to 1000 evaluations

of the fitness function, with a smoothness factor of 5 units, for a time of 5 seconds. The

RMS error between the two phase maps was 0.00271 radians, improving the value of 0.0073

radians obtained in [1], and considerably decreasing the demodulation time; the results of

the high-resolution demodulation process are shown in Figure 5.15.

5.3.4 Computer simulated proposed by Toledo and Cuevas

This experiment corresponds to the computer simulated fringe pattern presented in [46]

(Experiment 5.2.3). A four-order control square matrix was used to approximate every

window, the required stopping condition for VMO was 2 000 fitness function evaluations, the

smoothness factor was µ = 10, and the maximum number of fringes (F) used for automatic

partitioning was F = 5. The results of the demodulation method are shown in Figure 5.16.

Taking into consideration the comparison of results presented in [1], the VMO method

reduces the root mean squared (RMS) value of 0.007 rad obtained in [1] with a value of 0.002
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Fig. 5.15 a) VMO-recovered fringe pattern, with resolution of 250×250 pixels. b) High-
resolution recovered phase map. c) Difference between original and demodulated phase.

rad. Another aspect to take into account is the speed of our model: it required 17 seconds to

converge to a solution, lower than the 156 seconds achieved by Simulated Annealing (RS).

5.3.5 Digital holography interferometry proposed by Pramod Rastogi

and Erwin Hackin

The next test corresponds to an experiment of Digital Holography Interferometry (DHI),

which can be found in the book [24], by Pramod Rastogi and Erwin Hackin, in the chapter

on Local Polynomial Phase Modeling and Estimation. As in [1], a low-pass filter was used
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Fig. 5.16 a) Automatic partitioning of the original pattern. b) Recovered fringe pattern. c)
Error between original and demodulated phase graphs. d) Simulated phase map. e) Phase
map recovered by VMO method.

to remove noise and sub-sample the image, up to a resolution of 40×40 (Figure 5.17-b).

The VMO method was applied over each window, through 4 000 fitness evaluations. The

time consumed by the algorithm to obtain the complete phase map was only 18 seconds,

using a squared control matrix of order 4, improving the 67 seconds reported in [1]. The

results in the original resolution are shown in Figure 5.17-c,d.

5.3.6 Circularly clamped object

The next interferogram corresponds to the loading of a circularly clamped object, taken from

[91]. After the pre-processing, the fringe pattern was partitioned into 4 separate windows,
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Fig. 5.17 a) Experimental fringe pattern with resolution of 500×500 pixels. b) Input fringe
pattern after a noise removing, sub-sampling process, and automatic partitioning process. c)
Fringe pattern recovered in high resolution. d) Phase map recovered in the original resolution.

and sampled to produce an image of 60×60 pixels to speed up the search process (Figure

5.18). Each partition was demodulated by adjusting a square control mesh of 4×4 elements,

8 000 evaluations of the fitness function, and a smoothness factor of 10, in order to obtain

smoother solutions. The fringe pattern and the phase, estimated by VMO, were achieved in a

time of 47 seconds. Figure 5.19 shows the results obtained during the demodulation process.

5.3.7 Comparison with Phase Shifting method

The last interferogram corresponds to a real shadow moire application, presented in [1]. This

fringe pattern uses the phase shifting method to determine the three-dimensional surfaces

to increase the accuracy of the shadow moire technique, in order to compare it with the

proposed model. Figure 5.20 shows a sketch of the general experimental set up. The basic
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Fig. 5.18 a) Experimental fringe pattern. b) Filtered and sub-sampled fringe pattern, parti-
tioned into 4 windows.

experimental arrangement consists of a white light source, a Ronchi grating, micrometer,

and, usually, a CCD camera as observer.

A low-pass filter was applied to the fringe pattern obtained from the experimental arrangement

to eliminate the high frequencies produced by the grid. Then it was reduced to a resolution

of 35×41 pixels, and partitioned into windows with a maximum number of fringes equal to

7. Figure 5.21 shows the original interferogram obtained from the experimental set-up, and

the partitioning fringe pattern, that is used as input for the presented model.

To achieve convergence, the VMO method required only 13 seconds, 2000 objective function

evaluations, and a 4×4 element control mesh. The resulting graph obtained by this method

and the comparison with Phase Shifting technique are presented in Figure 5.22.

5.4 Comparison of results

Comparing our methodology to other methods reported in the literature, using soft-computing

techniques, our proposal presents an improvement in the quality of the results in terms of the

approximation error and the execution time. Table 5.2 presents a comparison between the

presented method and several methods that use a polynomial adjustment to obtain the phase
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Fig. 5.19 a) Fringe pattern generated from the recovered phase, with a resolution of 250×250
pixels. b) Phase field obtained by VMO.
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Fig. 5.20 Shadow moire basic experimental arrangement.

field (Parallel Demodulation using Simulated Annealing (SA) [1] and Independent Windows,

using Genetic Algorithm (AG) [46]). In order to obtain a more transparent comparison, two

groups of experimental tests were made, using equal conditions; group 1 was tested in a

computer with a Windows 10 Professional (64 bits) operating system. The processor used

was an AMD Ryzen 7 3700U, running at 2.3 GHz, with a remote access memory (RAM) of

20.0 GB, and the group 2 used the same hardware resource as in the experimental section. In

this comparison 2 metrics were added Mean Squared Error (MSE) and the Fringe error (Fe),

the latter metric was introduced to determine the similarity, mainly in the real experiments.

The MSE is a measure of the quality of an estimator which measures the average of the
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Fig. 5.21 a) Original shadow Moire fringe pattern, with resolution of 831×971 pixels. b)
Partitioned input fringe pattern, with a maximum number of fringe equal to 7.

squares of the errors that is, the average squared difference between the estimated values and

the actual value, the MSE is computed as:

MSE =
1

RC

C−1

∑
i=0

R−1

∑
j=0
|| f (x,y)−φ(x,y)||2, (5.4)

where R and C correspond to the number of rows and columns of the fringe pattern, f and φ

define the original phase map and the one recovered by the model, respectively.

Fe is the equivalent of the mean absolute error (MAE), which is a measure of the difference

between the original and the VMO recovered fringe pattern. This metric can be defined by

the following equation:

Fe =
1

CR

C−1

∑
i=0

C−1

∑
j=0
|| f (x,y)−φ(x,y)||, (5.5)

where R and C are the fringe pattern resolutions, I is the original interferogram, and IR

corresponds to fringe pattern recovered by VMO. In all cases, VMO shows improvement in

terms of the approximation error and convergence time.
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Fig. 5.22 a) Phase map recovered by VMO in the original resolution. b) Fringe pattern
generated from the approximated phase field. c) Phase map obtained by Phase Shifting
method. d) Error difference between phase shifting and demodulated phase with an RMS
value of 7.3353×10−4 radians.

Table 5.2 Comparison of results with different methods using an optimization model.

Experiment Method
RMS

(radians)
MSE

(radians)
Fringe Error

(Fe)
Time

(seconds)

Group 1
Simulated fringe

patterns

5.2.3
VMO 0.0024 0.0189 9.3108 36

SA 0.0070 0.1626 27.7371 216
AG 0.1540 74.3734 43.8800 412

5.3.1
VMO 0.0026 0.0088 6.4396 14

SA 0.0360 1.6796 36.6531 63
AG 0.0772 7.7240 57.2700 98

5.3.2
VMO 0.0123 0.0605 15.5040 8

SA 0.0597 1.4256 38.4529 23
AG 0.0594 1.4113 44.4900 34

Group 2
Real fringe

patterns

5.3.4
VMO — — 16.5745 18

SA — — 25.5505 67

5.3.5
VMO — — 17.2883 47

SA — — 42.3741 218



Chapter 6

Conclusions and Future Works

6.1 Conclusions

In the present doctoral thesis work, a study and review of the main conventional fringe

demodulation techniques, i.e. Phase-Shifting, Fourier methods, and Regularized Phase

Tracing, was carried out. Phase-shifting is a powerful technique used in optical metrology

to measure a wide variety of physical quantities; unfortunately, this algorithm requires at

least three interferograms with known phase shifts. This requirement may be unpractical in

certain experiments, such as transient mechanical processes, or in testing with acquisition

of multiple undisturbed interferograms. Fourier transform is a global method that can

recover the phase from a single interferogram, but has the disadvantage that it only analyzes

patterns of open fringes, and usually, the global phase is too complex to be mathematically

represented. Moreover, this method and Phase-Shifting estimate the wrapped phase because

of the arctangent function used in the phase computation, and consequently, it needs a

phase development algorithm, in addition to requiring the design of a filter, to obtain the

phase. On the other hand, Regularized Phase Tracing is one of the most robust and effective

methods, although it often fails in the cases of complex interferograms, and needs well-

defined scanning strategies.

As a result of this research it was shown that the population metaheuristic Variable Mesh

Optimization, and the optimization algorithm known as Simulated Annealing can be modeled



6.1 Conclusions 73

as a problem for interferogram demodulation. A technique based on parallel demodulation

was proposed for demodulating a single interferogram using SA. This model establishes a new

design to partition the interferogram automatically, using a recursive method that stores in a

quad tree data structure, the subimages with a limit of fringes in each partition. This partition

allows to reduce the complexity of the windows and makes the search of the algorithm of

optimization more viable. In addition, it improves the window unification method when

using cubic tracing mediating approaches. Consequently, this will lead to the elimination

of overlapping regions and thus avoid multiple demodulation of border regions. Another

advantage offered by the model is that, by finding an approximation through polynomial

functions, and at the end of the method, it is possible to recover its original size through the

approximation function.

As a second part of this project, several changes were introduced in order to obtain consistent,

improvements in terms of quality of the demodulation process and execution time. A

robust technique for single interferogram demodulation, based on the concept of parallel

demodulation has been proposed. This model establishes a novel methodology employing

Bezier surfaces to fit the phase map, and estimates the control mesh employing a global

optimization algorithm, i.e., variable mesh optimization.

Bezier surfaces revolutionize polynomial-based phase fitting, in the sense that due to the

usefulness of their properties, it is possible to split the search of the algorithm towards the

edges of the fringe pattern and towards the central region. In addition, similar to the methods

based on a polynomial adjustment, the proposed does not require the use a phase development

algorithm, because the model itself is based directly on the phase map and does not involve

the cosine function. Furthermore, it can sub-sample the interferogram to speed up the search

and finally recover the original size from a simple scaling. Although the main limitation

of demodulation methods using an optimization model is with respect to the configuration

of the algorithm parameters, it may be concluded that VMO offered stability in selecting

them, which explains why it was possible to establish the same configuration for all the test

functions, where the only modifiable value was the stopping condition, which is linked to the

complexity of the pattern. At the same time, we present experimental results on the capacity
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of approximation and the decrease in demodulation time, in comparison with other methods

in literature.

Finally, this work demonstrates the demodulation capacity, even though the resolution of

fringe pattern does not satisfy the Nysquit criterion, and confirms the capability of Bezier

surfaces in computer-aided design.

6.2 Future Works

Today one of the main challenges of engineering is to obtain an accurate measurement,

especially in transient events, where it is very difficult to record a measurement. That is

why one of the challenges in Optical Metrology is to find the phase map from a real time

interferogram. One of the motivations consists in the design and implementation of an

application at the hardware level in such a way that it can deliver real-time measurements,

using Graphical Processing Units (GPUs). This type of technology, designed for parallel

computing, is ideal for the demodulation principle developed in the thesis project. This

principle is based on dividing a large problem into a set of several small problems that can be

solved by GPU technology, which can facilitate a real-time application.

Another line of future research would be the use of a priori knowledge of the problem. In

many situations we have an idea of the shape of the object in question, which is why we

could take advantage of the particularities of Bezier surfaces, which describe an envelope

surrounding the shape of the object, so that we would have a starting point in the population,

which would considerably facilitate the process of searching for an optimization algorithm.

It is not less certain that this technique represent a novelty in this type of problem, which is

why another line of future research would be the comparison and implementation of different

metaheuristics, using Bezier surfaces for the parametric adjustment of the phase map. With

this process it is possible to perform a thorough analysis and conclude on which optimization

model fits this type of approach.

Finally, by taking advantage of the properties of Bezier surfaces, it is possible to eliminate or

facilitate the process of unifying windows by partitioning where neighboring windows share
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an overlapping row or column. With this, a linear demodulation process could be carried out

on the overlapping regions, and then an adjustment could be made to eliminate the height

differences between the edges of the windows. This process would have the advantage that

it would not be necessary to use any type of extrapolation in the process of unification, in

addition to the fact that sharing the same edge guarantees that the bonding is perfect.
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