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A mi familia. Por estar alĺı siempre apoyándome, toda la paciencia y esfuerzo que han
realizado para ver cumplido este sueño. Mi pitufina por siempre estar alĺı apoyándome
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Abstract

Measurement of three-dimensional objects has become a current industrial issue to improve
manufacturing verification processes and reverse engineering. Measurements should not
modify or influence the manufacturing lines; therefore, they should be high-quality, high-
speed, and online. Hence, fringe projection profilometers (FPPs) have become a feasible
solution because of their low-cost hardware, speed, and proficiency to measure static and
dynamic objects. FPPs can be straightforwardly implemented with a multimedia projector
and a digital camera.

Initially, most proposals acquire one image to be processed digitally later using spatial
filtering. Although they can achieve the speed goal, the estimation quality can be deficient
for complex shapes. In order to improve the reconstruction quality, several techniques have
proposed color encoding to project and acquire three images. They are later processed
by phase-shifting algorithms (PSAs). It is noticeable that these FPPs fulfill the high-
speed requirement. Nonetheless, they must also have a very well-calibrated system and
satisfy the following conditions: (1) non-linear intensity distortion, (2) shapes with a good
diffuse reflection function, (3) avoidance or calibration of cross-talking problems, and (4)
a geometry configuration eliminating/reducing self-occluding shadows. Industrial items or
applications usually do not accomplish these requirements.

This thesis introduces an FPP (a proof-of-the-concept) gathering the above four re-
quirements and performing online measurements. This FPP can also estimate or inspect
a shape in a rectilinear uniform motion. The inspection is carried out by comparing a
testing shape to a calibrated one with a proposed technique.

When reconstructing industrial items, this FPP needs a temporal sequence of phase-
shifted fringe patterns (PS-FPs). The PS-FPs are obtained by translating the item’s
movements to a phase shift through image registration. The latter is done by comput-
ing a rough estimation of the shape for each pattern. Later, a pixel matching method
translates the acquired images into PS-FPs. Hence, one can employ the PSAs’ framework
for phase/shape retrieval in the classical sense, considering that shapes are static. We
proposed several PSAs with their spectral description and analysis to correctly retrieve
the phase and phase differences from the observed patterns. By acquiring many PS-FPs,
the first and second conditions are overcome. By encoding in the red and blue channels,
the third requirement is met. The last one is addressed by using a co-phased technique
having two projectors and a camera. This technique is a contribution to this thesis.
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Chapter 1
Introduction

Throughout history, human beings have needed to measure some physical features of the
world around them. For this purpose, human has manufactured different instruments
that have allowed us to understand nature better. They also have allowed us to create or
improve new products. Thus, the need arises for the devices used in the measurements to
be more and more exact.

Metrology is the science whose object of study is measurable physical properties, sys-
tems of units, measurement methods. Hence, this guarantees measurement normalization
through traceability. Nowadays, dimensional metrology has acquired an increasing inter-
est due to the industrial and medical needs, principally, to measure object surfaces and
generate their three-dimensional models. Based on their interaction with the testing ob-
ject, techniques used to build these models are classified into two main categories: invasive
and non-invasive.

Invasive techniques have physical contact with the physical feature to be measured.
Their main advantage is that mathematical models are not required, but instrument me-
chanic restricts the measurement resolution. For example, in 3D measurements, a stylus
must have contact with the whole surface. Therefore, it makes the required time in each
mensuration to be high; so, measuring is a slow task. On the other hand, in non-invasive
techniques, the instruments do not have physical interaction with the object, being its
main advantage. Novel hardware developments have made possible the creation of mea-
surement devices using acoustic, optical, or magnetic waves to perform measurements. In
these instruments, mathematical models allow not only retrieving measurement informa-
tion possible but also improving their accuracy.

In the area of optics, there are various non-invasive techniques to measure physical
properties. For example, photogrammetry works in the three-dimensional reconstruction
of objects. This technique requires capturing a sequence of images of a testing object
using cameras arranged in suitable positions. The main advantage of the method is that
it does not require a specific light source. Its principal disadvantage lies in the fact that
it needs to find the localization of common points through acquired pictures. Thus, this
task can be challenging [1]. A second non-invasive technique is the projection of laser
strips, whose basic principle is active triangulation. This technique obtains the data by
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projecting and acquiring laser strips on the testing object so that the camera captures
the object’s reflection map [2]. This technique can perform high-precision measurements.
One can vary the precision because the technique’s accuracy is subject to both the field
of view of the optical array and the sensitivity angle. The latter can be as large as the
object’s topography does not introduce self-occluding shadows.

Another technique is called shadow moiré that consists of projecting a pattern onto the
object under testing. By illuminating a modulating grating, this pattern is generated. To
distinguish the object and grating information, one requires to utilize a reference pattern; it
has only the grid’s data. Thus, the superposition of both projected patterns will generate
the called moiré pattern. So it has only the information corresponding to the object
under testing [3]. To recover the surface information, one employs the active triangulation
principle to relate the pattern displacements to heights.

Fringe projection is an analogous technique to shadow moiré. In the fringe projection
technique, one uses a multimedia projector to generate the projection pattern instead of
the grating. Typically, this technique consists of projecting and acquiring a sequence of
sinusoidal patterns containing the surface heights encrypted in their modulating phase
[4]. One then needs to retrieve it to obtain the height information. As in the previous
technique, fringe projection is also based on the active triangulation principle. Its main
advantage is the simplicity of the optical setup requiring a multimedia projector and a
camera. Whereas its disadvantage lies mainly in that the surface height and the recovered
information (phase) have a non-linear correspondence, needing to pay special attention to.

In the same sense, optical interferometry is a non-invasive technique that uses light
to measure physical properties with wavelength as the measurement unit [5,6]. The mea-
surements are determined indirectly since the observed values are interference patterns
(intensity values with a certain distribution) generated by the interaction with the testing
object. Light will see optical path lengths or optical path differences (OPDs) when the
testing object is present and is not; OPDs will translate into phase differences. Therefore,
these OPDs have the result of the interaction between light and the testing object. For ex-
ample, a mirror may introduce OPDs due to their topography; therefore, one can measure
it through the OPDs. In other words, physical feature measurements are determined by
solving an inverse problem that seeks to determine the cause, phase difference, generating
the observed phenomenon, which is an interference pattern.

There are several techniques based on optical interference such as interferometric moiré,
holography, speckle interferometry, photoelasticity, and others [6]; even though this fact,
they should be thought to be complete technique themselves. Furthermore, the technique
of fringe projection is employed, where a multimedia projector projects the digitally-
generated fringe pattern. Although this process does not require the optical interference
of light, we believe that reviewing optical interference concepts is needed to give a better
understanding of the image processing needed. Refer to [5, 6] for a detailed descrip-
tion. Furthermore, there are several fringe projection techniques in which one utilizes
fringe patterns coming from optical interference phenomena. For example, when using
an interferometer to obtain fringe patterns [7–9] or using a microscopic fringe projection
profilometer [10].
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1.1 Three-dimensional scanning using structured light

I would like to indicate that the term structured light will have the meaning of structured
illumination referring to the projection of light with a known shading pattern. This
definition is used thorough this thesis instead of structured beams; even though both terms
are much closed, the latter should be thought to be more specific. Hence, structured light
here refers to the light (being noncoherent and non-monochromatic) that one can digitally
shape and project using a multimedia projector and a computer. Some examples of this
kind of projection are grid lines, single lines, a cloud of pseudo-random dots, and sinusoidal
patterns.

One can use fringe projection to measure and observe changes in transparent or diffuse
objects. For example, considering the deflection of the projected fringes, one can visualize
flows [11], measure the optical aberration of lenses [12], measure temperature gradients
[13], and other applications. Although its effectiveness for measuring phase objects, the
fringe projection has been more extensively used to measure the surface of diffuse solids
[14].

By employing fringe projection, one can analyze static and dynamic objects. When
working with static surfaces, one needs to face the following drawbacks:

1. Gamma distortion is observed as a non-linear modification of the intensity values
that one introduces to the multimedia projector.

2. Temporal variations of the intensity modulation in the camera-projector system.

3. Self-occluding shadows generated by the topography of the object under study.

Because the object is static, one can acquire a large number of fringe patterns so that one
can cope with the gamma distortion. A common working frequency for both the camera
and projector will eliminate the second drawback. One can face the last one by performing
the measurement from several directions. These issues are now only mentioned; Chapter
3 goes through them in detail. On the other hand, when the under-study object is moving
through the field of view, one needs not only accomplishing the aforementioned drawbacks
but also the following ones:

4. Tracking the movement of the object.

5. When using sinusoidal patterns, the projected fringes’ spatial frequency needs to
be constant through the whole image. If the spatial frequency is not constant, the
measurement will have different sensitivities.

6. The camera’s exposition time versus the velocity of the object. When the object’s
velocity is so high compared with the exposition time, the observed fringe pattern
will be blurred.

To face the fourth issue, one can employ not only image registration methods but also
utilizing a projector whose transducer be parallel to the camera’s one and the reference
plane. In other words, one should homogenize the spatial frequency digitally or in the
setup; for extra explanations, refer to [15]. The last drawback can be faced by using a fast
camera or illuminating the object strongly.
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1.1.1 Three dimensional scanning of a moving object

This Section reviews the state of the art in scanning of moving object by means of fringe
projection profilometry. We believe that these works are the most representative one in
this topic.

Pawlowski and Kujawińska utilized the fringe projection method to reconstruct a dy-
namic object whose shape is thought to evolve with time [16]. They developed their
technique for creating 3D animations. The authors describe the observed fringe pattern
mathematically as

I(x, y; t) = a(x, y; t) + b(x, y; t) cos [u0x+ ω0t+ ϕ(x, y; t)] (1.1)

where a(x, y; t) is background intensity, b(x, y; t) is the fringe modulation; u0 is the spatial
carrier frequency and ω0 is the temporal one; ϕ(x, y; t) is the phase for a given time t.
Notice that the a, b and ϕ are considered to have time evolution. Paulowski propose to
phase demodulate Eq. (1.1) using both the Fourier-Takeda method and carrier phase-
shifting algorithms; these methods have the ability of retrieve the phase ϕ(x, y; t) for a
single image at certain time t [16]. The proposed technique shows that it might follow and
measure the dynamic object; however, it cannot measure the dynamic object with high
accuracy due to the phase demodulation methods used. In the same sense, Tan et al. uses
a similar technique to measure the shape of a swimming fish [17]; in which, the authors
projects laser strips and also uses a laser tracker to observe the position of the fish. Other
techniques have been proposed to measure an evolving object using the fringe projection
technique [18–20].

On the other hand, this technique has been also employed to measure a rigid object
while moving through the projected fringe pattern. In this kind of application, one usually
assumes that the object’s movement will translate into a fringe pattern movement; under
this condition, one can think the captured fringe patterns are being phase shifted. The
next paragraphs review the state of the art of techniques using both fringe projection and
phase-shifting algorithms.

Yoneyama and associates propose a technique to estimate a rigid shape which is in line
motion [21, 22]. Their technique requires to project an interferometric, sinusoidal fringe
pattern, and three linear sensors placed a certain disposition such that each one observes
a phase-shifted fringe pattern. Then, a phase-shifting algorithm is employed to retrieve
the phase map. The acquired sequence can be given mathematically by

I(x, y; t) = a(x, y; t) + b(x, y; t) cos [u0x+ ϕ(x, y) + ω0t] . (1.2)

Here one can observe that both background illumination and fringe modulation functions
have time variations because of the beam profile. However, when these time variations
are slight, the phase-shifting algorithm can cope with this kind of data; otherwise, the
algorithm must be robust again those changes.

Hu and Haifeng proposed to measure an object with line motion by means of the
Fourier-Takeda method using two scanning resolutions [23]. They project a composite
pattern, in grayscale, with two spatial frequencies: a low one in the left (first scanning line
and a high one in the right (second scanning line). Thus, the authors acquired two fringe
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patterns in two different moments. Thence, one can mathematically describe the fringe
patterns as

I1(x, y) = a(x, y) + b(x, y) cos [u1x+ ϕ1(x, y)]

I2(x+ ∆x, y) = a(x+ ∆x, y) + b(x+ ∆x, y) cos [u2x+ ϕ2(x, y)] ; (1.3)

where ∆x is a displacement in the moving direction. From Eq. (1.3), one can realize that
the fringe patterns have different fringe modulation and background functions. These
facts are not an issue because phase demodulation is done by the Fourier-Takeda method.
However, this demodulation method is expected to filter out the small shape details, and
so high accurate measurements are restricted.

Zuo and colleagues implemented a technique based on projecting a binary pattern
with dual-frequency for measuring a surface in a pseudo-dynamic scene [24]. The latter is
thought to be static while a sequence of five binary patterns is projected; then, the object
will start moving again. The authors utilized very high-speed hardware that allows them
to have the pseudo-dynamic scene; the time spent in projecting/acquiring was very short
such that they said the technique could achieve a speed of 1250 frames per second [24].
One can realize that this proposal does consider a static object. Therefore, the acquired
patterns should be modeled by means of the classic model for fringe patterns with high-
order harmonic contributions:

I(x, y, t) =

∞∑
k=0

bk(x, y) cos k [u1x+ ϕ1(x, y) + ω1t]

+

∞∑
k=0

ck(x, y) cos k [u2x+ ϕ2(x, y) + ω2t] ; t = 0, 1, . . . , 4. (1.4)

Here, bk and ck are the amplitudes of the k-th harmonic of the low and high frequencies,
respectively. The observed fringe patterns are described in terms of the Fourier series since
the projected binary patterns are defocused. It is noticeable that the way the authors
generated the binary patterns make the amplitudes of the first harmonics having very low
power (almost zero). Thence, the phase is well estimated because it does not have those
distortions due to harmonic.

Xi et al. have proposed a technique in which they considered an object moving not
only in (x, y) directions but also rotating [25]. The authors employed sinusoidal fringe
patterns and phase shifting algorithms, so the acquired patterns are mathematically given
by

I(x, y; t) = a(r, θ; t) + b(r, θ; t) cos [u0x+ ϕ(r, θ; t) + ω0t] ; t = 0, 1, . . . , N − 1. (1.5)

In this case, the author propose to use the sequence of N -patterns to determine the phase
ϕ(x, y). It is noticeable that the temporal changes in ϕ corresponds only a rotation and a
translation because of measuring a rigid shape. Let R and t be the rotation matrix and
translation vector, then one can match the pixels of two patterns by means of

Ĩ∈(ξ,η) = RI∈(r,θ) + t; (1.6)
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hence, one can have the patterns centered in the plane (ξ, η); this task is done for each
fringe pattern. Thence, one needs to perform a image registration in order to obtain the
sequence of fringe patterns given by

Ĩ(ξ, η, t) = a(ξ, η, t) + b(ξ, η, t) cos [u0x+ ϕ(ξ, η) + ω0t] ; t = 0, 1, . . . , N − 1. (1.7)

Here the temporal variations of the background and fringe modulation functions are due
to reflection conditions and background intensity. One can realize that phase ϕ can be
straightforwardly retrieved by a phase shifting algorithm in piece-wise manner. To this
end, the authors employed the N -step algorithm which performs well provided that the
acquired fringe patterns were acquired while moving in a small neighborhood; this mean
that the temporal variations of a and b are neglected. In these conditions, one should also
expect that the sensitivity of the corrected pattern is slightly different because the fringe
pattern is obliquely projected.

In the same sense, Lu et al. introduced a technique to 3D scan objects being translation
and rotation motion [26]. The main differences between proposal [25] and this one is the
fact Lu et al. [26] codify the projected fringe patterns in the red channel; meanwhile, they
use the captured image in the blue channel as the input to the pixel matching algorithm.

With the same aim, Yuan et al. proposed their technique in which the multimedia
projector is orthogonal to the reference plane, and its camera is in oblique view [27]. Their
proposal considers the object is moving in the rectilinear direction along the x-axis; so the
acquired fringe patterns are given by Eq. (1.5) but without the rotations. The authors
propose to first re-project the acquired patterns such that the re-projected ones are in
an aerial view. Therefore, re-projected patterns would have uniform spatial sensitivity.
After applying a pixel matching algorithm, the object will appear stationary. Finally, the
N−step phase-shifting algorithm will retrieve the phase. However, as in Reference [25],
movements should be small to neglect the influence of the temporal variations of a and b.

Wan and co-workers proposed a technique needing to project and acquire 15 fringe
patterns [28]. To reduce the projection/acquisition time, the authors codified three pat-
terns into a red-green-blue (RGB) image, and in this manner, the technique now requires
to project and acquire only five RGB patterns. The authors also employ patterns with
three different spatial carriers, one in each color channel; hence, they can improve not
only the signal-to-noise ratio of the estimated phase but also simplify the estimation. The
author also consider the under-study object is in linear motion; so the acquired patterns,
in red channel, are given by

Ir(x, y; t) = ar(x, y; t) + br(x, y; t) cos [u1x+ ϕ1(x, y; t) + ω0t]

+ αr←gbg(x, y; t) cos [u2x+ ϕ2(x, y; t) + ω0t]

+ αr←bbb(x, y; t) cos [u3x+ ϕ3(x, y; t) + ω0t] ; t = 0, 1, . . . , 4. (1.8)

Here subscripts r,g,b indicates the color channels; αr←g and αr←b are the cross-talking
coefficients. In an analogous way, one can describe the patterns coming from the other two
channels. With the aim of phase demodulating the fringe patterns, the authors performed
a cross-taking correction and a pixel matching algorithm such that the corrected patterns
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are described as

Ir(x, y, t) = ar(x, y) + br(x, y) cos [u1x+ ϕ1(x, y) + ω0t] ,

Ig(x, y, t) = ag(x, y) + bg(x, y) cos [u2x+ ϕ2(x, y) + ω0t] ,

Ib(x, y, t) = ab(x, y) + bb(x, y) cos [u3x+ ϕ3(x, y) + ω0t] ; t = 0, 1, . . . , 4. (1.9)

These three sets of fringe patterns are straightforward to be phase demodulated, and
so, the global phase is determined by means of the three phases. One can realize that
this technique will perform well when the fringe patterns are acquired herein a small
neighborhood.

Li et al. developed a very complete profilometer to measure moving objects in linear
and rotational motion scale-invariant feature transform [29]. The authors used phase-
shifted fringe patterns with a linear carrier for measuring rectilinear-moving objects;
whereas, a quadratic carrier (closed fringes) for measuring objects in a rotation motion.
The technique also utilizes a re-projection method to correct the oblique view of the cam-
era. The author spent special attention on the pixel matching task so that their proposal
seems to perform well even with patterns that have low fringe contrast. By using a phase-
shifting algorithm for randomly-distributed shifts, the phase estimation is highly accurate.
They obtain phase errors around 0.01 rad. It is noticeable that this technique can cope
with large movements because the authors correct the spatial frequency deviations and
correct the fringe modulation in a normalization sense.

Guo and associates’ technique can scan a moving object based on multiple captures,
and Fourier-Takeda method [30]. In this technique, the authors phase demodulate each
acquired pattern separately; hence, each phase map is temporal. By working with the
temporal phase maps, a pixel matching algorithm applies the translations and rotations
until all phase maps are aligned. Once the previous task ended, the authors employ a
weighted average method to combine the temporal phases, and hence, the global phase
map is determined. Because of data redundancy, this phase will have a good signal-to-noise
ratio; nonetheless, it will not have a high exactitude due to the global spatial filtering.
Whence, one should expect that the final phase will be over-smooth.

Flores et al. developed a profilometer to reconstruct objects moving in a linear direction
based on color (RB) codification and a phase-shifting algorithm for non-uniformly spaced
shifts [31]. Their technique projects and acquires the sinusoidal patterns in the red channel,
and the blue channel has only a picture of the object. The authors employ the latter to
do the pixel matching algorithm. The acquired patterns are given by

Ir(x, y; t) = a(x, y; t) + b(x, y; t) cos [u0x+ ϕ(x, y; t)] . (1.10)

Here the authors employ only one fringe patterns. After capturing, performing the pixel
matching correction, and the fringe normalization the fringe patterns, the authors obtain
corrected the phase-shifted patterns described by

Ĩr(x, y, t) = 1 + cos [u0x+ ϕ(x, y) + Θ(t)] ; (1.11)

where Θ(t) is the phase-shift function. In this technique, objects are considered to move
in a small neighborhood, despite the authors corrected temporal variations of the fringe
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modulation function. This fact is because they also did not address the spatial, sensitivity
changes due to spatial non-monochromatic.

Lu et al. proposed a technique that can measure objects with discontinuous shape
being also in motion [32]. To cope with shape discontinuities, the authors project two
kinds of fringe patterns: the first one has a low spatial frequency and the other has a
high spatial frequency. The authors proposed to employ scale-invariant feature transform
(SIFT) to track the object. The phase retrieval is done using a phase-shifting algorithm.
The authors also perform a phase correction to improve its accuracy. Nonetheless, the
main advantage of this technique is that the phase is computed using only two fringe
patterns: one low- and one high-frequency pattern. However, its main disadvantage is
that the patterns are projected alternatively, so it makes the technique lose velocity.

1.2 Aim and objectives

Reconstruct the three-dimensional shape of solids in linear motion using fringe projection
and co-phased techniques.

1.2.1 Objectives

1. Study and develop phase demodulation methods using the formalism based on the
Fourier transform; it is called the frequency transfer function (FTF) formalism.

2. Study and develop co-phase techniques for profilometry.

3. Solve the spatial frequency variations due to surface depth.

4. Implement the proposed fringe projection profilometer.

1.3 Thesis structure

The rest of this thesis is organized in four Chapters. Chapter 2 goes through digital in-
terferometry; it describes the procedure to obtain the phase from fringe patterns. This
Chapter pays special attention in phase demodulation of phase-shifted fringe patterns by
means of linear quadrature filters. Chapter 3 introduces fringe projection profilometry; it
describes the procedure to obtain heights by projecting sinusoidal patterns. The gamma
distortion is also explained and overcome in this Chapter. Moreover, this Chapter describes
how one can overcome the self-occluding shadows commonly seen in this technique. The
Chapter’s last Section describes the procedure to perform the three-dimensional recon-
struction of an object in rectilinear motion. Chapter 4 shows some results depicting the
feasibility of the proposal. Finally, Chapter 5 mentions our main conclusions.



Chapter 2
Fringe analysis

El principio consiste en que la suma de los
cuadrados de las diferencias entre lo observando
y las cantidades calculadas debe ser mı́nimo.

Carl Friedrich Gauss

This Chapter discusses the topic of fringe analysis that mainly consists of retrieving
the information with the measurement. It is well-known that such information is code in
the intensity pattern. To this end, one has to analyze the fringes of one o more intensity
patterns; this topic is called fringe analysis. Usually, one is interested in recovering the
modulating phase, which determines the intensity distribution, having the optical path
difference related to the physical feature to be measured. Fringe analysis needs to perform
three steps: (1) phase demodulation, (2) phase unwrapping, and (3) mapping the phase
to real units. Phase demodulation consists of retrieving the wrapped phase with 2π dis-
continuities. The phase unwrapping procedure removes these discontinuities, and hence,
the continuous phase is obtained. Finally, the third step entails the interpretation of the
continuous phase in terms of real unities. By reason, the experimental setup determines
the mapping step, the present Chapter does not examine this topic.

The Chapter is organized into three Sections: the first two talk about the phase de-
modulation process with one and multiple fringe patterns, respectively. The last Section
goes through the phase unwrapping procedure.

2.1 Phase demodulation of a single fringe pattern

This Section briefly introduces the techniques developed for phase retrieval from a single
intensity pattern. Let one consider the acquired intensity pattern mathematically given
by

I(x, y) = a(x, y) + b(x, y) cos [ϕ(x, y)]

= a(x, y) +
b(x, y)

2
eiϕ(x,y) +

b(x, y)

2
e−iϕ(x,y) (2.1)

9
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where a(x, y) is the background illumination, b(x, y) is the fringe modulation and ϕ(x, y)
is the phase map. From this equation, one can observe that a(x, y), b(x, y), and ϕ(x, y)
are unknown variables to be calculated while having a single observation I(x, y); there are
three unknowns variables and one equation. Thus, the phase retrieval problem is ill-posed
in the Hadamard’s sense [33].

There exist two categories to classify the fringe patterns depending on introducing a
known carrier or not. The former is named a carrier fringe pattern having open fringes,
whereas the latter has close ones. Servin and associates have called the algorithms to
retrieve the phase from such fringe patterns as methods with carrier and without carrier,
respectively [34].

First, methods with carrier take advantage of the introduced carrier as prior infor-
mation. The latter allows separating the three terms of interferometric signal in Eq.
(2.1); hence, its spectrum is composed of three lobes. Consequently, the searched signal
can be retrieved by using frequency-domain low-pass filters [15, 35–38] or spatial-domain
quadrature filters [39–42]. Several carrier functions have been proposed like 1D and 2D
tilt [43, 44] and parabolic [45] in optical shop testing, pixelated carrier for dynamic mea-
surements [44, 46, 47], and so on. Perhaps the tilted carrier is the most widely employed
because it is straightforwardly introduced by titling the wavefront. But also, one can easily
estimate the tilted carrier in the frequency domain. In the fringe projection profilometry
area, one usually projects a sequence of tilted carrier fringe patterns where this carrier is
the sensor of the system.

On the other hand, when using methods without carrier, the lobes appearing in the
spectrum of the intensity pattern in Eq. (2.1) will overlap one another. In particular,
the two lobes having the phase map; thence, the separation of them by frequency-domain
filtering is impossible in a global sense. While in a local sense, several methods bear in
mind that the fringe pattern is monochromatic in a neighborhood. Hence, by a robust
quadrature filter tuned at the local frequency, the phase map is locally approximated.
The next neighborhood is then phase demodulated following a path through the fringe
pattern; refer works [48,49]. In these methods, the phase is assumed to be smooth and has
a good range. It also has been proposed nonlinear optimization methods to demodulate
a neighborhood of closed-fringe patterns. These methods recover the whole phase solving
the nonlinear cost function following a tracker algorithm [50–53] and others; however, they
also assume that the phase is smooth. Proposals [48–53] are not only strongly depended
of the phase demodulation path, but also they are very high computationally expensive.
Alternatively, the method based on the 2D Hilbert transform and the spiral operator
[54–56] is a low computational cost, as well as it can retrieve the phase map very well
when the fringe patterns are locally quasi-monochromatic. A more detailed description of
methods without carrier is beyond the thesis scope because they are not seen commonly
in fringe projection profilometry.

The rest of this Section draws the case of interferometry signal having a spatial carrier.
One mostly observes this kind of data in dynamic measurements where a single interfer-
ogram is usually acquired. In this context, one usually introduces a spatial carrier into a
fringe pattern as prior information that one then uses to phase demodulate the data. It is
noticeable that a well-selected spatial carrier will make the phase demodulation procedure
to be significantly straightforward than without it.
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It is common to call spatial carrier fringe patterns those having a spatial carrier. They
can be mathematically described by

I(x, y) = a(x, y) + b(x, y) cos [ϕ(x, y) + c(x, y)] , (2.2)

where I(x, y) is the intensity acquired, a(x, y) indicates the background illumination,
b(x, y) is the fringe contrast, ϕ(x, y) is the phase searched, and c(x, y) is the spatial carrier
introduced. By taking the bi-dimensional Fourier transform of the fringe pattern, one
obtains its spectrum given by

I(u, v) = F(x,y) {I(x, y)}

= F(x,y)

{
a(x, y) +

b(x, y)

2
ei[ϕ(x,y)+c(x,y)] +

b(x, y)

2
e−i[ϕ(x,y)+c(x,y)]

}
= F(x,y) {a(x, y)}+ F(x,y)

{
b(x, y)

2
ei[ϕ(x,y)+c(x,y)]

}
+

+ F(x,y)

{
b(x, y)

2
e−i[ϕ(x,y)+c(x,y)]

}
= A(u, v) +W (u, v) +W ∗(−u,−v). (2.3)

Here i =
√
−1, F(x,y) {•} is the operator of the bi-dimensional, spatial Fourier transform

and (u, v) are the coordinates of the bi-dimensional Fourier domain, commonly called the
bi-dimensional frequency domain. The spatial carrier must be as higher frequency such
that the three spectral components, in Eq. (2.3), are separable from each other.

Once the spectral components are well separated, the analytic signal or wavefront can
be straightforwardly obtained as

S(x, y) =
b(x, y)

2
eiϕ(x,y) ∝

[
I(x, y)e−ic(x,y)

]
~~h(x, y), (2.4)

where ~~ means bi-dimensional convolution, and h(x, y) is the impulsive response of a
filter. By substituting Eq. (2.2) in Eq. (2.4) and the Euler’s formula, one we can obtain
that

S(x, y) ∝
[
a(x, y)e−ic(x,y) +

b(x, y)

2
eiϕ(x,y) +

b(x, y)

2
e−iϕ(x,y)e−i2c(x,y)

]
~~h(x, y),

∝ a(x, y)e−ic(x,y) ~~h(x, y) +
b(x, y)

2
eiϕ(x,y) ~~h(x, y)

+
b(x, y)

2
e−iϕ(x,y)e−i2c(x,y) ~~h(x, y). (2.5)

By taking the Fourier transform, Eq. (2.5) can be rewritten as following:

S(u, v) = F(x,y) {S(x, y)} ∝ [A(u, v) ~~C(u, v)]H(u, v) + S(u, v)H(u, v)

+

[
1

2
S∗(−u,−v) ~~C∗

(
−u,−v

2

)]
H(u, v). (2.6)

Here C(u, v) = F(x,y) {exp [ic(x, y)]}, and H(u, v) is the spectral response of the filter
h(x, y).

Based on Eq. (2.6), it can be stated that the analytic signal estimation needs to fulfill
the following conditions:
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1. Eliminate the background illumination:

[A(u, v) ~~C(u, v)]H(u, v) = 0. (2.7)

2. Remove the complex-conjugated signal:[
1

2
S∗(−u,−v) ~~C∗

(
−u,−v

2

)]
H(u, v) = 0. (2.8)

3. Keep the searched signal:
S(u, v)H(u, v) 6= 0. (2.9)

These conditions in Eq. (2.7) – (2.9) are called the spatial quadrature conditions.
On the other hand, the spatial carrier must fulfill the conditions∣∣∣∣∂ϕ∂x

∣∣∣∣
max

<

∣∣∣∣ ∂c∂x
∣∣∣∣
max

,

∣∣∣∣∂ϕ∂y
∣∣∣∣
max

<

∣∣∣∣∂c∂y
∣∣∣∣
max

(2.10)

Meanwhile, the sampling Nyquist criterion requires that∣∣∣∣∂ϕ∂x
∣∣∣∣
max

+

∣∣∣∣ ∂c∂x
∣∣∣∣
max

< π,

∣∣∣∣∂ϕ∂y
∣∣∣∣
max

+

∣∣∣∣∂c∂y
∣∣∣∣
max

< π. (2.11)

Moreover, one must know the carrier sign to obtain the correct one of the phase maps.

2.1.1 The Fourier-transform method

This method is based on frequency-domain filtering out lobes A(u, v) and S∗(−u,−v) while
keeping S(u, v). It was introduced by Takeda et al. [15,35] where the authors initially use
one-dimensional analysis with a linear carrier. Then, the method was extended to the
bi-dimensional analysis [36].

This method is mathematically equivalent to Eq. (2.4) – (2.6), from these equations,
the phase can be straightforwardly estimated as

ϕ̂W(x, y) = arctan

[
Im {S(x, y)}
Re {S(x, y)}

]
(2.12)

where arctan has range (−π, π], it is commonly called artan2 in numerical libraries. Re{•}
computes the real part of a complex number, and Im{•} the imaginary part. Algorithm
1 describes the so-called Takeda’s method, where fft2 and ifft2 indicate the usual
computational implementation of the discrete Fourier transform and the inverse discrete
Fourier transform, respectively; details about fft2 and ifft2 can be found in books
[57–59].

Input: Fringe pattern I(x, y), frequency domain filter H(u, v), and carrier c(x, y).
Make the product Is(x, y)←− I(x, y)e−ic(x,y), ∀(x, y).
Compute the Fourier transform I(u, v)← fft2 [Is].
Perform the spatial filtering S∈F (u, v)←− I(u, v)H(u, v), ∀(u, v).
Compute the inverse Fourier transform S∈(x,y) ←− ifft2 (S∈F ).

Obtain the phase ϕ̂(x, y)←− arctan
[

Im{S(x,y)}
Re{S(x,y)}

]
.

return the estimated phase ϕ̂(x, y).
Algorithm 1: Takeda’s method for phase demodulation.
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Perhaps the most employed filters, when using the Takeda’s method, are the rectan-
gular binary, the circular binary, and the Gaussian windows; they are mathematically
described as

HRect(u, v) =

{
1 if |u| < umax and |v| < vmax

0 otherwise.
(2.13)

HCircle(u, v) =

{
1 if

√
u0 − u)2 + (v0 − v)2 ≤ r

0 otherwise.
(2.14)

HGaussian(u, v) = exp

[
−(u0 − u)2

2σ2
u

− (v0 − v)2

2σ2
v

]
. (2.15)

In Eq. (2.13), umax and vmax define the bandwidth of the filter along u and v directions,
respectively; in Eq. (2.14), r is the radius of the circle and it determines the pass-band;
in Eq. (2.15), σ2

u is the variance along u direction and σ2
v in the v direction, they both

determine the bandwidth of the pass band. It is noticeable the Gaussian filter does not
fulfill the spatial quadrature conditions in Eq. (2.7) – (2.9), and so these have to be relaxed
trivially.

2.1.2 The linear carrier fringe pattern

The linear carrier is given by c(x, y) = u0x + v0y. Then, the fringe pattern with a linear
carrier is described mathematically by

I(x, y) = a(x, y) + b(x, y) cos [ϕ(x, y) + u0x+ v0y] (2.16)

where u0, v0 are the frequencies along the x and y direction, respectively; these frequencies
must fulfill the conditions in Eq. (2.10) to obtain open fringes and Eq. (2.11) to accomplish
the Nyquist criterion. Moreover, one must know the sign of the carrier to obtain the correct
sign of the searched phase.

To understand how the interferogram is phase demodulated, let one take the Fourier
transform of I(x, y) in Eq. (2.16);

I(u, v) = F(x,y){I(x, y)} = A(u, v) +W (u, v) +W ∗(−u,−v);

where,

A(u, v) = F(x,y){a(x, y)}

S(u− u0, v − v0) = F(x,y) {W (x, y)} = F(x,y)

{
1

2
b(x, y)ei[ϕ(x,y)+u0x+v0y]

}
= F(x,y)

{
1

2
b(x, y)ei[ϕ(x,y)

}
~~F(x,y)

{
ei(u0x+v0y)

}
= S(u, v) ~~ [δ(u− u0)δ(v − v0)]

S∗(−u− u0,−v − v0) = F(x,y) {W ∗(x, y)} = F(x,y)

{
1

2
b(x, y)e−i[ϕ(x,y)+u0c+v0y]

}
.
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= F(x,y)

{
1

2
b(x, y)e−iϕ(x,y)

}
~~F(x,y)

{
e−i(u0x+v0y)

}
= S∗(−u,−v) ~~ [δ(−u− u0)δ(−v − v0)] .

Thence, the spectrum of the linear carrier is given by

I(u, v) = A(u, v) + S(u− u0, v − v0) + S∗(−u− u0,−v − v0); (2.17)

and so, the searched spectral component is located at (u0, v0) where the positive sign of
ϕ(x, y) is herein. Continuing with Algorithm 1, the frequency shifted spectrum is given
by

Is(u, v) = F(x,y)

{
Ise
−i(u0x+v0y)

}
= I(u, v) ~~ [δ(u− u0)δ(v − v0)]

= I(u+ u0, v + v0)

= A(u+ u0, v + v0) + S(u, v) + S∗(u+ 2u0, v + 2v0); (2.18)

where one can see that the searched lobe is located at the origin (u = 0, v = 0). Figure 2.1
depicts the procedure to estimate the phase. Is(u, v) is shown in Fig. 2.1(a), (b) has the
superposition of the spectra Is(u, v) and the filter’s HRect(u, v), as well as the spectrum
of the estimated analytic signal is herein Fig. 2.1(c). Finally, the estimated phase map is
seen in Fig. 2.1(d).

Figure 2.1 depicts Takeda’s method for phase demodulation of a linear carrier fringe
pattern. One can realize that the method is simple and powerful; however, estimating
well a phase requires that the signal lobes be well separated, i.e., the spectral lobes do
not overlap each other. When the searched phase has small details or edges (locally no
smooth), the spectral lobes S(u, v) will spread out; and therefore, S(u, v) can overlaps
with A(u+ u0, v + v0), or even so, S∗(u+ 2u0, v + 2v0). Thence, the filter cannot isolate
the spectrum of the analytic signal well, and the phase will not have the small details.
In this case, one should employ filter HGaussian(u, v) instead of HRect(u, v) or HCircle(u, v)
to smooth the amplitude of the spectral components; this fact will translate from waving
phases where the derivative of the true phase is large into a smoothed version of the true
phase.

u

v

‒π

π‒π

π(b)

u

v

‒π

π‒π

π(a)

u

v

‒π

π‒π

π(c) (d)

Figure 2.1: Frequency domain filtering of the linear carrier fringe pattern: (a) magnitude of
frequency shifted spectrum |Is(u, v)|, (b) |Is(u, v)|+|HRect(u, v)|, (c) spectrum of estimated

analytic signal
∣∣∣Ŝ(u, v)

∣∣∣ = |Is(u, v)HRect(u, v)|, and (d) the retrieved wrapped phase.
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In order to avoid over smoothing the phase, it has been proposed to phase demodulate
the fringe pattern in a neighborhood manner by means of the windowed Fourier transform
(also called the short-time Fourier transform) [60] as well as its generalization the Wavelet
transform [61]. The main idea consists of computing the analytic signal in a neighborhood
where spectral lobes do not overlap. Therefore, one needs to repeat the algorithm 1 [adding
the Gaussian window while computing I(u, v)] at each neighborhood. To automatize such
a task, one has to optimize both the Gaussian width and the neighborhood size [62].
Furthermore, the searched spectral lobe’s local frequency is needed to be computed [60,62].
Usually, one fixes the neighborhood size while optimizes both the local frequency and the
Gaussian window at each vicinity. These two procedures make the global estimation
computationally expensive, although one takes advantage of FFT algorithms and their
well-documented computational performance.

2.2 Multiple fringe patterns: phase-shifting algorithms

Phase-shifting interferometry (PSI) is a well-known technique for phase measurement in
optical metrology. PSI consists of capturing a time sequence of fringe patterns (intensities)
being temporal phase shifted. By moving a mirror, gratings, tilted glass plates, or po-
larization components, phase shifts are introduced. After, one can compute the searched
phase map through methods called phase-shifting algorithms. These methods solve the
phase as a linear combination of the captured fringe patterns. It is noticeable that phase
shifts may be inexact due to intrinsic and extrinsic problems of the phase shifter.

Figure 2.2 draws the idea behind phase retrieval using a temporal phase-shifting al-
gorithm. This figure plots the continuous-time fringe localized at pixel (x, y). One can
realize that the aim is to estimate the phase that generates the temporal sinusoidal signal’s
initial displacement.

In the beginning, PSI consisted of solving a system of equations with the objective of
estimating the phase map. However, Servin et al. [63] have proposed a modern formulation
based on the frequency transfer function (FTF) of the phase-shifting algorithm (PSA).
This formulation is called the FTF formalism.

Time axis [a.u.]

Intensity [a.u.]

0

a

b

φ

Figure 2.2: Schematically description of phase estimation utilizing temporal phase-shifting
algorithms at arbitrary pixel (x, y). Notice that the initial displacement of the temporal,
continuous sinusoidal signal corresponds to the phase to be measured.
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2.2.1 FTF formalism for phase-shifting algorithms

Considering a continuous-time fringe given by

I(x, y, t) = a(x, y) + b(x, y) cos [ϕ(x, y) + ω0t] , (2.19)

where (x, y) are spatial dependencies, ϕ(x, y) is the searched phase coming from a static
object, a(x, y) is the background illumination or bias without temporal variation, b(x, y)
is the fringe modulation without temporal variation, and ω0 is the temporal carrier in
radians per second [rad/s]; refer to Fig. 2.2. Then, the temporal sequence, having the
recorded fringe patterns, is a set of samples of Eq. (2.19), so it is

I(x, y, n) =

∞∫
−∞

I(x, y, t)δ(t− tn)dt = a(x, y) + b(x, y) cos [ϕ(x, y) + ω0tn] . (2.20)

Here, δ(t) is the Dirac delta, n = 0, 1, . . . is the discrete-time variable, and tn is the time
when the nth sample was taken.

As aforementioned, in PSI, the phase estimation is done one pixel as a function of
the time; for simplicity, spatial dependence is dropped. By taking the temporal Fourier
transform of I(x, y, t), the temporal spectrum of the continuous-time fringe is determined
as

I(ω) = Ft {I(t)} = Ft {a}+ Ft {b cos [ϕ+ ω0t]}

= aδ(ω) + Ft
{
b

2
eiϕeiω0t

}
+ Ft

{
b

2
e−iϕe−iω0t

}
= aδ(ω) +

b

2
eiϕFt

{
eiω0t

}
+
b

2
e−iϕFt

{
e−iω0t

}
= aδ(ω) +

b

2
eiϕδ(ω − ω0) +

b

2
e−iϕδ(ω + ω0), (2.21)

where Ft {•} is the operator of the temporal Fourier transform. Figure 2.3 depicts the
temporal Fourier spectrum where one can see that the spectrum is a sum of three Dirac
deltas located at ω ∈ {−ω0, 0, ω0}. Keeping the spectral component at ω = ω0 and filtering
out at ω ∈ {0, ω0}, the wrapped phase can be retrieved by

ϕ̂W = angle

(
b

2
eiϕ
)

(2.22)

e–iφb
2

eiφb
2

a

0–ω0 ω0

ω

Figure 2.3: The temporal spectrum of the continuous-time fringe. Notice that the spec-
trum is the sum of three Dirac’s deltas.
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e–iφb
2

eiφb
2

a

0–ω0 ω0

ω

H(ω) e–iφb
2

eiφb
2

a

0–ω0 ω0

ω

×I(ω)H(ω)

×

Figure 2.4: Schematic description of the estimation of the analytic signal through a filter
H(ω). Right-hand side shows the estimated component as the product of the fringe’s
spectrum I(ω) and the filter’s frequency response H(ω).

where angle(•) is the argument of the complex number, and subscript W means wrapped
phase. The term (b/2) exp(iϕ) is called the analytic signal and is needed to be insulated
in order to retrieve the phase.

With the objective of computing the analytic signal, a filter is required to be designed
such that its frequency response H(ω) is able to estimate the analytic signal. Figure
2.4 schematically depicts the procedure to compute the analytic signal as the product of
H(ω) and the fringe’s spectra I(ω). Thence, the analytic signal –in the Fourier domain–
is described as

b

2
eiϕH(ω0)δ(ω − ω0) = I(ω)H(ω); (2.23)

thus, the frequency transfer function H(ω) must fulfill the quadrature conditions being
given by

H(ω = 0) = 0, H(ω = −ω0) = 0, H(ω = ω0) 6= 0. (2.24)

Because phase-shifting algorithms fulfill the quadrature conditions, they are named quadra-
ture linear filters.

On the other hand, due to the fact that the number of recorded fringe patterns is finite
(usually from 3 through 10), the FTF H(ω) can be given by

H(ω) =

N−1∑
n=0

cne
−iωtn (2.25)

where N is the number of recorded fringe patterns. In Eq. (2.25), one can see that H(ω)
is a continuous function, furthermore, H(ω) is the Discrete-Time Fourier transform of the
coefficients {cn}. Thence, the filter’s impulsive response is computed as the inverse Fourier
transform of its FTF, this is

h(t) =
N−1∑
n=0

cnδ(t− tn). (2.26)

Finally, by means of the convolution theorem [64, 65], equation (2.23) is rewritten in the
time domain as

b

2
H(ω0)eiϕ = I(t) ~ h(t)|t=tN (2.27)

=
N−1∑
n=0

cN−n−1I(t = tn); (2.28)
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where ~ means convolution operation and H(ω0) is the value of the FTF at ω = ω0. In
equations (2.27) – (2.28), the convolution operation is done at t = tN . By means of the
Correlation property of the Fourier transform, the equation (2.28) can be rewritten as

b

2
H(ω0)eiϕ =

N−1∑
n=0

c∗nI(t = tn). (2.29)

Here, c∗n is the complex conjugate of cn. The last equation is extensively used in the
literature even when omitting the complex conjugation; in that case, one must correct the
phase sign.

Building-blocks technique to design phase-shifting algorithms

This technique was introduced by Surrel [66] as well as Gonzalez et al. [67]; it is commonly
employed when the phase steps are uniformly spaced. We believe that this technique is
simple and powerful since it requires only adding blocks of zeros at those frequencies to
be filtered out. The fundamental block is given by[

1− e−i(ω±2πν)
]

(2.30)

where 2πν is the radial frequency to be rejected; when using this technique, it is usual
that 2πν = Mω0 being M an integer. Then, the quadrature conditions in Eq. (2.24) are
fulfilled straightforwardly by adding two blocks tuned at ω = 0 and ω = −ω0; and so, one
obtains the FTF given by

H(ω) =

H(ω=0)=0︷ ︸︸ ︷[
1− e−i(ω+0)

] H(ω=−ω0)=0︷ ︸︸ ︷[
1− e−i(ω+ω0)

]
. (2.31)

The impulsive response is obtained by taking the inverse Fourier transform of the FTF;
this is

h(t) = F−1
t {H(ω)}

= F−1
t

{
1−

(
1 + e−iω0

)
e−iω + e−iω0e−i2ω

}
= δ(t)−

(
1 + e−iω0

)
δ(t− 1) + e−iω0δ(t− 2)

= c0δ(t) + c1δ(t− 1) + c2δ(t− 2);

and hence, the PSA requires three fringe patterns. In general, one can add extra zeroes to
eliminate other frequencies; the resulting algorithm will have (N = numblocks + 1) phase
steps.

Finally, it is worth mentioning that the FTF formalism is useful because it provides
some formulas that allow one to analyze and describe PSAs analytically. In particular,
these formulas mean how an algorithm behaves against: noise, harmonics, and detuning
[34]. The Section’s rest is describing these formulas.
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2.2.2 Noise robustness

It is well-known that there are typically two noise sources corrupting a fringe pattern:
electronic noise being additive, whereas the speckle being multiplicative [34]. The former
is intrinsic to all measurements, and the latter is due to the reflection of coherence light
on optically-rough surfaces [68]. Fringe patterns, having these two kinds of noise, can be
written as

Inoised(x, y, n) = a(x, y) + b(x, y) cos [ϕ(x, y) + ω0t+ ηs(x, y)] + ηa(x, y, t) (2.32)

where ηs(x, y) is the speckle no having changes in the time axes because it only depends
on the surface’s roughness. Additive noise is denoted by ηa(x, y, t) and changes spatially
and temporally.

The speckle can be filtered out though spatially low pass filtering of every fringe pat-
tern, then additive noise will corrupt the fringe patterns. Under this consideration and
omitting the spatial dependence, the equation (2.32) can be rewritten as

Inoised(t) = I(t) + η(t); (2.33)

η(t) is considered to be ergodic and zero mean. Then, the convolution of the data Inoised(t)
and the filter h(t) can be written as

s(t) = Inoised(t) ~ h(t), (2.34)

or in the frequency domain as

S(ω) = Ft {s(t)} = Inoised(ω)H(ω) = I(ω)H(ω) +N(ω)H(ω). (2.35)

In the last equation, N(ω) = Ft {η(t)} for very-large time realizations. One can say that
the ensemble average of s(t) is given by

E [S(ω)] =
b

2
eiϕδ(ω − ω0) (2.36)

and the variance is given by [69]

E
[
S2(ω)

]
= σ2

S =
1

2π

π∫
−π

|N(ω)|2 |H(ω)|2 dω. (2.37)

By means of equations (2.35) – (2.37), equation (2.34) has solution given by

s(t) = Inoised(t) ~ h(t) =
b

2
ei(ϕ+ω0t) + ηH(t) (2.38)

where ηH(t) is non-white, complex-valued noise with variance σ2
S . One is searching the

angle of the analytic signal, this is given by

ϕ̂noised = angle {E [S]} , (2.39)
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whose standard deviation is given by [69]√
E
[
ϕ2

noised

]
= σϕ = tan−1

[
σS/2

(b/2)H(ω0)

]
≈ σS/2

(b/2)H(ω0)
, (2.40)

where one assumes a low noise power. From Eq. (2.39) and (2.40), the variance of the
estimated phase can be described as [69]

σ2
ϕ =

(η/2)2 1
2π

∫ π
−π |N(ω)|2 |H(ω)|2 dω
|(b/2)H(ω0)|2

=
(η/2)2

|(b/2)|2
1

2π

∫ π
−π |N(ω)|2 |H(ω)|2 dω

|H(ω0)|2

=
(η/2)2

|(b/2)|2
1

2π

∫ π
−π |H(ω)|2 dω
|H(ω0)|2

=
σ2
η

|(b/2)|2
1

2π

∫ π
−π |H(ω)|2 dω
|H(ω0)|2

. (2.41)

Here it was employed Parseval’s theorem; σ2
η is the variance of original noise η(t). From

Eq. (2.41), one can realize that the phase’s variance is inversely proportional to the fringe
modulation function. Moreover, one can see that the phase’s variance can be reduced by
making lower the right-side fraction having the PSA’s characteristics.

From Eq. (2.41), the SNR of the estimated analytic signal is given by

SNR =
(b/2)2

η/2

[
|H(ω0)|2

1
2π

∫ π
−πH(ω)H∗(ω)dω

]
(2.42)

whence, one can define the SNR gain of the PSA as [69]

GSNR
def
=

Quadrature Signal Power

Filtered Noise Power
=

|H(ω0)|2
1

2π

∫ π
−πH(ω)H∗(ω)dω

=

∣∣∣∑N−1
n=0 cne

−iθn
∣∣∣2∑N−1

n=0 |cn|
2

(2.43)

Designing of PSAs with noise robustness

I would like to mention that one can improve the noise robustness of algorithms derived
from the Building-blocks technique by maximizing the function of noise robustness

U(ω0) =
|H(ω0)|2

1
2π

∫ π
−πH (ω;ω0)H∗ (ω;ω0) dω

, ∀ω0 ∈ (0, π]. (2.44)

This function is the SNR gain of the algorithm as function of the phase shift ω0; thus, the
highest SNR gain is obtained as

ω+
0 = argmax

ω0

U(ω0), ∀ω0 ∈ (0, π]. (2.45)

Considering the tunable 3-step PSA whose FTF is in Eq. (2.31), Figure 2.5 depicts the
function U(ω0) for such FTF, where the optimal phase shift is ω+

0 = 2π/3.
On the other hand, it is well-known that the least-squares estimator is the best one

when additive white Gaussian noise perturbs the observed intensity; this means it maxi-
mizes the PSA’s SNR gain. Henceforth, the schemes based on the least-squares estimator
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Figure 2.5: SNR gain of the tunable 3 step PSA with respect to the phase shift ω0. One
can observe that the optimal phase shift ω+

0 = 2π/3 in which the algorithm reaches the
highest SNR gain.

will be called least-squares (LS-) PSAs. First, one obtains the temporal sequence of fringe
patterns by sampling the continuous temporal fringe in Eq. (2.33),

Inoise(x, y, θn) =

∞∫
−∞

Inoise(x, y, t)δ(t− tn)dt

= a(x, y) + b(x, y) cos [ϕ(x, y) + θn] + η(tn) (2.46)

where

θn = ω0tn. (2.47)

For simplicity, the radial frequency is considered to be normalized or ω0 = 1 rad/s. Equa-
tion (2.46) can be expressed in terms of the first-order trigonometry polynomial as,

In = Inoise(θn) = a+ α cos θn + β sin θn + η(θn), at (x, y). (2.48)

where the spatial dependence of Inoise, a, b, and ϕ, α was dropped, and so, α = b cosϕ
and β = −b sinϕ.

Rewriting Eq. (2.48) in matrix notation, one has the least-squares optimization prob-
lem given by

x+ = argmin
x
‖Ax− b‖22 (2.49)

where x+ is the optimal solution in the least squares sense, ‖•‖2 is the Euclidean norm,
as well as

x =
[
a α β

]T
(2.50)

b =
[
I0 I1 · · · IN−1

]T
(2.51)

A =


1 cos θ0 sin θ0

1 cos θ1 sin θ2
...

...
...

1 cos θN−1 sin θN−1

 . (2.52)
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Here, superscript T means transpose operation, and x ∈ R3, b ∈ RN and A ∈ RN×3.
The optimal solution x+ is obtained by solving the system of normal equations, this is

ATAx+ = ATb

∴ x+ =
(
ATA

)−1
ATb = A†b; (2.53)

where A† is called the Moore-Penrose pseudoinverse [70]; refer to Appendix C for a com-
plete deduction of the optimization problem in Eq. (2.49). It is noticeable that matrix

inverse
(
ATA

)−1
exists if and only if the number of fringe patterns fulfills N ≥ 3.

Based in equations (2.28), (2.29), and (2.50), The coefficients of the PSA are computed
as

cn =
1

2

(
a†2,n+1 + ia†3,n+1

)
, (2.54)

where a†l,n is the element of A† at the l-th row and n-th column. These coefficients are
given explicitly as following [71]

Re {cn} =
N−1∑

l=0,m=0

(sin θm − sin θl)(sin θl cos θm + sin θm cos θn + cos θm sin θn)

Im {cn} =

N−1∑
l=0,m=0

(cos θm − cos θl)(sin θl cos θm + sin θm cos θn + cos θm sin θn). (2.55)

Here, Re {cn} means the real part of the n-th coefficient, while, its imaginary part is
indicated by Im {cn}. Finally, the authors of the works [71–73] reported PSAs becoming
in the coefficients in Eq. (2.55).

The so-called N -step LS-PSAs, coming from the formula by Bruning and associates
[74], is a special case of the optimization problem in Eq. (2.49); the N -step LS-PSA
considers that the phase shifts are given by

θn =
2π

N
t =

2π

N
n. (2.56)

Then, it is straightforwardly showing that auto correlation matrix ATA is diagonal be-
cause the trigonometry polynomials in Eq. (2.48) make an orthogonal basis; then one
has

ATA =


N

N−1∑
n=0

cos
(

2πn
N

) N−1∑
n=0

sin
(

2πn
N

)
N−1∑
n=0

cos
(

2πn
N

) N−1∑
n=0

cos2
(

2πn
N

) N−1∑
n=0

cos
(

2πn
N

)
sin
(

2πn
N

)
N−1∑
n=0

sin
(

2πn
N

) N−1∑
n=0

cos
(

2πn
N

)
sin
(

2πn
N

) N−1∑
n=0

sin2
(

2πn
N

)


=

 N 0 0
0 N/2 0
0 0 N/2

 .
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Whence, the inverse of the autocorrelation matrix is trivial, and thus, the Moore-Penrose
pseudo inverse would be given by

A† =
1

N

 1 1 · · · 1
2 cos

(
2π
N 0
)

2 cos
(

2π
N 1
)
· · · 2 cos

[
2π
N (N − 1)

]
2 sin

(
2π
N 0
)

2 sin
(

2π
N 1
)
· · · 2 sin

[
2π
N (N − 1)

]
 .

From this last equation and (2.54), the coefficients for the N -step LS-PSA is given by

cn =
1

N

[
cos

(
2π

N
n

)
+ i sin

(
2π

N
n

)]
=

1

N
ei2πn/N (2.57)

where it is used that Euler’s formula states eiψ = cosψ + i sinψ. Finally, by taking
the Fourier transform of the impulsive response of the N -step coefficients, the frequency
transfer function of these algorithms is given by

H(ω) = Ft

{
1

N

N−1∑
n=0

ei2πn/Nδ(t− n)

}

=
1

N

N−1∑
n=0

e−in(ω+2π/N) =
1

N

N−2∏
n=0

[
1− e−i(ω−2πn/N)

]
. (2.58)

where Moivre’s roots were substituted. Now, by substituting the coefficients (2.57) into
Eq. (2.43), one has the SNR gain of the N -step LS-PSAs given by

GBruning
SNR =

∣∣∣∑N−1
n=0

[(
ei2πn/N

)
e−i2πn/N

]∣∣∣2∑N−1
n=0

∣∣ei2πn/N ∣∣2 =
N2

N

GBruning
SNR = N. (2.59)

This last result means that the SNR gain is maximum, and thence, one should employ the
N -step LS-PSA whenever possible.

As an example, Figure 2.6 illustrates the noise robustness of N -step least-squares
phase-shifting algorithms as function of the number of fringe patterns N . In Fig. 2.6(a),
the true, wrapped phase is shown, while, Fig. 2.6(b) depicts a noised fringe pattern. The
simulated noise was additive white Gaussian noise so that the SNR of the fringe pattern
was 10. Horizontal cuts of the estimated wrapped phases can be seen in Fig. 2.6(c); where
ϕTrue
W is the true phase being wrapped, ϕ̂N -step

W indicates the estimated wrapped phase

with 3-, 8-, and 100-step LS-PSA, respectively. One can observe that the phase ϕ̂3-step
W

is too noised, the phase noise has σ̂3-step = 0.66 rads and µ̂3-step = 3.5 × 10−5 rads; the

unwrapping process would be very hard. Whereas, the phase ϕ̂100-step
W is so clean of noise

whose dispersion σ̂100-step = 0.03 rads and µ̂100-step = −9.5×10−5 rads; but measurements

requiring 100 fringe patterns are impractical. Phase ϕ̂8-step
W is high noised for which the

phase noise has dispersion σ̂8-step = 0.36 rads and µ̂8-step = −2.4×10−3 rads. Nevertheless,
this last level of noise can be handled in the phase unwrapping process, the number of
fringe patterns is also practical. On the other hand, Figure 2.7 depicts the relation between
the noise variance and the number of fringe patterns. It also draws the expected variance
according to Eq. (2.41). One can observe that the noise variance decreases asymptotically.
For non-uniformly spaced phase shifts, a similar result was obtained [75].
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Figure 2.6: Noise robustness versus the number of fringe patterns for the N -step LS-PSA
with nominal phase step of 2π/N , particularly, it is depicted the results for 3, 8, and 100
fringe patterns. One can see the test phase in (a), a noised fringe pattern in (b), and in
(c) the horizontal cuts of the estimated phase when utilizing those methods.
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Figure 2.7: Noise variance versus the number of fringe patterns. Notice that the expected
analytic value, in Eq. (2.41) is plotted.

2.2.3 Harmonic robustness

In general, acquired fringe patterns cannot have a perfect sinusoidal profile due to photode-
tectors’ nonlinear response, intensity saturation, interference of multiple reflected beams,
etcetera. Consequently, fringe patterns will have harmonics with higher order than the
fundamental one. In order to retrieve the phase map correctly, high-order harmonics are
desired to be rejected. A temporal sequence fringe pattern having harmonic contribution
can be mathematically described by

Iharmonic(x, y, t) =

K∑
k=0

bk(x, y) cos k [ϕ(x, y) + ω0t] (2.60)

where b0(x, y) = a(x, y), and K is the highest order harmonic so that its level energy is
about the energy level of the noise. In Eq. (2.60), we considered that the distortion can
be mathematically expressed by a Fourier series.
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Figure 2.8: Temporal-continuous fringe having harmonic contributions: (a) temporal pro-
file and (b) its spectrum.

Figure 2.8 depicts an example when the intensity is distorted by harmonics. By taking
the Fourier transform of Eq. (2.60), one can obtain the spectrum given by

I(x, y, ω) = b0δ(ω) +

K∑
k=1

bk(x, y)

2

[
eiϕ(x,y)δ(ω − kω0) + e−iϕ(x,y)δ(ω + kω0)

]
; (2.61)

where the searched signal is b1(x, y) exp[iϕ(x, y)]/2. After the sampling procedure, the
spectrum in Eq. (2.61) may be difficult to fulfill the Nyquist criterion; it means that this
signal is not band-limit and implies that Kω0 < π, being difficult to be hold. Because
the fringe pattern is not considered to be band-limited anymore, one must suppose some
overlapping in the spectrum due to the finite support of the discrete-time Fourier trans-
form. Therefore, those harmonics with |kω0| > π will be redistributed to its alias into the
domain [−π, π) of the discrete-time Fourier transform. By reason of searched signal may
not be isolated at ω0, so the computed analytic signal may have distorting harmonics due
to the aliasing.

As an example, considering ω0 = π/2 and K = 5, the fringe pattern is given by

I(x, y, t) = b0(x, y)

+ b1(x, y) cos
[
ϕ(x, y) +

π

2
t
]

+ b2(x, y) cos
[
2ϕ(x, y) + 2

π

2
t
]

+ b3(x, y) cos
[
3ϕ(x, y) + 3

π

2
t
]

+ b4(x, y) cos
[
4ϕ(x, y) + 4

π

2
t
]

+ b5(x, y) cos
[
5ϕ(x, y) + 5

π

2
t
]
.

Taking its Fourier transform, we have the next mathematical expression

I(x, y, ω) = Ft {I(x, y, t)}
= b0(x, y)δ(ω)

+
b1(x, y)

2
eiϕ(x,y)δ

(
ω − π

2

)
+
b1(x, y)

2
e−iϕ(x,y)δ

(
ω +

π

2

)
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+
b2(x, y)

2
ei2ϕ(x,y)δ

(
ω − 2

π

2

)
+
b2(x, y)

2
e−2iϕ(x,y)δ

(
ω + 2

π

2

)
+
b3(x, y)

2
ei3ϕ(x,y)δ

(
ω − 3

π

2

)
+
b3(x, y)

2
e−3iϕ(x,y)δ

(
ω + 3

π

2

)
+
b4(x, y)

2
ei4ϕ(x,y)δ

(
ω − 4

π

2

)
+
b4(x, y)

2
e−4iϕ(x,y)δ

(
ω + 4

π

2

)
+
b5(x, y)

2
ei5ϕ(x,y)δ

(
ω − 5

π

2

)
+
b5(x, y)

2
e−5iϕ(x,y)δ

(
ω + 5

π

2

)
.

Now, we project the ω-axis such that ω ∈ (−π, π] or the Discrete-Time Fourier transform

I ′(x, y, ω) = b0(x, y)δ(ω)

+
b1(x, y)

2
eiϕ(x,y)δ

(
ω − π

2

)
+
b1(x, y)

2
e−iϕ(x,y)δ

(
ω +

π

2

)
+ =

b2(x, y)

2
ei2ϕ(x,y)δ (ω + π) +

b2(x, y)

2
e−2iϕ(x,y)δ (ω + π)

+
b3(x, y)

2
ei3ϕ(x,y)δ

(
ω +

π

2

)
+
b3(x, y)

2
e−3iϕ(x,y)δ

(
ω − π

2

)
+
b4(x, y)

2
ei4ϕ(x,y)δ (ω) +

b4(x, y)

2
e−4iϕ(x,y)δ (ω)

+
b5(x, y)

2
ei5ϕ(x,y)δ

(
ω − π

2

)
+
b5(x, y)

2
e−5iϕ(x,y)δ

(
ω +

π

2

)
. (2.62)

From (2.62), one can realize that the pairs k = 0, 4 are indistinguishable, and for k = 1, 5
are the same case. Moreover, other harmonics are overlapping one another. It is important
to point out that if we design a PSA removing the background illumination at ω = 0, then
this PSA will also eliminate the fourth harmonic for this example. On the other hand, if
the PSA estimates the first harmonic at ω = π/2, this PSA could not remove the positive
fifth-harmonic because it is also located at ω = π/2.

In the previous example, we depict a classical problem when phase demodulation fringe
pattern with high harmonic distortion. We can employ a simple technique to identify those
harmonics that a PSA will filter out. This technique consists of the PSA’s FTF evaluation
in a wider domain of ω, e.g., ω ∈ [−Kω0,Kω0]. Figure 2.9 illustrates this example where
we use the 4-step PSA proposed by Bruning et al. [74]; whose coefficients are given by

cn =
1

4
exp

[
−iπ

2
n
]

; n = 0, 1, 2, 3.

The PSA’s FTF was evaluated for all ω ∈ (−5π/2, 5π/2), this result is depicted by Fig.
2.9(a); it can be seen that the removed harmonic are {−5, −4, −2, −1, 0, 2, 3, 4}, while,
the PSA keeps the harmonics {−3, 1, 5}. From Eq. (2.62), the unrejected harmonics
are alias of the positive fundamental one at ω = π/2, and the rejected are alias of the
background illumination at ω = 0, or the negative fundamental harmonic at ω = −π/2.
Figure 2.9(b) depicts the spatial spectrum of the simulated data. This frame shows all
harmonics since the spatial fringe patterns are band-limited, i.e., there are not alias as it
happens in the temporal spectrum. Finally, the spectrum of the estimated analytic signal
is drawn in Fig. 2.9(c) where one can realize that {−3, 5} distorting harmonics jeopardizes
the estimation.
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Figure 2.9: Harmonic rejection using the four-step PSA of Bruning et al. where ω0 = π/2.
This PSA’s frequency transfer function and the temporal spectrum of the data are in (a).
Where one can observe the PSA would keep green Dirac deltas and reject the gray ones.
The spatial spectrum of the simulated data is in (b), and the estimated analytic signal’s
one is in (c).

As a consequence of the previous example, it is required that the analytic signal’s
formula takes into account the amplitude contributions due to those distorting harmonics.
Therefore, one has that

b̂

2
eiϕ̂ =

Searched︷ ︸︸ ︷
b1
2
eiϕH(ω0) +

Harmonic distortion︷ ︸︸ ︷
K∑
k=2

bk
2

[
H(kω0)eikϕ +H(−kω0)e−ikϕ

]
. (2.63)

Besides, one can define a figure of merit to quantify the PSA’s harmonic robustness as [76]

RH
def
=

Quadrature Signal Power

Total Harmonic Power
=

|H(ω0)|2∑K
k=2

(
1
k2

[
|H(kω0)|2 + |H(−kω0)|2

]) ; (2.64)

where it is assumed that the harmonics’ amplitude decreases as 1/k. By means of RH,
a PSA with a large value of RH is preferable to other with smaller RH. In advance, the
author will call RH as the harmonic robustness index.
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Designing of PSAs with harmonic rejection capabilities

It now describes a method to obtain a PSA with harmonic rejecting capabilities by design
its FTF in the frequency domain. With the aim of filtering out the first K harmonics and
accomplishing the quadrature conditions, the PSA’s FTF must fulfill the conditions:

H(kω0) = 0, ∀k ∈ {0,−1,±2,±3, . . . ,±K}; (2.65)

where the quadrature conditions are for k = 0,−1; in addition, the FTF also has to
accomplish that H(ω0) 6= 0.

Using the Building-Block technique and considering that the phase steps are uniformly-
spaced, it is straightforwardly to design a PSA accomplishing the conditions in Eq. (2.65),
so its frequency transfer function would be given by

H(ω) =

Quadrature conditions︷ ︸︸ ︷[
1− e−iω

] [
1− e−i(ω+ω0)

] K∏
k=2


Negative harmonics︷ ︸︸ ︷[
1− e−i(ω+kω0)

] Positive harmonics︷ ︸︸ ︷[
1− e−i(ω−kω0)

] (2.66)

Here, the highest-order harmonic needs to be band-limited, this is |Kω0| < π. Because
the FTF in Eq. (2.66) has 2K roots, the resulting PSA would have 2K + 1 coefficients.
Then the impulsive response can be computed as

h(t) = F−1
t {H(ω)} =

2K∑
n=0

cnδ(t− n); (2.67)

where F−1
t {•} is the operator of the temporal inverse Fourier transform.

When considering both uniform and non-uniform phase shifts, one can obtain a gener-
alized PSA rejecting the first K distorting harmonics by a least-squares fit to the trigono-
metric polynomial of degree K [77]. Technique and analysis in [77] are a contribution
derived from this thesis. Taking a sequence of fringe patterns by sampling the model in
Eq. (2.60), this sequence can be described as

Iharmonic(x, y, θn) =

∞∫
−∞

Iharmonic(x, y, t)δ(t− tn)dt

=

K∑
k=0

bk(x, y) cos k [ϕ(x, y) + θn] ; (2.68)

whence
θn = ω0tn. (2.69)

For simplicity the temporal radial frequency is considered to be normalized ω0 = 1(rad/s)
[77, 78], implying that θn = tn. Moreover, one can rewrite Iharmonic by means of the
trigonometric identity cos(a+ b) = cos(a) cos(b)− sin(a) sin(b), and so one has that

Iharmonic(x, y, θn) =

K∑
k=0

[bk(x, y) cos [kϕ(x, y)] cos(kθn)
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−bk(x, y) sin [kϕ(x, y)] sin(kθn)] . (2.70)

Due to the fact that the phase steps θn have no variation through the spatial axis (x, y),
then the intensity can be described as a trigonometric polynomial as

In = Iharmonic(θn) = a+

K∑
k=1

[αk cos(kθn) + βk sin(kθn)] , at (x, y); (2.71)

where the coefficients of the polynomial for (x, y) are given by αk = bk cos(kϕ) and βk =
−bk sin(kϕ).

In the model of Eq. (2.71), one needs to find the 2K+1 unknown variables correspond-
ing to the coefficients of the polynomial. To achieve them, one can solve the least-squares
optimization problem given by

x+ = argmin
x
‖Ax− b‖22 ; (2.72)

whence ‖•‖2 is the Euclidean norm, and

A =


1 cos θ0 sin θ0 · · · cosKθ0 sinKθ0

1 cos θ1 sin θ1 · · · cosKθ1 sinKθ1
...

...
...

. . .
...

...
1 cos θN−1 sin θN−1 · · · cosKθN−1 sinKθN−1

 , (2.73)

x =
[
a α1 β1 · · · αK βK

]T
, (2.74)

b =
[
I0 I1 · · · IN−1

]T
. (2.75)

Here T means transpose operation as well as A ∈ RN×2K+1, x ∈ R2K+1, and b ∈ RN .
The optimal solution in the least squares sense of Eq. (2.72) is given by solving the

system of normal equations; this is

ATAx+ = ATb, (2.76)

and therefore,

x+ =
(
ATA

)−1
ATb = A†b (2.77)

where A† is the Moore-Penrose pseudoinverse [70]. According to Eq. (2.77), autocorrela-
tion matrix ATA has matrix inverse if the number of fringe patterns fulfills N ≥ 2K + 1.
Refer to Appendix C for the mathematical development of the optimization problem.

From Eq. (2.77), the coefficients of the PSA are computed as [77]

cn =
1

2

(
a†2,n+1 + ia†3,n+1

)
, (2.78)

where a†l,m is the element of A† at the l-th row and the m-th column. Moreover, one can
retrieve the phase from whenever harmonic employing the coefficients as

cκ-th
n =

1

2

(
a†2κ,n+1 + ia†2κ+1,n+1

)
, κ ∈ {1, 2, . . . ,K}, (2.79)
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where κ indicates the order of the harmonic; and its frequency transfer function fulfills

H(kω0) = 0, ∀k ∈ {0,±1, . . . ,±K} − {κ}. (2.80)

Therefore, the analytic signal for the κ-th harmonic is given by

b̂κ-th

2
eiκϕ̂ =

N−1∑
n=0

cκ-th
N−n−1In; (2.81)

whose phase is κ times more sensitive.
We now describe an example of harmonic rejection when the phase shifts are non-

uniformly spaced. To this end, the intensity profile in Fig. 2.8 describes the fringe pat-
terns; in other words, the fringe patterns have harmonic distortion until the fifth one.Nine
nonuniformly-spaced phase steps are selected to be

θ =
2π

9
{0, 0.8, 1.6, 2.9, 3.3, 4.5, 5.7, 6.5, 7.2} .

Then, one is able to reject until the fourth harmonic due to [2(4)+1] = N = 9; this means
that these PSAs would not be able to reject the harmonic distortion completely. Based
on equations (2.71) – (2.78), one can obtain four different FTFs (or PSAs) by setting the
value of K; these are

(K = 1) H1(ω) =
8∑

n=0

c1ne
iθnω/ω0 =⇒ S1(ω) = H1(ω)I(ω)

(K = 2) H2(ω) =
8∑

n=0

c2ne
iθnω/ω0 =⇒ S2(ω) = H2(ω)I(ω)

(K = 3) H3(ω) =
8∑

n=0

c3ne
iθnω/ω0 =⇒ S3(ω) = H3(ω)I(ω)

(K = 4) H4(ω) =

8∑
n=0

c4ne
iθnω/ω0 =⇒ S4(ω) = H4(ω)I(ω);

where H#(ω) and S#(ω) have normalized-frequency domain. Figure 2.10 illustrates the
spectral description of the analytic signal estimation employing the aforementioned phase-
shifting algorithms. Figure 2.10(a) corresponds to K = 1, where one can see that this PSA
fulfills only the quadrature conditions; however, it significantly reduces the power of the
distorting harmonics. For K = 2, the PSA fulfills the quadrature conditions, and also, it
rejects the second harmonic correctly, and at the same time, it attenuates the higher-order
harmonics, as seen in Fig. 2.10(b). For K = 3, the PSA removes the spectral components
until the third harmonic and also attenuates the others as depicted in Fig. 2.10(c), but
the negative fifth harmonic seems to be equal to the positive fourth for K = 2; refer to
Fig. 2.10(b) and 2.10(c). Finally, Figure 2.10(d) shows the estimation for K = 4; the
PSA rejects correctly until the fourth distorting harmonic; however, it does not attenuate
significantly the fifth harmonic. In fact, its power seems to be greater than fourth and
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Figure 2.10: Spectral description of estimation of the analytic signal SK using several
9-step PSAs HK(ω) rejecting the first K harmonics: (a) K = 1, (b) K = 2, (c) K = 3,
and (d) K = 4.

fifth ones corresponding to K = 4, refer to Figures 2.10(c) and 2.10(d); thence, S4(ω)
has distorting ripples whose amplitude is the largest for this numerical experiment. By
computing the harmonic robustness index in Eq. (2.64), one obtains the values {25.76,
36.19, 30.63, 15.98 meaning the PSA with K = 2 is the most robust against harmonic
distortion. Finally, by increasing the number of rejected harmonics, the PSA’s SNR gain
is jeopardized. For this example, the SNR gains are, respectively, {8.85, 8.80, 7.14, and
4.93} telling one the first PSA is the most robust against noise. In most cases, when
N = 2K + 1, the resulting PSA will have a low SNR gain. Taking into account the
Harmonic robustness index and the SNR gain, one should use that PSA with K = 2 when
phase demodulating the fringe patterns; Figure 2.11 draws this fact where the phase of
S2 has the lowest amplitude of the harmonic distortion, whereas the highest amplitude
corresponds to S4. The reader realizes that these results are for this numerical experiment,
and so, one should study every case using these figures of merit. Through this analysis
based on figures of merit, we have determined the best PSA to phase demodulate this fringe
patterns. Moreover, we want to point out that it may be thought that these results are
not counterintuitive; however, it is expected that rejecting the large number of harmonics
will not mostly translate into a better phase estimation when seeing non-uniformly-spaced
phase shifts.

A particular kind of PSAs is obtained when the uniformly-spaced phase shifts are given
by

θn =
2π

N
n, (2.82)
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Figure 2.11: Phase error obtained when rejecting K harmonics. The description of the
numerical experiment is in the main text.

where n = t = 0, 1, . . . , N − 1. Based on Eq. (2.72) – (2.77), one obtains that

ATA =


〈a1,a1〉 〈a1,a2〉 · · · 〈a1,a2K+1〉
〈a2,a1〉 〈a2,a2〉 · · · 〈a2,a2K+1〉

...
...

. . .
...

〈a2K+1,a1〉 〈a2K+1,a2〉 · · · 〈a2K+1,a2K+1〉



where 〈•, •〉 indicates the dot product and am is the m−th column of the matrix A, and
the elements of auto correlation matrix ATA are given by

〈a1,a1〉 =

N−1∑
n=0

1 = N

〈a1,am〉 =

N−1∑
n=0

cos

[
m

2π

N
n

]
= 0, ∀m ∈ {2, 4, . . . , 2K}

〈am,am〉 =

N−1∑
n=0

cos2

[
m

2π

N
n

]
=
N

2
, ∀m ∈ {2, 4, . . . , 2K}

〈a1,am〉 =

N−1∑
n=0

sin

[
m

2π

N
n

]
= 0, ∀m ∈ {3, 5, . . . , 2K + 1}

〈am,am〉 =

N−1∑
n=0

sin2

[
m

2π

N
n

]
=
N

2
, ∀m ∈ {3, 5, . . . , 2K + 1}

〈al,am〉 =
N−1∑
n=0

cos

[
l
2π

N
n

]
sin

[
m

2π

N
n

]
= 0, l 6= m and ∀l,m ∈ {2, 3, . . . , 2K + 1} ;

therefore, the columns of A are an orthogonal basis. Thence, the Moore-Penrose pseu-
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doinverse is given by

A† =
1

N



1 1 · · · 1
2 cos θ0 2 cos θ1 · · · 2 cos θN−1

2 sin θ0 2 sin θ1 · · · 2 sin θN−1
...

...
...

...
2 cosKθ0 2 cosKθ1 · · · 2 cosKθN−1

2 sinKθ0 2 sinKθ1 · · · 2 sinKθN−1


.

One can realize that the n-th coefficient of this PSA is given by

cn =
1

N

[
cos

(
2π

N
n

)
+ i sin

(
2π

N
n

)]
=

1

N
ei2πn/N ; (2.83)

where 1/N is a normalization term. Then, the impulsive response and the frequency
transfer function are straightforwardly determined as

h(t) =
1

N

N−1∑
n=0

ei2πn/Nδ(t− n) (2.84)

H(ω) =
1

N

N−1∑
n=0

e−in(ω+2π/N) =
1

N

N−2∏
n=0

[
1− e−i(ω−2πn/N)

]
. (2.85)

This FTF in Eq. (2.85) is the well-known formula by Bruning and associates [74] called
the N -step least-squares PSAs. From Eq. (2.59), the SNR gain for these phase-shifting
algorithms is computed as

GBruning
SNR = N. (2.86)

Moreover, according to Eq. (2.57) and (2.83), the designed PSA is independent of
the selected K value. Finally, these algorithms have the ability to reject the first N − 2
harmonics instead of the (N−1)/2 as shown in Eq. (2.65); due to the aliasing phenomenon.
Figure 2.12 draws the frequency transfer functions of this kind of PSAs where N = 4, 5, 6
and their FTFs were evaluated for all ω ∈ [−10ω0, 10ω0]. One can observe that the 4-step
LS-PSA rejects effectively the harmonics at {−10, −9, −8, −6, −5, −4, −3, 2, 3, 4, 6,
7, 8, 10} while it is not able to remove the ones at {−7, −3, 5, 9}; as shown in Fig.
2.12(a). Figure 2.12(b) depicts that the 5-step LS-PSA eliminates the harmonics located
at {−10, −8, −7, −6, −5, −3, 2, 2, 3, 4, 5, 7, 8, 9, 10}, but it is unsuccessful with
the ones {−9, −4, 6}. The spectral description of harmonics robustness is illustrated in
Fig. 2.12(c); where one can observe that this PSA rejects correctly the harmonics {−10,
−9, −8, −7, −6, −4, −3, −2, 2, 3, 4, 5, 6, 8, 9, 10}, and it fails rejecting the others
located at {−5, 7}. From these results, one is able to realize that the negative (N − 1)-th
harmonic is the first one to be not rejected when using the formula by Bruning et al. [74].
Finally, the harmonic robustness of the PSAs were {5.44, 9.74, 16.55}, respectively, for all
N ∈ {4, 5, 6}; computed RH in Eq. (2.64). It was thought that the tenth harmonic was
the highest-order one. In this numerical experiment, the 6-step PSA is the most robust
against harmonic distortion.
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Figure 2.12: Spectral description of the harmonic-rejection capabilities of the N -step LS-
PSA with: (a) N = 4, (b) N = 5, and (c) N = 6. Here, the FTFs were evaluated through
the first ten harmonics for each FTF.

2.2.4 Detuning robustness

This error is systematic, and its domain is time. It occurs when the temporal tune fre-
quency ω0 of phase-shifting algorithm mismatches with that in the interferometry data
tuned at ω0 + ∆ω; then one has the mathematical model given by

Idetuning(x, y, t) = a(x, y) + b(x, y) cos [ϕ(x, y) + (ω0 + ∆ω)t] (2.87)

where ∆ω is a real scalar. Equation (2.87) defines the so-called linear detuning. Hence-
forth, the spatial dependence of I, a, b, and ϕ is dropped for clarity proposes. By taking
the temporal Fourier transform of Eq. (2.87), one obtains

Idetuning(ω) = Ft {Idetuning(t)}

= aδ(ω) +
b

2
eiϕδ (ω − ω0 −∆ω) +

b

2
e−iϕδ (ω + ω0 + ∆ω) . (2.88)

Here one can see that the spectra components, corresponding to the cosine function, were
shifted ∆ω with respect to the fringe mathematical model without frequency detuning in
Eq. (2.21).

The spectrum of the estimated analytic signal under linear detuning is determined by

Sdetuning(ω) = I(ω)H(ω)
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Figure 2.13: Spectral description of the detuning error.

= aH(0)δ(ω) +
b

2
eiϕH(ω0 + ∆ω)δ (ω − ω0 −∆ω)

+
b

2
e−iϕH(−ω0 −∆ω)δ (ω + ω0 + ∆ω) ; (2.89)

where H(ω) is the frequency transfer function of an arbitrary PSA, and H(0), H(ω0+∆ω),
and H(−ω0 − ∆ω) are complex scalars. From the quadrature conditions in Eq. (2.24),
one has that H(0) = 0. However, one would usually have that H(ω0 + ∆ω) 6= 0 and
H(−ω0 −∆ω) 6= 0. Therefore, the analytic signal’s spectrum is given by

Sdetuning(ω) =
b

2
eiϕH(ω0 + ∆ω)δ (ω − ω0 −∆ω)

+
b

2
e−iϕH(−ω0 −∆ω)δ (ω + ω0 + ∆ω) ; (2.90)

whence

H(ω0 + ∆ω) = |H(ω0 + ∆ω)| eiφ1 (2.91)

H(−ω0 −∆ω) = |H(−ω0 −∆ω)| eiφ2 . (2.92)

Equation (2.90) is drawn in Figure 2.13, where one realizes that the negative component
at ω = −ω0 − ∆ω is not completely removed. Then, in the time domain, the analytic
signal is mathematically described by

b̂

2
eϕ̂ =

b

2
H(ω0 + ∆ω)eiϕ +

b

2
H(−ω0 −∆ω)e−iϕ (2.93)

=
b

2
H(ω0 + ∆ω)eiϕ

(
1 +

H(−ω0 −∆ω)

H(ω0 + ∆ω)
e−i2ϕ

)
. (2.94)

Figure 2.14 schematically depicts the phasor sum in the last two equations. Figure 2.14,
it is considered that

P1 = H(ω0 + ∆ω) = |H(ω0 + ∆ω)| ei(ϕ+φ1)

P2 = H(−ω0 −∆ω) = |H(−ω0 −∆ω)| e−i(ϕ+φ2).
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Figure 2.14: Phasor representation of the estimated analytic signal under detuning error.

Based on Fig. 2.14 and the sine law, one can obtain that

sin(ϕ− ϕ̂+ φ1) =
|H(−ω0 −∆ω)|
|H(ω0 + ∆ω)|

sin(ϕ+ ϕ̂− φ2). (2.95)

Now, considering the φ1 � 1 and the detuning error is small ∆ω � 1, then considering
the approximations sin(ϕ− ϕ̂+ φ1) ≈ ϕ− ϕ̂+ φ1 and sin(ϕ+ ϕ̂− φ2) ≈ sin(2ϕ− φ2); by
substituting them into Eq. (2.95), one has

ϕ̂ ≈ ϕ+ φ1 −
|H(−ω0 −∆ω)|
|H(ω0 + ∆ω)|

sin(2ϕ− φ2). (2.96)

Equation (2.96) was reported in previous works [34, 79]. In Eq. (2.96), one can observe
that the estimated phase will have both distorting ripples at double frequency of the
fringes and a phase piston φ1 from the PSA when detuning error shows up. The phase
piston is usually neglected, except when measuring optical thickness. The amplitude of
the double-frequency distorting ripples defines the so-called detuning amplitude given by

D(∆ω)
def
=
|H(−ω0 −∆ω)|
|H(ω0 + ∆ω)|

=

∣∣∣∑N−1
n=0 cne

−in(−ω0−∆ω)
∣∣∣∣∣∣∑N−1

n=0 cne
−in(ω0+∆ω)

∣∣∣ . (2.97)

It is worth mentioning that D(∆ω) gives the exact amplitude of the detuning error as seen
in Eq. (2.94).

Designing of PSAs with detuning robustness

It is important to say that there exist two main efforts to deal with detuning error: PSAs
having broad stopbands [80–87] or the self-tuning capability [39, 88–90]. The first ones
have constant coefficients, and therefore, one can straightforwardly analyze them in the
frequency domain by means of the FTF formalism. The second PSAs can estimate both
the temporal fringe’s frequency and the phase, and thence, they should be thought to
have dynamic coefficients fulfilling the quadrature conditions. Furthermore, self-tuning
PSAs are nonlinear phase estimators which usually have both a tunable linear PSA and
a phase-step estimator; accordingly, one can analyze the former in the frequency domain,
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as done in [34]. The following section goes through self-tuning algorithms; before that, it
will be describing how to design PSAs with broad stopbands.

Considering the fringe pattern described by the following equation

Idetuning(x, y, t) = a(x, y) + b(x, y) cos [ϕ(x, y) + Θ(t)]

= a(x, y) +
b(x, y)

2
ei[ϕ(x,y)+Θ(t)] +

b(x, y)

2
e−i[ϕ(x,y)+Θ(t)] (2.98)

where Θ(t) is a smooth function describing phase shifts; this function is also thought to
be band limited, this means that ∣∣∣∣dΘ(t)

dt

∣∣∣∣
max

< π; (2.99)

during the observation time interval. Without loss of the generality, taking the temporal
Fourier transform of Eq. (2.98), one obtains its spectrum given by

Idetuning(ω) = Ft {Idetuning(t)} = aδ(ω) +
b

2
eiϕC(ω) +

b

2
e−iϕC∗(−ω). (2.100)

where spatial dependence (x, y) was dropped for clarity purposes, as well as

C(ω) = Ft {exp [iΘ(t)]} ,
C∗(−ω) = Ft {exp [−iΘ(t)]} . (2.101)

From equations (2.99) – (2.101), one is able to realize that the lobe of the spectrum are not
Dirac deltas when Θ(t) is not a straight line. Figure 2.15 draws a schematic description of
the spectra in Eq. (2.100), so this plot depicts the need of using a phase-shifting algorithm
having a broad stopband that eliminates the unwanted lobe on the negative side.

Since the phase-shifting function is smooth, it can be described through a polynomial
expansion as following

Θ(t) = %0 + %1t+ %2t
2 + %3t

3 + · · · (2.102)
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Figure 2.15: Temporal spectrum of phase-shifted fringe patterns when the phase-shifting
function is smooth and band-limited. Observe that the spectral lobes are broad bands.
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In phase-shifting interferometry, the constant term is usually %0 = 0 when the interferom-
eter is in optical contact or measuring with respect to another. Then, one can approximate
Θ(t) by the first two terms as

Θ(t) ≈ Θ̃(t) =

%1t︷ ︸︸ ︷
ω0t+ κ1t+κ2t

2; (2.103)

where κ1 is the linear (first-order) detuning and κ2 is the quadratic (second-order) detun-
ing. Hence, the approximate n-th phase shift is given by

θ̃n = ω0n+ κ1n+ κ2n
2. (2.104)

Here, one can observe that time sampling of the phase-shift function is uniform; however,
phase shifts θ̃n become nonuniformly-spaced due to the quadratic term. Moreover, when
coefficients κ1, κ2 are known, one should use the algorithm for non-uniform phase shifts
described in Eq. (2.54). Below, these terms will be unknown variables.

Let cn be the coefficients of an arbitrary PSA with uniform phase shifts whose nominal
phase step is ω0; therefore, the estimated analytic signal is describes as [91, 92]

b̂

2
eiϕ̂ =

b

2
eiϕ

N−1∑
n=0

cne
−iθ̃

(
1 +

∑N−1
n=0 cne

iθ̃∑N−1
n=0 cne

−iθ̃
e−i2ϕ

)
. (2.105)

From this last equation, one can see that the analytic signal is well estimated, provided
that

S1 =

N−1∑
n=0

cne
−iθ̃ = z 6= 0, (2.106)

S2 =

N−1∑
n=0

cne
iθ̃ = 0 (2.107)

where arg{z} is a phase piston, so it should be z = 1. However, one is not able to computes
S1 nor S2 because both κ1 and κ2 are unknown. Considering the second order Taylor series
expansion of the detuning term, so one has that

ei(κ1n+κ2n2) ≈ 1 + iκ1n−
κ1

2
n2 + iκ2n

2. (2.108)

Substituting this result into Eq. (2.107), one has that

S2 ≈
N−1∑
n=0

cne
inω0 + iκ1

N−1∑
n=0

ncne
inω0 − κ1

2

N−1∑
n=0

n2cne
inω0 + iκ2

N−1∑
n=0

n2cne
inω0 ; (2.109)

due to the fact that

H ′(−ω0) =
dH(ω)

dω

∣∣∣∣
ω=−ω0

= −i
N−1∑
n=0

ncne
iω0
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H ′′(−ω0) =
d2H(ω)

dω2

∣∣∣∣
ω=−ω0

= −
N−1∑
n=0

n2cne
iω0 .

Thereby, one is able to rewrite S2 in terms of the frequency transfer function and its
derivatives as

S2 ≈ H(−ω0)− κ1H
′(−ω0) +

(κ1

2
− iκ2

)
H ′′(−ω0); (2.110)

and in the same way, one obtains that

S1 ≈ H(ω0)− iκ1H
′(ω0) +

(
κ2 −

κ1

2

)
H ′′(ω0). (2.111)

Result in Eq. (2.110) is important because it allows one to define the following new
conditions

H ′(−ω0) = 0, linear detuning (2.112)

H ′′(−ω0) = 0, Second-order detuning. (2.113)

Besides, the FTF must fulfill the quadrature conditions, and hence, these five conditions
are sufficient to obtain a well estimated analytic signal from the fringe patterns in Eq.
(2.98).

As an example, robustifying the 4-step LS-PSA against linear detuning has to fulfill
the conditions

H(π/2) =

N−1∑
n=0

cne
−inπ/2 = 1,

H(0) =

N−1∑
n=0

cn = 0,

H(−π/2) =

N−1∑
n=0

cne
inπ/2 = 0

H(π/2) =

N−1∑
n=0

cne
−inπ = 0

H ′(−π/2) = −in
N−1∑
n=0

cne
inπ/2 = 0,

Because there are five conditions, so the number of coefficients will be N = 5. These
conditions are translated into the system of linear equations:

1 i −1 −i 1
1 1 1 1 1
1 −i −1 i 1
1 −1 1 −1 1
0 1 −2i −3 4i



c0

c1

c2

c3

c4

 =


1
0
0
0
0

 ,
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and so, by solving it, one obtains the coefficients given by

c =
1

8
{1, 2i,−2,−2i, 1} ,

or the Schwider-Hariharan (S-H) PSA [80,81], whose roots are located at {−1, 1, −i, −i};
the algorithm has a root at −i with multiplicity two. Now, adding the condition in Eq.
(2.113), one has the coefficients given by

c =
1

16
{1, 3i,−4,−4i, 3, i} ,

and its roots are {−1, 1, −i, −i, −i}; now, the root at −i has multiplicity three. In general,
increasing the number of terms in the polynomial expansion of the phase-shift function,
Eq. (2.102), will translate into increasing the multiplicity of the root corresponding to
ω = −ω0 [66]. Therefore, the building-blocks technique allows one to design this kind of
phase-shifting algorithms by increasing the stopband root’s multiplicity.

Perhaps the S-H algorithm [80, 81] is the most-known scheme being robust against
detuning, its tune frequency is ω0 = π/2. Figure 2.16 draws the idea behind the use of
broad stop bands to compensate the linear detuning error. In this Figure, one can observe
that the FTF of this scheme is almost zero around ω = −ω0, and therefore, it significantly
attenuates the component at −ω0 −∆ω. Comparing this example with the one depicted
in Fig. 2.13 where the 3-step PSA was employed, the amplitudes of the detuning errors
are 0.03 and 0.29 supposing ∆ω = 0.2ω0 for both methods, respectively. For this case,
it is observed that the phase estimation using the S-H PSA has almost ten times smaller
detuning amplitude than the one using the 3-step PSA.

By means of the Building-block technique is quite simple to design broad stopbands:
one can increase the multiplicities of the root/zero at −ω0 or putting extra roots in the
vicinity of −ω0 adding new Building blocks [87]. It is straightforwardly showed that the
FTF of the S-H scheme is given by

H(ω) =
[
1− e−iω

] [
1− e−i(ω+π/2)

]2 [
1− e−i(ω+π)

]
; (2.114)
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Figure 2.16: Spectral description of the detuning-error compensation using wide stop-
bands; particularly, it plots the FTF of the Schwider-Hariharan algorithm.
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Figure 2.17: Comparison of two technique to design broad stop band to compensate
detuning error: the first one consist of increasing the multiplicities of the root/zero at ω0;
in the second technique, one add extra zeros around ω0.

where it is noticeable that the root/zero at −ω0 has multiplicity 2, whereas the zero at π
has no relation with the detuning error. In general, the frequency transfer function being
robust against detuning error can be described as

H(ω) =
[
1− e−iω

] [
1− e−i(ω+ω0)

]p
, p ≥ 2; (2.115)

then, the phase-shifting algorithm would has (p + 2) steps and the root/zero at ω0 will
have multiplicity p.

An example of FTF putting extras zeroes around ω0 is given by

H(ω) =
[
1− e−iω

] [
1− e−i(ω+ω0)

] [
1− e−i(ω+1.1ω0)

] [
1− e−i[ω+0.9ω0)

]
, (2.116)

where it was put arbitrarily two extra zeroes at −1.1ω0 and −0.9ω0; then, this algorithm
requires five phase steps. Considering a PSA designed by Eq. (2.115) where p = 3, one
can obtain another method with five steps and detuning robustness. Figure 2.17 depicts
a comparison between these two techniques, where one can realize that the amplitude for
the first technique is smaller in the nearby neighborhood [−0.1, 0.1] rads; whereas, the
second technique would have better estimations. Because detuning error is expected to
be more frequently small (|∆ω| < .2ω0), one should employ Eq. (2.115) instead of adding
extra zeroes in the vicinity of ω0.

On the other hand, several works have proposed PSAs for which the broad stopband
is obtained using weighting functions [82–84]. In a work derived from this thesis, we
formulated a weighted least-squares fit to the acquired intensity of the temporal fringe
as [93]

x+ = argmin
x

∥∥∥W 1
2 (b−Ax)

∥∥∥2

2
(2.117)

where ‖•‖2 is the Euclidean norm, W ∈ RN×N is a diagonal matrix having the weights,
as well as

x =
[
a b cosϕ −b sinϕ

]T



42 Chapter 2. Fringe analysis

b =
[
I0 I1 · · · IN−1,

]T
,

A =


1 cos 0ω0 sin 0ω0

1 cos 1ω0 sin 1ω0
...

...
...

1 cos(N − 1)ω0 sin(N − 1)ω0

 .
The optimal value is reached where the gradient with respect to x is equal to zero, i.e.

∇x

∥∥∥W 1
2 (b−Ax)

∥∥∥
2

= 0; hence, we obtained the optimal value solving the weighted

system of normal equations as

ATWAx+ = ATWb =⇒ x+ =
(
ATWA

)−1
ATWb = Db; (2.118)

and so, the PSA’s coefficients are computed by

cn =
1

2
(d2,n+1 + id3,n+1) , n = 0, 1, . . . , N − 1 (2.119)

where dj,n is the element of D at the j-th row and n-th column. Also, the coefficients can
be explicitly given by [93]

Re {cn} =

N−1∑
l=0
m=0

window︷ ︸︸ ︷
[wnwlwm]

Least squares solution︷ ︸︸ ︷
[(sin θm − sin θl)(sin θl cos θm + sin θm cos θn + cos θm sin θn)]

Im {cn} =

N−1∑
l=0
m=0

[wnwlwm] [(cos θm − cos θl)(sin θl cos θm + sin θm cos θn + cos θm sin θn)]

(2.120)

where θn = nω0, also these coefficients are non-significantly scaled for clarity in exposition.
It is worth mentioning that the expression allows one to compute the weighted coefficients
even the phase shifts would be non-uniformly spaced. To deal with the detuning error, it
is recommendable that the nominal phase shift of the fringe patterns is close to π/2, so
PSAs would be designed with ω0 = π/2.

Without losing generality, several weighting windows are following presented

wHann
n =

1

2

∫ ∞
−∞

[1− cos(2πt/τ)] δ(t− tn)dt (2.121)

wGaussian
n =

1

2

∫ ∞
−∞

exp

[
−1

2

(
α
t− t̄
τ/2

)2
]
δ(t− tn)dt (2.122)

wRiemann
n =

∫ ∞
−∞

sin [2π (t− t̄) /τ ]

2π(t− t̄)/τ
δ(t− tn)dt; (2.123)
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Figure 2.18: Comparison of detuning amplitude performed by windowed PSAs with Hann,
Gaussian and Riemann windows in (a). The weighting windows are shown in (b).

Here tn = n, and τ and t̄ are the maximum and center of {tn}N−1
n=0 , respectively. Moreover,

it is noticeable that the Gaussian window has a parameter α being the reciprocal of
the standard deviation. Other windows can be found in [94]. Figure 2.18 illustrates a
comparison of the detuning robustness of the obtained algorithms using 9-steps and the
windows in equations (2.121) – (2.123); it was selected that α = 2.25 for the Gaussian
window. One can observe that the Hann-PSA was the most detuning robust, and the
weakest was the Riemann-PSA. It is worth mentioning that the Hann-PSA has coefficients
c0 = cN−1 = 0; therefore, it would be neglecting the first and the last records; this can be
avoided by computing the window with length N + 2.

Even though the windowed PSAs have been employed to deal with the detuning error,
I believe that they should be utilized when the fringe modulation function has time vari-
ations as done in the next Chapter. One can straightforwardly realize this fact from Eq.
(2.117).

2.2.5 Nonlinear phase-shifting algorithms

It is called non-linear phase-shifting algorithms to those having the ability to estimate both
the phase shifts and the phase map. In general, these schemes can be divided into two sub
methods: one for phase retrieval, and the other to estimate the phase shifts; here, they are
named phase-shift estimators. Therefore, one can formulate the nonlinear problem as

ϕ+ = argmin
ϕ

U (ϕ; θn) (2.124){
θ+
n

}
= argmin

{θn}
U ({θn} ;ϕ) (2.125)

where U(•) is a cost function relating the observed data I and the estimated one Î by
means of a metric. Equations (2.124) and (2.125) can be iterated to improve the quality
of the estimation.

Phase-shift estimators can be organized into two categories; the first ones estimates a
local frequency ω0 supposing that θn = nω0, then the PSA is tuning to ω0, for example the
scheme in references [39, 88–90, 95, 96]; the second ones extracts every phase step θn, and
then, a generalized PSA is employed for phase retrieval, some of this kind of methods are
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in the references [97–112], and with frequency description in [113,114], as well as methods
for two fringe patterns, however, these are not useful in fringe projection profilometry due
to gamma distortion and their weakness against to noise.

Because acquired fringe patterns are expected to be non-uniformly phase-shifted, tun-
able PSAs are not described. Instead, in the rest of this subsection, it is revised those
algorithms for such kind of fringe patterns. First, it is analyzed a phase-shifting estimator
based on the sinusoidal fitting of the fringe pattern. Then, this Section goes through the al-
gorithms based on principal component analysis and Gramm-Schmidt ortho-normalization
methods.

Before presenting nonlinear phase-shifting algorithms, it is suitable determining what
it happen if the phase shifts are not exactly given. Let {θ̃n} and {θn} be the poorly-
estimated and exact phase shifts, also {θ̃n} fulfills the following condition

θ̃n 6= θn + ∆θ, ∆θ ∈ R and ∀n; (2.126)

where ∆θ is a piston. Then, poorly-estimated coefficients c̃ are computed using θ̃n. From
Eq. (2.29), the analytic signal is given by

b̃

2
eiϕ̃ =

b

2
H(ω0)eiϕ

[
1 +

H(0)

H(ω0)

2a

b
e−iϕ +

H(−ω0)

H(ω0)
e−i2ϕ

]
, ∀(x, y) (2.127)

where

H(0) =
N−1∑
n=0

c̃n, H(−ω0) =
N−1∑
n=0

c̃ne
iθn/ω0 , H(ω0) =

N−1∑
n=0

c̃ne
−iθn/ω0 (2.128)

with θn = ω0tn, one can observe in Eq. (2.128) that exact phase steps {θn} is used to
compute the frequency transfer function of the PSA; it is remarkable that if one uses the
poorly-estimated phase step to compute the PSA’s FTF, then one will obtain an FTF
not working with Eq. (2.127) due to the fact that that FTF will depicts that the poorly-
estimated coefficients accomplish the quadrature conditions. Figure 2.19 displays this
fact: first the real PSA’s FTF is in Fig. 2.19(a) where one can clearly see that the lobe
at −ω0 was not eliminated completely; second, the wrong FTF in Fig. 2.19(b) exposes
that the analytic signal would have been estimated correctly. Based on Eq. (2.127), the
poorly-estimated ϕ̃(x, y) will have distorting waves at the single-frequency of the fringe
pattern when H(0) 6= 0 and at the double-frequency when H(−ω0) 6= 0; in most cases, it is
expected that the FTF accomplishes H(0) = 0, and hence, one should assume that phase
step mismatching will introduce a detuning-like error of |H(−ω0)| / |H(ω0)|. Moreover,
we want to point out that these distorting ripples’ amplitudes cannot be estimated, in
practice, because it needs to know the phase steps exactly.

Phase-shift estimator based on sinusoidal fitting

In optical interferometric measurements, it is typical that some area of interferograms
has no measuring information about a testing object because the latter is not commonly
rectangular nor square as camera sensors are. Considering that Ω is the set of those pixels
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Figure 2.19: Frequency transfer function of a PSA for which the phase steps were poorly-
estimated: (a) shows the true FTF with the exact phase shifts, and (b) illustrates the
FTF using the poorly-estimated phase steps. One can observe that the distorting ripples’
amplitude can be estimated, provided that the exact phase shifts are known.

having the measuring information about a test object, then the spatial position for a valid
pixel is p ∈ Ω, and M is the number of pixels in Ω.

Let both background intensity and fringe modulation be spatially constant, and they
change only between interferograms; this is, they are time-variant; hence one has the cost
function given by

U (θn, an, bn;ϕ, n) =
M∑
p=1

ρ
(
an + bn cos (ϕp + θn)− Ip,n

)
, (2.129)

where ϕ is the phase previously-estimated using the PSA in Eq. (2.54). ρ : R −→ R is
a weighted function which will be described above. As one can see in Eq. (2.129), one
requires optimizing U for each fringe pattern.

Rewriting Eq. (2.129) in is matrix formulation, one obtains

U (y;ϕ) =

M∑
p=1

ρ (Bp · y − zp) =

M∑
p=1

ρ (rp) , (2.130)

where

y =
[
a b cos θ −b sin θ

]T
, (2.131)

z =
[
I1 I2 · · · IM

]T
, (2.132)

B =


1 cosϕ1 sinϕ1

1 cosϕ2 sinϕ2
...

...
...

1 cosϕM sinϕM

 . (2.133)

Here one has the linear model By = z, and rp = Iestimated − Imeasured are the residuals for
each pixel p; Bp · y is the dot product of the pth row of B and the vector of unknowns y.

With the aim of optimizing Eq. (2.130), one needs to satisfy the condition:

∇yU (y;ϕ) = 0. (2.134)
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Whence, one obtains the equations

∂U

∂yj
=

M∑
p=1

ψ (Bp · y − zp)Bp,j = 0, j = 1, 2, 3. (2.135)

Here, ψ : R −→ R is the first derivative of ρ and is called the influence curve indicating
how strong large residuals will pull the estimation [115].

One can observe that equations (2.135) are a system of nonlinear equations which must
be optimized in order to obtain the optimal value y+. With the aim of solving (2.135),
one can rewritten them as

∂U

∂yj
=

M∑
p=1

Bp,j (Bp · y − zp)wp = 0, j = 1, 2, 3. (2.136)

where Bp,j is the element of B at p-th row and j-th column, as well as the weight given
by

wp =
ψ (Bp · y − zp)
(Bp · y − zp)

. (2.137)

Thence, this nonlinear optimization problem can be solved through the iteratively reweighted
least-squares method (IRLS) [116,117]; in the k-th iteration, this method consists of esti-

mating y(k+1) holding certain weights w
(k)
p , and then, updating the weights w

(k+1)
p holding

the just previously-estimated y(k+1). These two steps are:

1. Estimating y(k+1). One can obtain the system of weighted normal equations as

BTW(k)By(k+1) = BTW(k)z

∴ y(k+1) =
[
BTW(k)B

]−1
BTW(k)z (2.138)

where W = diag (w) being w the vector of weights. Eq. (2.138) represents a 3× 3
system of linear equations, in which the matrix and vector of observations are given
by

BTW(k)B =



M∑
p=1

w
(k)
p

M∑
p=1

w
(k)
p cos ϕ̂p

M∑
p=1

w
(k)
p sin ϕ̂p

M∑
p=1

w
(k)
p cos ϕ̂p

M∑
p=1

w
(k)
p cos2 ϕ̂p

M∑
p=1

w
(k)
p cos ϕ̂p sin ϕ̂p

M∑
p=1

w
(k)
p sin ϕ̂p

M∑
p=1

w
(k)
p cos ϕ̂p sin ϕ̂p

M∑
p=1

w
(k)
p sin2 ϕ̂p



BTW(k)z =



M∑
p=1

w
(k)
p Ip

M∑
p=1

w
(k)
p cos ϕ̂pIp

M∑
p=1

w
(k)
p sin ϕ̂pIp


.
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where ϕ̂ is a phase map estimation. One can observe that system of equations (2.138)
has unique solution due to the number of non-zero elements of w will be much larger
than three.

2. Updating W(k+1). Considering the Stundentized residuals computed as

sp =
rp

σ̂
√

1− hp
(2.139)

where estimated standard deviation σ̂ is obtained as

σ̂ = mad (rp) =
|rp −median ({rp})|

0.6745
. (2.140)

Here mad (•) is called the median of the absolute deviations, hp is p-th diagonal

element of the hat matrix described by H = B
(
BTB

)−1
BT. In particular, we want

to note that

hp = BT
p

(
BTB

)−1
Bp, (2.141)

where it is noticeable that hp measures the location of the p-th point with respect to
the centroid of the y space. As a consequence, we are able to mention that the points
violating the assumptions of the mathematical model will be translated into remote
points from the centroid; and hence, these remote points are easy to be detected
by computing the Studentized residuals. Based on equations (2.137) and (2.139) –
(2.141), the new weights can be computed as follows

w(k+1) =
ψ
(
s

(k)
p

)
s

(k)
p

. (2.142)

These two steps are iterated until a convergence condition is met; for example

∥∥∥y(k+1) − y(k)
∥∥∥

2
< threshold. (2.143)

Once this iterative procedure had converged, one obtains the optimal solution y+, and
the phase steps are given by

θ+
n = tan−1

(
−y

+
3

y+
2

)
. (2.144)

It is noticeable that this iterative procedure is performed for each fringe pattern.

Using Greivenkamp’s phase-shifting algorithm for phase retrieval, then the pseudocode
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for nonlinear phase demodulation would be describe as:

Input: I(x, y, tn), θ(0), and Ω.
while

∥∥θ(k1+1) − θ(k1)
∥∥ < threshold do

c
(k1+1)
n ←

(
a†2,n + ia†3,n

)
/2; θ(k1). See Eq. (2.55).

ϕ(k1+1) ← angle
[∑N−1

n=0 c
(k1+1)
N−n−1In

]
, ∀p.

hp ← BT
p

(
BTB

)−1
Bp, ∀p; ϕ

(k1+1)
p .

foreach n ∈ {0, 1, . . . , N − 1} do
z← In.
w

(0)
p ← 1, ∀p.

while
∥∥y(k2+1) − y(k2)

∥∥ < threshold do

y(k2+1) ←
[
BTW(k2)B

]−1
BTW(k2)z.

s
(k2+1)
p ← Studentized

(
Bp · y(k2+1) − z

)
, ∀p.

w
(k2+1)
p ← ψ

(
s

(k2+1)
p

)
/s

(k2+1)
p , ∀p.

end

θ
(k+1)
n ← tan−1

(
−y+

3 /y
+
2

)
.

end

end

ϕ+
p ← ϕ

(last)
p , ∀p.

θ+
n ← θ

(last)
n , ∀n.

Algorithm 2: Nonlinear phase demodulation with the generalized least-squares PSA
and phase-shift estimators based on sinusoidal fitting.

On the other hand, several robust estimators are listed below:

• ρ function for the least-squares estimator (or norm L2):

ρls(s) =
s2

2
; ψls(s) = s; wls(s) = 1. (2.145)

• Least absolute estimator (or norm L1):

ρla(s) = |s| ; ψla(s) =
s

|s|
; wla(s) =

1

|s|
. (2.146)

• Huber’s minimax estimator:

ρHu(s; τ) =

{
s2

2τ + τ
2 |s| ≥ τ

|s| |s| > τ

ψHu(s; τ) = min[τ,max(s,−τ)]

wHu(s; τ) =
τ

max (1, |s|)
. (2.147)

A 95% asymptotic efficient is obtained when τ = 1.345σ.
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• Tukey’s biweigthed estimator:

ρbi(s; τ) =

 τ2

6

[
1−

(
1− s2

τ2

)3
]

if |s| ≤ τ
τ2

6 otherwise

ψbi(s; τ) =

s
[
1−

(
s
τ

)2]2
if |s| ≤ τ

0 otherwise

wbi(s; τ) =


(

1− s2

τ2

)2
if |s| ≤ τ

0 otherwise.
(2.148)

A 95% asymptotic efficient is obtained when τ = 4.685σ.

• Leclerc’s estimator:

ρle(s; τ) = 1− 1

τ
e−τs

2
; ψle(s; τ) = 2se−τs

2
; wle(s; τ) = 2e−τs

2
. (2.149)

Other robust estimators can be found in the work by Black and Rangarajan [118].

Figure 2.20 draws the influence curves of these estimators. One can see that a residual
has as much contribution as large it is; therefore, it means that outliers or pixels violating
the mathematical model will have too much contribution. In other words, these pixels will
pull the estimated intensity much stronger than those pixels following the model well, and
whence the estimation would be depending mainly on pixels violating the mathematical
model in Eq. (2.129). L1-norm estimator considers all residuals have the same weight
even if they are small. This fact makes that solving the optimization problem be hard;
the author enlists it only for comparison purposes. For Huber’s minimax estimator: small
residuals are weighted as least squares, whereas large residuals will have the same weight
one another as L1-norm. So, it makes some protection against heavy noise and outliers.

ψ(s)

residual s

ψls(s)

ψHu(s)
ψla(s)

ψle(s)
ψbi(s)

Figure 2.20: Comparison of several influence curves from the M estimators: least-squares
ψls(s), least absolute ψla(s), Huber’s minimax ψHu(s) with τ = 1.0, Tukey’s biweighted
ψbi(s) with τ = 1.0, and Leclerc’s ψle(s) with τ = 3.0.
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Figure 2.21: Convergence comparison using the estimators described in the main text.
One can see that Leclerc’s estimator performed the best results, and the least-squares
method obtained the worst results. It is also noticeable that the iterative procedure will
converge by the 10th iteration for all cases studied.

Tukey’s biweighted also considers small residuals as the least-squares method does,
but also large residuals are neglected; thence, one has good protection against outliers.
A similar case is obtained with Leclerc’s function, but large residuals are not neglected
completely; instead, the estimator only reduces their contribution significantly. To sum
up, the M-estimators can hand those pixels passing over the mathematical model; it means
that the ψ-function does not pull estimation y towards pixels being outliers or having large
influence. Therefore, these pixels are discarded from the whole optimization process since
they are considered to be too dominant to take them into account.

In order to show the iterative process, numerical experiments were carried out using
five fringe patterns whose signal-to-noise ratio was 15. To estimate the phase map was
employed that PSA in Eq. (2.55) as authors did in [119]. The amplitude of the ripple
distortions in Eq. (2.127) is employed as a metric to depict the iterative procedure’s
convergence. Figure 2.21 illustrates the results obtained for the aforementioned estimators.
First, Leclerc’s estimator reaches the best result (amplitude around 0.6 × 10−3), and
the worst one was obtained by the least-squares method (amplitude around 20 × 10−3).
Moreover, it is noticeable that the iterative procedure will converge by the 10th iteration;
or even five iterations can be enough when using a robust estimator. Hence, the method
would spend less computational time.

Continuing with the iterative procedure evaluation using the robust M estimator, some
temporal sequences of fringe patterns were acquired. A Wyko 6000 Fizeau interferometer
with a laser operating at λ = 632.8 nanometers (nm) and a CCD camera with 1600×1200
pixels of resolution and 12-bit pixel depth. This interferometer is in CIO’s optical-testing
laboratory was employed to record the fringe patterns. Every temporal sequence has nine
fringe patterns, and it was introduced a phase step ω0 = π/2 plus those errors coming
from the experimental conditions and piezo-electric device. The testing object was the first
surface of the fused silica plane, with 140 mm in diameter and a λ/20 flatness peak-to-
valley (P–V), into 80% of its aperture as reported in [119]. Spatial carriers were introduced
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Figure 2.22: Phase demodulation of three sequences of fringe patterns. A Wyko 6000
Fizeau interferometer acquired the patterns. Every sequence has 9 phase shifts and a
different spatial carrier. Below plots depict the estimated phases’ horizontal profiles after
removing the spatial carrier (also estimated). The y range of the plots is [−1, 1] radians.
For exposition purposes, a phase piston was introduced.

in order to compare the estimations qualitatively from each scheme. Figure 2.22 shows
three obtained results; images depict a fringe pattern from each sequence; plots have the
estimated phases’ profiles along the x-axis. We point out that the spatial carrier was
estimated by fitting the least-squares plane; then, he subtracted it to the estimated phase
map. Since the testing object’s phase has a low dynamic range, it is unwrapped after
removing the spatial carrier, and hence, a phase unwrapping method was not required.
For the better exposition, the estimations were denoised by employing a second-order,
bi-dimensional, smoothing Savitzky–Golay filter with a 9 × 9 window [120]. Fig. 2.22(a)
shows four estimations are almost the same, so the schemes performed well. In the second
result in Fig. 2.22(b), the estimation with least-squares has distorting ripples due to a
poor step extraction; the M estimators did better than the LS method. In this case,
Leclerc’s estimator seemed to do the best; although such, this estimation was worse than
the one obtained in the previous experiment. In the third result in Fig. 2.22(c), one can
observe that all estimations have distorting waves at the fringe patterns’ double-frequency.
The LS estimation got the largest distortion; instead, the smallest one was obtained by
Huber’s minimax estimator. The estimations with Tukey’s and Leclerc’s estimator have
distorting ripples having almost the same amplitude. Based on these results, we would like
to mention that the tuning constant of an M estimator requires to be selected depending on
data; for these estimations, the tuning constant remained the same for each M estimator.

Phase demodulation based on subspace projection

Phase estimation based on the Gram-Schmidt orthogonalization method. This
procedure is a simple way to make a orthogonal or orthonormal basis for any subspace in
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Rn with n > 0. Let V = {v1,v2, . . . ,vN} be a vector set, then one can generate from
V other vector set U = {u1,u2, . . . ,uM} whose elements ul are orthogonal each other; it
means that the inner product 〈ul,um〉 = uT

l um = 0 for l 6= m. The way one computes
orthonormal U is [121]:

1. Normalize v1 to be u1:

u1 =
v1

‖v1‖2
.

2. Compute the orthogonal vector p1 form v2 with respect to u1, and then normalize
it:

p1 = v2 −
(
vT

2 u1

)
u1,

u2 =
p1

‖p1‖2
.

3. Compute the orthogonal vector p2 form v3 with respect to u1 and u1, then normalize
it:

p2 = v3 −
(
vT

3 u1

)
u1 −

(
vT

3 u2

)
u2,

u3 =
p2

‖p2‖2
.

4. Compute the orthogonal vector pl−1 form vl with respect to u1,u2, . . . ,ul−1:

pl−1 = vl −
(
vT
l u1

)
u1 −

(
vT
l u2

)
u2 − · · · −

(
vT
l ul−1

)
ul−1,

ul =
pl−1

‖pl−1‖2
.

5. Repeat 4th step until the M orthonormal vectors are computed.

For fringe analysis, Vargas and coworkers have proposed to employ the Gram-Schmidt
(G-S) method for demodulating a sequence of two fringe patterns [122]. In their work, the
authors consider removed-DC fringe patterns being mathematically described by

I(x, y, tn) = b(x, y) cos [ϕ(x, y) + ω0tn] ; n = 0, 1. (2.150)

Also, they define the inner product as

〈I1, I2〉 =
∑
∀(x,y)

I1(x, y)I2(x, y), (2.151)

where Il ← I1(x, y) and I2 ← I2(x, y).

Tracking the G-S procedure, one requires to normalize the fringe patterns as

Ī1 =
I1√
〈I1, I1〉

(2.152)
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where

√
〈I1, I1〉 =

 ∑
∀(x,y)

I1(x, y)I1(x, y)

 1
2

=

 ∑
∀(x,y)

[b(x, y) cosϕ(x, y)]2

 1
2

; (2.153)

and hence,

Ī1 ←
b(x, y) cosϕ(x, y)[∑

∀(x,y) [b(x, y) cosϕ(x, y)]2
] 1

2

. (2.154)

Continuing with the G-S method, one then compute the orthonormalized pattern from
the second fringe pattern with respect to Ī1; this is

p1 = I2 −
〈
I2, Ī1

〉
Ī1 = I2 −

〈I2, I1〉
〈I1, I1〉

I1 (2.155)

whence

〈I2, I1〉 =
∑
∀(x,y)

b2(x, y) cos [ϕ(x, y) + θ] cosϕ(x, y)

=
∑
∀(x,y)

b2(x, y)
[
cos2 ϕ(x, y) cos θ − cosϕ(x, y) sinϕ(x, y) sin θ

]
≈
∑
∀(x,y)

b2(x, y) cos2 ϕ(x, y) cos θ;

here it is considered that
∑
∀(x,y) cosϕ(x, y) sinϕ(x, y) ≈ 0 when the fringe pattern has

more than one fringe. Therefore, one has that

p1 ≈ p̃1 ← − sin θb(x, y) sinϕ(x, y); (2.156)

Here p1 ≈ p̃1 implies that [p1]l ≈ [p̃1]l for all l, with [v]l is the l-th element of vector v.
Then, one can compute the orthonormalized Ī2 as

Ī2 =
p1√
〈p1,p1〉

≈ Ĩ2 ←
−b(x, y) sinϕ(x, y)[∑
∀(x,y) [b(x, y) sin(ϕ)]2

] 1
2

. (2.157)

For fringe patterns having more than one fringe, one obtains that ∑
∀(x,y)

[b(x, y) cosϕ(x, y)]2

 1
2

≈

 ∑
∀(x,y)

[b(x, y) sin(ϕ)]2

 1
2

. (2.158)

Thence, one is able to say that Ī1 and Ī2 are in quadrature, and so the estimated analytic
signal would be estimated as

b̂(x, y)eiϕ̂(x,y) ←
[
Ī1

]
l
− i
[
Ī2

]
l
. (2.159)
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Figure 2.23: Phase demodulation of three sequences of two fringe patterns, every sequence
has a different spatial carrier. Below graphs depict the horizontal profiles of the fringe
patterns and the phase error; three plots are on the same scale. For exposition purposes,
a piston was introduced.

The G-S method is weak against noise from which the estimated “orthonormal” vector set
will not be orthogonal at all; consequently, the vectors will not be in quadrature. Thence,
the estimated analytic signal, in Eq. (2.159), will have distorting ripples at the double
frequency of the initial fringe pattern because of the relation in Eq. (2.158). To overcome
this issue, Servin and associates proposed to compensate it by finding the proportional
constant with the aim of achieving the equality of the analytic signal’s real and imaginary
parts [76]. On the other hand, the main disadvantage perhaps has roots in the necessity
of eliminating the background intensity due to underestimating.

As an example, Figure 2.23 draws three examples of phase demodulation using the G-S
method. First, the fringe patterns have one-half fringe for which the extracted phase has
double-frequency distorting ripples with 0.15 radians as seen in Fig. 2.23(a). Second, the
fringe patterns have three fringes; the amplitude of the distorting ripples is around 0.05
radians, see Fig. 2.23(b). In Fig. 2.23(c), the last numerical experiment shows a fringe
pattern with 7.5 fringes, and the ripples’ amplitude is less than 0.01 radians. Thence, one
can realize that the estimation will improve its quality by increasing the spatial frequency
or introducing a spatial carrier.

Phase estimation based on principal component analysis. The scheme of prin-
cipal component analysis (PCA) is briefly introduced. Let x be a vector of N random
variables, in PCA is of interest the variables of the N variances as well as the struc-
ture of the correlation between the N random variables. The following description of the
PCA method is inspired in Jolliffe’s book [123]. In the first step, one looks for a linear
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combination of the elements of x such that the variance would be maximum

vTx =
N∑
n=1

vnxn (2.160)

where superscript T means transpose operation. In the second step consists of finding
another linear combination vT

2 x being uncorrelated with vT
1 x; it means that they both

are orthogonal. This second linear combination has maximum variance, and so forth.
Every linear combination must be uncorrelated with the others; therefore the k-th linear
combination vT

k x is the k-th principal component (PC). Let Σ be the covariance matrix
of x, one needs to maximize the variance Var

(
vT
k x
)

= vT
k Σvk. Due to the fact that the

maximum will not be achieved for finite a vk, so normalization constraint vT
k vk = ‖v‖22 = 1

must be imposed; this restriction means that the sum of the squares of the elements of vk
is equal to 1. Hence, the optimization problem for k = 1 is given by,

max
v1

vT
1 Σv1, subject to vT1 v1 = 1. (2.161)

Optimizing through the Lagrange multipliers method, the Lagrangian is given by

L (v1) = vT
1 Σv1 − Λ

(
vT
k vk − 1

)
= 0; (2.162)

where Λ is the Lagrange multiplier. Then, the optimal is obtaining by deriving Eq. (2.162)
with respect to v1, so one obtains that

dL(v1)

dv1
= Σv1 − Λv1 = (Σ− ΛIN ) v1 = 0, (2.163)

where IN is the N identity matrix. As one is able to see in Eq. (2.163) that v1 is
a eigenvector of Σ and Λ is its corresponding eigenvalue; particularly, Λ is the largest
eigenvalue of Σ due to maximization problem in Eq. (2.161).

The second PC must maximize vT
2 Σv2 subject to being uncorrelated with v1x, so it

implies that

Cov (v1x,v2x) = vT
1 Σv2 = vT

2 Σv1 = vT
2 Λ1v

T
1 = Λ1v

T
2 v1 = Λ1v

T
1 v2 = 0; (2.164)

where Cov(•) means covariance, Λ1 is the largest eigenvalue corresponding to the first PC,
the Lagrange multiplier in Eq. (2.163). From the condition of uncorrelation of both PCs
vT

1 v2 = 0, hence one can obtain a second optimization problem given by

max
v2

vT
2 Σv2, subject to

{
vT

2 v2 = 1
vT

1 v2 = 0.
(2.165)

Again, using the method of Lagrange multipliers, one obtains that

L (v2) = vT
1 Σv1 − Λ2

(
vT
k vk − 1

)
− τvT

1 v2 = 0

dL(v2)

dv2
= Σv2 − Λ2v2 − τv1 = 0. (2.166)
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Here, Λ2 and τ are the Lagrange multipliers. Now, performing the dot product

vT
2

[
dL(v2)

dv2

]
= vT

2 Σv1 − Λ2v
T
2 v1 − τvT

2 v1 = 0; (2.167)

in which one can observe that Λ2v
T
2 v1 = 0 and vT

2 Σv1 = 0; it implies that τ = 0. Thus,
as computing the first PC, one has the following relation

(Σ− Λ2IN ) v2 = 0. (2.168)

Equation (2.168) denotes that Λ2 is the largest eigenvalue of Σ and v2 its corresponding
eigenvector, but it implies that v2x = v1x; thus, Λ2 is the second largest eigenvalue of Σ
and v2 its corresponding eigenvector, so both conditions in Eq. (2.165) are fulfilled. In
general, the k-th PC is computing by

tk = vkx subject to

{
(Σ− ΛkIN ) vk = 0
Λk−1 ≥ Λk ≥ Λk+1;

(2.169)

where Λk is the k-th eigenvalue and vk is its corresponding eigenvector. From Eq. (2.169),
the covariance matrix’s eigenvectors determine those directions where data have the greater
variances.

Let In be the n-th vectored fringe pattern, then one can estimate of the background
intensity as the temporal average; this is

[â]l =

N−1∑
n=0

[In]l , l = 1, 2, . . . , LxLy (2.170)

where each interferogram has Lx×Ly pixels; other methods can be employed to estimate
the center of the temporal intensity values. Using this notation, one can represent the
acquired fringe patterns with the DC term removed as the matrix of observations

A =


IT

0 − âT

IT
1 − âT

...
IT
N−1 − âT

 =


ĪT

0

ĪT
1
...

ĪT
N−1

 (2.171)

where A ∈ RN×(LxLy) and each interferogram has Lx×Ly pixels. Also Then, the estimated
covariance matrix is given by

Ŝ =
1

LxLy − 1
AAT =

1

LxLy − 1


〈
Ī0, Ī0

〉 〈
Ī0, Ī1

〉
· · ·

〈
Ī0, ĪN−1

〉〈
Ī1, Ī0

〉 〈
Ī1, Ī1

〉
· · ·

〈
Ī1, ĪN−1

〉
...

...
. . .

...〈
ĪN−1, Ī0

〉 〈
ĪN−1, Ī1

〉
· · ·

〈
ĪN−1, ĪN−1

〉


(2.172)

where Ŝ ∈ RN×N is a symmetric and semi-defined positive matrix, and 〈•, •〉 is the dot
product and also it is defined in Eq. (2.151).
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With the aim of obtaining the principal components, one requires computing the eigen-
vectors and eigenvalues of Ŝ. From the mathematical model in equations (2.48) – (2.52)
and the fact of removing the background intensity, one can realize that there will be two
principal components: the first related with cosϕ(x, y) and the other with sinϕ(x, y);
this is because these signals represents the redundant information through the matrix of
observations. The quadrature filter’s coefficients, given by the PCA method, are simply
computed as [76]

cn =
1

2

(
[v1]n+1 + i [v2]n+1

)
; n = 0, 1, . . . , N − 1 (2.173)

where v1 is the eigenvector associated with the largest eigenvalue λ1 and v2 is associated
with the second largest eigenvalue of the covariance matrix. From Eq. (2.173), the analytic
signal is computed. Moreover, the phase steps are given by [76]

θ̂n = angle (c∗n) . (2.174)

Now, the demodulation through this method based on PCA is analyzed. Let

c =
[

cos θ0 cos θ1 · · · cos θN−1

]T
, and (2.175)

s =
[

sin θ0 sin θ1 · · · sin θN−1

]T
(2.176)

be the vector of the column space of a modified (without the DC term) matrix in Eq.
(2.48), it means that the interferometry data is represented in terms of c and s. Thence,
one can identify three scenarios coming from the phase steps:

1. The phase steps are uniformly spaced θn = ω0n, but also they complete cycles (one
or more), this is exp(iθ0) = exp(iθN ); whence, one has that cTs = 0, and so, one
usually obtains that

cn =
1

2

(
[v1]n+1 + i [v2]n+1

)
= |cn| einω0−iψ (2.177)

where ψ = cos−1
(
cTv1/ ‖c2‖

)
= cos−1

(
sTv2/ ‖s2‖

)
, then the estimated phase will

is exact and it has a global piston ψ. Furthermore, the basis v1 and v2 is just a
rotation of the basis c and s. Figure 2.24(a) illustrates this case, where one can see
that intensity values plots a Lissajous circle.

2. The phase steps are uniformly-spaced θn = ω0n but they do not complete cycles; it
means that the phase steps are not uniformly-distributed on [0, 2πκ] for integer κ.
For this case, one has that vectors c and s are no orthogonal, this is cTs 6= 0; this
means that the first PC catches some information from both cosine and sine terms,
and it happens the same for the second PC. From construction, the first PC will
catch more information than the second PC; thereby, it is expected that the intensity
values projected onto the principal components space will plot a Lissajous ellipse, as
depicted in Fig. 2.24(b). The phase can be corrected a posteriori by transforming
the Lissajous ellipse to a circle one.
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Figure 2.24: Estimation of the first two principal components in phase demodulation.
Figure draws three typical cases: (a) the phase shifts are given by θn = ω0n, but also,
they complete cycles (one, two, or more); (b) the phase shifts are also given by θn = ω0n
but they do not complete periods; and (c) the phase shifts are non-uniformly spaced.

3. The phase steps are non-uniformly spaced θn = ωtn. Vectors c and s are not
orthogonal, and whence the PCs will catch information from both cosine and sine
terms. As aforementioned, the intensity values plots a Lissajous ellipse in the PCs
space as seen in Fig. 2.24(c). Hence, the estimated analytic signal can be corrected
by transforming the ellipse into a circle.

I do point out that these scenarios take into account that a well the background illumina-
tion estimation. However, when it did not, one should suppose that the ellipse will not be
centered at (0,0). The latter makes that the analytic signal correction will be tricky; for
example, the proposal in [124].

Figure 2.25 shows the estimated phase from the interferogram in Fig. 2.22 where PCA
is employed to phase demodulate. The scale of these plots is the same as in Fig. 2.22,
so these results are comparable. One can see that the estimated phases have distorting
waving as expected. In all cases, the previously discussed nonlinear PSAs retrieved a better
estimation. Indeed, one should expect that PCA will obtain a poorer phase estimation
than the others.

2.3 Phase unwrapping

This task consists of reconstructing the estimated wavefront or unwrapped phase from the
wrapped phase or phase modulus 2π; i.e., one obtains the phase having no 2π discontinu-
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Figure 2.25: Phase estimation using the algorithm based on the principal component anal-
ysis. Plots are the same as those in in Fig. 2.22, and also the demodulated interferograms
are depicted in that Figure. The y range of the plots is [−1, 1] radians.

ities. The wrapped phase can be computed as

ϕW
def
=W {ϕ} def

= ϕ− 2π
⌊ ϕ

2π

⌋
(2.178)

def
= tan−1

(
sinϕ

cosϕ

)
(2.179)

where bxc rounds x to the nearest lower integer, ϕ ∈ R, tan−1 is the arc tangent of four
quadrants, and W {•} is the wrapping operator; which W : R −→ (−π, π]. Then, the
unwrapping procedure can be given by

ϕ =W−1 {ϕW} = ϕW + 2π
⌊ ϕ

2π

⌋
(2.180)

whereW−1 {•} is the unwrapping operator so that ϕ =W−1 {W {ϕ}} for all ϕ ∈ R. Here,
one can observe that the Wrapper operator is a surjective function, but it is not injective;
i.e. the range of W {ϕ} is the image of the element 2πnϕ ∈ R for any integer n. Thence,
the integer bϕ/2πc is needed to be known to compute the unwrapped phase ϕ. However,
when one retrieves the wrapped phase by phase demodulating the fringe patterns. One
cannot compute the map of integers bϕ(x, y)/2πc, and whence, the unwrapping problem
will require prior information.

Itoh proposed to unwrap the phase progressively in a one-dimensional way [125]. Con-
sidering that

k(x) = bϕ(x)/2πc , (2.181)

and substituting k(x) in Eq. (2.180), one has that

ϕ(x) = ϕW(x) + 2πk(x). (2.182)

Then, taking the discrete derivative of Eq. (2.182), this is

D {ϕ(x)} = D {ϕW(x)}+ 2πD {k(x)}
ϕ(x)− ϕ(x− 1) = ϕW(x)− ϕW(x− 1) + 2π [k(x)− k(x− 1)] , (2.183)

where [k(x)− k(x− 1)] ∈ Z. Appying the wrapping operator, one has that

W {D {ϕ(x)}} =W {D {ϕW(x)}+ 2πD {k(x)}}
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=W {D {ϕW(x)}} . (2.184)

This last result indicates that the derivative of the unwrapped phase is equal to the
derivative of the wrapped phase. Whence, one can retrieve the phase using the Euler’s
method for linear integration given by

ϕ̂(x) = ϕ(x− 1) + 1 · dϕ(x)

dx
(2.185)

= ϕ(x− 1) +W {ϕW(x)− ϕW(x− 1)} . (2.186)

Here, one can state that ϕ̂(0) = cte when this value is unknown. Notice that the derivative
is approximated by first order finite difference scheme. Equations (2.185) and (2.186)
summarize the so-called Itoh’s method [125] which comes from the Euler’s method for
linear integration.

The previously described algorithm can be straightforwardly used to unwrap an image
by selecting an integration path. The simplest path is when unwrapping in a zigzagging
way, while a better path can be computed based on the flood-fill scheme [126] where
the flood path follows those pixels having better signal-to-noise ratio, they all together
are called the quality map. Next, the pseudocode for this last algorithm is described as
follows:

Input: ϕW , P0, Ω and Q.
if Pn ∈ Ω and M(Pn) 6= 1 then

ϕ(Pn)← ϕ(Pp) +W {ϕW(Pn)− ϕW(Pa)} .
M(Pn)← 1.
R← sort ({r : r ∈ L}) ; L ⊂ Q.
while R is not empty do

Pn+1 ← pop (R) .
FloodFillUnwrapper (Pn+1, Pn) .

end

end
Algorithm 3: Phase unwrapping employing a line integration method with that path
given by flood-filling a quality map. It is thought that the computer function is called
FloodFillUnwrapper. The description is in the main text.

In this pseudocode, Pn is the n-th pixel, R is the integration path, M is the unwrapping
mask, Ω is the image lattice, Q is the quality map, L is a neighboring around Pn such
that cad(R) = 8, sort(•) arranges the list in numerical order, and pop(•) is a computer
function returning the top item in the list; and at the same time, it removes this item
from the list. The pseudocode, in Algorithm 3, assumes that the corresponding computer
function is called FloodFillUnwrapper(•). The reader can realize that this function is
executed recursively until every pixel had been unwrapped.

Figure 2.26 shows an example of how the algorithm unwraps the given phase map. One
can see that the 13th unwrapped point was unwrapping using the 12th instead of the 6th,
which has better fringe contrast; other cases are 16th, 17th, 18th, 19th, and 20th. Based
on it, one can say that a point would not always be unwrapping using its best neighbor.
Thus, both unwrapping and quality maps could jeopardize the retrieved unwrapped-phase
map.
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Figure 2.26: Phase unwrapping procedure using the quality-guided, flood-fill algorithm.
Notice that subscripts mean the order of unwrapping: R1 is the first point that will be
unwrapping, R2 is the second, and so on.

2.3.1 Unwrapping noised phases

The wrapped phases usually have noise because the demodulation process could not filter
out it. So, one can either employ an algorithm with robustness against noise, or else one
can low-pass filter the wrapped phase before phase unwrapping. One also can combine
the uses of a noise-robust phase scheme to unwrap a smoothed wrapped phase. This
subsection will describe two algorithms with noise robustness for phase unwrapping, and
it will also present three algorithms for denoising a wrapped phase.

A variation of the aforementioned method consists in making a recursive method. This
method is described as [127]

ϕ̂ (Pn) = ϕ̂ (Pa) + αW {ϕ (Pa)− ϕ̂W (Pn)} (2.187)

where P ∈ R and the latter is the integration path, hence, Pn means the actual pixel
and Pa is the previous one. The parameter α ∈ (0, 1] and it controls the amount of noise
is filtered out; the noise level decreases as α does [127]. Therefore, this method has a
low-pass response. In this work, it is used Eq. (2.187) and the quality-guided flood-fill
algorithm when phase unwrapping with line-integration method.

Ghilia and Romero proposed the second method [128], this method consists in opti-
mization a bi-dimensional cost function given by

U =
∑
(x,y)

[ϕ(x, y)− ϕ(x− 1, y)−∆xϕW(x, y)]2

+
∑
(x,y)

[ϕ(x, y)− ϕ(x, y − 1)−∆yϕW(x, y)]2 ; (2.188)
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where

∆xϕW(x, y) =

{
W {ϕW(x, y)− ϕ(x− 1, y)} in Ω

0 over ∂Ω.
(2.189)

∆yϕW(x, y) =

{
W {ϕW(x, y)− ϕ(x, y − 1)} in Ω

0 over ∂Ω.
(2.190)

One can see that equation (2.188) is a least-squares problem where one wants to fit the
derivative of the unwrapped phase to the one computed from the wrapped phase. Taking
the partial derivatives of U with respect to ϕ and equal them to zero, and hence, one can
obtain Poisson’s equation

∂2

∂x2
ϕ(x, y) +

∂2

∂y2
ϕ(x, y) = %(x, y) (2.191)

where the second order partial derivative can be approximated by a second order finite
difference scheme as

∂2

∂x2
ϕ(x, y) ≈ ϕ(x− 1, y)− 2ϕ(x, y) + ϕ(x+ 1, y) (2.192)

∂2

∂y2
ϕ(x, y) ≈ ϕ(x, y − 1)− 2ϕ(x, y) + ϕ(x, y + 1) (2.193)

%(x, y) = ∆xϕW(x, y)−∆xϕW(x− 1, y) + ∆yϕW(x, y)−∆yϕW(x, y − 1). (2.194)

Equations (2.189) and (2.190) impose Neumann boundary conditions on Poisson’s equation
(2.191) [128].

From equations (2.191) – (2.194), one can estimate the unwrapped phase by using the
Gauss-Seidel iterative algorithm as

ϕ̂(k+1)(x, y) =
1

4

[
ϕ̂(k+1)(x− 1, y) + ϕ̂(k)(x+ 1, y) + ϕ̂(k+1)(x, y − 1)

+ ϕ̂(k)(x, y + 1)− %(x, y)
]

; (2.195)

where (k + 1) indicates the actual iteration and (k) the previous. Equation (2.195) is
valid for all pixels that do not touch the boundary. From Eq. (2.189) and (2.190), the
derivatives of pixels reaching the boundary are computed as

∂2

∂x2
ϕ

∣∣∣∣
(xa,y)

≈ −2ϕ(xa, y) + 2ϕ(xa + 1, y) (left) (2.196)

∂2

∂x2
ϕ

∣∣∣∣
(xb,y)

≈ −2ϕ(xb, y) + 2ϕ(xb − 1, y) (right) (2.197)

∂2

∂y2
ϕ

∣∣∣∣
(x,ya)

≈ −2ϕ(x, ya) + 2ϕ(x, ya + 1) (up) (2.198)

∂2

∂y2
ϕ

∣∣∣∣
(x,yb)

≈ −2ϕ(x, yb) + 2ϕ(x, yb − 1) (down). (2.199)
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Here, subscripts a and b indicate the boundaries. Also the values of %(x, y) for these
pixels are computed in the same way. The Gauss-Seidel iteration can be straightforwardly
obtained for these pixels. Finally, this iterative method can be stopped by meeting the
condition ∥∥∥ϕ̂(k+1) − ϕ̂(k)

∥∥∥
2
< threshold. (2.200)

As an example, considering the parabolic wrapped phase shown in Fig. 2.27(a), this
phase is corrupted by speckle noise. Figure 2.27 draws the curve of levels of the free-
noise ground-true phase. The estimated phase maps using the line-integration method
and the global least-squares one are illustrated in Fig. 2.27(c) and (d), respectively.
One can see that the line-integration scheme did not unwrap the phase correctly, i.e.,
this estimation still having 2π discontinuities. Alternatively, the LS method solved all
discontinuities, and its solution is also a little noiseless than the other. Besides, the
estimation, coming from the line-integration unwrapping, has a comparable dynamic range
to the one from the current phase. Instead, the global LS method reduced the phase’s
dynamic range, i.e., the algorithm modified the parabola’s curvature. Because one does
not want to change the unwrapped phase’s dynamic range, the line-integration method
will be employed henceforward.

Based on the obtained results in the last example, one should apply a denoising pro-
cedure in order to deal with heavy noised phases. To this end, one can use the properties
of the complex exponential functions [129], then one has

g(x, y) = eiϕW (x,y). (2.201)

Function g(x, y) can be filtered in the usual way, i.e., using convolution filters.

One can smooth g(x, y) by means of a singular value decomposition (SVD) of a neigh-
borhood L ∈ Ω. Let G be the matrix whose elements are the values of g(x, y) in neigh-
borhood L1, then this matrix can be decomposed as

G = UΣVT, (2.202)

where U has the left-side eigenvectors, V has the right-side eigenvectors, and Σ is diagonal
whose elements are singular values Σi in a descending order, i.e. Σ1 > Σ2 > · · ·ΣN . The
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Figure 2.27: Phase unwrapping of a noised, wrapped phase with speckle noise: (a) the
wrapped phase. Curve levels of the unwrapped phases of (b) the free-noise, test phase,
using the line-integration method (c), and the global LS method (d).
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singular values are inflated due to noise, so one should truncate the SVD decomposition
to the first r larger singular values to filter out noise. Then, one has the smooth phase as

gsmooth(x, y) =

r∑
n=1

USVT, ∀(x, y) ∈ L1 (2.203)

where
S = diag

([
Σ1 Σ2 · · · Σr 0 0 · · · 0

]T)
; (2.204)

hence, it is also a diagonal matrix. One is able to realize that the smooth phase corresponds
to the truncated SVD of the noised phase. When the value of r decreases, the amount of
filtered noise increases; in my experience, values r ∈ {1, 2, 3} should be used. Finally, this
process is repeated thorough the phase map.

The truncation of the singular values in Eq. (2.203) can generate that the smoothed
phase may have distorting waves because the truncation also removes part of the phase
information. To reduce such distorting waves, one can employ a Tikhonov filter [130]

T (Σi) =
Σ2
i

Σ2
i + α

, (2.205)

where α is the regularization parameter; one can increase the amount of filtered out noise
by increasing this parameter.

The windowed Fourier filtering method proposes to use a bank of Gabor filters for
denoising both an intensity pattern or a wrapped phase [38], this is given by∑

±n
g̃n(x, y) =

∑
±n

g(x, y) ~~hn(x, y)

=
∑
±n

g(x, y) ~~

[
4∆x∆y

π2
e
−x

2+y2

4σ2xσ
2
y
e−i(unx+vny)

]
(2.206)

where hn(x, y) is the n-th Gabor filter, σ2
x and σ2

y controls the band-pass width, un = n∆x
and vn = ∆y and the tuning frequencies of the Gabor filter, as well as ∆x, ∆y are the
window size in the x and y axis, respectively. The filtering process is performed as [38]

F(x,y) {gsmooth(x, y)} =
∑
±n

{
F(x,y) {g̃n(x, y)} if

∣∣F(x,y) {g̃n(x, y)}
∣∣ > ε

0 otherwise;
(2.207)

where ε is a threshold, usually this value is into the interval from 4 to 10; the correct
selection of this threshold requires to know the noise power. Also, as indicated in Section
2.1, the window size as well as the band-pass with parameter σ2

x, σ2
y are very important

because they determine whether the spectrum is separable or not; so dynamic selection is
recommended [62,131,132].

Figure 2.28 draws an example of denoising a wrapped phase corresponding to a parabolic
function; to that end, it was added speckle noise to the phase as seen in Fig. 2.28(a). The
denoised phase, using the truncated SVD, is depicted by Fig. 2.28(b). One can observe
that this technique reduced the noise level significantly, but this phase map also shows
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(a) (b)(b) (c) (d)

Figure 2.28: Denoising of a wrapped phase using several algorithms: (a) the noised phase
map, (b) the truncated SVD method, (c) the Tikhonov filter, and (d) the windowed Fourier
filtering.

a tiling-like distortion. Figure 2.28(c) illustrates the obtained result using the Tikhonov
filter, this result has a greater noise level than the truncated SVD, but this result has
no tiling-like distortion. Figure 2.28(d) shows the wrapped phase denoised through the
windowed Fourier filtering; this result is very smooth such that it has the highest signal-
to-noise ratio. However, one can observe that it has distortions such that the parabolic
phase is clipped.

Continuing with this example, because the line-integration method has the lowest
robustness against noise, it is employed to unwrap the phase. Figure 2.29 (a) shows the true
phase without noise. Figure 2.29(b) depicts the phase using the truncated singular-value
decomposition as a denoising method. Here one can see that the unwrapped phase lost
part of its curvature. In other words, it seems that its local frequencies significantly deviate
from those on the ground-true phase; this is due to the rejection of several eigenvectors
having some phase information. Figure 2.29(c) shows the phase corresponding to the
Tikhonov filter, and the noise level of this phase is the highest. However, we can see
that the denoising process did not jeopardize the phase’s curvature; this is because the
Tikhonov filter may keep extra eigenvectors having phase information, as small changes
of the local frequencies. In Figure 2.29(d), this unwrapped phase has not only the lowest
noise level, but it also has lost some part of its curvature since the filter bank removed it.
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Figure 2.29: Phase unwrapping of a denoised, wrapped phase employing several algo-
rithms: (a) the free-noise, true phase, (b) the truncated SVD method, (c) the Tikhonov
filter, and (d) the windowed Fourier filtering. The line-integration method carried out the
phase unwrapping procedure.
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This issue occurs when the instantaneous frequency is close to zero around the peak for
this case, making the spectrum, into that window, may not be separated well.

2.4 Contributions

I enlist and summarize my published papers related to this Chapter:

• A. Muñoz, S. Ordoñes, J. L. Flores, O. Aguilar, and A. Jimenez, “Phase shifting
schemes: comparative analysis,”, Acta Universitaria, vol. 29, e2627, 2019; corre-
sponding to Reference [75]. This paper depicts a comparative study between linear
and non-linear least-squares phase-shifting algorithms for non-uniform steps. The
main result indicates that their behavior against noise is similar to the observed one
using least-squares PSA for uniform phase shifts. I would like to mention that this
work was mostly done while I was at the University of Guadalajara.

• S. Ordones, M. Servin, M. Padilla, A. Muñoz, J. L. Flores, and I. Choque, “Spec-
tral analysis for the generalized least squares phase-shifting algorithms with harmonic
robustness,” Opt. Lett., vol. 44, no. 9, pp. 2358–2361, 2019; corresponding to ref-
erence [77]. This paper introduced the frequency transfer function (FTF) formalism
for LS-PSA with non-uniform phase shifts. It also allows one to design and analyze
this kind of PSA when rejecting high-order harmonics. Particularly, this paper pro-
vided the generalized LS-PSA’s impulsive and frequency responses whose coefficients
is given by (2.78). These equations are here reproduced:

cn =
1

2

(
a†2,n+1 + ia†3,n+1

)
,

h(t) =

N−1∑
n=0

cnδ(t− tn),

H(ω) =

N−1∑
n=0

cne
−i(θn/ω0)ω.;

where a†l,m is the element of Moore-Penrose pseudoinverse, in Eq. (2.77), at the l-th
row and the m-th column; θn = ω0tn is the n-th phase shift. A complete description
is in second part of Subsection 2.2.3, page 28.

• I. Choque, M. Padilla, M. Servin, M. Asmad, and S. Ordones, “Suppressing ripple
distortions and spurious pistons in phase-shifting interferometry,” J. Opt. Soc. Am.
A, vol. 37, no. 4, 614–620, 2020; corresponding to reference [91] and its derived
presentation [92]. These works give the relationship between the root multiplicities
of a PSA’s FTF and the detuning error. Moreover, they introduce the new conditions
to design PSA for optical thickness measurements. The new conditions make a PSA
having a plane phase response around the tuning frequency. Particularly, these
papers establish that the n-th order detuning error can be corrected as long as the
PSA’s FTF fulfills the following conditions:

H(−ω0) = H ′(−ω0) = · · · = H(n)(−ω0) = 0.
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Also, these papers say that the PSA can avoid a spurious phase piston, provided
that its FTF accomplishes the conditions:

H(ω0) = H ′(ω0) = · · · = H(n)(ω0) = 0;

under a n-th order detuning. Therefore, the PSA must need (3 + 2n) phase shifts.
In page 37, these papers are described in detail.

• S. Ordones, M. Servin, M. Padilla, I. Choque, J. L. Flores, and A. Muñoz, “Win-
dowed generalized phase-shifting algorithms,” in Interferometry XX (M. B. N. Morris,
K. Creath, and R. Porras-Aguilar, eds.), vol. 11490, pp. 1149004–1–9, International
Society for Optics and Photonics, SPIE, 2020; corresponding to reference [93]. This
work presents the spectral description for PSAs whose coefficients are weighted by
an arbitrary window. The paper scope is to compensate for the detuning error since
the window function will translate into broad stopbands. However, we also intro-
duce the concept of dynamic window computed according to the data. The paper
proposed the PSA’s coefficients given by Eq. (2.120)

Re {cn} =

N−1∑
l=0
m=0

window︷ ︸︸ ︷
[wnwlwm]

Least squares solution︷ ︸︸ ︷
[(sin θm − sin θl)(sin θl cos θm + sin θm cos θn + cos θm sin θn)]

Im {cn} =

N−1∑
l=0
m=0

[wnwlwm] [(cos θm − cos θl)(sin θl cos θm + sin θm cos θn + cos θm sin θn)] .

The window can be given by a static function, or a dynamic one as

w(k+1)
n =

1∥∥∥In − Î(k)
n

∥∥∥
F

;

where n = 0, 1, . . . , N − 1; ‖•‖F is the Frobenius norm; În means the least-squares
fitted intensity; the (k + 1) and (k) indicate the actual and previous iteration, re-
spectively. This article was described in the end of Subsection 2.2.4, page 41.

• M. Servin, M. Padilla, I. Choque, and S. Ordones, “Phase-stepping algorithms for
synchronous demodulation of nonlinear phase-shifted fringes,” Opt. Express, vol.
27, no. 4, 5824–5834, 2019; corresponding to reference [113]. This paper presents
a phase retrieval technique using the concept of the matched filter with a Gaussian
window. In particular, the resulting linear quadrature filter can keep the searched
spectral component, but it does not fulfill the so-called quadrature conditions; i.e.,
one has that H(0)I(ω) 6= 0, and H(ω)I(ω) 6= 0 in the vicinity around ω = −ω0.
Thence, one should expect estimated phase maps having ripple distortions. This



68 Chapter 2. Fringe analysis

PSA’s impulsive response can be given by

h(t) =
N−1∑
n=0

wne
inω0+i∆nδ(t− n);

where the phase steps are given as θn = nω0 +∆n, begin ∆n a real number. One can
realize that the frequency response corresponds to the window’s spectrum centered
at the local temporal frequency.

• I. Choque, M. Servin, M. Padilla, M. Asmad, and S. Ordones, “Phase measurement
of nonuniform phase-shifted interferograms using the frequency transfer function,”
Appl. Opt., vol. 58, no. 15, 4157–4162, 2019; corresponding to reference [114].
This work proposes a technique to phase demodulate a set of fringe patterns with
non-uniform phase shifts by means of a PSA designed for linear steps. As depicted
in Fig. 2.15, non-uniform phase shifts imply that the searched spectral component
spreads out. In particular, this work states that one can modify the temporal fringe’s
spectrum so that the searched spectral component becomes a Dirac’s delta; this is
mathematically given by

I(ω) = Ft
{

(a+ b cos[ϕ+ ω0t+ ∆(t)]) e−iω0t+∆(t)
}

= Ft
{
I(t)e−i[ω0t+∆(t)]

}
= aD(ω) +

b

2
eiϕδ(ω − ω0) +

b

4
e−iϕD∗

(
−ω − ω0

2

)
;

where D(ω) = Ft {exp[i∆(t)]}. Then, one employs a filter with broad stopbands at
ω = 0 and ω = −ω0. The paper’s aim is to eliminate the phase piston coming from
a detuning error.

• S. Ordones, M. Servin, M. Padilla, I. Choque, A. Muñoz, and J. L. Flores, “Tukey’s
robust m-estimator for phase demodulation of interferograms with nonuniform shifts,”
Appl. Opt., vol. 59, no. 20, pp. 6224–6230, 2020; corresponding to reference [119].
This paper reports a non-linear algorithm and its spectral analysis for phase re-
trieval from fringe patterns with non-uniform phase shifts. This paper proposes a
new phase-shift estimator based on robust estimation in terms of robust statistics.
The cost function is in Eq. (2.129):

U (θn, an, bn;ϕ, n) =
M∑
p=1

ρ
(
an + bn cos (ϕp + θn)− Ip,n

)
,

where ρ(•) is the well-known Tukey’s weighting function. The solution of this func-
tion is illustrated in the Algorithm 2. This function allows one to neglect those pixels
violating the interference equation. This algorithm was described in Subsection 2.2.5,
page 45.



Chapter 3
Fringe projection profilometry

Fringe projection profilometry (FPP) is a technique employing structured light; com-
monly used for measuring solid, diffuse surfaces. Due to development in computer vision
systems in recent years, FPP has advantages such as its high-speed, high-resolution, non-
contacting, and wide field of view properties [14, 133, 134]. In FPP, fringe patterns are
projected onto a solid to be measured, and then, a digital camera records the phase-
modulated fringe patterns [14, 133, 134]. To address the 3-D shape, one needs to retrieve
the phase from the recorded fringe patterns, and hence, the 3-D surface is retrieved by
translating phase units into real-world ones, usually in millimeters.

According to the phase demodulation way, there are two categories of FPP. The first is
phase-shifting profilometry (PSP), and the second is Fourier profilometry (FP) [135,136].
In PSP, the phase is computed by temporally filtering a sequence of fringe patterns; since
it is also estimated locally at each pixel, thus preserving small-surface details. Whereas
in FP, the phase is computed from a single fringe pattern in a global sense as frequency
domain filtering, and therefore, small-surface details are often filtered out. After phase
demodulation, a phase-unwrapping scheme is required to retrieve the continuous phase
map. Refer to Chapter 2 for details about fringe demodulation.

Figure 3.1 shows a sketch of a typical configuration for a profilometer using the fringe
projection technique. The system requirements are quite simple: a video projector, a

Projector CCD

ψ

pShape
x

h

 Computer
Reference
Plane

Figure 3.1: Sketch of a typical fringe projection profilometer. Notice that the projector’s
imaging device and the camera’s sensor are parallel to the reference plane
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camera, a computer, and a board as the reference plane. The projector’s light first hits
the testing object, and then the camera records the fringe pattern’s modulation introduced
by testing objects. In the end, the computer analysis the acquired images to solve the
object surface.

Section 3.1 looks through several issues about phase retrieval in fringe projection pro-
filometry. On the other hand, in the state-of-the-art, technologies project several kinds of
patterns with different capabilities [137]. Section 3.2 reviews several techniques to gen-
erate fringe patterns and their main properties. On the other hand, there are several
issues when analyzing the acquired images, such as camera-projector non-linearity, phase-
to-height calibration, and shading areas. The camera-projector non-linearity, also called
gamma-distortion, is due to a nonlinear mapping between the scale values and the intensity
ones. Section 3.3 goes through gamma-distortion. Section 3.4 describes three methods to
perform well the translation from phase values (radians) into height values (millimeters).
Shading areas turn into areas without measurement information; Section 3.5 describes a
technique to cope with them. Finally, it is worth mentioning that one should overcome
these troubles with the aim of ensuring accurate measurements.

3.1 Measuring with a fringe projection profilometer

The Section introduces the overall information to measure an object. Figure 3.2 draws
completely the process to measure an solid surface through a fringe projection technique.
Independently the scheme used for phase retrieval, one must acquire one or more fringe
patterns before and after placing the solid to be measured. From the first acquisition,
one obtains the carrier through a first phase demodulation process. From the second
acquisition, one gets the object’s phase plus the spatial carrier. As the third step, one
subtracts the spatial carrier from the one retrieved using the second acquisition. The
subtraction is done as

W{ϕ̂obj(x, y)} = angle {ẑobj(x, y)[ẑcarrier(x, y)]∗}
=W {ϕ̂obj(x, y)− ϕ̂carrier(x, y)} . (3.1)

Here ẑobj(x, y) and ẑcarrier(x, y) are the estimated analytic signals; in the same way,
ϕ̂obj(x, y) and ϕ̂carrier(x, y) are the phases. Notice that z∗ is the complex conjugated of z.
Remember that W{ϕ̂obj(x, y)} is the wrapped phase corresponding only to the object to
be measured, as depicted in Fig. 3.2. Thereafter, one must unwrap it as

ϕ̂obj(x, y) =W−1 {W{ϕ̂obj(x, y)}} ; (3.2)

where W−1 {•} indicates a phase unwrapping algorithm. Finally, one applies the system
parameters to map the unwrapped phase into the real world coordinates; this process can
be posed by

h(x, y) = G [ϕ̂obj(x, y)] . (3.3)

Here, G(•) is the function mapping phase values to height ones; Subsection 3.4 describes
it.
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Figure 3.2: Schematic description of the measurement of a solid surface using the fringe
projection technique. The description is in the main text.

On the other hand, most fringe projection techniques are applied to measure a solid
surface directly. Nonetheless, an interesting application is to measure the shape differences
between the testing object and a template in an inspection way. To this end, it has
proposed the technique called adaptive-object method or inverse fringe projection [138–
140]. This technique consists of projecting a digitally adapted fringe pattern in such a
way that the observed fringe pattern has straight vertical fringes [139]. It is not hard
to realize that one can map the template surface into phase values, which are then used
to create the named adapted fringe pattern [140]. After projecting this pattern onto the
testing surface, the camera records a fringe pattern having almost straight fringes whose
small phase modulation is due to the surface differences. Thence, this technique should be
thought to be a null test. The inverse fringe projection technique’s main disadvantage is
maybe the inverse fringe pattern is created using the projector’s pixel resolution instead of
the camera’s one. Hence, the estimation will have low pixel resolution. Finally, it is worth
mentioning that this technique should be thought t be analogous to the double-exposure
holographic technique since the acquired fringe pattern has the phase difference between
the testing and the reference surface.

In the same sense, it has recently proposed to modify PSA’s phase response so that it
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allows one to get the phase differences [141]. The following technique is a collaboration
derived from this thesis. Let one write the mathematical description of the n−th fringe
pattern as

I(x, y, n) = a(x, y) + b(x, y) cos [φ(x, y) + θn] , n = 0, 1, . . . , N − 1. (3.4)

Notice that φ(x, y) = ϕ(x, y) + q(x, y), being q(x, y) the carrier. Now, considering the
modified impulsive response given by

h(t) =
N−1∑
n=0

wne
−i[φref+θn]δ(t− tn), at (x, y); (3.5)

where wn are the real weights of a PSA and φref is the phase corresponding to the template
surface plus the spatial carrier. Then, its frequency transfer function is obtained by taking
the temporal Fourier transform of Eq. (3.5); and hence, one obtains

H(ω) = Ft {h(t)} = e−iφrefFt
{
wne

−iθnδ(t− tn)
}

= e−iφref
N−1∑
n=0

cne
−iωtn , at (x, y); (3.6)

where cn = wn exp(−iθn). From Eq. (3.6), one can realized that the modified PSA
now has an extra phase piston; refer to Eq. (2.25) in page 17. Performing the temporal
convolution in the frequency domain, one has that

b

2
|H(ω0)| ei∆ϕ = I(t) ~ h(t)|t=tN

= ae−iφref |H(0)|+ b

2
|H(ω0)| ei(φ−φref)

+
b

2
|H(−ω0)| e−i(φ+φref), at (x, y). (3.7)

Here, one can observe that the PSA must accomplish the quadrature conditions; see Eq.
(2.24). Considering that both phases are in the same system setup, then one has that

∆ϕ = φ− φref = ϕ+ q − ϕref − q = ϕ− ϕref, at (x, y). (3.8)

Finally, assuming that G(•) is a lineal function, so one has the following relation

hdiff = hobj − href = G (∆ϕ) , at (x, y); (3.9)

where hobj and href are, respectively, the testing and template surfaces, and so, hdiff

corresponds to the difference between both surfaces.
Figure 3.3 illustrates an example using the technique previously mentioned. Figure

3.3(a) shows the acquired fringe patterns where the video projector’s remote control is the
surface under study. In order to simulate a small surface defect, a small clay ball was put
on the remote control; it is highlighted in the green box. Whence, one should obtain only
the surface corresponding to the clay ball. Figure 3.3(b) shows the inspection results where
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(a) (b)

Figure 3.3: Estimating the surface differences using fringe projection profilometry: (a)
surfaces under study where one can see that the surface differences are highlighted in the
green box; (b) the estimated surface differences corresponding to that simulated one. The
description is in the main text.

one can observe that it was carried out correctly; the only surface retrieved came from the
clay ball. One can see that the technique also allows estimating that surface corresponding
to the fingerprint made on the clay when putting it on. Finally, it is noticeable that one
cannot retrieve the clay ball’s surface utilizing only the fringe patterns acquired because
of 2π ambiguities between the reference plane and the remote control’s surface. Thence,
one has to employ a temporal unwrapping technique for which one would have to acquires
at least two sets of fringe patterns with low spatial frequency.

3.2 Digital pattern generation

This Section goes through the making of fringe patterns for fringe projection profilometry.
It is well-known that sinusoidal fringe patterns are the most utilized patterns in fringe
projection profilometry. This pattern is generated as

I(x, y) = 0.5 + 0.5 cos(v0y); (3.10)

where v0 = 2πν is the radial (angular) frequency of the fringe patterns being ν the number
of fringes, which will be vertical oriented. Figure 3.4 depicts the acquired fringe pattern
over the reference plane (a) and the testing solid (b). One can observe that the testing
surface makes that the fringes suffer displacements along (x, y) axes; these displacements
translate into phase modulation; whence, the phase differences, between the pattern’s
phase with and without modulation, is related to the testing surface; refer to Fig. 3.2.

This Section does not pretend to be an exhaustive review of the generation of the
fringe patterns; the following references review in detail this topic [14,137,142–145]. Salvi
and associated classified the patterns in three main categories: (1) time multiplexing,
(b) spatial neighborhood, and (c) depth-color coding [142]. It should be thought that a
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(a) (b)

Figure 3.4: A projected sinusoidal fringe pattern: (a) over the reference plane and the
testing object (b).

coded pattern belongs from not only one of these categories; these are complementary to
one another. Therefore, one can have fringe patterns coded not only spatially but also
temporally and in color. The rest of this Section briefly looks at each category.

3.2.1 Temporal coded patterns

To retrieve the testing surface using this kind of pattern, one could require projecting a
sequence of fringe patterns. Here, it only looks at binary codes and sinusoidal patterns.

In 1982, Posdamer and Altschuler proposed employing a sequence of binary-coded
fringe patterns to measure the surface [146]. Their fringe patterns have white (on-bit)
and black (off-bit) stripes; the stripes number increases as the pattern number does. The
first pattern has a black stripe and another white; the second one has two black and
two white stripes; the third one has four black and four white stripes, and so on. See
Figure 3.5(a). When each pattern is projected over the object’s surface, the pattern will
suffer displacement along (x−) or y−direction, and so this fact will be related to the
surface. The latter is estimated through a triangulation method needing the center of
each stripe. Before that, it is necessary to detect and localize the transition between two
consecutive stripes (0-to-1 or 1-to-0); to that end, one can maximize Hamming distance as
proposed in [147]. Perhaps this technique’s main disadvantage comes from the fact that
high-resolution needs many patterns; it makes the technique is very low.

On the other hand, the phase-shifted fringe patterns are perhaps the most known and
utilized in fringe projection profilometry. One can digitally generate them by

I(x, y, t) = 0.5 + b1 cos(u0x+ v0y + ω0t) + b2 cos(u1x+ v1y + ω1t) + · · · (3.11)

Here one selects b# such that I(x, y, t) ∈ (0, 1) for all (x, y) in a normalized sense; u# and
v# are the spatial-radial frequencies and w# are the temporal frequencies. It is noticeable
that (x, y, t) axes are orthogonal to one another, so one can independently retrieve the
phase from a pixel in a time sense as explained in Section 2.2. Moreover, one can see that
one is able to temporally multiplex several signals in a manner that they will be separable
in the time direction. Figures 3.5(b) and (c) depict the classical sinusoidal patterns with
only one harmonic (b) and a multiplexed (c), with two harmonics; the second harmonic has
a spatial frequency four times larger than the first one. For this case, one needs to employ
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two PSAs; the first one would obtain the phase corresponding to the first frequency, and
so it needs to fulfill the following conditions:

H1(0) = 0, H1(−ω0) = 0, H1(ω0) 6= 0, and H1(−ω1) = 0, H1(ω1) = 0. (3.12)

The other has to accomplish the analogous conditions given by

H2(0) = 0, H2(−ω1) = 0, H2(ω1) 6= 0, and H2(−ω0) = 0, H2(ω0) = 0. (3.13)

In this way, the estimated analytic signals will have the phase from a single frequency.

3.2.2 Spatially coded patterns

This Subsection describes two kinds of patterns being spatially coded. One usually obtains
a binary pattern as the result of employing these methods. A complete review can be found
in [14,142,143].

The first method gives a well-known De Bruijn sequence. This sequence is composed
of words; which each one appears exactly once as one travels around the cycle either
clockwise or counterclockwise [148]. This unique feature makes it to be uncorrelated to any
other word in the same De Bruijn sequence. Therefore, the auto-correlation function has a
unique peak at moment 0; thence, one can decode the patterns straightforwardly [149,150].
Figure 3.6(a) illustrates a sequences with alphabet {0, 1} and word length equal to 6.

However, one should utilize these patterns to measure objects with shapes locally
smoothed; when one violates this assumption, one should expect large errors in the shape
retrieved.

On the other hand, with the aim of generating a spatially uncorrelated pattern, one
can generate a pseudo-random binary pattern. Instead of it, one also can use a multivalued
pseudo-random array. To do this, several mini-patterns, called the word, can be indexed
randomly to make a new pattern [151]. Thus, the generated pattern will have unique sub-
windows, and also, they are uncorrelated to one another. Figure 3.6(b) shows a pattern
generated by a three-words (sub-windows) with a random grid-indexing. This pattern has
a back square to ease the pattern segmentation in the camera. However, when there is a
lot of data loss, the segmentation process will be complex.
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Figure 3.5: Examples of patterns with time coding: (a) binary code with 4-bits, (b)
phase-shifted sinusoidal patterns, and (c) multiplexed phase-shifted sinusoidal patterns.
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(a) (b)

Figure 3.6: Examples of patterns with spatial coding: (a) a De Bruijn sequence with k = 2
and n = 6 and (b) a pattern using a 2× 2 code word and a pseudo-random arrangement.

3.2.3 Color coded patterns

There are some techniques to build color-encoded patterns. They take advantage of the
reed-green-blue (RGB) technology to introduce some information a prior. This kind
of pattern has been employed to reduce the acquisition time because a single projec-
tion/acquisition is enough to retrieve the object’s phase. Here, it goes through only RGB
sinusoidal patterns and the rainbow pattern. Tornero and colleagues review in detail this
topic [145].

The rainbow pattern is a single pattern that spatially varies the color due to a diffrac-
tion grating [152]. Therefore, it arranges the color from the shortest wavelength to the
largest one; see Fig. 3.7(a). This pattern also can be generated digitally by a large set
of vertical-narrow slits, which each one has a different color. One can see this process as
a sampling of the color from blue to red. Although one can use this pattern to perform
online measurements, surface estimation is difficult because of color identification. To
overcome this issue, Sato proposed introducing shifts to simplify the color removal, and
then, it allows finding correspondences between the projected pattern and the acquired
one [153].

(a) (b)

Figure 3.7: Examples of patterns with color coding: (a) the rainbow pattern and (b) a
colored, phase-shifted, sinusoidal fringe pattern with phase shift of 2π/3.
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From the Sato’s paper [153], it is easy to think the shape estimation by means of phase-
shifting algorithms. Considering three phase-shifted fringe patterns, one can encode them
in each color to obtain the one in Fig. 3.7(b). The main advantage of this RGB pattern
is that a phase-shifting algorithm can be employed to perform the phase demodulation
process in a pixel-wise way. To build the sinusoidal pattern of each channel, Equation
(3.11) can be used. Perhaps, the main issue, using these patterns is due to the fact that
the acquired one can suffer of cross-talking between channels, in this sense, it can be
mathematically expressed as Icam

R

Icam
G

Icam
B

 =

 arr agr abr

agr agg abg

arb abg abb

 IR

IG

IB

 , ∀(x, y). (3.14)

Here, Icam
R,G,B are the intensities observed by the camera, IR,G,B are the projected intensities,

and am,n with m,n ∈ {r, g,b} are the coupling factor between color channels.

Based on Eq. (3.14), every observed channel will have not only different background-
intensity and fringe modulation functions, but also the phase shifts will be non-uniformly
spaced even so projection uniform ones. Although it is preferable to estimate the de-
coupling matrix, it is challenging to meet the optimal point; and so small deviations
(from the optimal point) will translate into an erroneous decoupling process. Thus, ap-
propriate algorithms should be employed to retrieve the phase correctly, for example,
References [154–156]. We would like to point out that one can combine this kind of pat-
tern with temporal multiplexing to reduce the acquisition time while, at the same time,
increasing the data redundancy.

3.3 Gamma correction

As previously mentioned, the setup for fringe-projection profilometry consists of a video
projector and a digital camera. Despite the simplicity of the setup, the projector-camera
system introduces a non-linear intensity distortion translating into acquired patterns be-
ing non-sinusoidal owing to undesired high-order harmonics. This intensity distortion is
mainly generated by the video projector [157], and it consists of non-linear mapping of
the grayscale to intensity values. Because the intensity pattern has undesired high-order
harmonics, one is able to reject them straightforwardly through a phase-shifting algorithm,
as described in Subsection 2.2.3. However, this way will require acquiring at least seven
fringe patterns (in the best case).

When one has a small number of fringe pattern or want to do high-speed measurements,
overcoming the gamma distortion is a crucial subject to get a high accuracy measurement.
The techniques for gamma calibration and compensation can be classified into two cat-
egories: those modifying the intensity distribution before projection [158–160], or those
compensating the phase error from gamma-distorted fringe patterns [161–166] and others
through a post-processing task. One usually does not want to employ the last ones when
doing high-speed solutions.

Huang et al. [158] proposed fitting a high-order polynomial to a ramp function of the
observed intensity; nonetheless, this approach does not take into account the ambient



78 Chapter 3. Fringe projection profilometry

(b)

0 0.5 1

Normalized intensity

0

0.5

1

D
is

to
rt

ed
 i

n
te

n
si

ty
0

1
Ip(t) [ Ia(t) ]

γ

P-C System

[    ]γ 0

1

(a)

Figure 3.8: Gamma distortion: (a) nonlinear function [•]γ with γ = 2.16, and (b) distorting
the temporal fringe due to γ-factor of the projector-camera (P-C) system.

light nor the intensity profile of the projector. In Reference [160], the ambient light was
born in mind. Whereas, Zhang et al. [159] proposed to obtain the gamma value as its
correspondence with the amplitude of the coefficients of the Fourier series of the temporal
fringe. This proposal will perform well, provided that the data had a good signal-to-noise
ratio.

Currently, it is defined as this intensity distortion; one can mathematically describe a
fringe pattern by Eq. (2.20), which is written here for aid; this equation asserts that

I(x, y, n) = a(x, y) + b(x, y) cos [ϕ(x, y) + θn] , (3.15)

where θn = ω0tn is the phase shift, a(x, y) is the background illumination, b(x, y) is
the amplitude modulation, and ϕ(x, y) is the modulating phase. However, when a fringe
pattern comes from a fringe-projection system, it will have the so-called gamma distortion,
and then, this fringe pattern can be now mathematically expressed as [159]

Ia(x, y, n) = [Ip(x, y, n)]γ (3.16)

where Ip(x, y, n) is the fringe pattern projected agreeing Eq. (3.15), and Ia(x, y, n) corre-
sponds to the recorded frame; this model is valid when intensity values are into the range
[0, 1].

Figure 3.8 draws the gamma distortion for γ = 2.16, one can see that function [•]γ is
nonlinear as seen in Fig. 3.8(a), and whence, it introduces a nonlinear intensity distortion
as depicted in Fig. 3.8(b). However, the gamma-distorted intensity can be represented by
a harmonic sum of the fundamental signal as

Ia(x, y, n) = a(x, y) +

∞∑
k=1

bk(x, y) cos k [ϕ(x, y) + θn] ; (3.17)

here bk is the amplitude of the k-order harmonic [159].
Equation (3.17) is a very important result because it asserts that the gamma distortion

will translate into a harmonic distortion. Thus, one can straightforwardly overcome the
gamma distortion by employing a PSA that can reject those harmonics with high power
levels; usually, the first five ones [167]. This kind of PSAs was described in Subsection
2.2.3 in page 24. Nonetheless, if one wants to improve the speed between measurements
by acquiring little fringe patterns, one should correct the gamma distortion.
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Figure 3.9: Addressing the gamma distortion: (a) generating and projecting a set of
anti-gamma-distortion fringe patterns and (b) rectifying digitally the gamma-distorted
patterns.

3.3.1 Estimation of the non-linear Gamma-factor

First, considering that one had estimated non-linear factor γ̂ ≈ γ, one can overcome the
gamma distortion by [168]:

1. Projecting a new set of digitally-generated, anti-gamma-distortion fringe patterns so
that the new acquired one will have no gamma distortion, this case can be mathe-
matically described as [

[Ip(x, y)]1/γ̂
]γ
≈ Ip(x, y). (3.18)

Figure 3.9(b) depicts this procedure. Theoretically speaking, the gamma correction
allows us to capture the fringe pattern without gamma distortion.

2. One can rectify legacy data being gamma-distorted as seen in Fig 3.9(b), this process
would correspond to

[[Ip(x, y)]γ ]1/γ̂ ≈ Ip(x, y). (3.19)

Rectifying data also allows us to process the fringe patterns a posteriori.

With the aim of estimating the gamma factor, it is propose to the optimization problem
given by [168]

γ̂ = argmin
γ

U(γ) = argmin
γ

∥∥ϕ1/γ(x, y)− P (x, y)
∥∥

2
. (3.20)

Here ϕ1/γ(x, y) is the unwrapped phase corresponding to the reference plane after recti-
fying the fringe patterns utilizing the estimated gamma value. P (x, y) is the best-fitted
plane over a region in the unwrapped phase map. It is worth mentioning that the un-
wrapped map contains waving phase errors superposing the actual phase; these errors are
due to the projector’s non-linearity. Based on Eq. (3.20), one can realize that attaining
the gamma factor γ̂ → γ, then the ripples distortion, seen in the reference plane’s phase,
will be reduced. This optimization problem can be solved by employing the Nelder-Mead
simplex method [169].

One can see that cost function (3.20) needs the estimation of ϕ(x, y) and P (x, y). Let

I
1/γ
n be the n-th fringe pattern being gamma rectified, so the phase of the reference plane

can be extracted by

ϕ1/γ(x, y) =W−1

{
angle

[
N−1∑
n=0

c∗nI
1/γ
n

]}
; (3.21)



80 Chapter 3. Fringe projection profilometry

where cn is the coefficients of a PSA, particularly, the 3-step LS-PSA has been employed.
W−1 {•} is the unwrapping operator. Once the phase was estimated, one compute the
least-squares plane to a region Ω of this phase; hence, one has the least-squares problem
given by

b = argmin
b

M∑
m=1

[
b1 + b2xm + b3ym − ϕ1/γ(xm, ym)

]2
, (3.22)

where M is the number of pixels in Ω, b is the vector with the coefficients of the least-
squares plane, and they are computed by solving the following systems of linear equations

N
M∑
m=1

xi
M∑
m=1

ym

M∑
m=1

xm
M∑
m=1

x2
m

M∑
m=1

xmym

M∑
m=1

ym
M∑
m=1

xmym
M∑
m=1

y2
m


 b1
b2
b3

 =



M∑
m=1

ϕ1/γ(xm, ym)

M∑
m=1

ϕ1/γ(xm, ym)xm

M∑
m=1

ϕ1/γ(xm, ym)ym

 . (3.23)

In order to illustrate the feasibility of this method, a numerical experiment was carried
out. Let γ = 2.16 be the actual gamma factor. Figure 3.10 shows the synthetic fringe
pattern with gamma distortion, (a) the profile of the normalized intensity and (b) its
spatial spectrum of magnitude; where one is able to see that the first three harmonics
have significant power. With the aim of comparing the cost function in (3.20) with respect
to the scheme employed for phase demodulation, three PSAs are used to retrieve the
phase in Eq. (3.21). The first PSA has the coefficients c1st = {2,−1 + i

√
3,−1 − i

√
3},

θ1st = {0, 2π/3, 4π/3}, and its SNR gain is 3.0. The second PSA has the coefficients
c2nd = {1,−1 − i, i}, θ2nd = {0, π/2, π}, and its SNR gain is 2.0. The last PSA has the
coefficients c3rd = {2,−1+i,−1−i}, θ3rd = {0, π/2, 3π/2}, and its SNR gain is 2.0. Figure
3.11 depicts the cost function for each PSA in log-scale. The minimum of the cost function
are, respectively, located at γ̂1st = 2.1770, γ̂2nd = 2.1586, and γ̂3rd = 2.1646. Thence, the
second PSA has the best cost function because its minimum is the closest to the optimal
value γ = 2.16. Whereas, the worst case is obtained by the 3-step LS-PSA algorithm. For
this case, the best choice is employing the second PSA, however, this PSA has a lower
SNR gain than the first PSA; however, in some cases, the 3-step PSA will work the best.
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Figure 3.10: A gamma-distorted fringe pattern with 10 fringes: (a) the profile of the
intensity along x-axis and (b) the profile of the magnitude of its spatial spectrum along
u-axis; where one can see that the first three harmonics have significant power.
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Figure 3.11: Comparison of the cost function in Eq. (3.21) in function of the PSA used
for phase demodulation. Figure (b) is a zoom-in of Figure (a); both plots are in log-scale.
Pistons are introduced for exposition purpose. Description is in the main text.
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Figure 3.12: Gamma rectification of fringe patterns: (a) magnitude of the spectrum of
the rectified fringe pattern using γ̂2nd = 2.1586; the others seem almost the same; and
(b) phase error obtained when rectifying the gamma-distorted fringe patterns. The exact
gamma factor was γ = 2.16, and the estimated are γ̂1st = 2.1770, γ̂2nd = 2.1586, and
γ̂3rd = 2.1646.

Finally, Figure 3.12 draws the effect of rectifying the fringe pattern as Eq. (3.19). Figure
3.12(a) depicts the rectified fringe pattern’s spectrum where one can see that it has only
the fundamental harmonics, i.e., the fringe patterns seem to be sinusoidal. Figure 3.12(b)
shows the estimation’s phase error once the fringe patterns had been gamma rectified.
One can observe that the second PSA obtained the best result being slightly better than
the worst one obtained with the 3-step LS-PSA. To this end, I want to emphasize that
the distorting waves’ amplitudes may be considered irrelevant for real applications due to
noise dispersion.

3.4 Phase to height mapping

This Section goes through the theoretical description of three classical techniques to cal-
ibrate a fringe projection profilometer. Several work has been proposed, they are based
on the geometry model [170–172] and polynomial fitting [173–176]. The first one requires
that geometry parameters must be accurately determined, but these parameters are usu-
ally challenging to be determined. Otherwise, the methods based on polynomial fitting
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Figure 3.13: Typical setup for fringe projection profilometry. Notice that the Projector’s
imaging device is parallel to the CCD camera’s sensor and the reference plane.

do not only allow one to estimate the geometry parameters accurately but also allows
one to arrange the system arbitrarily. For these reasons, calibration methods based on
polynomial fitting are here considered.

Figure 3.13 shows a sketch of a typical experimental setup. The light for the projector
hits the testing object, and then the camera records the modulation that the testing
objects introduce to the projected fringe pattern. In Fig. 3.13, E and P are, respectively,
the entrance pupil’s center of the camera and the exit pupil’s center of the projector; also
E and P are assumed to be in the sample plane, whose distance is d along the x-axis. The
distance between these pupils and the reference plane is termed by H. Moreover, C is the
point where the principal ray of the projector hits the reference plane; analogously, A is
for the camera. The searched height of the object is given by h, as seen Fig. 3.13. By
similar triangles, the object height can be determined as [170]

h =
H

1 + 2π
p

d
∆ϕ

; (3.24)

where p is the fringe pitch and ∆ϕ = ϕA − ϕC being ϕA and ϕC the phases at point A
and C, respectively.

3.4.1 Linear model

As mentioned by Jia and associates [173], when H is much larger than h, then one can
considered the linear relation

h ≈ pH

2πd
∆ϕ. (3.25)

by taking into account the spatial dependence of H, Eq. (3.25) can be completely written
as

h(x, y) ≈ pH(x, y)

2πd
∆ϕ(x, y) = K(x, y)∆ϕ(x, y), (3.26)



3.4. Phase to height mapping 83

where K(x, y) ∈ R are the linear calibration coefficients to be found.
To determine the coefficients K(x, y), one can move the plane of reference to several

well known calibration position along z-axis; this is

hl(x, y) = K(x, y)∆ϕl(x, y), l = 1, 2, . . . , L (3.27)

where L is the number of introduced translations along the z-axis, and ∆ϕl(x, y) =
ϕl(x, y) − ϕR(x, y) with is the phase corresponding to the reference plane at position
l = 0. The phases ϕl(x, y) and ϕR(x, y) can be straightforwardly estimated through a
PSA.

Using the phase difference maps as the observed data, one can propose the least-square
problem given by

U1(K) =

L∑
l=1

(hl −K∆ϕl)
2 , at (x, y). (3.28)

Here, one can notice that U1(K) is the least-squares fitting to a straight line, where K is
its slope. Solving U1(K), one obtains that

K(x, y) =

∑L
l=1 ∆ϕl(x, y)hl∑L
l=1 ∆ϕ2

l (x, y)
. (3.29)

On the other hand, one also can use a second-order polynomial instead of the straight
line to describe better the phase differences (along z-axis) as

U2(K0,K1,K2) =
L∑
l=1

(
K0 +K1∆ϕl +K2∆ϕ2

l − hl
)2
, at (x, y). (3.30)

From here, one can estimate {K0,K1,K2} by solving the system of linear equations
L

L∑
l=1

∆ϕl
L∑
l=1

∆ϕ2
l

L∑
l=1

∆ϕl
L∑
l=1

∆ϕ2
l

L∑
l=1

∆ϕ3
l

L∑
l=1

∆ϕ2
l

L∑
l=1

∆ϕ3
l

L∑
l=1

∆ϕ4
l


 K0

K1

K2

 =



L∑
l=1

hl

L∑
l=1

∆ϕlhl

L∑
l=1

∆ϕ2
l hl


; (3.31)

which is solved at each pixel. Once the maps of coefficients are computed, the height of a
testing object is given by

h(x, y) = K0(x, y) +K1(x, y)∆ϕ(x, y) +K2(x, y)∆ϕ2(x, y). (3.32)

3.4.2 Non-linear model

Continuing as the work [173], one obtains from Eq. (3.24) that

∆ϕ =
2πdh

pH(1− 1
Hh)

=

2πd
pH h

1− 1
Hh

, at (x, y); (3.33)
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and then, considering the spatial dependence of H, one can obtain the following expression

∆ϕ(x, y) =
m(x, y)h(x, y)

1− n(x, y)h(x, y)
, (3.34)

and finally, the height of the object is given by

h(x, y) =
∆ϕ(x, y)

m(x, y) + n(x, y)∆ϕ(x, y)
. (3.35)

The calibration procedure implies estimating parameters n(x, y) and m(x, y); to this
end, one can rewrite Eq. (3.34) in the nonlinear way, i.e.,

∆ϕ(x, y) = m(x, y)h(x, y) + n(x, y)h(x, y)∆ϕ(x, y). (3.36)

Thereby, one can pose the least-square problem given by

U3(n,m) =

L∑
l=1

(∆ϕ−mhl − nhlϕl)2 , at (x, y); (3.37)

whose solution is obtained by solving the following system of normal equations for each
pixel 

L∑
l=1

h2
l

L∑
l=1

h2
l ∆ϕl

L∑
l=1

h2
l ∆ϕl

L∑
l=1

h2
l ∆ϕ

2
l

[ mn
]

=


L∑
l=1

hl∆ϕl

L∑
l=1

hl∆ϕ
2
l ,

 , at (x, y). (3.38)

Here, one can observe that the solution of a 2 × 2 system of linear equations is required
for each pixel position.

3.4.3 Comparative analysis of the calibration methods.

In order to compare the different calibration methods, a series of experiment was carried
out. First, 12 calibration planes were acquired to perform this analysis. These planes were
translated by 5 mm each other, so one can measured object with a depth until 60 mm.
Figure 3.14 shows the reconstruction of the calibration planes; here one would expect 12
straight lines located at 5 mm, 10 mm,. . . , 60 mm, respectively. In Fig. 3.14(a) depicting
the line model Eq. (3.27), one can realize that the expected lines are not straight strictly.
Moreover, it was observed that the measurement has a average standard deviation of
σ̄ = 0.81 mm (maximum σmax = 0.94, minimum σmin = 0.52 mm), and a piston error
of 0.68 mm. The results from the quadratic scheme in Eq. (3.32) can be seen in Fig.
3.14(b); this plot shows that the calibrated planes were correctly reconstructed employing
this scheme. The observed average standard deviation was σ̄ = 0.05 mm (maximum
σmax = 0.09, minimum σmin = 0.01 mm) and a piston error lower than 0.01 mm. Finally,
the reconstructed planes using the non-linear technique is shown in Fig. 3.14(c) where one
can see that results have almost the same quality as the quadratic scheme. The average
standard deviation was of σ̄ = 0.09 mm (maximum σmax = 0.27, minimum σmin = 0.03
mm) and a piston error of 0.02 mm. From these results, one should employ the quadratic
model to make the phase-to-height conversion.
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Figure 3.14: Reconstruction of the calibration planes: (a) using the linear model fitting a
straight line, (b) with the quadratic model fitted to the linear model, and (c) using the
nonlinear model. Notice that (b) and (c) seem to have the same accuracy, whereas, (a)
has worse results.

3.5 Co-phased fringe projection

In the typical setup of a fringe projection profilometer, recorded fringe patterns usually
have areas without intensity information. This information loss is because object depth
generates shadows due to the projection direction. In Figure 3.15, one can observe these
shadows appear while illuminating the object shape from the left and right. In order to
reduce this loss of information, Servin and colleagues [177] proposed the technique called
co-phase that consists of projecting and acquiring the fringe patterns at several locations.
It is noticeable that for each projecting direction, a fringe pattern set is needed. By
summing all phase maps, coming from each fringe pattern set, one may reconstruct the
object completely without information loss. This technique has been developed to 3D
scan objects moving rotationally; it requires projecting from two points and recording
with only one camera [178]. Other interesting applications of the technique can be found
in [179–182].

(a) (b)

Figure 3.15: Fringe pattern having loss of information due to object shadows: (a) project-
ing from the left side and (b) from the right side. Notice that both fringe patterns have
shading areas, but they are in different areas and do not overlap one to the other. Hence,
one would expect to overcome the information loss by putting them together.
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Figure 3.16: Setup of a co-phase, fringe projection profilometer. Notice that pupils of
projectors and the camera are in the same plane; moreover, the Projectors’ imaging device
and camera’s sensors are parallel to the reference plane.

Figure 3.16 depicts a sketch of the experimental setup where two projectors and a
camera (a normal view) are used. The projector’s exit pupils and the entrance pupil of
the camera are into the same plane. The distance between the camera and projector 1 is
d, and it is the same from camera to projector 2. The angle ψ is the sensitivity angle of
the setup. The acquired fringe patterns are given by

Ip1(x, y, n) = ap1(x, y) + bp1(x, y) cos [ϕ(x, y) + Cp1(x, y) + θn] ,

Ip2(x, y, n) = ap2(x, y) + bp2(x, y) cos [ϕ(x, y) + Cp2(x, y) + θn] ; (3.39)

where n = 0, 1, . . . , N − 1 and superscript p# relates the set of fringe pattern with the
projector. By using the correct phase-shifting algorithm, the analytic signals are computed
as

Zp1(x, y) =
bp1(x, y)

2
ei[ϕ(x,y)+Cp1 (x,y)] =

N−1∑
n=0

cnI
p1(x, y, n)

Zp2(x, y) =
bp2(x, y)

2
ei[ϕ(x,y)+Cp2 (x,y)] =

N−1∑
n=0

cnI
p2(x, y, n). (3.40)

One can previously measure the carriers Cp1(x, y) and Cp2(x, y), e.g., through a phase-
shifting algorithm. After, one can obtain the analytic signal as

A(x, y)eiϕ(x,y) = Zp1(x, y) + Zp2(x, y) (3.41)

One expect that ϕ(x, y) does not have any area where the object’s surface was not mea-
sured.
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Figure 3.17: 3D reconstruction using a profilometer through the co-phase fringe projection
technique with two projectors and a camera: wrapped phase resulting from projector 1
(a) and 2 (b). The co-phase wrapped is in (c) and unwrapped in (d).

As an example, Figure 3.17 shows the phase retrieval of the fringe patterns shown
in Fig. 3.15. The testing object is a polystyrene spherical cap. By using the 4-step LS
PSA, the wrapped phases were estimated. Figure 3.17(a) depicts the wrapped phase from
projector 1, as it can be seen the spatial carrier was removed previously. The wrapped
phase from projector 2 is in Fig. 3.17(b). One is able to observe that the shadowed areas
have mainly phase noise as expected. By summing these phases according to Eq. (3.41),
one obtains the phase in Fig. 3.17(c) where there is the whole phase of the spherical cap;
the first two wrapped phases complement one another well in such a way that the resulting
phase did not lose any information. Figure 3.17(d) shows the unwrapped phase’s contour
lines, from where the reader may realize that this technique has correctly reconstructed
the object’s surface.

3.5.1 Co-phase through projecting simultaneously two patterns

We would like to mention that the present Subsection is a contribution of this thesis, but
it has not been reported yet in any publication.

Considering the setup drawn in Fig. 3.16 as the profilometer’s configuration. Tech-
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(a) (b) (c) (d)

Figure 3.18: Co-phased projection and capturing a RGB pattern: (a) the acquired RGB
pattern, grayscale intensities in the red channel (b), in the greed channel, and (d) in the
blue channel. Notice that intensity in the green channel is due to cross-talking, a piston
was added for exposition purposes.

niques [177–182] utilized gray-scaled fringe patterns and one projects them sequentially:
first, projecting and acquiring the N patterns from direction 1, thereafter, from direction
2. However, when one wishes to improve the capturing speed, one should simultaneously
project the patterns from these directions. Therefore, one can code both n-th fringe pat-
terns, one from each direction, in an RGB pattern to acquire them simultaneously. This
codification can be done as

IR(x, y, n) = IP1(x, y, n), (3.42)

IB(x, y, n) = IP2(x, y, n); (3.43)

where IR(x, y, n) means that the fringe pattern from direction 1 will be coded in the red
channel, in the same way, one can define IB(x, y, n).

Channels red and blue was selected to reduce the cross-talking between channels. By
taking the latter into account, the acquired channel will be given by Icam

R

Icam
G

Icam
B

 =

 arr agr abr

agr agg abg

arb abg abb

 IR

IG

IB

 , ∀(x, y). (3.44)

Here Icam
R,G,B are the intensities observed by the camera, am,n with m,n ∈ {r, g,b} are the

coupling factor between color channels. Figure 3.18 shows an acquired RGB pattern where
the object is under co-phased projection. Figure 3.18(a) depicts an acquired fringe pattern
in RGB, the gray-scaled intensities of the red channel is in (b), (c) has the ones from the
channel green, and gray-scaled intensity corresponding to the blue channel is in (d). I
would like to point out that he added a piston in (c) for exposition purposes. The green
channel’s intensity pattern is due to cross-talking between the green-red and blue-green
coupling coefficients in Eq. (3.44). Finally, one can realize that there is a trivial phase
piston between the red and blue channels.

Bear in mind that IG is a background intensity aG(x, y) because any pattern is pro-
jected on it. Also, by considering that the diagonal elements are equal to 1, the acquired
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intensities are given as

Icam
R (x, y, n) = ap1(x, y) + argaG(x, y) + bp1(x, y) cos [ϕ(x, y) + Cp1(x, y) + θn]

+ abrb
p2(x, y) cos [−ϕ(x, y) + Cp2(x, y) + θn]

= aR(x, y) + bp1(x, y) cos [ϕ(x, y) + Cp1(x, y) + θn]

+ abrb
p2(x, y) cos [−ϕ(x, y) + Cp2(x, y) + θn] . (3.45)

Taking the temporal Fourier transform of Eq. (3.45), this spectrum is given by

Icam
R (ω) = Ft {Icam

R (t)} = aRδ(ω) +
1

2

[
bP1eiϑ1 + abrb

P2eiϑ2
]
δ(ω − ω0)

+
1

2

[
bP1e−iϑ1 + abrb

P2e−iϑ2
]
δ(ω + ω0). (3.46)

Here, spatial dependence was omitted for simplicity; ϑ1 = ϕ + CP1 and ϑ2 = −ϕ + CP1 .
In an analogous way, one obtains the expression for the blue channel given by

Icam
B (x, y, n) = aB(x, y) + bp2(x, y) cos [−ϕ(x, y) + Cp2(x, y) + θn]

+ abrb
p1(x, y) cos [−ϕ(x, y) + Cp1(x, y) + θn] ; (3.47)

and then, its Fourier transform is given by

Icam
B (ω) = Ft {Icam

B (t)} = aBδ(ω) +
1

2

[
bP2eiϑ2 + abrb

P1eiϑ1
]
δ(ω − ω0)

+
1

2

[
bP2e−iϑ2 + abrb

P1e−iϑ1
]
δ(ω + ω0). (3.48)

From Eq. (3.45) – (3.48), the analytic signals are, respectively, given by

ZR =

N−1∑
n=0

c∗nIR(n) =
1

2

[
bP1eiϑ1 + abrb

P2eiϑ2
]

(3.49)

ZB =

N−1∑
n=0

c∗nIB(n) =
1

2

[
bP2eiϑ2 + abrb

P1eiϑ1
]

; (3.50)

it is noticeable that both analytic signals were computed using the same PSA. Here the
reader should also expect the introduced phase shifts will not the same to the observed
one due to abr 6= 0. By considering that C = CP1 = CP2 , and after some algebraic
manipulation, one has that

ZObj = ZRe
−iC + Z∗Be

iC =
bP1 + bP2

2
eiϕ
(
1 + arbe

−i2ϕ ) (3.51)

Here ZObj is the analytic signal corresponding to the surface to be measured; notice that
it is expected to have no shaded areas. Moreover, in Eq. (3.51), one should contemplate
that arb � 1, or even, to be zeros, in some cases. Based on this fact, one has the following
relationship

W {ϕ(x, y)} ≈ W {ϕ̂(x, y)} = angle [ZObj(x, y)] . (3.52)

Figure 3.19 depicts the fringe demodulation of the patterns in Fig. 3.18; the magnitude
of analytic signal ZObj is in (a) and the wrapped phase is in (b). In this figure, one can
observe that the retrieved phase has no information loss due to shaded areas.
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(a) (b)

Figure 3.19: Estimation using co-phased fringe projection: (a) the magnitude of the ana-
lytic signal and (b) the wrapped phase estimated.

3.5.2 Online reconstruction of a rectilinear-moving object using co-phase
with two simultaneously-projected patterns

Considering that the testing object is moving in a rectilinear direction along x-axis, so the
n-th acquired fringe pattern can be mathematically described by

I(x, y; tn) = a(x, y) + b(x, y) cos [u0x+ ϕ(x+ ∆x, y)] (3.53)

where u0 is the spatial radial frequency; tn is the moment when the picture is acquired;
and ∆x is the among of movement of the testing object, i.e. ∆x = ν/tn being ν the
object’s velocity. It is noticeable that the fringe pattern is static in Eq. (3.53). If the
testing object is thought to be static, one needs to think that the fringe pattern suffers o
feels the movement. In this case, one requires to perform a pixel matching procedure to
center the testing object in a plane (x′, y), this is

I(x′, y; tn) = a(x′, y; tn) + b(x′, y; tn) cos
[
u0x+ ϕ(x′, y) + θn

]
; (3.54)

where θn = ω0tn is the phase shift. By acquiring N fringe pattern, one can then realize
that this temporal sequence corresponds of phase-shifted fringe patterns. However, one
can also observe that these patterns will have temporal and spatial variations in both the
background and fringe modulation functions. These temporal variations will translate into
a spreading spectrum. Taking the temporal Fourier transform of Eq. (3.54), one obtains
that

I(ω) = Ft {I(t)} = Ft {a(t)}+
1

2
eiϕFt

{
b(t)eiω0tn

}
+

1

2
e−iϕFt

{
b(t)e−iω0tn

}
= A(ω) +

1

2
eiϕB (ω − ω0) +

1

2
e−iϕB (ω + ω0) . (3.55)

Here, A(ω) is the spectrum of the background function, and B(ω) is from the fringe
modulation function. From Eq. (3.55), one can see that the quadrature conditions that
the PSA needs to meet are:

A(ω)H(ω) = 0, B(ω + ω0)H(ω) = 0, and B(ω − ω0)H(ω) 6= 0. (3.56)
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Here, one can realize that the PSA’s frequency response has to have broad-stop bands
around ω ∈ {0,−ω0}.

In the same way that Chapter 2, let an = a(tn), bn = b(tn) and θn known parameters,
then one can fulfill the conditions (3.56) through the following optimization problem

x+ = argmin
x
‖b−Ax‖22 (3.57)

whence

x =
[

1 cosϕ − sinϕ
]T

(3.58)

b =
[
I0 I1 · · · IN−1

]T
(3.59)

A =


a0 b0 cos θ0 b1 sin θ0

a1 b1 cos θ1 b2 sin θ1
...

...
...

aN−1 bN−1 cos θN−1 bN−1 sin θN−1

 . (3.60)

The optimal value in the least-squares sense is given by x+ = A†b; thus, the coefficients
would be

cn =
1

2

(
a†2,n+1 + ia†3,n+1

)
. (3.61)

Now, the values of an, bn, as well as θn can be computed by solving the optimization
problem in Eq. (2.129) in page 45. To this end, one can use the least-squares solution
posing ρ(rp) = r2

p/2. Thence, in an iterative process, the searched phase, shifts, as well
as background and fringe modulation functions are computed. One could also employ
the algorithms [93, 112] for phase retrieval. We would like to point out that we should
pay attention when estimating the Penrose matrix because ATA might be numerically
bad conditioned. Particularly, it will happen when the time variations of a and b are
noise likely. For that case, the classic coefficients, in Eq. (2.55), should be employed
instead of Eq. (3.61). It is noticeable that the PSA’s frequency response could not
be visualized correctly due to spectrum leakages or the short length of the observation
window. Figure 3.20 depicts the estimated background and fringe modulation functions
for the setup employed for this thesis. One can observe that the spatial variations around
the center are small; therefore, the algorithm in Eq. (3.61) should perform well when the
fringe patterns are acquired around the picture’s center.

Obtaining the phase-shifted fringe patterns

This part goes through the process of getting those patterns described in Eq. (3.54) from
the acquired images. To this end, let one consider a captured fringe pattern in the red
channel. Figure 3.21 shows three pictures acquired at different moments; one can observe
that the object was moving along the x-axis. Moreover, one can realize fringe patterns
have so much redundant information generated by the static projected patterns; whence,
an image correlation over these intensity values would fail to isolate the object.

On the other hand, one can obtain the redundant information due to the object by
estimating the co-phase of the object by a spatial filtering procedure. One must retrieve
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Figure 3.20: Relative intensities for the background and fringe modulation functions for
(a) the red channel and (b) the blue one. Notice that they have small spatial variations
around the center of the plots.

(a) (b) (c)

Figure 3.21: Blue channel of three acquired images acquired at three different moments.

the phase of a single fringe pattern in two occasions (for the red and blue channels); then,
the co-phase is obtained by the merging them as summation of the analytic signals. Let
u0x be the spatial carrier which is known. The phase can be retrieved by a low-pass
filtering process as

s̃(x, y, n) = LF
[
Ir(x, y, n)e−iu0x

]
+ LF

[
Ib(x, y, n)eiu0x

]
; n = 0, 1, . . . , N − 1. (3.62)

Here LF[•] means low-pass filtering, s̃ indicates an analytic signal estimated roughly, and
so the phase is. From Eq. (3.62), the poorly-estimated phase is given by

ϕ̃(x, y, n) =W−1 {angle [s̃(x, y, n)]} . (3.63)

Now, this phase map has redundant information related only to the object.
Considering a reference, centered phase map φ̃(x, y); hence, one can compute the trans-

lation with respect to it. To obtain the translation vector, one can pose the optimization
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problem given by

∆t+x = argmin
∆tx

∑
(x,y)

[
φ̃(x, y)− ϕ̃(x+ ∆tx, y)

]2
. (3.64)

This problem is solved for each phase map ϕ̃. Once, one had found optimal value ∆t+x ,
then the phase-shifted fringe patterns in Eq. (3.54) are obtained straightforwardly. Finally,
these roughly-estimated co-phases can be used as initial point for phase retrieval.

3.6 Contributions

I enlist and summarize my published papers related to this Chapter:

• S. Ordones, M. Servin, M. Padilla, I. Choque, J. L. Flores, and A. Muñoz,“Shape
defect measurement by fringe projection profilometry and phase-shifting algorithms,”
Optical Engineering, vol. 59, no. 1, pp. 1–10, 2020; corresponding to reference [141].
This article presents a new kind of phase-shifting algorithms with the ability to es-
timate phase differences. To this end, the PSAs’ phase response is stated to a pre-
defined/calibrated value, and thus, the algorithm will compute the phase differences
between this value and the retrieved phase (on the fringe patterns). Particularly,
the paper’s main contribution can be summarized by the following equations:

Hϕ+(ω) = e−iϕ
+

[a PSA’s FTF] = e−iϕ
+

[
N−1∑
n=0

cne
−i(θn/ω0)ω

]
,

where θn = ω0tn is the n-th phase shift. After, one can estimate the phase differences
by

b

2
ei∆ϕ =

N−1∑
n=0

d∗nIn.

Here, dn are coefficients coming from Hϕ+(ω), and ∆ϕ = ϕ+ − ϕ is the phase
difference between the actual phase ϕ+ and the testing one ϕ. So, it is noticeable
that Hϕ+(ω0) =

∣∣Hϕ+(ω)
∣∣ exp(−iϕ+). Section 3.1 describes this technique in detail;

refer to page 72.

• A. Muñoz, J. L. Flores, G. Parra-Escamilla, L. A. Morales, S. Ordones, and M.
Servin, “Least-squares gamma estimation in fringe projection profilometry,” Appl.
Opt., vol. 60, no. 5, 1137–1142, 2021; corresponding to reference [168]. This work
presents a technique to estimate and compose the non-linear intensity distortion
commonly seen by fringe projection profiles; it is also called gamma distortion. This
paper proposed finding the gamma value that minimizes L2 norm from the least-
squares plane and the estimated reference plane. This cost function is described by
Eq. (3.20):

γ̂ = argmin
γ

U(γ) = argmin
γ

∥∥ϕ1/γ(x, y)− P (x, y)
∥∥

2
.
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Here, ϕ1/γ(x, y) is the reference plane’s unwrapped phase coming from the gamma-
corrected intensities, and P (x, y) is the least-squares plane adjusted to ϕ1/γ(x, y).
Hence, the found gamma value is employed to pre- or post-correct the acquired fringe
patterns. Section 3.3 goes through this method in detail.

• J. L. Flores, M. Stronik, A. Muñoz, G. Garcia-Torales, S. Ordoñes, and A. Cruz,
“Dynamic 3d shape measurement by iterative phase shifting algorithms and colored
fringe patterns,” Opt. Express, vol. 26, no. 10, pp. 12403–12414, 2018; correspond-
ing to reference [31]. This paper presents a fringe projection technique to measure
rigid objects in continuous movement. The technique translates the rigid movements
into phase shifts, and so one obtains phase-shifted fringe patterns. Then, the phase
retrieval is done as following: (1) performing a fringe normalization procedure; (2)
using a non-linear phase-shifting algorithm; and (3) phase unwrapping the wrapped
phase. This technique allows one to obtain good reconstruction, but shadowed areas
were not taken into account. I would like to mention that this work was mostly done
while I was at the University of Guadalajara.

• Co-phase fringe projection by simultaneously projecting two patterns.
This topic is described by Subsection 3.5.1; it has not been published yet. Subsection
3.5.1 introduces the use of co-phase fringe projection when simultaneously stereo
projecting a sinusoidal pattern. Using this technique, the Subsection also presents a
way to scan rigid shapes in a rectilinear motion; for which phase-shifting algorithms
are utilized. Using the impulsive response whose coefficients are given by Eq. (3.61),
one obtains the analytic signals in Eqs. (3.49) and (3.50). Thereafter, summing
them, one obtains the co-phased analytic signal in Eq. (3.51):

ZObj = ZRe
−iC + Z∗Be

iC =
bP1 + bP2

2
eiϕ
(
1 + arbe

−i2ϕ) .
Here, subscripts B and R indicate the color channel, blue or red, the estimation
comes from. Superscripts P1 and P2 specifies the multimedia projector used. Term
arb means the coupling factor between the blue and red channels; one expects that
arb � 1. The last equation points out that the estimated co-phased map will have
small distorting ripples due to color cross-talking.



Chapter 4
Experimental results

The present Chapter shows the experimental results obtained by the proposed three-
dimensional scanner. This implementation is based in the technique named co-phased
fringe-projection. This fringe projection profilometer was then employed to three dimen-
sional scan moving objects as well as perform an inspection of the shape. This Chapter
also describes those results from the phase-to-height and the gamma calibration proce-
dures. Section 4.1 provides the characteristics of the profilometer he built. Section 4.2
has the results obtained for calibrating the gamma distortion for both projectors; once at
a time. The results of the depth calibration are described by Section 4.3. In Section 4.4,
we illustrate some reconstructions of static objects using his profilometer; we later utilizes
them as the calibrated shapes for 3D inspection. Section 4.5 depicts several reconstruc-
tions while the objects are now moving continuously along the x-axis. Finally, Section 4.6
has the results of 3D inspections while the objects are in a rectilinear, continuous motion
along x-axis.

4.1 Experimental setup: co-phased fringe projection pro-
filometer

This section describes the characteristic of our profilometer. Figure 4.1 depicts two pictures
of the profilometer, as the reader can see this setup requiring two projectors and a digital
camera. The profilometer employs a charge-coupled device (CCD) camera having the
sensor UI214xSE-C R3 that has the ability to record red-blue-green (RGB) images. This
sensor has a 1280×960-pixel resolution and 32-bit of depth; 8-bit per channel. The profiler
works with the whole the camera’s pixel resolution. On the other hand, the two multimedia
projectors are Dell model S320 with Digital Light Processing (DLP) technology. They have
1024× 768-pixel resolution and 8-bits of depth for the channel and are working at 60 Hz.
Considering the right-side picture in Fig. 4.1, the projector in the left are projecting in the
red channel, and the other in the blue channel. Each projector is short-throw, and thereby,
one can focus the projected image in a very short distance given the ability to place the
reference plane close to them. The distance between the camera and the reference plane
is around 400 mm.
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Figure 4.1: Photographs of the fringe-projection profilometer. The description is in the
main text.

To build the reference plane, we used a white-bond paper sheet placed on a bathroom
mirror; therefore, one must expect that this reference plane has a poor flatness, also it
will introduces spurious heights due to the testing objects’ weight. These spurious heights
were very small.

Finally, It is noticeable that this setup was schematically described in Fig. 3.16 previ-
ously. Particularly, sensitivity angle ψ ≈ 30 deg.

4.2 Gamma calibration

This Section describes the system’s calibration concerning the non-linear gamma distor-
tion using that technique described in Section 3.3. Figure 4.2 draws the observed data
before performing the gamma correction. It is worth mentioning that the spectrum plots
correspond to the actual magnitude’s square root in order to improve the spectrum pre-
sentation. Figure 4.2(a) corresponds to the red channels where one can observe that it
has not only mostly second-harmonic distortion, but also it has unwanted lobes around
the frequency 1.5 rad/pixels. I believe they are generated due to the projector grating.
On the other hand, the other acquired intensity is depicted by Fig. 4.2(b) where one can
see intensity distortions are because of the second harmonic contribution. Considering
that the PSA only has the ability to accomplish the quadrature conditions. The second
harmonic is the main error source in the retrieved phase. Refer to Subsection 2.2.3 for
explanations. In this sense, one can quantify roughly the distortion by relation:

2
∣∣b2ei2ϕ∣∣
|b1eiϕ|

� 1.

The values of such relations are 0.3673 and 0.3912 for the red and blue channels, respec-
tively. One can realize that these values do not accomplish the aforementioned relation,
and whence, the estimated phase would be highly harmonic distorted. Consequently, the
gamma distortion should be corrected.

The estimated gamma values were γred = 4.78 and γblue = 6.84. Figure 4.3 shows the
results by correcting the gamma distortion. As in the previous Figure, the red and blue
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Figure 4.2: Drawing the acquired intensity and its spectrum with gamma distortion: (a)
the intensity and spectrum corresponding to the red channel, and (b) the intensity and
spectrum of the blue channel. The depicted spectra is the square rooted of the actual
ones.

channels correspond to Fig. 4.2(a) and (b), respectively. One can observe that the spectra
of the gamma-corrected data seem to have fewer distortions. Based on the spectrum plots,
one can realize that the second harmonic’s power decreased very significantly; however,
the third harmonic’s power increased. Although this harmonic now has more power, it is
significantly lower than the power of the second harmonic in the first stage; Figure 4.2.
Again, considering that the PSA only have the ability to fulfill the quadrature conditions,
and due to the fact that the third harmonic should be thought to be the main source of
harmonic distortion; therefore, one should consider at least the following relation

2
∣∣b3ei3ϕ∣∣
|b1eiϕ|

� 1

is very important because it determines the amount of distortion in the recovered phase.
After the gamma correction, such values were 0.034 for the read channel and 0.047 for the
blue one. Therefore, this relation was accomplished. By comparing the values before and
after the gamma correction, one should expect that the harmonic distortion’s amplitude
will be reduced by around 10 times. A more meticulous analysis requires taking the
power of the fourth harmonic into account due to the fact that it has significant power
for the red channel, see Fig. 4.3(a), to determine a more accurate quantification of the
amplitude of the harmonic distortion; this fact allows concluding that that phase from
the red channel will have a larger harmonic distortion that the one from the blue channel.
Finally, one should design a PSA whose FTF rejects the third harmonic to improve the
phase estimation’s quality. However, it would need to increase in two the number of fringe
patterns to be acquired; in other words, one must acquire at least five images.
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Figure 4.3: Gamma correction of the intensities and the corresponding spectrum: (a)
the intensity and spectrum corresponding to the red channel, and (b) the intensity and
spectrum of the blue channel. The depicted spectra is the square rooted of the actual
ones.

On the other hand, to reduce the computation time, anti-gamma-distortion fringe
patterns (one at each channel) are projected instead of correcting the acquired ones as
depicted in this Section; refer to Eq. (3.18).

4.3 Phase-to-height calibration

To perform the calibration coefficients, 25 calibrated positions were taken. The distance
between position was 4 millimeters, so the system can measure objects that have 96 mm of
height. Two vertical positioners were employed to reach the positions, and then, a vernier
was employed to calibrate each position. Thence, one should expect that the calibrated
positions are not exactly determined because one would surely introduce errors in these
conditions. To phase demodulation, 16 fringe patterns were acquired; the large number
of fringe patterns was with the aim of reducing the noise. The unwrapped phase was
obtained by the line-integration method.

Figure 4.4 draws the changes of phase with respect to the depth. To depict this
fact, it was selected five pixels: left-upper corner is P1; right-upper corner is P2; P3
corresponds to the central pixel; left-down corner is P4; and P5 is the right-down one. The
plots indicate that these changes can be well explained by a second-order polynomial as
described in Section 3.4. In these plots, one also can realize that coefficients {K0, K1, K2}
are determined for each pixel; refer to Eq. (3.32). In Figure 4.4, one can realize that
summing the curves of both channels, P1 with P1, P2 with P2, and so on, the resulting
curve tends to be the central one denoted by P3.
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Figure 4.4: Phase differences ∆ϕ through the height for certain pixels: (a) red channel
and (b) blue channel. The description is in the main text.
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Figure 4.5: Reconstruction of the calibration planes for the blue channel (solid) and red
one (dashed). The description is in the main text.

Figure 4.5 shows profiles of the estimation (reconstruction) of each calibration plane.
Red-dashed lines correspond to the ones in the red channel, and blue-solid lines to the
blue channel. It is noticeable that an insignificant change was introduced for exposi-
tion purposes. One can observe that the reconstructed calibration planes were estimated
correctly. The residuals’ standard deviation (calibrated height minus estimated one) is
approximately 0.25 mm, and the residuals’ mean is 0.03 mm. Even though the standard
deviation is small, one should expect that it increases when employing a small number of
fringe patterns.
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(a) (b)

(d)(c)

Figure 4.6: Acquired fringe patterns for some testing objects: (a) a polystyrene spherical
cap, (b) a step pyramid, a spherical cap plus a cylinder, and (d) a handmade shell.

4.4 Reconstruction of some static objects

Here, some static objects are measured using the co-phase profilometer. To perform these
measurements, 16 fringe patterns were projected and acquired for each object. Figure 4.6
shows the first acquired pattern of each object. In this Figure, one can observe that the
gamma distortion was compensated successfully.

Figure 4.7: Reconstruction of a polystyrene spherical cap. Notice that views are not
exactly between the object’s pictures and the result of digitalization.
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Figure 4.8: Reconstruction of a step pyramid. Notice that views are not exactly between
the object’s pictures and the result of digitalization.

Figure 4.9: Reconstruction of a spherical cap plus a cylinder; one can observe that the
reconstruction was wrong. Notice that views are not exactly between the object’s pictures
and the result of digitalization.

Figures 4.7 – 4.10 depict the reconstruction of the aforementioned solids. One can
observe that the first two surfaces, Figs. 4.7 and 4.8, was retrieved correctly, also the
last surface was correctly retrieved. However, the third surface, Fig. 4.9, was retrieved
incorrectly; this is because the gradient of the surface introduces 2π ambiguities around the
edge touching the reference plane. To overcome this issue, one needs to project multiplexed
fringe patterns of a least two frequencies: a coarse and a fine measurement; thence, these
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Figure 4.10: Reconstruction of a handmade shell. Notice that views are not exactly
between the object’s pictures and the result of digitalization.

frequencies together allow one not only to estimate the phase with high accuracy but also
neglect the 2π ambiguities. Finally, the last surface was correctly retrieved as shown in
Fig. 4.10. We would like to mention that the small ripples observed in Figure 4.7 – 4.10
are due to the projectors’ grids, as can be realized in Fig. 4.3. These ripples have a very
small amplitude around 0.02 mm, and so they can be neglected.

4.5 Three-dimensional reconstruction of moving objects

This section shows several reconstructions of moving objects using seven fringe patterns
as well as nineteen fringe patterns. It is noticeable that one needs at least seven fringe
patterns in order to reject the third harmonic using the least-squares phase-shifting al-
gorithm. Therefore, this is the reason why this number was selected. After increasing
the number of fringe patterns, I empirically determined that one will always obtain a
good phase estimation when phase demodulating 19 fringe patterns. Figures 4.11 – 4.13
depicts such fact. One can observe in Fig. 4.11(a) that the phase estimation will have
small rippled distortion because the third harmonic seems to be unrejected completely.
Whereas, in Fig. 4.12(a), one can observe a good phase estimation indicating that the
third harmonic was rejected completely. This result is comparable with using nineteen
fringe patterns 4.12(b). Figure 4.13(a) depicts that the phase was not retrieved correctly;
moreover, one should repeat the measurement due to distorting waves’ amplitude. Finally,
one can realize that the measurements using 19 patterns were all correct.
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(a) (b)

Figure 4.11: Reconstruction the polystyrene spherical cap during moving: acquiring (a)
7 and (b) 19 fringe patterns. One can observe that the first reconstruction has distorting
ripples due to third harmonic may not be rejected. Whereas, it was rejected in the second
reconstruction.

(a) (b)

Figure 4.12: Reconstruction the step pyramid during moving: acquiring (a) 7 and (b) 19
fringe patterns. One can see that both reconstructions do not have significantly harmonic
distortion; in fact both reconstructions have almost the same quality.

4.6 Three-dimensional inspection of moving objects

This Section depicts several results of the three-dimensional inspection of an object in
rectilinear motion. To this end, the concept of phase difference is considered to perform
the inspections. Using the result in Eq. (3.7) that can be rewritten as

H(ω) = e−iϕref [FTF of a non-linear PSA], at(x, y).

= e−iϕref

N−1∑
n=0

cne
−iθnω/ω0 , at(x, y). (4.1)
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(a) (b)

Figure 4.13: Reconstruction of the handmade shell during moving: acquiring (a) 7 and (b)
19 fringe patterns. One can observe that the first reconstruction has ripples distortions
due to the same frequency and four times it. These reconstructions do not have the same
quality. Whereas the second reconstruction has almost the same quality as the static
reconstruction.

Here, The frequency transfer function in Eq. (4.1) is computed using the coefficients
in Eqs. (3.57) – (3.61). It is noticeable that this FTF has a phase response equal to
zero at ω = ω0, so the overall estimation will not have a global phase piston; this fact
is important because it would translate into a global shape difference. Moreover, ϕref

indicates a reference phase being known previously. Using the phase maps computed in
Section 4.4, one has a good estimation of the phase coming from a calibrated object.
Although one can map the object’s height to phase, utilizing the inverse of Eq. (3.32),
one can prefer using a reconstruction in the best conditions.

(a) (b)

Figure 4.14: Results of the 3D inspection of the polystyrene spherical cap during moving:
acquiring (a) 7 and (b) 19 fringe patterns. One can see the first inspection was not cor-
rect because the harmonic distortion does not allow seeing the shape deformation clearly.
However, the second inspection was correct.
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(a) (b)

Figure 4.15: Results of the 3D inspection of the step pyramid during moving: acquiring
(a) 7 and (b) 19 fringe patterns. One can realize that both inspections were correct, so
one can see the clay balls clearly.

As in the previous Section, 3D inspections were performed using 7 and 19 fringe pat-
terns as a consequence of the previous results. With the aim of simulating a small shape
defect, several small balls, around 2 mm, were put on the objects; thence, the result of
the inspections shall be only the reconstruction of these small clay balls. Figures 4.14
– 4.16 illustrate the obtained results. Figure 4.14(a) depicts the result of inspecting the
polystyrene spherical cap with 7 phase shifts.

One can observe that the inspection was wrong because there are several artifacts
coming from the phase demodulation procedure. Particularly, the waving distortion does
not allow one to identify the shape defect clearly. However, the inspection was correct
when acquiring 19 fringe patterns as seen in Fig. 4.14(b); here, one can see clearly the
shape defect which amplitude is around 2.3 mm. The inspection of the step pyramid
is shown in Fig. 4.15 for 7 (a) and 19 (b) fringe patterns. Here, one can observe that
both inspections were correct; the two clay balls had around 2 mm amplitude. We point
out that although one may see distorting ripples in Fig. 4.15(a), they have a very small
amplitude (< 0.5 mm); therefore, one should neglect them. Finally, Figure 4.16 illustrates
the inspection for the handmade shell during a rectilinear motion. One can observe that
the inspections do not have the same quality as the first two. The result in Fig. 4.16(a)
has distorting waves with amplitude around 1 mm. Whereas, Figure 4.16(b) has error
around 0.5 mm. These errors do not come from the phase estimation mainly, but they
are generated by small errors in the pixel matching procedure, so one can observe that
the errors look like the object’s shape. Moreover, shape differences become larger around
edges or areas where the gradient does, too. In fact, one should consider that almost all
inspections will have this kind of error due to mistakes in the pixel matching procedure.
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(a) (b)

Figure 4.16: Results of the 3D inspection of the handmade shell during moving: acquiring
(a) 7 and (b) 19 fringe patterns. One can realize that both inspections were wrong because
of height artifacts. These results are incorrect because the pixel matching algorithm failed;
one can observe that the shape was not correctly matched translating into shape differences
when they were not there.



Chapter 5
Conclusions

In this thesis, we employed the co-phased fringe projection profilometry technique for
the three-dimensional (3D) reconstruction of optically diffuse shapes. In particular, we
had introduced a new fringe projection technique consisting of simultaneously co-phased
projection with color codification. We employed this technique for the 3D reconstruction of
static objects and objects in rectilinear motion. In order to retrieve the co-phase map, we
have developed and implemented a non-linear phase-shifting algorithm. In this sense, one
must translate the object’s rectilinear movement into a temporal sequence of phase-shifted
fringe patterns utilizing image registration methods.

Furthermore, using the proposed phase-shifting algorithm with especial phase response,
the technique is able to estimate the shape differences in an inspection sense. To this
end, it was proposed that a reference co-phase map coming from a calibrated shape.
The reference co-phased map is utilized to modify the phase response of a phase-shifting
algorithm. Whence the computed analytic signal will now have the phase differences,
between the testing and the reference co-phase maps. Thereby, this technique should be
thought to be a digital null test; thus, the output corresponds to the shape differences.
A valuable advantage of this technique lies in avoiding the phase unwrapping procedure
when the shape defects are small. This condition is easy to be fulfilled by industrial items
in real applications. The phase-unwrapping avoidance can be also observed in shapes
with discontinuities; in fact, shape differences would be the only conditions to avoid the
phase unwrapping or not. We would like to note that a shape variance around 7 mm will
generate a wrap in phase, and so, one must perform a phase unwrapping.

Results suggest that the proposal is suitable for the 3D reconstruction and inspection
of objects while being in rectilinear, continuous motion. However, the object’s shape shall
be smooth because the proposed pixel matching method requires a rough estimation of
the phase, using a low-pass filtering process. Albeit the employed components are shaky,
the built profilometer can effectively see shape variations around 0.3 mm with a global
error piston around 0.5 mm. The latter is because the setup’s alignment did not have
accuracy in millimeters. For example, vertical distance, the flatness of the reference plane,
the accuracy of the calibration position, and others. The built profilometer is able to
3D scan objects having dimensions 210mm along x-axis, 160mm along y-axis, and 96mm
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along z-axis.
Derived from this thesis, I published four articles as the first author: spectral analysis

for the generalized least squares phase-shifting algorithms with harmonic robustness [77];
windowed generalized phase-shifting algorithms [93]; Tukey’s robust m-estimator for phase
demodulation of interferograms with nonuniform shifts [119]; and shape defect measure-
ment by fringe projection profilometry and phase-shifting algorithms [141]. These works
together allow to develop the proposed non-linear phase-shifting algorithm used to phase
demodulation. Also, I would like to point out that the proposed technique about co-phase
fringe projection by simultaneously projecting two patterns has not been published yet.
Sections 2.4 and 3.6 briefly describe these papers.

On the other hand, I also have co-authored the seven works: dynamic 3d shape mea-
surement by iterative phase-shifting algorithms and colored fringe patterns [31]; phase shift-
ing schemes: a comparative analysis [75]; suppressing ripple distortions and spurious pis-
tons in phase-shifting interferometry [91, 92]; phase-stepping algorithms for synchronous
demodulation of nonlinear phase-shifted fringes [113]; phase measurement of nonuniform
phase-shifted interferograms using the frequency transfer function [114]; and least-squares
gamma estimation in fringe projection profilometry [168]. These papers support well the
idea behind this thesis. Also, Sections 2.4 and 3.6 briefly indicate the contributions to the
state-of-the-art derived from these papers.

5.1 Future work

This technique’s main weakness resides in obtaining the phase-shifted fringe patterns be-
cause of the pixel matching algorithm. So, one can get better results by employing so-
lutions derived from deep learning techniques. Utilizing these techniques, one can reach
sub-pixel accuracy when performing the pixel matching. Through deep learning tech-
niques, one could acquire a sequence with more uniformly-space phase shifts. Thus, the
phase demodulation will be straighter.

Another improvement would be using temporal multiplexed fringe patterns to scan in
different resolutions simultaneously. This technique would allow not only improving the
measurement’s SNR but also 3D reconstructing shape objects having large discontinuities.



Appendix A
Fourier transform and its properties

The Fourier transform of a function f(t) is given by

F (ω)
def
=

∞∫
−∞

f(t)e−iωtdt (A.1)

where ω = 2πf and i =
√
−1. The inverse Fourier transform is defined as

f(t)
def
=

1

2π

∞∫
−∞

F (ω)eiωtdω. (A.2)

The associate operators of the Fourier transform and its inverse are F{•} and F−1{•},
respectively.

Properties

Some common properties of the Fourier transform are:

1. Linearity: let a, b be scalars, then

F {af(t) + bg(t)} = aF (ω) + bG(ω). (A.3)

2. Time shift:

F {f(t− t0)} = F (ω)eit0ω. (A.4)

3. Frequency shift:

F {F (ω − ω0)} = f(t)e−iω0t. (A.5)

4. Time reversal:

F {f(−t)} = F (−ω). (A.6)
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5. Time scaling: let a be a scalar, then

F {f(at)} =
1

|a|
F
(ω
a

)
. (A.7)

6. Complex conjugation:
F {f∗(t)} = F ∗(−ω). (A.8)

7. Convolution theorem:
F {f(t) ~ g(t)} = F (ω)G(ω). (A.9)

8. Correlation:
F {f(t) ? g(t)} = F {f(t) ~ g(−t)} = F (ω)G(−ω). (A.10)

Fourier transform of a sequence of sampled data

Let h(t) be a continuous function, then it can be sampled by

f(t) = h(t)
∞∑

n=−∞
δ(t− nτ) =

∞∑
n=−∞

h(nτ)δ(t− nτ). (A.11)

where τ is the sampling period. Taking its Fourier transform, one has

F (ω) =

∞∫
−∞

f(t)e−iωtdt =

∞∫
−∞

[ ∞∑
n=−∞

h(nτ)δ(t− nτ)

]
e−iωtdt

=

∞∑
n=−∞

h(nτ)

∞∫
−∞

δ(t− nτ)e−iωtdt

=
∞∑

n=−∞
h(nτ)e−inτωt

F (ω) =

∞∑
n=−∞

hne
−inωt (A.12)

where hn = h(nτ). The formula in Eq. (A.12) is called Discrete-time Fourier transform.
It is noticeable that F (ω) is continuous and has 2π-periodicity; this is F (ω) = F (ω±n2π)
for any integer n.



Appendix B
Dirac delta function and its properties

This function can be define as a metric by

∞∫
−∞

f(t)δ(t)dt = f(0). (B.1)

and also it satisfies that
∞∫
−∞

δ(t)dt = 1. (B.2)

Properties

1. Sampling: let τ be the sampling period, then

f(t)
∞∑

n=−∞
δ(t− nτ) =

∞∑
n=−∞

f(nτ)δ(t− nτ). (B.3)

2. Time scaling:

δ(at) =
1

|a|
δ(t) (B.4)

3. Shifting property
f(t) ~ δ(t− t0) = f(t− t0) (B.5)

4. Time reversal (even function):
δ(−t) = δ(t). (B.6)

5. Generalization of n-dimensional

δ(t, u, v, . . . ) = δ(t)δ(u)δ(v) · · · . (B.7)

6. Fourier transform:
F {δ(t− t0)} = eit0ω (B.8)
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Appendix C
Linear least squares optimization

The main idea behind optimization using the least squares method consists of solving an
over-determined system of linear equations so that the sum of the squared residuals is the
minimum. Thereby, this optimization problem is defined as

x+ = argmin
x
‖r‖22 ; (C.1)

where x+ is the optimal solution in the least squares sense, ‖•‖2 is the Euclidean norm,
the vector of residual is given by

r = b−Ax; (C.2)

then, one can reformulated the optimization problem as

x+ = argmin
x
‖b−Ax‖22 . (C.3)

Here A ∈ Rm×n is the matrix of coefficients, x ∈ Rn corresponds to the vector of unknown
variables, b ∈ Rm is the vector of observations, and r ∈ Rm. When one has that the
number of equations is equal or greater than the number of unknown variables, i.e. m ≥ n;
this case is called an overdetermined system.

Based on equations (C.1) – (C.3), we can expand the squared of the residuals as
following

‖r‖22 = rTr

= (b−Ax)T (b−Ax)

=
(
bT −ATxT

)
(b−Ax)

= bTb− bTAx− xTATb + xTATAx,

where T indicates transpose operation, and the next scalars fulfill that bTAx = xTATb =(
bTAx

)T
; thus, one obtains that

‖r‖22 = bTb− 2xTATb + xATATx. (C.4)
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To find the optimal value x+ so that minimizes Eq. (C.4), a necessary condition is to
equate the gradient of ‖r‖22 with respect to x to zero;

∇x ‖r‖22 = 2ATAx− 2ATb = 0. (C.5)

From Eq. (C.5), we obtain the system of normal equations given by

ATAx+ = ATb (C.6)

∴ x+ =
(
ATA

)−1
ATb = A†b (C.7)

where A† is called the Moore-Penrose pseudoinverse. The system of normal equations
has the no trivial solution provided that matrix A has full rank, implying that ATA is a
non-singular square matrix and positive defined.

Proof: matrix A is full rank. If A is full rank, this implies that ATA is non singular.
Supposing that ATA is singular, then it is rank deficient; this implies that for a x 6= 0,
it is accomplished that ATAx = xTATAx = 0, and thence, ‖Ax‖22 = 0. Thus, matrix
A must be singular and rank deficient. Furthermore, because ATA is non-singular, it is
fulfilled that xTATAx = ‖Ax‖22 > 0; and therefore, ATA shall be positive defined.

I now provide some analysis about the previous mathematical development. First,
defining the column space of matrix A as following

R (A)
def
= {z = Ay | y ∈ Rn} , R (A) ⊂ Rm; (C.8)

as well as the null space of matrix AT is defined as

N
(
AT
) def

=
{
w ∈ Rm |ATw = 0

}
, N

(
AT
)
⊂ Rm. (C.9)

It is worth mentioning that N
(
AT
)

is the orthogonal complement of R (A) in Rm. Figure
C.1 draws a geometric interpretation of the least squares problem when one is estimating
two parameters, and so the vector of observations has three dimensions. It is noticeable
that r ∈ N

(
AT
)

and b /∈ R (A); and so Ax+⊥r. Then, one is able to say that

Ax+ = A
(
ATA

)−1
ATb = AA†b; (C.10)

R(A
)

Ax

r=b‒Ax
b

Figure C.1: Schematic representation of the least squares problem when estimating two
parameters.
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in other words, Ax+ is the orthogonal projection of b onto R (A). The orthogonal pro-
jector is defined as

H
def
= A

(
ATA

)−1
AT, (C.11)

which is commonly called the hat matrix. Hence, we can state the residuals of the least
squares fitting in terms of the hat matrix as

rls
def
= b−Hx+, (C.12)

and the least-squares fit to the vector of observations as

b̂ls
def
= Hx+. (C.13)

This last equation is very important for phase-shifting algorithm based on the least squares
method because b̂ls corresponds to the intensity value estimated for the algorithm, and
so, one can measure the error between the fitted intensity and the acquired one.
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