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Edgar Gabriel Ayala Pérez
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Abstract

The usage of continuum robot techniques is becoming more and more popular
in medical applications, specially for minimally invasive chirurgical procedures.
Some of these procedures may include, for example, brain, cardiac, and vascular
surgeries, optical coherence tomography (OCT), among others.

This work presents a port Hamiltonian system (PHS) approach for a 5cm long
optical fiber continuum robot actuated by a 3cm long PT230.94 piezoelectric
tube. The purpose of the robot is to effectuate micro-scanning tasks. A non-
linear infinite dimensional PHS model of the 3D continuum robot was obtained
from the Cosserat rod dynamical equations also shown in this work. A compar-
ison of the rod’s behavior of the rod was made using the two different models,
obtaining a similar response. Also, physical parameters of the optical fiber robot
and the piezoelectric tube actuator were identified with an experimental setup
in the AS2M department at Femto-st institute. Then an energy-based intercon-
nection damping assigment passivity based control (IDA-PBC) is synthesised as
a boundary controller to control a desired scanning trajectory of the robot’s free
end. The controller is first simulated by giving an [x, y ] desired position and then
a desired 2D spiral scanning trajectory. The experimental part was then validated
in the x direction with a desired end point and with a desired trajectory.

Key Words: Continuum Robot, port Hamiltonian system, scanning, optical
fiber, boundary control.
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FEMTO-ST AS2M DEPARTMENT

Femto-st AS2M department

The Femto-st Institute "Franche-Comté Electronique Mécanique Thermique et Optique-
Sciences et Technologies", is a joint research institution, which is under the quadruple au-
thority of the Université de Franche-Comté (UFC), the Centre National de la Recherche
Scientifique (CNRS), the Ecole Nationale Supérieure de Mécanique et Microtechniques (EN-
SMM) and the Université de la Technologie Belfort-Montbéliard (UTBM).

The Automatique et Systèmes Micro-Mècatroniques (AS2M) department is focused in the
research disciplines of robotics, mechatronics, automatic control and artificial intelligence.
The department has acquired international recognition and experience in the design and
control of micro and nano positioning and assembly systems, and micro robotics for minimally
invasive surgery.
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Introduction

The medical applications for continuum robots have being growing in the last years. The
main purpose of using these robots is to perform minimally invasive surgeries to reduce the
potential risks and to improve the success of the involved procedures in surgeries [1]. Some
examples of the most important surgeries and the problems solved with continuum robots
are:

• Neurosurgical: Wide cranium openings, tissue pushed aside to gain access to deeper
regions of the brain, proximity to structures with important functionalities.

• Otolaryngology: Usually performed with straight or flexible endoscopes and other in-
struments entering to the nostrils, mouth or ears. These instruments have a lack of
dexterity, such that some regions remain inaccessible.

• Cardiac Surgery: Most of the the heart procedures require open cardiac surgery.
Catheter based operations are enabling minimally invasive surgeries, however, some
difficulties are found such as a limited ability to apply and control forces necessary for
performing the surgery and the challenge of positioning the catheter within a beating
heart.

• Vascular Surgery: These procedures often include the use of catheters and guidewires
to perform injections, drain fluids and insert additional surgical instruments. The main
challenges are similar to the cardiac surgeries.

The main motivation for this project is to develop a new reliable PHS non-linear model
for a continuum robot and to control its position with a control law also based in a PHS
approach. In this work, numerical simulations and a experimental validation of a continuum
robot for micro-scanning tasks will be presented. The distribution of the work is the follow-
ing: first, the notation used for the rod; second, the state of the art and the contribution
of this project in Section 1; third, the dynamic equations for the Cosserat rod model in
Section 2; fourth, the port Hamiltonian models for the rod and the actuator in Section 3;
fifth, the rod’s port Hamiltonian model validation in Section 4; sixth, the presentation of
the experimental setup and the physical parameters identification of the optical fiber and the
piezoelectric tube in Section 5; finally, in Section 7, the controller is presented with numerical
simulations and the experimental validation.
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Nomenclature and notation

The nomenclature used in this work for the rods is shown in Table 1 and Table 2 according
to [2] and [3]. Also the partial derivative ∂

∂s
will be denoted using the subindex s and the

partial derivative ∂
∂t

will be denoted using the subindex t. For example:

∂p

∂s
= ps,

∂p

∂t
= pt

Table 1: Rod’s nomenclature

Value Units Definition
s m Reference arclength
t s Time
p m Global position in Cartesian coordinates

R - Rotation matrix of material orientation;
Express iternal loads un the global frame

n N Internal force in the global frame
m Nm Internal moment in the global frame
f N/m Distributed force in the global frame
l Nm/m Distributed moment in the global frame

v - Rate of change of position with respect
to arclength in the local frame

v∗ - Value of v when n = vt = 0
u 1/m Curvature vector in the local frame
u∗ 1/m Value of u when m = ut = 0
q m/s Velocity in the local frame
ω 1/s Angular velocity in the local frame
A m2 Cross-sectional area
ρ kg/m3 Material density
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Table 2: Rod’s nomenclature

Value Units Definition

J m4

Second mass moment of inertia tensor

J =

Ixx 0 0
0 Iyy 0
0 0 Izz


Kse N

Stiffness matrix for shear and extension

Kse =

GA 0 0
0 GA 0
0 0 EA


Kbt Nm2

Stiffness matrix for bending and torsion

Kbt =

EIxx 0 0
0 EIyy 0
0 0 GIzz


Bse N s Damping matrix for shear and extension
Bbt Nm2s Damíng matrix for bending and torsion
E Pa Young’s modulus
G Pa Shear’s modulus
I m4 Cross-sectional area moment of inertia
C kg/n2 Square law drag coefficient matrix
g m/s2 Gravitational acceleration vector

(̂·) -

Mapping from R3 to se(3)

(û) =

 0 −u3 u2
u3 0 −u1
−u2 u1 0


(·)∨ - Mapping from se(3) to R3

(û)∨ = u

Pág. 8



1 STATE OF THE ART

1 State of the Art

1.1 Continuum Robots

Robots can be classified in two branches, discrete and continuous [1]. When the number of
joints approaches to infinity and the links’ length approaches to zero, the robot is considered
as a continuum robot. In general, the shape and the structure of these continuum robots
could be defined and elastic member of infinite degrees of freedom. Thanks to this properties,
continuum robots can be constructed at smaller scales in comparison to those with discrete
joints.
Figure 1 shows that the continuum robots could be internally classified by their structure
and the actuation mode.

Figure 1: Robots classification by structure and actuation

1.1.1 Structure

For the structure classification, the following types could be found in [1]:

• Single back-bone: They have one central elastic structure that supports the passage of
the actuator or transmission elements.

• Multi-backbone: They are composed by multiple parallel elastic elements constrained
to each other.

• Concentric-tube: These robots are usually composed by multiple precurved elastic tubes
that are inserted inside of each other.

There are two important principles to take into account when talking in the structural
design of the robots, the workspace and their stiffness. Both characteristics should be large
enough so the robot could do the required tasks.
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1.1.2 Actuation

In actuation terms, there can be found two main classifications in [1] according to where the
actuation occurs:

• Intrinsic: When the actuator is found within the moving structure.

• Extrinsic: When the actuator is found outside the main moving structure and the
movement is transmitted through mechanical parts.

For intrinsic actuators, hydraulic and pneumatic chambers are being developed along with
a shape memory effect of some materials, embedded micromotors and others. On the other
hand, tendon/cable and multiback-bone structures are used as extrinsic actuators among
others.

1.1.3 Modeling

Figure 2 presents some of the basic categories for describing most of the continuum robots
models [1]. The main two categories could be separated in Kinematics Frameworks and
Mechanics Frameworks both internally separated in discrete and continuous approaches.

Figure 2: Continuum robots modeling methods

The continuous approach in the Kinematics Frameworks could be separated in:

• Constant-curvature: Represents the continuum robot geometry with a finite number
of mutually tangent curved segments each one having a constant curvature along its
length.

• Variable-curvature: Describe a continuously evolving reference frame along the length
of the robot.
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Also, the continuous approach for the Mechanics Frameworks, in which this work is based,
could be classified in:

• Energy methods: Can be used to determine the shape of continuum robots using either
lumped or distributed parameter descriptions

• Classical elasticity theories: Some of this theories for long slender objects such as rods
and strings have been applied to continuum robots. Cosserat rod theory and Kirchhoff
rod theory have become popular methods to model this robots.

1.2 Port Hamiltonian systems

Port-based modeling of physical systems is based on viewing the system as the interconnection
of three types of ideal elements: dynamical energy-storing elements, static energy-dissipating
elements, and static lossless energy-routing elements. The essence of port-based modeling
and port-Hamiltonian systems is represented in Figure 3. The energy-storing elements S and
the energy-dissipating elements R are linked to a central energy-routing structure, geomet-
rically defined as a Dirac structure. This linking takes place in pairs forms (f, e) of equally
dimensioned vectors usually known as flow and effort variables [4].

Energy 

Storage

Energy 

Dissipation
Routing

Figure 3: From port-based modeling to a port-Hamiltonian system

The basic and most important property of a Dirac structure is the power conservation.
The Dirac structure links the flow and effort variables f = (fS, fR, fP ) and e = (eS, eR, eP ) in
such a way that the total power eTf = 0. The integration of the flow variable fS for energy
storage, leads to an equally dimensioned vector of state variables x satisfying ẋ = −fS.
Thus, the energy storage is expressed by the Hamiltonian H, defining the effort variables
vector as eS = ∇H(x) where ∇H(x) is the column vector of the partial derivatives of H.
Also, the energy dissipation is any relation R between the flow and effort variables fR and
eR of the energy dissipation port such that eTRfR ≤ 0.

An input-state-output port Hamiltonian system is finally expressed as in equation (1)
where J = JT and R = RT ≥ 0, u = ep is the input vector and y = fp is the output
vector [4].
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ẋ = (J −R)∇H(x) + gu

y = gT∇H(x)
(1)

Energy based modeling can provide a modular presentation for interconnected systems,
secondly, they provide different passivity based control methods which have clear physical
interpretation.

1.3 Contribution

The main objective of this project was to develop a scanning continuum robot with an
actuation at the boundary (base). This continuum robot consisted in an optical fiber rod and
a piezoelectric tube actuator. This optical fiber continuum robot exhibits large deformations
and highly nonlinear behaviors that will be described using Cosserat rods [2], [3], [5]. In order
to deal with the multi physical nature of this system and the interconnection between between
the continuum robot and the actuator, the port Hamiltonian framework was be investigated
and derived. The port Hamiltonian formulations are indeed particularly well adapted for
the modeling and control of nonlinear multi-physical systems [6], [7]. First, a suitable PHS
mathematical model of the piezoelectric tube actuated continuum robot was derived and
validated with numerical simulations. Then, the next step was to design a boundary control
law for achieving efficient and accurate dynamic scanning tasks. As mention in Section 1.2,
this kind of model is based on the principle of energy conservation and exhibits the systems
properties and provides a clear physical interpretation of control design strategies. Both,
the proposed PHS model and control law, were performed and validated numerically and
experimentally.

a) b)

c)
d)

Data 

Transfer

Voltage

Position 

Recuperation

Figure 4: a) Simulink/ControlDesk interface; b) Dspace controller board; c) 20X Voltage amplifier;
d) Optical fiber continuum robot
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Figure 4 shows in a general way the project setup. An interface via Simulink and Con-
trolDesk will communicate a dSpace controller board in order to send the control signal and
receive the position information (Figure 4a, 4b). The dSpace board will send the necessary
voltage to the FLC A400DI voltage amplifier in order to move the piezoelectric tube actuator
in the x direction (Figure 4c, 4d). Finally, the tip’s position of the optical fiber continuum
robot and the piezoelectric tube will be recuperated with two Keyence sensors respectively,
to implement the control law.
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2 COSSERAT ROD DYNAMICS

2 Cosserat rod dynamics

In this section a general and simple derivation of the dynamic partial differential equations
is presented. This PDE’s are a combination of the partial derivatives in space s and time t.

2.1 Rigid body transformation

In Cosserat-rod theory, a slender rod can be approximated as a one-dimensional object.
The rod is characterized by its centerline curve p(s, t) ∈ R3 and its material orientation
R(s, t) ∈ SO(3) as functions of the arclength that will vary from zero at its base to the
rod’s length L (s ∈ [0L]) and the time t as shown in Figure 5. Hence, a rigid body trans-
formation of the rod could be expressed as in equation (2). [5]

g(s, t) =

[
R(s, t) p(s, t)

0 1

]
(2)

Figure 5: Representation of the rod as a one-dimensional object with arclength s ∈ [0L]

The kinematic variable in the local frame, v(s, t), is introduced to represent the linear
rate of change of the rigid body transformation (first derivative of the position) with respect
to s. Also, the variable int the local frame, u(s, t), is introduced to represent the angular
rate of change (curvature) of the rigid body transformation with respect to s. The variables
presented before can be expressed as in equations (3) and (4) respectively.

v = RTps (3)

u = (RTRs)
∨ (4)

Analogous to these expressions, the linear velocity and the angular velocity at the local frame
could be expressed as in equations (5) and (6) respectively.

q = RTpt (5)

ω = (RTRt)
∨ (6)
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2 COSSERAT ROD DYNAMICS

2.2 Balance equations

Figure 6: Infinitesimal section of the rod from s to s + δ subjected to distributed forces f and
distributed momentums l. Internal forces n and m are expressed in the global frame

Figure 6 shows the internal forces and momentum so as the distributed forces and momentum
along the rod. The internal force in the rod is expressed by n(s, t) and the sign convention
is chosen to represent this forces as the force that the material at s+ δ exerts at s− δ. This
convention is used also in the internal momentum expressed by m(s, t). The distributed
forces and distributed momentum along the rod are expressed as f(σ) and l(σ) respectively.
Equation (7) gives the expression of the dynamic balance equation for the forces. Likewise,
equation (8) represents the expression of the dynamic balance equation for the momentum.

n(s+ δ) − n(s) +

∫ s+δ

s

f(σ) dσ =

∫ s+δ

s

ρAptt dσ (7)

m(s+ δ) − m(s) + p(s+ δ)× n(s+ δ) + p(s)× n(s)

+

∫ s+δ

s

[l(σ) + p(σ)× f(σ) dσ] =
∫ s+δ

s

∂

∂t
(ρAp× pt + RρJω) dσ

(8)

By applying the derivative with respect to s, and applying the proper substitutions, the
classical form differential equations are obtained as shown in (9) and (10).

ns + f = ρAptt = ρAR(ω̂q+ qt) (9)

ms + l + ps × n = ρJRtt = ρR(ω̂Jω + Jωt) (10)

Pág. 15



2 COSSERAT ROD DYNAMICS

2.3 Constitutive laws

The difference between the kinetic variables in the local frame v and u in the rod’s ini-
tial state and int the deformed state v∗ and u∗ are related to various mechanical modes of
strain. [5]

The difference of the transverse shear in x and y directions correspond to vx − v∗x and
vy − v∗y while the axial elongation or stretch in z direction corresponds to vz − v∗z . In a
similar way, the difference of the bending in in x and y directions correspond to ux−u∗x and
uy − u∗y while the torsion around z axis corresponds to uz − u∗z.

Using the relations above, the constitutive laws shown in equation (11) and equation (12)
relating these variables with the internal forces and momentum can be found.

n = RKse(v− v∗) (11)

m = RKbt(u− u∗) (12)

v = RTK−1se n + v∗ (13)

u = RTK−1bt m + u∗ (14)

2.4 Dynamic PDE’s

The first dynamic PDE’s for the Cosserat rod could be found by solving equations (3), (4),
(9) and (10) for ps, Rs, ns and ms respectively. Then, the derivative with respect to s of
equation (5) could be obtained by making the proper substitutions as shown in equation
(15). And finally, to obtain the last differential equation, the derivative of equation (6) with
respect to s should be performed. By taking (−ûω̂+ ûω̂)∨ = −ûω, equation (16) is found.

qs = RT
s pt + RTpts

qs = (Rû)TRq + RT (Rω̂v + Rvt)

qs = vt − ûq + ω̂v

(15)

ω̂s = RT
sRt + RTRts

ω̂s = (Rû)TRŵ + RT (Rω̂û + Rut)

ωs = ut − ûω
(16)
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2 COSSERAT ROD DYNAMICS

Finally the set of the dynamic PDE’s for the Cosserat rod are shown in equation (17).

ps = Rv

Rs = Rû

ns = ρAR(ŵq + qt)− f
ms = ρR(ω̂Jω + Jωt)− p̂sn − l
qs = vt − ûq + ω̂v

ωs = ut − ûω

(17)

2.5 Numerical simulation

As an example, the code in [8] was taken. The dynamics of a cantilever rod with the param-
eters shown in table 3 were simulated. A force of [0.5 0 0]N at the tip was considered as an
initial state of the rod, then, the force was released. Figure 7 shows the first few frames of the
simulation. Figure 8 shows the tip’s position in time. A very small damping was considered
to perform the simulation.

Table 3: Main rod’s parameters

Parameter Value Units
Length (L) 0,4 m

Young ’s modulus (E) 207 GPa
Radius (r) 0,0012 m
Density (ρ) 8000 kg/m3

Figure 7: A force of 0.5 N is applied to the rod’s tip and then released
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2 COSSERAT ROD DYNAMICS

Figure 8: Tip’s position with very small damping
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3 PORT HAMILTONIAN PRESENTATION

3 Port Hamiltonian presentation

The main purpose of this section is to derive a proper Hamiltonian model of rod and the
actuator. This is achieved by choosing the proper energy variables (state variables) and co-
energy variables for the system. Also, the expression for total energy (Hamiltonian) of the
rod is presented in this section.

3.1 Port Hamiltonian system of the optical fiber rod

The first energy variable can be choose as the difference of the shear and axial elongation of
the deformed state and original state as in equation (18). The second state variable is related
to the internal translational momentum of the rod as in equation (19).

x1 = v− v∗ (18)

x2 = ρApt = ρAq (19)

The third state variable is related to the difference in bending and torsion (curvature) of
the deformed state and the original state of the rod as in equation (20). Then, the fourth
energy variable is related to the internal rotational momentum of the rod. Equation (21)
shows this state variable.

x3 = u− u∗ (20)

x4 = ρJRt = ρJω (21)

The total mechanical energy can be expressed by the sum of the potential elastic energy
and the kinetic energy of the rod and integrating for each infinitesimal part for s ∈ [0L].

The potential elastic energy relates the first energy variable (equation (18)) with the
first co-energy variable (equation(25)) and the third energy variable (equation (20)) with the
third co-energy variable (equation(27)). Equation (22) gives the total potential energy of the
system which includes the shear and curvature of the rod.

V =
1

2

∫ L

0

[Ksex
2
1 + Kbtx

2
3] ds

=
1

2

∫ L

0

[(Kse(v− v∗)2 + Kbt(u− u∗)2] ds

(22)
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3 PORT HAMILTONIAN PRESENTATION

The kinetic energy relates the second energy variable (equation (19)) with the second
co-energy variable (equation(26)) and the fourth energy variable (equation (21)) with the
fourth co-energy variable (equation(28)). Equation (23) gives the total kinetic energy of the
system which includes the internal translational and rotational momentum of the rod.

T =
1

2

∫ L

0

[
1

ρA
x2
2 + (ρJ)−1x2

4] ds

=
1

2

∫ L

0

[ρAq2 + ρJω2] ds

(23)

As mentioned before the resulting total energy is the sum of equation (22) and equation
(23) for obtaining equation (24).

H =
1

2

∫ L

0

[Ksex
2
1 + Kbtx

2
3 +

1

ρA
x2
2 + (ρJ)−1x2

4] ds

=
1

2

∫ L

0

[(Kse(v− v∗)2 + Kbt(u− u∗)2 + ρAq2 + ρJω2] ds

(24)

For each energy variable there is an associated co-energy variable chosen from the Hamil-
tonian. The first one, presented in equation (25) is also related with the shear and elongation
of the rod. The second one, related with the internal translational momentum is shown in
equation (26).

e1 = Ksex1 = Kse(v− v∗) (25)

e2 =
1

ρA
x2 =

1

ρA
ρAq = q (26)

The third one, related with the bending and torsion is shown in equation (27). In the
same way, the fourth co-energy variable presented in equation (28) is related to the internal
internal rotational momentum giving as result ω.

e3 = Kbtx3 = Kbt(u− u∗) (27)

e4 = (ρJ)−1x4 = (ρJ)−1ρJω = ω (28)

3.1.1 Port Hamiltonian model

In this section the (·) symbol above the x is introduced to present the derivative with respect
to t of each state variable. These derivatives relate the co-energy variables and the energy
variables one to each other. Equation (29) gives the time derivative of x1 by solving equation
(15) for vt. The time derivative of x2 is shown in equation (30) by solving the balance
equation (9) for ρAqt.
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3 PORT HAMILTONIAN PRESENTATION

ẋ1 = vt = qs + ûq − v̂ω = (
∂

∂s
+ û)q + v̂ω

ẋ1 = (
∂

∂s
+ û)e2 + v̂e4

(29)

ẋ2 = ρAqt = RTns − ρAω̂q + RTf

ẋ2 = RTRsKse(v− v∗) + RTR
∂

∂s
Kse(v− v∗) − ρAω̂q + RTf

ẋ2 = RTRûKse(v− v∗) + RTR
∂

∂s
Kse(v− v∗) − ρAω̂q + RTf

ẋ2 = (
∂

∂s
+ û)e1 − ρAω̂e2 + RTf

(30)

Equation (31) gives the time derivative of x3 by solving equation (16) for ut. The time
derivative of x4 is shown in equation (32) by solving the balance equation (10) for ρJωt.

ẋ3 = ut = ωs + ûω = (
∂

∂s
+ ûω)

ẋ3 = (
∂

∂s
+ û)e4

(31)

ẋ4 = ρJωt = RTms − ρω̂Jω + RT p̂sn + RT l

ẋ4 = RTRsKbt(u− u∗) + RTR
∂

∂s
Kbt(u− u∗) − ρω̂Jω + RT p̂sRKse(v− v∗) + RT l

ẋ4 = RTRûKbt(u− u∗) + RTR
∂

∂s
Kbt(u− u∗) − ρω̂Jω + v̂Kse(v− v∗) + RT l

ẋ4 = (
∂

∂s
+ û)e3 − ρω̂Je4 + v̂e1 + RT l

(32)

Remembering that a port Hamiltonian system could be expressed as in equation (1), the
current model can be expressed in the Hamiltonian form as in equation (33). Where R, in
this case are the damping or dissipation matrices.


ẋ1
ẋ2
ẋ3
ẋ4


︸ ︷︷ ︸
ẋrod

=



0 ∂

∂s 0 0
∂
∂s 0 0 0
0 0 0 ∂

∂s

0 0 ∂
∂s 0

+


0 û 0 v̂
û −ρAω̂ 0 0
0 0 0 û
v̂ 0 û −ρJω̂


︸ ︷︷ ︸

Jrod

−


0 0 0 0
0 Bse 0 0
0 0 0 0
0 0 0 Bbt


︸ ︷︷ ︸

Rrod



e1
e2
e3
e4


︸ ︷︷ ︸
erod

+


0 0
RT 0
0 0
0 RT


︸ ︷︷ ︸

grod

[
f
l

]
︸︷︷︸
urod

(33)
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3 PORT HAMILTONIAN PRESENTATION

With: 
e1
e2
e3
e4

 = Lx =


Kse 0 0 0
0 1

ρA
0 0

0 0 Kbt 0
0 0 0 (ρJ)−1



x1

x2

x3

x4


For this project, a boundary controller should be designed, this means that the matrices
g and u should be changed to have a set of boundary port variables instead of distributed
parameters. To do this, the distributed forces and momentums are neglected. The vector
of boundary flows and efforts is shown in equation (34) [9]. The input boundary conditions
were all set to 0 except for e20 which is the velocity at the rod’s base. These variables will be
explained with detail in section 4. With the changes made, the complete model is presented
in equation (35).

[
f∂
e∂

]
=



e20
e1L
e40
e3L
e2L
e10
e4L
e30


(34)


ẋ1
ẋ2
ẋ3
ẋ4


︸ ︷︷ ︸
ẋrod

=



0 ∂

∂s 0 0
∂
∂s 0 0 0
0 0 0 ∂

∂s

0 0 ∂
∂s 0

+


0 û 0 v̂
û −ρAω̂ 0 0
0 0 0 û
v̂ 0 û −ρJω̂


︸ ︷︷ ︸

Jrod

−


0 0 0 0
0 Bse 0 0
0 0 0 0
0 0 0 Bbt


︸ ︷︷ ︸

Rrod



e1
e2
e3
e4

+

g1
g2
g3
g4


︸ ︷︷ ︸
grod


e20
e1L
e40
e3L


︸ ︷︷ ︸
urod

(35)


y1
y2
y3
y4


︸ ︷︷ ︸
yrod

= gT
δH
δx

=
[
g1 g2 g3 g4

] 
e1
e2
e3
e4
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3 PORT HAMILTONIAN PRESENTATION

3.2 Port Hamiltonian system of the piezoelectric tube actuator

The actuator for the continuum robot is a 2 pair of electrodes piezoelectric tube. In order to
compute the boundary controller, the piezoelectric tube actuator was also modeled in a PHS
approach as a simple mechanical spring-mass-damper system as shown in Figure 9. a voltage
dependant force FPZT is applied to generate a displacement and an opposite force from the
rod Frod = e10 is present. Also a stiffness coefficient K and a damping coefficient b were
taken into account.

Figure 9: Piezoelectric tube as a Spring-Mass-Damper system

As in the rod’s PHS model, the energy variables are chosen. For the piezoelectric tube
case, the first energy variable is chosen as the position pPZT as in equation (36) and the second
as the momentum mPZT as in equation (37).

xp1 = pPZT (36)

xp2 = mPZT (37)

Then the Hamiltonian of the system could be expressed as in equation (38) from which
the co-energy variables could be extracted. These co-energy variables,K(pPZT) and 1

M
(mPZT),

are expressed in equations (39) and (40) respectively.

H =
1

2
[Kx2

1 +
1

M
x2
1]

=
1

2
[Kp2

PZT
+

1

M
m2

PZT
]

(38)
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3 PORT HAMILTONIAN PRESENTATION

ep1 = Kx1 = K(pPZT) (39)

ep2 =
1

M
x2 =

1

M
(m

PZT
) = qPZT (40)

3.2.1 Port Hamiltonian model

Hence, the piezoelectric tube actuator PHS model could be expressed as in equation (41).
Where the output of the system is the actual boundary velocity, e20 at the optical fiber’s base
that is needed to move the rod.

[
ẋp1
ẋp2

]
︸ ︷︷ ︸
ẋpzt

=


[
0 1
−1 0

]
︸ ︷︷ ︸

Jpzt

−
[
0 0
0 −b

]
︸ ︷︷ ︸

Rpzt


[
ep1
ep2

]
︸ ︷︷ ︸
epzt

+

[
0
1

]
︸︷︷︸
gpzt

[
F(v)

]︸ ︷︷ ︸
upzt

−
[
0
1

] [
Frod

]︸ ︷︷ ︸
upzt−rod

y︸︷︷︸
ypzt

= gT
δH
δx

=
[
0 1

] [ep1
ep2

]
= q

PZT

(41)

3.3 Interconnected model

To have a complete interconnected system the input variables an the output variables were
defined [9]. Equation (42) corresponds to the input variable which includes the boundary
conditions for e1L, e40 and e3L. Then, in equation (43), corresponds to the input variable of
the velocity e20 that the actuator exerts at the base of the rod.

U1 = WB1

[
f∂
e∂

]
= 0

WB1 =

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0


(42)

U2 = WB2

[
f∂
e∂

]
= e20

WB1 =
[
1 0 0 0 0 0 0 0

] (43)
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3 PORT HAMILTONIAN PRESENTATION

The first output variable could be expressed as in equation (44) which corresponds to e2L,
e4L and e30. Finally, equation (45) corresponds to the output e10 which is the force that the
rod exerts in the actuator.

Y1 = WC1

[
f∂
e∂

]

WC1 =

0 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1


(44)

Y2 = WC2

[
f∂
e∂

]
= Ce10

WC1 =
[
0 0 0 0 0 1 0 0

] (45)

The infinite dimensional interconnected PHS model could is expressed in equation (46)
with gi =

[
0 0 0 0 0 1

]T .
[
ẋrod
ẋpzt

]
=

[
(Jrod −Rrod) 0

C (Jpzt −Rpzt)

] [
erod
epzt

]
+ gi

[
F(V )

]
(46)
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4 ROD’S NUMERICAL RESOLUTION AND VALIDATION

4 Rod’s numerical resolution and validation

4.1 Spatial discretization

For the next section an spatial discretization for the first part of the model presented in
equation (47) is made as in [10] and [11] where the concept of staggered grids is introduced
as the notation used. 

f1
f2
f3
f4

 =


0 ∂

∂s
0 0

∂
∂s

0 0 0
0 0 0 ∂

∂s

0 0 ∂
∂s

0



e1
e2
e3
e4

 (47)

First a spatial resolution h is introduced where an n number of elements can be found
such that (n + 1

2
)h = L. The first part of the system is discretized over the grid presented

in Figure 10 for x1 and x2 and the grid presented in in Figure 11 for x1 and x4. The spatial
discretization is made for a clamped-free rod.

0 L

s

Figure 10: 1D Staggered Grid for x1
dis and x

2
dis

0 L

s

Figure 11: 1D Staggered Grid for x3
dis and x

4
dis

In this discretized model, the state variables are changed by a finite-dimensional vec-
tor xdis = [x1dis x

2
dis x

3
dis x

4
dis]

T ∈ R2n with x1
dis = [x11 ... x

1
n]
T , x2

dis = [x21 ... x
2
n]
T , x3

dis =

[x31 ... x
2
n]
T and x4

dis = [x41 ... x
4
n]
T , where the x{1,2,3,4}k (k ∈ {1...n}) are the approximations of

the state variables respectively evaluated at s = {(k−1)h, (k−0.5)h} with n as the internal
grid points. Then, e20, e40, e1n+1 and e3n+1 denote the boundary conditions at the base and at
the tip of the rod.

The vector of discrete co-energy variables could be defined as in equation (48),

edis = Ldisxdis (48)
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and from this, equation (49) could be obtained.
e1k
e2k
e3k
e4k

 = Lk


x1
k

x2
k

x3
k

x4
k

 (49)

Thus, by central approximation of the spatial derivative equation (50) appears.
f 1
k

f 2
k

f 3
k

f 4
k

 =
1

h


e2k+1 − e2k
e1k − e1k−1
e3k+1 − e3k
e4k − e4k−1

 (50)

where fdis = [f 1
dis f

2
dis f

3
dis f

4
dis]

T = [f 1
1 ...f

1
n f

2
1 ...f

2
n f

3
1 ...f

3
n f

4
1 ...f

4
n]
T is the approxi-

mation of equation 47.
In this way the matrices shown in equations (51) and (52) could be found for a clamped-

free rod as in [12].

f1
dis =

1

h


1
−1 1

. . . . . .
−1 1


︸ ︷︷ ︸

D

e2dis +
1

h


−1
0
...
0

 e20 (51)

f2
dis =

1

h


−1 1

. . . . . .
−1 1

−1


︸ ︷︷ ︸

−DT

e1dis +
1

h


0
...
0
1

 e1n+1 (52)

Analogous, these matrices could be found for f 3
dis and f 4

dis. So the system in equation
(47) could be expressed ins a discretized form as in the equation (53).

fdis =


0 D 0 0
−DT 0 0 0
0 0 0 D
0 0 −DT 0


︸ ︷︷ ︸

Jdis

edis +


g1
g2
g3
g4


︸ ︷︷ ︸
gdis


e20
e1n+1

e40
e3n+1

 (53)

Pág. 27



4 ROD’S NUMERICAL RESOLUTION AND VALIDATION

With:

g1 =
1

h


−1
0
...
0

 g2 =
1

h


0
0
...
1



g3 =
1

h


−1
0
...
0

 g4 =
1

h


0
0
...
1


This leads to the final port Hamiltonian system shown in equation (54), in which the

distributed forces and momentum are neglected for controlling purposes.


ẋ1
ẋ2
ẋ3
ẋ4

 =




0 D 0 0
−DT 0 0 0
0 0 0 D
0 0 −DT 0

+


0 û 0 v̂
û −ρAω̂ 0 0
0 0 0 û
v̂ 0 û −ρJω̂


︸ ︷︷ ︸

Jdis

−


0 0 0 0
0 Bse 0 0
0 0 0 0
0 0 0 Bbt


︸ ︷︷ ︸

R



e1
e2
e3
e4


︸ ︷︷ ︸
edis

+


g1
g2
g3
g4


︸ ︷︷ ︸
gdis


e20
e1n+1

e40
e3n+1


︸ ︷︷ ︸

u

(54)
y1
y2
y3
y4

 = gT
δH
δx

=
[
g1 g2 g3 g4

] 
e1
e2
e3
e4


4.1.1 Interconnected model

Finally the complete and discretized interconnected model between the optical fiber rod and
the piezoelectric tube could be expressed as in equation (55).

ẋ1

ẋ2

ẋ3

ẋ4

ẋp1
ẋp2

 =



0 D + û 0 v̂ 0 g1
−DT + û −ρAω̂ −Bse 0 0 0 0

0 0 0 D + û 0 0
v̂ 0 −DT + û −ρJω −Bbt 0 0

0 0 0 0 0 1
−gT1 0 0 0 −1 −b





e1
e2
e3
e4
ep1
ep2

 +



0
0
0
0
0
1


[
F(V )

]

(55)
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4.2 Numerical validation

The purpose of this section is to validate the model in equation (54) by implementing a
simulation via Matlab/Simulink by discretizing the rod into 20 elements. The simulation
model is presented in Figure (12). The PHS rod function is where the model in equation
(33) is solved. In the Pt function, equation (5) is solved for pt. The initial conditions for the
integration blocks are obtained by solving equation (17) for statics by shooting method [8].

v

q

u

w

h

t

vt

qt

ut

wt

ht

Ri

PHS Rod

1
s

shear

1
s

velocity

1
s

curvature

1
s

angular vel

1
s

position Position

q

R

pt

Pt
1
s

quaternion

Figure 12: Simulink PHS rod’s model

As an example, the dynamics of a cantilever rod with the parameters shown in table 4
were simulated. A force of [0.5 0 0]N at the tip was considered as an initial state of the rod,
then, the force was released. Figure 13 shows the first few frames of the simulation. Figure
14 shows the tip’s position in the 1.5s of simulation. It can be seen that the behavior is
similar to the classic Cosserat rod model presented in section 2.

Table 4: Main rod’s parameters

Parameter Value Units
Length (L) 0,4 m

Young ’s modulus (E) 207 GPa
Radius (r) 0,0012 m
Density (ρ) 8000 kg/m3
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Figure 13: A force of 0.5 N is applied to the rod’s tip and then released

Figure 14: Tip’s position with very small damping
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5 Experimental setup and parameters identification

5.1 Equipment

To perform the experimental implementation the components listed below where used.

• 1 PT230.94 PT Piezo Scanner Tube

• 1 5cm Long optical fiber piece

• 2 LC-2420 Keyence ultra high accuracy laser displacement meter

• 1 A400DI Voltage amplifier

• 1 CP1104 dSpace controller board

• 1 Newport Optical table

5.2 CAD model

The experimental part needed a base for the piezoelectric tube, and a base for the sensors.
The pieces were designed in the software Auto Desk Inventor Professional 2022. For the
actuator base, a four legged small base was designed as shown in the render of Figure 15a.
For the sensors, a four degrees adjustable support was designed a shown in the render of 15b.

Figure 15: a) 1: Continuum robot; 2: four legged base; 3: A400DI voltage amplifier. b) 4: four
degrees adjustable support; 5: Keyence sensor
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5.3 Experimental setup

The piezoelectric tube base was printed in a resin material to have a better material reso-
lution. The piezoelectric tube is a very delicate component moved through a voltage. This
voltage was applied by making contact to the electrodes with screws connected to the voltage
amplifier. The contact with the screws could cause some damage to the tube if a strong force
is applied to them when adjusting. To reduce the risk, the base was designed with a small
tube as shown in Figure 16a, the cable that passes trough the middle is connected to ground.
This little tube helps to reduce the force of the screws. In Figure 16b, a piezoelectric foil
touching the ground cable is added to this base tube to avoid current peaks when the volt-
age is applied. Then in 16c the inserted piezoelectric tube can be appreciated. The screws
make contact with each of the four electrodes. Finally, in 16d a small holder was designed to
maintain the optic fiber centered and fixed.

Figure 16: a) Inside support tube; b) Piezoelectric sheet; c) Piezoelectric tube inserted; d) Optical
fiber holder

The supports for the displacement sensors were printed in PLA material for a 3D printing
machine. The complete experimental setup can be appreciated in Figure 17a. For measuring
the position of either the actuator and the optical fiber, the Keyence sensors send a laser
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spot that bounces in the surface of the measured component as shown in Figure 17b.

Figure 17: a) 1: Continuum robot; 2: four legged base; 3: A400DI voltage amplifier; 4: four
degrees adjustable support. b) 5: Keyence LC-2420 sensor; 6: Actuator’s displacement laser spot;
7: Optical fiber’s displacement laser spot

5.4 Optical fiber parameters identification

In order to have an accurate model, some parameters were identified. To do this, some ex-
perimental measurements of the rod’s tip displacement were performed. This measurements
were performed with a MEMS Analyzer Polytec MSA-500. This machine measured the dis-
placement using a laser. Figure 18 shows the setup in the MEMS table used to perform
the experiments. The measurements where made using a 2X microscope objective, the 3D
printed base with the piezoelectric tube and a 5cm long optic fiber.

Figure 18: a) 1: Mitutoyo 2X Objective; 2: 3D printed base. b) 3: X and y moving table; 4: 5cm
optic fiber and piezoelectric tube
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To obtain accurate measurements, the scheme shown in Figure 19 was implemented. In
19a, an Arduino UNO was programmed with a simple code to send 3, 4 and 5 volts to a 20X
voltage amplifier to obtain 60, 80 and 100 volts respectively to move the tube and the optical
fiber to an initial position. Then in 19b, this applied voltage was turned off (0 volts), and
simultaneously, a TTL signal was sent to the MEMS analyzer. This TTL signal was used
as a trigger to make a measurement as shown in 19c. The 0 volts of the applied voltage,
released the optic fiber as in 19d.

Figure 19: a) Arduino UNO; b) Simultaneous signals (trigger and voltage signals); c) MEMS
measurement; d) Release of the initial position

Figure 20 shows the comparison of the measurements for the 3 different applied volt-
ages. It can be appreciated that the system’s response is consistent, the amplitude of the
displacement grows when the voltage changes and the damping is always the same.
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Figure 20: Tip’s experimental displacement comparison

Then, the parameters shown in table 5 were left fixed in order to have the same frequency
of the rod’s tip in the experimental measurements and the Matlab simulation. Hence, the
only parameters to be identified were the dissipation terms of the system, the damping ma-
trices. They where identified by the use of the function fsolve and the Levenberg-Marquardt
algorithm to reduce the error between measurements and the simulation.

Table 5: Fixed Parameters

Parameter Value Units
Young ’s modulus (E) 9 GPa

Radius (r) 126 µm
Density (ρ) 1930 kg/m3

The displacement obtained for the 5V input (Figure 21a) was used to identify the required
parameters. These parameters are shown in table 7. After the identification, the measure-
ments of 3V and 4V where used to validate these new parameters as shown in Figure 21b
and 21c respectively. Finally a comparison between the three simulations was made in Figure
21d.
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a) b)

d)c)

Figure 21: a) 5V input used for identification; b) 4V input for validation; c) 3V input for validation;
d) Simulation comparison and validation

Table 6: Identified optical fiber’s parameters

Parameter Value

Bse

1.0883e− 06 0 0
0 9.9051e− 07 0
0 0 6.0282e− 07



Bbt

4.6677e− 07 0 0
0 3.4323e− 07 0
0 0 1.3407e− 06
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Figure 22 shows the first frames of the rod’s behavior when a force of −1.6396 µN at the
tip is applied and released. Then in Figure 23, the displacement and damping of the tip is
appreciated in a 1.5s simulation.

Figure 22: A force of −1.6396 µN is applied to the rod’s tip and then released.

Figure 23: Tip’s position with the identified damping
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5.5 Piezoelectric tube parameters identification

Same as the optical fiber, some physical parameters were identified for the actuator. In this
case, the mass of the piezoelectric tube with the optical fiber holder, was approximately 1g,
so the parameters to be identified were the stiffnessK, the damping b and a force coefficient
that will give the necessary voltage to move the piezoelectric tube. In order to identify these
parameters, an step input voltage of 200V was applied to the actuator, then with the help of
the Matlab function lsqcurvefit the best fitting parameters were identified. Figure 24 shows
the result of the fitting simulated response in the experimental data curve. The parameters
are shown in table 7.

Figure 24: Curve fitting for piezoelectric tube parameters identification

Table 7: Identified piezoelectric tube’s parameters

Parameter Value Units
Stiffness (K) 27.5713 N/m
Damping (b) 0.2821 Ns/m
Force factor 0.7557 V/N
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6 Controller

To accomplish the objective of performing scanning tasks, a close-loop model should be
designed. Figure 25 shows the block diagram to achieve the positioning control. The desired
position p∗ of the robot’s end enters to the a controller so as the position of the actuator
pPZT , the boundary velocity of the actuator qPZT and the actual robot’s end position p. Two
sensors measured the positions of the actuator and the rod. The output β(x) controls the
required force of the actuator in order to have a boundary velocity at the base of the rod
to move it to the desired positions. Finally, the force factor multiplied this output force in
order to have the necessary voltage.

IDA-PBC
Piezo 

PHS

Rod 

PHS

Sensor

Sensor

Figure 25: Block Diagram of the close-loop system

6.1 IDA-PBC Boundary Controller

The chosen control was a Interconnection Damping and Assignment-Passivity Based Con-
troller (IDA-PBC). The main objective is to find a static state-feedback control u(x) = β(x)
(equation (56)) such that the closed-loop dynamics is a PHS with interconnection and dis-
sipation of the form ẋ = (Jd − Rd)

δHd

δx
. In which Jd and Rd are desired matrices of

interconnection and dissipation respectively.

β(x) = (gTg)−1gT
[
(Jd −Rd)

δHd

δx
− (J −R)δH

δx

]
(56)

For the IDA-passivity based controller, the matching equation (57) should be satisfied.
For this, a proper annihilator g⊥ should be selected such that g⊥g = 0.

g⊥
[
(Jd −Rd)

δHd

δx
− (J −R)δH

δx

]
= 0 (57)

In equation (58) the desired Hamiltonian is shown, two new variables are presented in this
equation, K̃ and p∗, that represent a desired damping injection for the actuator and the
desired position of the continuum robot respectively. The solved matching equation is shown
in (59) by presenting the variable b̃ in the matrix Rd which represents a desired damping
injection in the actuator.
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Hd =
1

2
Kse(v− v∗)2 +

1

2
q2 +

1

2
Kbt(u− u∗)2 +

1

2
ω2 +

1

2
K̃(p− p∗)2 +

1

2
q2
PZT

(58)


In 0 0 0 0 0
0 In 0 0 0 0
0 0 In 0 0 0
0 0 0 In 0 0
0 0 0 0 In 0


︸ ︷︷ ︸

g⊥





0 D + û 0 v̂ 0 g1
−DT + û −ρAω̂ −Bse 0 0 0 0

0 0 0 D + û 0 0
v̂ 0 −DT + û −ρJω −Bbt 0 0
0 0 0 0 0 1

−gT1 0 0 0 −1 −b̃


︸ ︷︷ ︸

(Jd−Rd)


Kse(v − v∗)

q
Kbt(u− u∗)

ω

K̃(p− p∗)
qPZT


︸ ︷︷ ︸

δHd
δx

−


0 D + û 0 v̂ 0 g1

−DT + û −ρAω̂ −Bse 0 0 0 0
0 0 0 D + û 0 0
v̂ 0 −DT + û −ρJω −Bbt 0 0
0 0 0 0 0 1
−g1 0 0 0 −1 −b


︸ ︷︷ ︸

(J−R)


Kse(v − v∗)

q
Kbt(u− u∗)

ω
KpPZT

qPZT


︸ ︷︷ ︸

δH
δx



(59)

=

In 0 0 0 0 0
0 In 0 0 0 0
0 0 In 0 0 0
0 0 0 In 0 0
0 0 0 0 In 0




0
0
0
0
0

−K̃(p− p∗)− b̃qPZT +KpPZT + bqPZT

 =


0
0
0
0
0
0


The controller variable in equation (56) is solved as in equation (60) giving a final control

law shown in equation (61).

β(x) =
[
0 0 0 0 0 1

]


0
0
0
0
0

−K̃(p− p∗)− b̃qPZT +KpPZT + bqPZT

 (60)

β(x) = K̃(p∗ − p) +KpPZT + (b− b̃)qPZT (61)
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6.2 Simulation

For the controller simulation, the Simulink model shown in Figure 12 was changed as the one
shown in Figure 26. In this model, the controller and the piezoelectric model are included.
Also, the free end position of the robot and the velocity of the piezo tube are recovered. The
velocity qPZT goes directly to the rod’s model as the boundary condition e20. The variables
K̃ = 50 and b̃ = 1 where chosen.
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q
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w

h

vt

ut

qt
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wt

ht
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quaternion rot
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PZT PHS
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tipos

next
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Desired Pos

v

q

q

q

u

w

p
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Figure 26: Simulink close-loop complete model

The first performed simulation consisted in given a desired position in both x and y
directions. In this case, a desired position of 20µm in x and −20µm in y was chosen. Figure
27 shows the response of the controller. In the two graphs above, the current position against
the desired position is plotted. In the middle graph, the error between the desired position
and the current position is shown.
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Figure 27: Simulation for a desired [x, y ] position

The second numerical validation was to give a scanning trajectory in the form of a spiral.
This trajectory consisted in giving a final position, in this case was the coordinate [0, 10µm].
Then, the trajectory was performed in 100 points and 3 turns. Figure 28 shows these 100
points and the trajectory that the robot followed. In Figure 29, the response of the controller
is shown. In the two graphs above, the current position against the desired position is plot-
ted. In the middle graph, the error between the desired position and the current position is
shown. Finally, in the graph at the bottom, the velocity of the actuator is plotted.

Pág. 42



6 CONTROLLER

Figure 28: 100 points scanning spiral trajectory

Figure 29: Simulation for a desired [x, y ] trajectory
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6.3 Experimental validation

The final part was to do an experimental validation of the controller: As mentioned before,
this validation was just performed in 1D. The communication to the experimental setup was
made with the Simulink program shown in Figure 30 in which the sensors data was recovered
in two analog to digital converter ports and the voltage was sent to the amplifiers by one
digital to analog converter port of the CP1104 board. The interface and final communication
was made in the dSpace program Control Desk. Figure 31 shows the designed interface in
which p∗, K̃ and b̃ could be modified and pPZT and p are plotted in real time. For the
experimental validation, the parameters K̃ = 500 and b̃ = 1 where tuned.

DAC

DS1104DAC_C4

RTI Data

1

PZTx

2

RODx

ADC

DS1104ADC_C7

ADC

DS1104ADC_C6

p_pzt

q_pzt

pd

p

kd

bd

beta

Controller IDA-PBC

kd

bd

3

desire

4

error

5

velocity

6

out

pdes

Figure 30: Simulink program for dSpace

Figure 31: Control Desk interface. 1: Desired position p∗; 2: Desired energy shaping K̃; 3: Desired
damping injection b̃; 5: Current actuator position pPZT ; 5: Current fiber position p
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As in the simulation part, the first thing to validate was a desired position. For the results
shown in Figure 32 a desired position of 4µm was selected. The plot at the top shows the
desired position against the actual position of the continuum robot’s free end. The error of
these two positions is plotted at the bottom. The obtained result is similar to the simulated
one. The positioning is not 100% accurate due to several factors; noise in the measurements
of the positions with the sensors, environmental perturbation and the non-linearities of the
actuator that where not taken into account.

Figure 32: Experimental result for a desired position of 4µm

As an extra validation, Figure 33 also shows a response to a 6µm desired position, but
in this case, a rude perturbation was introduced on purpose to the system by touching the
optical fiber to observe its stabilization. It can be observed from the graph at the top, that
even the perturbation caused a movement to −21µm the controller achieved to return the
robot to the commanded position.
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Figure 33: Experimental result for a desired position of 6µm with a perturbation

The final validation was to command a desired time-changing trajectory and see the
response of the continuum robot. The plotting at the top of Figure 34 shows the actual
position trajectory against the desired trajectory. It could be appreciated from the plot in
the middle that the error is between −0.5µm and 0.5µm.

Figure 34: Experimental result for a desired trajectory

Pág. 46



7 CONCLUSIONS AND PERSPECTIVES

7 Conclusions and Perspectives

This internship project developed within the micro and nano robotics team at the AS2M
department presents a port Hamiltonian approach for a piezoelectric tube actuated flexible
optical fiber.The dynamics of the optical fiber were described by the Cosserat rod model
under the port Hamiltonian framework approach. An IDA-passivity based control was de-
veloped to control the optical fiber’s free end. Numerical simulations were done to validate
both, the new proposed model and the controller. The simulations for validating the PHS
model where done by applying a force at the the rod’s end as if the tip was pulled, then the
force was released and the behavior was observed. The Cosserat and the PHS model where
compared with this same method. The controller simulation was performed in the [x, y ] di-
rections by commanding a desired position and a desired trajectory. At last, an experimental
validation was also performed. In this validations, some physical parameters were identified
for the optical fiber and for the piezoelectric tube actuator. The controller was then validated
in just the x direction. The obtained results in the experimental part were quite acceptable
even the problems caused by environmental perturbations.

This current work involved and put together several disciplines. For example, the com-
plete CAD for the supports and its printing in 3D printing machines. It also included the
training for the usage of the MEMS analyzer, and the port Hamiltonian systems theory, which
are defined by the power preserving property by the geometric notion of a Dirac structure.

The work also presented some difficulties, for example, the simulations done for the PHS
were to heavy and slow to perform due to the discretization and the stiffness of the model.
Also the measurement of the free end of the optical fiber was planed to be done with a PSD
(position-sensitive detector). A laser spot emited by the fiber was supposed to hit the sensor
and with the recovered voltages the [x, y ] position was supposed to be obtained. The problem
with this sensor was that the laser emitted from the fiber was not collimated (a divergent ray
was emitted), so the sensor was not able to capture in a proper way the light. The lack of
proper equipment to measure the position causes that the experimental validation was done
only in the x direction.

For future work measurements of the position in both [x, y ] directions need to be in-
vestigated. Also for better results, more parameters of the rod should be included into the
controller, this could be done by adding a non-linear observer to estimate these parameters
that can not be measured. And also, the non-linearities of the actuator, such as hysteresis
and creep, could be compensated.
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