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Surface measurement with vertical super-resolution of aluminum
thin films by using phase-shifting interferometry

Abstract
In this dissertation,wepresent aprocedure tomeasure thephase fromnon-uniformphase-shifting
interferograms in order to estimate the surface topography of an aluminum thin film. Interfero-
grams are acquired from aMichelson interferential microscope, and phase shifts among interfer-
ograms are non-uniform because a piezoelectric transducer (PZT), working in open-loop mode,
is used as phase shifter. Non-uniform phase shifts generate two types of errors in phase mea-
surements: the double-frequency ripple distortion and the spurious piston. Thus, in order to
overcome the aforementioned errors, we design error-correcting and non-iterative phase shifting
algorithms (PSAs). For this purpose, considering that non-uniform phase shifts can be expressed
as a polynomial function of the unperturbed phase shift (ω0) and using the frequency transfer
function (FTF) formalism, we show that the conditions to overcome errors in phase measure-
ments are associated withm-th derivative of the PSA’s FTF. Hence, we deduce two new condi-
tions: 1) them-th derivative of the FTF evaluated at ω = −ω0 to suppress the double-frequency
ripple distortion, and 2) them-th derivative of the FTF evaluated at ω = ω0 to eliminate the spu-
rious piston. Then, taking into account them-th derivative of the FTF evaluated at ω = −ω0, we
design a nine-frame PSA in order to estimate the surface topography of an aluminum thin film.
This result is free of ripple distortions and it is better than those obtained using the Fourier trans-
form method, the least-squares PSA, and the principal component analysis method. Finally, we
applied our nine-frame PSA to three different sets of non-uniformphase-shifting interferograms.
Demodulated phases are summed in order to obtain a phase with vertical super-resolution (Verti-
cal sensitivity), equivalent tomeasure surfaceswith a synthetic ultravioletwavelength. Computer
simulations and experimental results prove us right.
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1
Introduction

In order to measure the phase in phase-shifting interferometry (PSI), numerous phase-shifting
algorithms (PSA) have been reported [1–10]. Most PSAs consider that the phase shifts among
interferograms vary in knownmanner and constant, this is known as uniform phase shift. How-
ever, in practical measurements, interferometric data has a different phase shift than the expected
value; these are called non-uniform phase shifts. Therefore, errors in the measured phase are in-
troduced when interferograms with non-uniform phase shifts are processed using conventional
algorithms.

Non-uniform phase shifts arise due to most PSI setups use a piezoelectric transducer (PZT)
as phase shifter [11]. It is known that phase shifts based on PZT displacement are non-linear
[4, 11–13], and they have poor repeatability [4, 14]. Besides the PZT, atmospheric turbulence
[15] and mechanical vibration [16–21] also introduce additional phase shift uncertainties. Ai
andWyant sum up non-uniform phase shift as linear and quadratic terms [11], whereas Hibino
et al. proposed that the non-uniform phase shifts can be approximated by a polynomial function
of the unperturbed phase shift value and nonlinear coefficients [10, 22–24].
It is well known that nonuniform phase shifts cause double-frequency ripple distortions [11,

12, 25]. In some cases, ripple distortions can be suppressed by error-correcting PSAs designed
for uniform phase shifts [3, 4, 6, 26]. However, in other cases, it is necessary to use more robust
approaches such as the principal component analysis (PCA) [27–30], the advanced iterative al-
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gorithm (AIA) [31], or VU factorization [32]. Nonetheless, the optical phase computed by the
aforementioned PSAs may include a spurious piston [24, 33]. In most cases, this spurious pis-
ton is irrelevant. However, it can be a problem in absolute phase measurements such as optical
thickness [34] and air gap distance [35], in which it can be wrongly interpreted as a real physical
quantity.

In this dissertation, we present error-correcting, and ready-to-use PSAs in order to measure
the surface topography of an aluminum thin film. PSAs are designed from the point of view of
the frequency transfer function (FTF) and they are robust against the two phase measurement
errors: the double-frequency ripple distortion and the spurious piston.

1.1 Motivation

There are materials research groups who are interested in measuring the thickness, roughness,
and singularities of thin films. In the specific case of aluminum thin films, which are extremely
sensitive to contamination, soft and easily deformed specimens, it is desirable to use an accuracy
instrument which does not make contact with the specimens. In that sense, phase shifting in-
terferometry technique is the best option, because it is a non-destructive method and it provides
accuracy and precision, in the nanometer or even the Angstrom range [36].

Despite of the aforementioned, PSI is not necessarily a very high precision technique because
conventionalPSAsused forphase retrieval inPSI carries two intrinsic errors: thedouble-frequency
ripple distortion and the spurious piston. Therefore, measuring thickness and roughness by us-
ing PSI is not reliable because PSI is too sensitivity to phase shifting variations and operating
conditions of the interferometer. In that sense, these errors have to amend and it give us a oppor-
tunity to research and to improve the conventional PSAs.

Nonetheless, our enhanced PSAs can be used in numerous industrial, research and develop-
ment applications. These includemeasuring the quality of a variety ofmanufactured items, such
as hard disk drives andmagnetic recording heads, lasers and optics for CD andDVDdrives, cam-
eras, laser printers, machined parts and components for fiber-optic systems[37].

1.2 Research problem

As discussed, PZT displacement produces interferometric data with non-uniform phase shifts.
Processing it without robust methods translates into a double-frequency ripple distortion and a
spurious piston; both errors can be easily interpreted as physical quantities, resulting in wrong
measurements. This dissertation proposes PSAs to avoid errors in phase measurements.

This dissertation does not propose to improve the environmental condition nor to adjust the
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PZT displacement. On the contrary, we work on the fact that the phase shifts are non-uniform.
Thus, our research is focused on designing error-correcting and non-iterative PSAs in order to
avoid errors in the measured phase. PSAs design process involve them-th derivative of the PSA’s
frequency transfer function, first, evaluated at ω = −ω0 to suppress the double-frequency ripple
distortion, and second, evaluated at ω = ω0 to eliminate the spurious piston. These conditions
help us to design enhanced PSAs which are robust against errors in phase measurement, and it
result in more accurate measurements.

Thin films properties and manufacturing will not be discussed in this dissertation.

1.3 Objectives

1.3.1 General objective

Tomeasure the surface topography of an aluminum thin filmusing a custom-made phase shifting
algorithm.

1.3.2 Specific objectives

• To illustrate the non-uniform phase shift in experimental data acquired from the Michel-
son interferential microscope.

• To deduce conditions, from the point of view of the frequency transfer function, to design
phase shifting algorithms in order to suppress the double-frequency ripple distortion and
to eliminate the spurious piston.

• To show the evolution of thewell-known four-frame PSA,which can bemodified in order
to avoid errors in the measured phase.

• Todesign a custom-madePSA inorder tomeasure the surface topographyof an aluminum
thin films using interferograms with non-uniform phase shifts.

• To compare the obtained surface topography of an aluminum thin filmswith similar phase
shifting algorithms.

• Toestimate the surface topographyof an aluminumthinfilmwith vertical super-resolution
by using ultraviolet equivalent-wavelength PSI.

3



1.4 Hypothesis

A custom-made phase shifting algorithm, from the point of view of the frequency transfer func-
tion, allows us to deduce conditions in order to suppress two common phase errors, the double-
frequency ripple distortion and the spurious piston. This algorithm permit us to measure an
error free 3-D map of aluminum thin film surface.

1.5 Dissertation contents

The theoretical framework is presented in Chapter 2. Theoretical foundations about two beam
interference, phase-shifting interferometry, phase-shifting algorithm from the point of view of
the frequency transfer function, and figures of merits of PSA are studied. This chapter includes
a description of the Michelson interferential microscope.

Conditions to avoid errors in phase measurement are deduced in Chapter 3. This Chapter
starts giving a overview of the error sources in PSI. Then, mathematical analysis to deduce two
conditions: one to suppress the double-frequency ripple distortion, and other to eliminate the
spurious piston are developed. The two proposed conditions are applied over the well-known
four-frame PSA. Lastly, simulation results show the validity of our proposal.

An experimental process to estimate the surface topographyof an aluminumthinfilm is carried
out in Chapter 4. This chapter starts remembering that a non-uniform phase shift is composed
by a nominal value and a phase shift error. Then, processes to estimate the phase shift error, to
define a modified phase-shifting interferogram, and to design a error-correcting nine-frame PSA
are explained. Lastly, 3-D surfaces topography of an aluminum thin film are shown.

Procedures to estimate the surface topography of an aluminum thin film with vertical super-
resolution is carried out in Chapter 5. This chapter describes the process to demodulate the
phase from several sets of non-uniform phase shifting interferograms. Demodulated phases are
summed in order to obtain a newphasemapwhich has ultraviolet sensitivity, as if it wasmeasured
using a light source with ultraviolet wavelength.

Finally, our conclusions are drawn in Chapter 6. At the same time, this chapter gives an out-
look about future works.
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2
Theoretical framework

In this chapter, we describe in detail the elements of phase shifting interferometric (PSI) for opti-
cal testing, this technique is mainly based on the phenomena of interference and phase shifting
algorithms (PSA). Itwill be describedwith principal reference to applications for the topographic
measurements of thin films.

2.1 Two-beam interference

Two-beam interference is the coherent superposition of two wavefronts [38–40], one of which
is typically a flat reference wavefront that has a tilt, e.g. about the x-axis

E1(x, y) = E01(x, y)eikx sin α, (2.1)

and the other a wavefront under analysis, whose shape is to be measured

E2(x, y) = E01(x, y)eikW(x,y). (2.2)

Here,W(x, y) represent deformations with respect to a flat wavefront without tilt [41]. These
wavefronts are shown in Fig. 2.1.

The complex amplitude in the observation plane, where the two wavefronts interfere, is given
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Figure2.1:Two‐beam interference between a flat reference wavefront (a), which is tilted α about the x‐
axis, and a wavefront under analysisW(x, y) (b).

by

E(x, y) = E01(x, y)eikx sin α + E02(x, y)eikW(x,y), (2.3)

where E01 is the amplitude of the light beam with the reference wavefront, E02 is the amplitude
of the light beam at the wavefront under analysis, k = 2π/λ, and λ is the wavelength of light.

The optical disturbance, or electric field E⃗, varies in time at an exceedingly rapid rate, roughly
4.3× 1014 Hz to 7.5× 1014 Hz [42], this made the actual field an impractical quantity to detect.
The study of interference is best approached by way of the irradiance, because it can be mea-

sured directly with a wide variety of sensors, such as photocells, bolometers, photographic emul-
sions, or eyes. Irradiance is defined by

I(x, y) = E(x, y) · E∗(x, y), (2.4)

here the symbol ∗ denote the complex conjugate of the electric field.
Substituting Eq. (2.3) into Eq. (2.4), we have

I(x, y) = E01
2(x, y) + E02

2(x, y)

+ 2E01(x, y)E02(x, y) cos k[W(x, y)− x sin α]. (2.5)

Then, the irradiance function I(x, y) is given by

I(x, y) = I12(x, y) + I22(x, y)

+ 2
√

I1(x, y)I2(x, y) cos k[W(x, y)− x sin α], (2.6)

where I1(x, y) and I2(x, y) are the irradiances of the two beams, and the phase difference between
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them is given by ϕ(x, y) = k[W(x, y) − x sin α], where the term in square brackets is known as
optical path difference (OPD). Phase difference can be rewritten as

ϕ(x, y) = φ(x, y)− u0x. (2.7)

Here φ(x, y) and u0x are phases corresponding to the specimen surface and the tilted reference
plane, respectively. In this case, u0 is the spatial carrier in the x direction [43].

For practical purposes, Eq. (2.6) is written as [41]

I(x, y) = a(x, y) + b(x, y) cos [ϕ(x, y)], (2.8)

where a(x, y) and b(x, y) are known as the background illumination and the local contrast func-
tion, respectively; and ϕ(x, y) is the searched phase which is proportional to the phenomenon
under study. From now on for simplicity, the arguments x and ywill be omitted.

Among the various types of two-beam interferometers, theMichelson interferometer is espe-
cially simple and straightforward in principle, as well as in practice, and is therefore utilized for a
broad range of applications. This interferometer has several variants, e.g. theMichelson interfer-
ential microscope.

Figure2.2:Michelson interferential microscope setup.

Figure 2.2 shows the Michelson interferential microscope for testing the surface and thick-
ness of an aluminum thin film sample. The source is a high-power LED that has a dominant
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wavelength of λ = 660 nm. The beam is transmitted and divided into two by an external beam
splitter: one goes to an interference objective with a magnification of 5× [36] andNA = 0.13;
and the other is not a subject of interest. Once inside the interference objective, the transmitted
beam is split into two beams of nearly equal intensity by an internal beam splitter; one of these
beams is directed onto a flat reference mirror and the other onto the specimen surface. Since the
light waves reflected by the specimen and the reference mirror are originated from the same light
source, these waves are mutually coherent, and consequently a two-beam interference pattern is
obtained. The image of the surface under test, superimposedwith interference fringes, is directed
towards to an image lens by the external beam splitter. The generated two-beam interference pat-
tern is registered by a CMOS camera.

The interference objective and specimen surface are separated by an appreciable distance (≈
9 mm), as shown in Fig. 2.2. Therefore, an interference pattern is obtained without contact.
This is suitable in the case of specimens such as semiconductors, which are extremely sensitive to
contamination, or soft and easily deformed specimens [36].

In this dissertation, aberrations due to anything that both beams go through, such as the imag-
ing lens or the beam splitter, are negligible in fringe pattern analysis. Therefore, interferograms
represent only the difference between the two interfering beams. [44].

2.2 Phase shifting interferometry

Shifting the specimen surface in the z-axis positive direction has the effect of varying the phase
difference between the two beams which are interfering. One way to vary the phase difference is
to apply a voltage to a piezoelectric transducer (PZT) onwhich the specimen surface is mounted,
see Fig. 2.3. This surface is moved in several discrete steps, and then taken and stored the in-
terferometric data in the computer before the surface moves to the next position [11]. During
movement,N interferograms are recorded at an equal voltage interval, such that

In = a+ b cos[ϕ + ω0n]; (2.9)

n = 0, . . . ,N− 1

Here, ω0 is the temporal carrier, which represent thephase shift between two consecutive interfer-
ograms. A set of phase-shifting interferograms is shown in Fig. 2.4. From these interferograms,
the searched phase ϕ can be derived from three or more interferograms [45]. This technique is
known as phase shifting interferometry (PSI).

Themost common value of ω0 is π/2 (90◦). In aMichelson interferential microscope, a phase
shift of π/2 is equivalent to moving the surface under test λ/8, it means moving the specimen
surface about 82.5 nm for each new interferogram (λ = 660 nm). In the same way, a shift
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Figure2.3:Shifting the phase in the Michelson interferential microscope by moving the specimen surface.

through one-fourth of a wavelength inverts the pattern by transforming bright fringes to dark
fringes, and viceversa.

Figure2.4:A set of phase‐shifting interferograms.

2.3 Phase-shifting algorithm

The mathematical representation of the phase-shifting interferogram, given by Eq. (2.9), can be
rewriting in a continuous-time model as

I(t) = a+
1
2
bei[ϕ+ω0t] +

1
2
be−i[ϕ+ω0t]. (2.10)

The temporal Fourier transform of the I(t) is given by

I(ω) = aδ(ω) +
b
2
eiϕδ(ω − ω0) +

b
2
e−iϕδ(ω + ω0). (2.11)

The above equationmeans that the temporal carrier modulation produces spectral separation
between the component signals of the interferogram. Taking account that a, b, and ϕ do not
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have temporal dependency, the spectral lobes are given by Dirac delta functions located at ω =

{−ω0, 0, ω0}, as shown in Fig. 2.5(a).
Equation (2.11) allowsus todesign aproper linear filter to chose the analytical signal (b/2) exp[iϕ]

located at ω = ω0 and to reject the other ones, as shown in Fig. 2.5(b). Readers must note that
it is also valid choosing the signal located at ω = −ω0.

Figure2.5:(a) Spectrum of the temporal phase shifting interferogram. (b) Frequency transfer function of an
ideal quadrature (band‐pass) linear filter.

In the Fourier domain, a quadrature linear filter is completely characterized by its frequency
transfer function (FTF) [43]

H(ω) =
N−1∑
n=0

cne−iωn, (2.12)

where cn are complex-valued coefficients that defineH(ω).
Now, in order to isolate the analytical signal (b/2) exp[iϕ], the FTF must fulfill the following

quadrature conditions:

H(0) = 0, H(−ω0) = 0, H(ω0) = 1. (2.13)

Note that, for simplicity we are considering thatH(ω0) = 1, nonetheless, this can be any positive
real nonzero value.

Applying this quadrature linear filter to Eq. (2.11), in the Fourier domain, we have

I(ω)H(ω) =
b
2
H(ω0)eiϕδ(ω − ω0). (2.14)

This procedure is translated to the time domain by using the impulse response function

F−1{H(ω)} = h(t) =
N−1∑
n=0

cnδ(t− n). (2.15)
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In similar way, but in the time domain, applying the quadrature linear filter h(t) to the tem-
poral phase-shifting interferogram I(t), we have

[I(t)~ h(t)]t=N−1 =
N−1∑
n=0

cnIn, (2.16)

where~ denotes the convolution operator. Note that in Eq. (2.16), the temporal convolution is
evaluated at t = N− 1 in order to obtain the most robust estimation of the analytic signal for a
given number of phase steps. So, for practical purposes, Eq. (2.16) can be written as

b̂
2
eiϕ̂ =

N−1∑
n=0

cnIn. (2.17)

Thus, the searched phase ϕ, modulo 2π, is easily computed as the argument of this analytic signal

ϕ̂ = arg
{
b̂
2
eiϕ̂
}
. (2.18)

For the aforementioned, a phase-shifting algorithm (PSA) canbedescribed as quadrature linear
filter. In that sense, the twomost representatives PSAs, Four-Frame [2] and Schwider-Hariharan
[3, 4], can be expressed by their analytic signals [43]

b̂
2
eiϕ̂ff = I0 − iI1 − I2 + iI3, (2.19)

b̂
2
eiϕ̂SH = I0 − 2iI1 − 2I2 + 2iI3 + I4. (2.20)

Figure 2.6 shows theFTFmagnitudeof theFour-FramePSA(blue line) andSchwider-Hariharan
PSA(red line). Note that thesePSAs are similar behavior to isolate the analytical signal (b/2) exp[iϕ].
However, in Schwider-Hariharan PSAH(ω) ≈ 0 around ω = −ω0, it does not observe in Four-
Frame PSA. This remarkable difference will be discussed in the following two chapters.

2.4 Figures of merit of PSA

One important advantage of using the FTF formalism is to obtain the figures of merit of a PSA.
Figures of merit are indicators to measure the reliability of PSAa against common error sources
such as additive random noise and distorting harmonics.

2.4.1 Signal-to-noise ratio gain

In order to analyze the robustness of PSAs, we must analyze their behavior against noise. Typi-
cally, it is assumed that the interferometric data is being distorted by a zero-mean Additive white
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Figure2.6:FTF magnitude of the Four‐Frame PSA (blue line), and the Schwider‐Hariharan PSA (red line).
Temporal phase shifting interferogram (black line).

Gaussian noise (AWGN) with flat power η0/2. Then, the signal-to-noise ratio (SNR) for the
demodulated signal is given by [43]

SNR =
(b21/4)
(η/2)

∣∣∣∣∣
N−1∑
n=0

cneinω0
∣∣∣∣∣
2/N−1∑

n=0

|cn|2
 . (2.21)

The term in squared brackets depends only of the PSA’s coefficients. It is called the SNR gain
of PSA:

GSNR =

∣∣∣∣∣
N−1∑
n=0

cneinω0
∣∣∣∣∣
2

N−1∑
n=0

|cn|2
, 0 < GSNR < N. (2.22)

The optimal gain (GSNR = N) corresponds to least-squares PSA proposed by Bruning et al
[1].

2.4.2 Harmonics rejection

Distortingharmonics appearwhen the interferometric fringes havenon-sinusoidal profiles. Then,
the interferometric data can be modeled as

In = a+
∞∑
k=1

bk cos[k(ϕ + θn)], (2.23)

here bk is the contrast function for the k-th harmonic (bk << b1), whereas all other terms have
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been previously defined in section 2.1. Then, in order to isolate the (b1/2) exp(iϕ) term, it re-
quires additional FTF conditions, which are given by

H(±kω0) =
N−1∑
n=0

cne±iknω0 = 0, k ∈ {2, 3, ...}. (2.24)

An important thing to mention is that by introducingH(±kω0) = 0, theGSNR improves.
Figure 2.7 illustrates the harmonics rejection capability of the Four-Frame PSA and Schwider-

Hariharan PSA. In both cases, within a normalized frequency range ω/ω0 = [−10, 10], these
PSAs fail to reject the distorting harmonics {−7,−3, 5, 9}. Rejected harmonics are represented
by blurred dashed arrows.

Figure2.7:Normalized‐frequency spectral plot, |H(ω)| versus ω/ω0, to assess the harmonic rejection
capability of the four‐frame PSA and Schwider‐Hariharan PSA. Rejected harmonics are represented by
blurred dashed arrows.

Table 2.1 resumes the figures of merit of the four-frame PSA and Schwider-Hariharan PSA.

Table2.1:Figures of merits for four‐frame PSA and Schwider‐Hariharan PSA.

PSA N ω0ω0ω0 Coefficient cn Harmonics∗ GSNR

four-frame 4 π/2 1
4{1,−i,−1, i} −7,−3, 5, 9 4

Schwider-Hariharan 5 π/2 1
8{1,−2i,−2, 2i, 1} −7,−3, 5, 9 4.57

∗ It refers to non-rejected distorting harmonics within the normalized frequency range ω/ω0 = [−10, 10].

Beside of the signal-to-noise ratio gain and the harmonics rejection, there is another very im-
portant figure of merit: robustness against detuning, it will be discussed in detail in the following
two chapters.

For the aforementioned, an accuracy phase measurement implies to use a suitable PSA, which
must be robust against noise, distorting harmonics and detuning. Consequently, the correct
choice of a PSAwill reduce the difference between a estimated phase ϕ̂ and the true phase ϕ. This
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can be better understood by the following relationship

b̂
2
eiϕ̂ =

b
2
eiϕ + ε . (2.25)

Here ’hat’ denotes estimated values; and ε is a complex number which groups magnitudes and
phase errors associated to detuning, distorting harmonics and noise. This relationship is de-
picted, as phase diagram, in Fig. 2.8. Here σϕ and σb/2 represent the standard deviation in the
measurement of ϕ and b/2, respectively.

Figure2.8:Phase diagram of the true analytic signal and the estimated analytic signal in phase demodula‐
tion.

2.5 Fromwavefront to surface

Once the phase is determined by using a PSA, the corresponding height distribution, W(x, y),
on the test surface can be easily deduced from Eq. (2.7) [46]. But, the measured phase include
two phases, φ(x, y) and u0x, so in order to calculate the searcher phase φ(x, y), the spatial carrier
u0xmust be removed. Thus, the corresponding height distribution across the interference field
is given by

W(x, y) =
λ
4π

φ̂(x, y). (2.26)

This relation is valid for a double-pass interferometer like a Michelson type interferometer [44].
For single-pass interferometers, the denominator is 2π instead of 4π.

14



3
Avoiding errors in phase measurement

In this chapter, we deduce explicit conditions to design PSAs in order to avoid errors in phase
measurement, the double-frequency ripple distortion and the spurious piston. We start giving
a briefly overview about the relationship between error sources in PSI and interferograms with
non-uniform phase shifts. Then, by modeling these non-uniform phase shifts as a polynomial
function of the unperturbed phase shift value ω0, we expose that errors in phase measurement
arise when non-uniform phase-shifting interferograms are processed with conventional PSAs, in
the sameway, wefigure out that the conditions for eliminating those errors are associatedwith the
m-th derivative of the PSA’s FTF. Finally, our mathematical analysis is supported by computer
simulations.

3.1 Error sources in PSI

The accuracy of most PSAs, e.g the well-known four-frames [2], relies critically on the precision
of the phase shifts, whichmust vary in knownmanner and constant. However, phase shifts based
on PZT have non linearity and poor repeatability. Moreover, an interferometer, e.g. theMichel-
son interferential microscope, and the specimen surface are exposed to atmospheric turbulence
and mechanical vibration, which also affect the phase shift accuracy. Next, we present a brief
discussion of these factors.
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Piezoelectric transducer (PZT). The most common way to vary the phase difference between
two beams in an interferometer is to apply a voltage to a PZT on which the specimen surface
is mounted. Unfortunately, PZT suffers two fundamental error when it operates in open-loop
control: non-linearity, where PZT displacement is not always a linear function of applied voltage
[4, 11–13], and hysteresis, which the PZT displacements during contraction and expansion are
different[4, 14]. In this dissertation, we will focus on the effect of PZT nonlinearity in phase
measurement.

Atmospheric turbulence. Air current, air temperature, atmospheric pressure, and air humidity
alter the refractive index on the optical path [15]. Thus, a length variation of the optical path
translates into phase shift error.

Vibration. In practice, if the exposure time to record interferograms is too long and the vibra-
tion amplitude is larger than half a wavelength, then the fringes visibility will be destroyed. On
the other hand, when the exposure time ismuch less than the vibration period, vibrations of even
a small amplitude will introduce errors in the measured phase [16–21].

Figure3.1:Uniform (blue line) and non‐uniform (red line) phase‐shift distributions. (a) Absolute phase
shifts and (b) phase shift differences between two consecutive interferograms.

Taking into account the aforementioned error sources, the actual phase shift is composed by
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a nominal value ω0 and a unknown additional term. So, the mathematical representation for a
phase-shifting interferogram, given by Eq. (2.9), should be rewritten as

In = a+ b cos[ϕ + ω0n+ Δn], (3.1)

where Δn represent the phase shift error which has a different value in each phase shift. In this
case Δn is a band-limited component.

Now, let us define the phase shift function for practical measurement processes

θn = ω0 + Δn. (3.2)

Here θn is given in radians and it is known as non-uniform phase shift. This equation means that
each amount in phase-shifts corresponds to θn instead of ω0n; in other words, interferometric
data has a different phase step than the expected value. Therefore, Eq. (3.1) can be rewritten as

In = a+ b cos[ϕ + θn], (3.3)

Figure 3.1 gives a overview of phase shift distributions. The absolute phase shifts respect to
the first interferogram are shown in Fig. 3.1(a), whereas Fig. 3.1(b) shows the phase shift differ-
ences between consecutive interferograms. Uniform phase shift and non-uniform phase shifts
are drawn in blue line and red line, respectively.

3.2 Mathematical analysis

Non-uniform phase shift distribution, given by Eq. (3.2), can be expanded as a polynomial func-
tion of the unperturbed phase shift value ω0 [9, 10], so that

θn = ω0n+ κ 1n+ κ 2n2 + O(n3), (3.4)

here κ 1 and κ 2 represent the linear and quadratic nonlinearity coefficients of the PZT motion,
respectively [11, 24]. These coefficients are small and unknown parameters that can change for
each realization. This approach is based on the assumption that the PZT nonlinearity is so small
that a quadratic function is sufficient to describe the PZTdisplacement [11]. Therefore, all terms
of order 3 and higher are negligible.

Substituting Eq. (3.4) into Eq. (2.17), we have

b̂
2
eiϕ̂ = a

N−1∑
n=0

cn +
b
2
eiϕ

N−1∑
n=0

cneiθn +
b
2
e−iϕ

N−1∑
n=0

cne−iθn . (3.5)

17



Now, taking account the first conditions given by Eq. (2.13),H(0) = 0, we have

a
N−1∑
n=0

cn = 0. (3.6)

Then, Eq. (3.5) is rewritten as

b̂
2
eiϕ̂ =

b
2
eiϕS1

(
1+

S2
S1
e−2iϕ

)
, (3.7)

where

S1 =
N−1∑
n=0

cneiθn , S2 =
N−1∑
n=0

cne−iθn . (3.8)

Two main conditions are recognized from Eq. (3.7). First, S1 = 1 in order to eliminate the
spurious piston in the estimated phase, and second, S2 = 0 in order to suppress the double-
frequency ripple distortions in the estimated phase.

By using the Maclaurin series [47], it is possible to achieve the first-order approximations of
the following expression: exp i(κ 1n+ κ 2n2), so that

ei(κ 1n+κ 2n2) ≈ 1+ κ 1n+ κ 2n2. (3.9)

Then, substituting Eq. (3.9) into Eq. (3.8), we have

S1 ≈
N−1∑
n=0

cneinω0 + κ 1

N−1∑
n=0

(in)cneinω0 − iκ 2

N−1∑
n=0

(in)2cneinω0 = 1, (3.10)

S2 ≈
N−1∑
n=0

cne−inω0 − κ 1

N−1∑
n=0

(in)cne−inω0 + κ 2

N−1∑
n=0

(in)2cne−inω0 = 0. (3.11)

Now, let us consider them-th derivative ofH(ω), which is given by

H(m)(ω) =
N−1∑
n=0

(in)mcneinω0 . (3.12)

Thus, Eqs. (3.10) and (3.11) can be rewritten as

S1 = H(ω0) + κ 1H′(ω0)− iκ 2H′′(ω0), (3.13)

S2 = H(−ω0)− κ 1H′(−ω0) + iκ 2H′′(−ω0). (3.14)

Therefore, besides the quadrature conditions given in Eq. (2.13), it is necessary to add the
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following conditions

H′(ω)
∣∣∣∣
ω=−ω0

= 0 H′′(ω)
∣∣∣∣
ω=−ω0

= 0 (3.15)

in order to suppress the double-frequency ripple distortions, and the following condition

H′(ω)
∣∣∣∣
ω=ω0

= 0 H′′(ω)
∣∣∣∣
ω=ω0

= 0 (3.16)

in order to eliminate the spurious piston. All of these in order to overcome errors derived from
the non-uniform phase shifts.

3.3 Enhanced four-frame PSA

FTF conditions established in Eqs. (2.13), (3.15) and (3.16) can be translated into a linear system
AAAxxx = bbb,whereAAA is anN-by-N squaredmatrix, whereasxxx andbbb are columnvectors of sizeN-by-1.

[bbb]n = δn,1, xxx = AAA−1 bbb, cn = [xxx]n (3.17)

where δm,n is the Kronecker delta and the coefficient cn are given by the elements of the column
vector xxx.

3.3.1 four-frame PSA

Firstly, let us consider the well-known four-frame PSA [2]. This PSA can be described by the
following four conditions:

H(ω0) = 1, H(0) = 0, H(−ω0) = 0, (3.18)

H(2ω0) = 0.

Note that, the first line of Eq. (3.18) are the quadrature conditions given byEq. (2.13), and the
second line,H(2ω0) = 0, correspond to the condition to reject the second distorting harmonics
(see subsection 2.4.2). Then, these four conditions are translated into

[AAA]0,n = einω0 , [AAA]1,n = 1, [AAA]2,n = e−inω0 , (3.19)

[AAA]3,n = e2inω0 .
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For a phase shift of ω0 = π/2, the explicit linear system is given by

1 i −1 −i

1 1 1 1

1 −i −1 i

1 −1 1 −1





c0

c1

c2

c3


=



1

0

0

0


. (3.20)

This linear system canbe easily solved using a program computer (e.g. WolframMathematica).
Thus, we obtain cn = (1/4){1,−i,−1, i}. The analytic signal constructed from this coefficients
is

b̂
2
eiϕ̂ff = I0 − iI1 − I2 + iI3.

This equation has been previously stated in Eq. (2.19), and it is rewritten for readers conve-
nience. The term (1/4) in cn is a global factor which do not affect the measured phase value.
Magnitude and phase of the FTF of this PSA are depicted in Fig. 3.2(a).

3.3.2 six-frame PSA

Secondly, let us add to the conditions given by the Eq. (3.18), the conditions given by the Eq.
(3.15). So, we have

[AAA]0,n = einω0 , [AAA]1,n = 1, [AAA]2,n = e−inω0 , (3.21)

[AAA]3,n = e2inω0 , [AAA]4,n = (in)e−inω0 , [AAA]5,n = (in)2e−inω0 .

From Eq. (3.21) and for a phase shift of ω0 = π/2, the explicit linear system is given by

1 i −1 −i 1 i

1 1 1 1 1 1

1 −i −1 i 1 −i

1 −1 1 −1 1 −1

0 1 −2i −3 4i 5

0 i 4 −9i −16 25





c0

c1

c2

c3

c4

c5


=



1

0

0

0

0

0


. (3.22)
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Solving this linear system, we obtain cn = (1/16){1,−3i,−4,−4i, 3,−i}. Then, its analytic
signal is given by

b̂
2
eiϕ̂sf = I0 − 3iI1 − 4I2 − 4iI3 + 3I4 − iI5. (3.23)

This PSA was reported, but in a different way, by Schmit and Creath [5].
Magnitude and phase of the FTF of six-frame PSA are depicted in Fig. 3.2(b). Note that

|H(ω)| ≈ 0 around ω = −ω0, it is highlighted in the stripped area. This is the main condition
to suppress the double-frequency ripple distortions [43], phase error due to linear detuning (κ 1n)
and quadratic detuning (κ 2n2).

3.3.3 eight-frame PSA

Lastly, let us join the conditions given by Eq. (3.18), (3.15), and (3.16), so that

[AAA]0,n = einω0 , [AAA]1,n = 1, [AAA]2,n = e−inω0 ,

[AAA]3,n = e2inω0 , [AAA]4,n = (in)e−inω0 , [AAA]5,n = (in)2e−inω0 , (3.24)

[AAA]6,n = (in)einω0 , [AAA]7,n = (in)2einω0 .

In other words, for a phase shift of ω = π/2:

1 i −1 −i 1 i −1 −i

1 1 1 1 1 1 1 1

1 −i −1 i 1 −i −1 i

1 −1 1 −1 1 −1 1 −1

0 1 −2i −3 4i 5 6i −7

0 i 4 −9i −16 25i 36 −49i

0 −1 −2i 3 4i −5 −6i 7

0 −i 4 9i −16 −25i 36 49i





c0

c1

c2

c3

c4

c5

c6

c7



=



1

0

0

0

0

0

0

0



. (3.25)

Solving this linear system, we have cn = (1/32){14,−23i,−6, i,−6, 15i,−2, 7i}. Then, its
analytic signal is given by

b̂
2
eiϕ̂ef = 14I0 − 23iI1 − 6I2 + iI3 − 6I4 + 15iI5 − 2I6 + 7iI7. (3.26)
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The eight-frame PSA is a novel contributionwhichwas reported by us in [48]. Magnitude and
phase of the FTF of this PSA are depicted in Fig. 3.2(c). In this case, besides of |H(ω)| ≈ 0 in
the vicinity of ω = −ω0, now the phase of the FTF is zero around ω = ω0, they are highlighted
in the stripped area. These two outstanding features are the condition to suppress the double-
frequency ripple distortions and to eliminate the spurious piston in phase measurement.

Figure 3.2 illustrate the evolutionof the four‐framePSA inorder to suppress thedouble‐frequency
ripple distortion (six-frame PSA) and, then, to eliminate the spurious piston (eight-frame PSA).

Figure3.2:Magnitude (red line) and phase (blue line) of the FTF of (a) four‐frame PSA, (b) six‐frame PSA,
and (c) eight‐frame PSA.

Roots of the characteristic polynomials of the four-framePSA, six-framePSA, and eight-frame
PSA are shown in Fig. 3.3(a), 3.3(b) and 3.3(c), respectively. Multiple roots are denoted by a blue
dot surrounded by circles (See appendix A). Four-frame PSA has single roots at z = {1,−1,−i}.
Whereas, regarding to four-framePSA, six-framePSAhas two additional roots at z = −ibecause
of that this PSA is insensitivity against phase shift terms associated to linear detuning (κ 1n) and
quadratic detuning (κ 2n2). On the other hand, regarding to six-frame PSA, eight-frame PSAhas
two exceptional roots at z = {−0.3977 + 1.3571i, 0.3977 + 1.3571i}. Due to this roots along
the complex unitary circle, this PSA is capable to eliminate the spurious piston.

Table 3.1 resumes the main features of the three studied PSAs. It indicates number of frames
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Figure3.3:Roots position of (a) four‐frame PSA, (b) six‐frame PSA, and (c) eight‐frame PSA.

(N), phase shift value (ω0), PSA coefficients (cn), harmonics rejection capabilities, and signal-to-
noise ratio gain (GSNR).

Table3.1:Figures of merits for four‐frame PSA, six‐frame PSA, and eight‐frame PSA.

PSA N ω0ω0ω0 Coefficient cn Harmonics∗ GSNR

four-frame 4 π/2 1
4{1,−i,−1, i} −7,−3, 5, 9 4

six-frame 6 π/2 1
16{1,−3i,−4, 4i, 3,−i} −7,−3, 5, 9 4.92

eight-frame 8 π/2 1
32{14,−23i,−6, i,−6, 15i,−2, 7i} −7,−3, 5, 9 0.95

∗ It refers to non-rejected distorting harmonics within the normalized frequency range ω/ω0 = [−10, 10].

3.4 Simulation results

Numerical simulations are performed in order to validate the previous mathematical analysis.
Thus, an interferogram set composed by eight fringe patterns (N = 8) was generated, each inter-
ferogram has a size of 512× 512 pixels. Background illumination and local contrast function are
constants, whereas the phase map φ(x, y) is given by

φ(x, y) = 10πe
−
(

x2+y2

105

)
. (3.27)

On the other hand, phase shifts are ruled by Eq. (3.4), where ω0 = π/2, κ 1 = −0.25, and
κ 2 = 0.0383. These values describe the non-uniform phase shift distribution shown in Fig.
3.1(a). In this case, the maximum deviation from the nominal phase shift is 0.2479 rad (≈ 14◦),
it can be seen from Fig. 3.1(b).

Two types of simulations are carried out. First, phases are computed from noiseless interfero-
grams, and second, phases are computed from interferograms corrupted by AWGNwith σ = 3.
Figure 3.4 shows simulated noiseless interferograms and Figure 3.5 shows computed phases by
using four-frame PSA, six-frame PSA, and eight-frame PSA.
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Figure3.4:Eight simulated interferograms used as input data for phase demodulation.

Figure3.5:Phase map measured by using (a) four‐frame PSA, (b) six‐frame PSA, and (c) eight‐frame PSA.

In order to compare the performance of the three referred PSAs, we use the height error pa-
rameter. But before, let us define the 1-D phase error parameter

φerror(x) = φ(x)− φ̂(x). (3.28)

Here φ(x) is the nominal phase value governed by Eq. (3.27), and φ̂(x) is the estimated phase.
Phase error and height error are proportional, as stated in Eq. (2.26).

Height profile errors computed from noiseless interferograms are shown in Fig. 3.6(a). From
this graphic, three main features are distinguished: 1) height error computed from four-frame
PSA exhibit a double-frequency ripple distortion and a spurious piston. 2) height error com-
puted from six-frame PSA do not exhibit a double-frequency ripple distortion but it present a
spurious piston equal to 16.7077 nm. 3) height error computed from eight-frame PSA is error
free. These results prove us right. Similar behavior is observed in Fig. 3.6(b), but in this case,
height errors are corrupted by noise.

Table 3.2 details the root-mean-square (rms) and the peak-to-valley (p-v) errors, these parame-
ters were computed from height profile errors, shown in Fig. 3.6. Note that in both cases, noise-
less and noisy interferograms, the p-v error and the rms error corresponding to four-frame PSA
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Figure3.6:Phase errors computed from (a) noiseless interferograms and (b) interferograms corrupted by
AWGN with σ = 3.

and six-frame PSA, respectively, are not negligible. Thus, in real measurement (considering a
wavelength of 660 nm ), these errors can be misinterpreted as real physical quantities, in one case
as a surface with sinusoidal variation, and in other case as additional thickness of≈ 16 nm.

3.5 Discussions

We use the four-frame PSA to illustrate that this algorithm can neither suppress the double-
frequency ripple distortion nor eliminate the spurious piston. But, if we add to it conditions
given by Eq. (3.15), this modified PSA is capable to suppress the double-frequency ripple dis-
tortion, after that, if we add again those condition given by Eq. (3.16), this new PSA is capable
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Table3.2:Computed root‐mean‐square (rms) errors and peak‐to‐valley (p-v) errors by the four‐frame PSA,
six‐frame, and eight‐frame PSA.

Noiseless interferograms Noisy interferograms

PSA rms (nm) p-v (nm) rms (nm) p-v (nm)

four-frame 16.7077 7.1329 16.7463 11.5200

six-frame 16.7612 0.1780 16.7665 5.1581

eight-frame 0.1040 0.1968 1.2681 8.3274

to remove both the double-frequency ripple distortion and the spurious piston. In each process,
two frames are added to the analytic signal in order to measure the phase.

Process to modify the four-frame PSA, in order to avoid errors in phase measurement, are
labeled as evolution of the four-frame PSA, this is illustrated in Fig. 3.2. Here, on the left side,
|H(ω)| goes from being 0 at ω = −ω0 in Fig. 3.2(a) to being 0 around ω = −ω0 in Fig. 3.2(c),
whereas on the right side, FTFphase goes frombeing 0 at ω = ω0 in Fig. 3.2(a) to being 0 around
ω = ω0 in Fig. 3.2(c), all of it is remarked in the stripped area.
In a similarway, as itwasproceeded for the four-framePSA,most conventional error-correcting

PSAs canbemodified in order to avoid errors in phasemeasurement, some exampleswas reported
by us in Ref. [48].
Moreover, readers should note that it is straightforward to generalize this procedure for high-

order of non-linearity, e.g. κ 3n3 in Eq. (3.4). In this case, we would need to use the following
conditions

H′′′(ω)
∣∣∣∣
ω=−ω0

= 0 and H′′′(ω)
∣∣∣∣
ω=ω0

= 0. (3.29)

Nonetheless, this is not a good idea because the sensitivity to randomnoise increases significantly
with each additional spectral condition.
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4
Surface topography of aluminum thin film

In this chapter, we describe a specific procedure to measure the phase from a set of non-uniform
phase-shifting interferograms, these interferograms are acquired from a Michelson interferen-
tial microscope and they are used to estimate the surface topography of an aluminum thin film.
This procedure starts measuring the phase shift between interferograms by using the Fourier
method. Then, the phase shifts, specifically phase shift errors, are used to define the modified
phase-shifting interferogram. This modified data is used to design a suitable PSA in order to sup-
press the double-frequency ripple distortion, to do this we use the FTF conditions established in
previous chapter. In this specific application, the spurious piston error is irrelevant because there
is a reference surface to measure the height distribution. Lastly, we present a 3-Dmap of the alu-
minum thin film surface, which is compared with other methods like Fourier method, principal
component analysis, and least-square PSA.

4.1 Groundwork

Nine experimental interferograms (N = 9) acquired from the Michelson interferential micro-
scope are shown in Fig. 4.1, each interferogram has a size of 1024 × 1280 pixels. Phase shifts
among these interferograms are non-uniform because a PZT operating in open-loop is used as
phase shifter. Consequently, actual phase shift is composed by a nominal value ω0n and a phase
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shift error Δn, and phase shifts are governed by Eq. (3.1), as it was stated in previous Chapter.
Bymeans of previousmeasurements, we figure out that a voltage step equal to 1.8 V produced

phase shifts around ω0 = π/2 [49]. So, phase shifts are generated by applying this voltage step
over the PZT. Keep in mind that an aluminum thin film, the specimen surface, is coupled to the
PZT (see Fig. 2.2).

Specimen surface is composed by a aluminum layer deposited over a silicon substrate. Height
distributionof the thinfilm ismeasuredusing the substrate surface as reference, consequently, the
spurious piston is no relevant in this specific application. Thin film surface can be distinguished
from Fig. 4.1 as the brightest area, the rest is the substrate surface.

Figure4.1:Nine (N = 9) phase shifting interferogram acquire from Michelson interferential microscope.
Information of the aluminum thin film is encoded into the interferometric fringes.

In this chapter, in some cases, the spatial dependency (x, y) is considered because a spatial
method will be used to measure the phase shift distribution. All these mentioned ideas will help
to understand the following sections.

4.2 Phase shifts measurement

In order to measure the phase shift among the interferograms, we employ the Fourier transform
method [50, 51]. Thus, let us start by taking the spatial Fourier transform of the non-uniform
phase shifting interferogram In(x, y), so that

In(u, v) = A(u, v) + eiθnC(u− u0, v) + e−iθnC(u+ u0, v). (4.1)

Where

A(u, v) = F{a(x, y)} and C(u, v) = F
{
1
2
b(x, y)ei[ϕ(x,y)+θn]

}
.
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Equation (4.1) is computed under the assumption that the spatial variation of a(x, y), b(x, y),
and ϕ(x, y) are slow comparedwith the spatial carrier u0. This Fourier spectrum is split into three
lobes, two lateral lobes located at u = {−u0, u0} and the main lobe located at u = 0. Here, it
is crucial that the main-lobe and the lateral-lobes do not overlap, it implies to use interferograms
with high fringe density, as shown in Fig. 4.1. Fringe density can be easily increased by tilting the
reference mirror in Fig. 2.1, in other words, by increasing the value of α.

Figure4.2:Uniform (blue line) and non‐uniform (red line) phase‐shift distributions. (a) Sequential phase
shifts and (b) phase‐shift differences among consecutive interferograms.

Then, we use a band pass filter centered at u = u0 in order to isolate one side-lobe of the
spectrum [43, 50, 52]. After that, the inverse Fourier transform is applied and it results in

zn(x, y) =
1
2
b(x, y)ei[ϕ(x,y)+θn]. (4.2)

This procedure is repeated for each interferogram. Thus, the sequential phase shift can be
estimated as

θn − θ0 = mode{arg[zn(x, y)z∗0(x, y)]}. (4.3)
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Here θ0 = 0, it is the initial condition, andmode is the statistics parameters which gives the value
that appears most often over the whole matrix (x, y).
Figure 4.2(a) shows in red the measured phase shifts by using Eq. (4.3), note that these phase

shifts are measured with respect to the first interferogram. In the same way, it is possible measur-
ing the phase difference between two consecutive interferograms by doing θn+1 − θn, this result
is shown in Fig. 4.2(b). In both cases, the ideal phase shift is drawn in blue, in one case, there is a
linear dependency between image number and the phase shift, and in other case, the phase shift
differences are constant.

In this dissertation, we consider the Fourier method to estimate the phase shifts because it
is robust, it use a whole matrix to estimate a single value. However, there are other methods
to determine the phase shifts, such as the sine-fitting method [53], the cross-correlation method
[54], and the Lissajous elliptic fitting algorithm [55]. On the other hand, in the absence of spatial
carrier (u0), we can use the Fourier–Hilbert transform proposed by Larkin [56].

Readers should note that this procedure was made considering a single spatial carrier in the x
direction. Nonetheless, this procedure can be expanded for spatial carriers with non-zero com-
ponent in the y direction.

4.3 Modified phase shifting interferogram

Let us define the modified phase-shifting interferogram, which is given by the following expres-
sion

Jn = Ine−iΔn . (4.4)

Here, Δn is the phase shift error, studied in section 3.1. This parameter can be easily estimated
by using Eq. (3.2), keep in mind that the phase shift distribution θn has been already determined
in previous section, and that the nominal value of the phase shift is ω0 = π/2.
Now, rewritten In and Jn using the Euler’s formula, we have

In = a+
b
2
ei[ϕ+ω0n+Δn] +

b
2
e−i[ϕ+ω0n+Δn], (4.5)

Jn = ae−iΔn +
b
2
ei[ϕ+ω0n] +

b
2
e−i[ϕ+ω0n+2Δn]. (4.6)

Then, computing the discrete Fourier transform of Eqs. (4.5) and (4.6), we have

I(ω) = aδ(ω) +
b
2
eiϕD(ω − ω0) +

b
2
e−iϕD∗(ω + ω0), (4.7)
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J(ω) = aD(ω) +
b
2
eiφδ(ω − ω0) +

b
4
e−iφD∗

(
ω + ω0

2

)
, (4.8)

whereD(ω) = F{exp [iΔ(t)]}.
Figure 4.3(a) shows schematically the spectrum of non-uniform phase-shifting interferograms

I(ω), here, note that there are lobes located at ω = {−ω0, ω0} instead of Dirac delta functions,
which is usual in interferograms with uniform phase shift (see Fig. 2.5).
On the other hand, Fig. 4.3(b) shows the spectrum of the modified phase-shifting interfero-

gram. Here, there is a Dirac delta function at ω = ω0, and the bandwidth of the lobe located at
ω = −ω0 is increased. At this stage, all of it is our main goal in order to design a suitable PSA.

Figure4.3:Spectrum of (a) non‐uniform and (b) modified phase shifting interferogram.

4.4 A custom-made nine-frame PSA

Now, taking account the spectrum of the modified phase shifting interferogram J(ω), given by
Eq. (4.8) and depicted in Fig. 4.3, and in order to measure the searched phase, we propose a PSA
with the following condition: first, a third-order zero at ω = −ω0, so that

H′(ω)
∣∣∣∣
ω=−π/2

= 0, H′′(ω)
∣∣∣∣
ω=−π/2

= 0, H′′′(ω)
∣∣∣∣
ω=−π/2

= 0, (4.9)

and second, one additional zero at ω = {0, π} is added, so that

H′(ω)
∣∣∣∣
ω=0

= 0, H′(ω)
∣∣∣∣
ω=π

= 0. (4.10)

Conditions stated by Eqs. (4.9), and (4.10) are additional to those given by Eq. (3.18). These
last conditions are useful to flatten |H(ω)| at ω = {−π,−π/2, 0}. All of it in order to obtain
high-quality phase estimation.

Then, conditions given in Eqs. (3.18), (4.9), and (4.10) are translated into
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[AAA]0,n = einω0 , [AAA]1,n = 1, [AAA]2,n = in,

[AAA]3,n = e−inω0 , [AAA]4,n = (in)e−inω0 , [AAA]5,n = (−n2)e−inω0 , (4.11)

[AAA]6,n = (−in3)e−inω0 , [AAA]7,n = e2inω0 , [AAA]8,n = (in)e2inω0 .

Then, proceeding in the sameway, as in section3.3,weobtain cn = (1/64){1,−4i,−8, 12i, 14,
−12i,−8, 4i, 1}. And, its analytic signal is given by

b̂
2
eiϕ̂nf = I0 − 4iI1 − 8I2 + 12iI3 + 14I4 − 12iI5 − 8I6 + 4iI7 + I8. (4.12)

The spectrum of the modified non-uniform phase-shifting interferogram J(ω) superposed by
the FTFmagnitude of nine-frame PSA are depicted in Fig. 4.4(a), here, note that |H(ω)| has the
precise conditions to remove those lobes located at ω = {−ω0, 0}.

Figure4.4:(a) Spectrum of the modified non‐uniform phase‐shifting interferogram (black line) superposed
by the FTF magnitude of nine‐frame PSA (blue line). (b) Root positions of its corresponding characteristic
polynomial.

Figure 4.4(b) shows the root position of nine-frame PSA, whichwas calculated using the char-
acteristic polynomial of PSA (see appendixA), this PSAhas double roots at z = {1,−1} and four
roots at z = −i.

Figures of merit of this nine-frame PSA like signal-to-noise ratio gain GSNR and harmonic re-
jection are resumed in Table 4.1.

4.5 Experimental results

In this section, surface topography of the aluminum thin film is computed. First of all, the
searched phase is estimated by using the custom-made nine-frame PSA. In the same way and
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Table4.1:Figures of merits for the proposed nine‐frame PSA.

PSA N ω0ω0ω0 Coefficient cn Harmonics∗ GSNR

nine-frame 9 π/2 1
64{1,−4i,−8, 12i, 14,−12i,−8, 4i, 1} −7,−3, 5, 9 6.34

∗ It refers to non-rejected distorting harmonics within the normalized frequency range ω/ω0 = [−10, 10].

in order to compare the obtained result by using the proposed PSA, we used other threemethods
for phase measurement like the Fourier Method [50], eight-step frequency-shifted LS-PSA [57],
and PCAmethod [27–30].

Computed phases are defined within [−π, π], as it was mentioned in Chapter 2. So, a phase
unwrapping algorithm is used in order to pass the searched phase ϕ(x, y)modulo 2π to a contin-
uous map (see Appendix B).

Figure4.5:Height map using (a) Fourier method, (b) eight‐step frequency‐shifted LS‐PSA, (c) PCA method,
and (d) proposed algorithm.

Topographic surfaces of an aluminum thin film by using four different methods are shown
in Fig. 4.5. 3-D Surfaces shows the aluminum layer deposited over the silicon substrate, these
surfaces permits us to analyze the roughness parameters, thickness, and singularities of the test
surface.

In order to illustrate the good performance of the proposed nine-frame PSA, vertical slices of
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the height variations are shown in Fig. 4.6. From this figure, specifically the zoomed-in detail
area, we distinguish three different results:

First, profile corresponding to Fourier method (red line) is over smoothed, and it is not useful
for roughness inspection. This method was used to make visible the main advantage of a PSA
over a spatial method in phase demodulation.

Second, profiles corresponding to eight-step LS-PSA (black line) and the PCA method (blue
line) exhibit the studied double-frequency ripple distortion, this common error generated by
non-uniform phase shift can be misinterpreted as surface shape. Thus, in this specific applica-
tion, these methods are not useful.

Third, in contrast to other methods, the result obtained by the proposed nine-frame PSA
(green line) is free of ripples distortions. This means that the proposed nine-frame PSA has an
excellent error-correcting ability for the double-frequency ripple distortion error. So, a good es-
timation of the surface topography of an aluminum thin film is obtained.

Figure4.6:Vertical slices of the estimated surfaces using Fourier method (red line), eight‐step frequency‐
shifted LS‐PSA (black line), PCA method (blue line), and proposed algorithm (green line).
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5
Surfaces with vertical super-resolution

First of all, we would like to point out that when we say vertical super-resolution, we are talking
about vertical sensitivity, and it refers to resolve with more details the height variation over the
specimen surface by using a synthetic ultraviolet wavelength.

In this chapter, surfaces topography of aluminum thin film with vertical super-resolution are
estimated. For this purpose,weusephase shifting interferometrywithmultiplewavelength. Mul-
tiple wavelength in PSI has been widely used for pixel-wise unwrapping via phase differences.
Here, we propose to perform phase sums to increase the vertical sensitivity. Thus, several sets of
non-uniformphase shifting interferogramswere recorded at twodifferentwavelengths, λ1 = 660
nm and λ2 = 530 nm. Then, estimated phases from each set of interferograms are summed in
order to obtain a phase with ultraviolet sensitivity, this phase-sum translated into surfaces to-
pography can be interpreted as if the specimen surface was measured using a light source with
ultraviolet wavelength. Finally, we discuss some factors which also alter the super-resolution in
PSI.

5.1 Multiple wavelength in PSI

The phase measurement procedure in PSI using a single-wavelength can be expanded to two-
wavelength [12, 58–61]. Thus, two phase measurements are performed at two different wave-
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lengths (λ1 and λ2). Then, we have two analytic signals

b̂1
2
eiϕ̂1 =

N−1∑
n=0

cn{In}λ1 , (5.1)

b̂2
2
eiϕ̂2 =

N−1∑
n=0

cn{In}λ2 . (5.2)

Here, ϕ̂k and {In}λk represent the estimated phase and a set of phase shifting interferograms,
respectively, using λk, where k = 1, 2.
By multiplying Eq. (5.1) by the complex conjugate of Eq. (5.2), we have

b̂1
2
eiϕ̂1

[
b̂2
2
eiϕ̂2

]∗

=
b̂1b̂2
4

ei(ϕ̂1−ϕ̂2). (5.3)

Then, computing the argument of the right side of Eq. (5.3) and using the relationship be-
tween phase and height, given by Eq. (2.26). We have

ϕ̂1 − ϕ̂2 =
4π
λ1

W− 4π
λ2

W

ϕ̂D =
4π
λD

W, (5.4)

where

λD =
λ1λ2

|λ1 − λ2|
, (5.5)

and it represents the equivalent wavelength for phase-difference [58]. Note that λD ≫ {λ1, λ2}.
So, if λ1 and λ2 are in the visible region, λD is in the infrared region of the electromagnetic spec-
trum.

The result given by Eq. (5.4) is an estimated phase-difference ϕ̂D as if the surfaceWwas tested
using an infrared wavelength λD. Thus, by using two estimated phases at two different wave-
lengths, we are able to extend the dynamic range of the measurement [12]. Moreover, due to
λD ≫ {λ1, λ2}, the computed phase is not wrapped.
On the other hand, by multiplying Eq. (5.1) by Eq. (5.2), we have

b̂1
2
eiϕ̂1

b̂2
2
eiϕ̂2 =

b̂1b̂2
4

ei(ϕ̂1+ϕ̂2). (5.6)

Then, by computing the argument of the right side of Eq. (5.6), we have
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ϕ̂1 + ϕ̂2 =
4π
λ1

W+
4π
λ2

W

ϕ̂S =
4π
λS

W, (5.7)

where

λS =
λ1λ2

λ1 + λ2
. (5.8)

In this case λS ≪ {λ1, λ2}. Consequently, if λ1 and λ2 are in the visible region, λS is in the ultra-
violet region of the electromagnetic spectrum. Thus, the estimated phase-sum ϕ̂S has ultraviolet
phase sensitivity and it is highly wrapped . This is known as super-resolution PSI, which is de-
fined as if the estimated phase ϕ̂S was measured using a light source with ultraviolet wavelength
[62, 63].
Readers should notice that phase-sum procedure, given by Eq. (5.7), can be expanded to the

sum of three orMmeasured phases. Considering that these phase measurements are performed
at unique wavelength λ1, we have

ϕ̂1 + ϕ̂2 + · · ·+ ϕ̂M =
4π
λ1

W+
4π
λ1

W+ · · ·+ 4π
λ1

W

ϕ̂SM =
4π
λSM

W, (5.9)

where

λSM =
λ1
M

. (5.10)

Here, ϕ̂SM has far-ultraviolet sensitivity. Therefore, the sensitivity of the phase-sum can be ex-
tended from ultraviolet to far-ultraviolet by increasing the numberM of demodulated phases.

5.2 Groundwork

Three sets of nine (N = 9) non-uniform phase shifting interferograms at λ1 = 660 nm, over
the same specimen surface but at different measurements, were acquired from the Michelson
interferential microscope. Each interferograms have a size of 1024 × 1280 pixels. In all sets of
interferograms, the phase shifts among interferograms are governed by Eq. (3.4). Taking account
that the spurious piston is not relevant in this specific application, we use the nine-frame PSA to
demodulate the optics phase.
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In this dissertation work, we use phase-sum ϕ̂S rather than phase-difference ϕ̂D because, as we
stated in previous section, the phase-sum of three demodulated phase has far-ultraviolet sensitiv-
ity. Thus, by using a phase-sum ϕ̂S we obtain surfaces topography of an aluminum thin filmwith
vertical super-resolution.

In similar way, a second measurement was carried out, in this case, two sets of nine (N = 9)
non-uniform phase-shifting interferograms at λ1 = 660 nm and λ2 = 530 nm were acquired
from theMichelson interferential microscope.

In all procedures to acquire interferograms,we set a tilt between the object and reference beams
inside the interferometer, and it is the same for each measurement.

5.3 Experimental results

Having three set of non-uniform phase-shifting interferograms measured at single wavelength
λ1 = 660 nm, we computed three phases ϕ̂1, ϕ̂2, and ϕ̂3 using the nine-frame PSA, one for each
set of interferograms.

Estimated phase ϕ̂1 is shown in Fig. 5.1(a). Whereas phase-sum ϕ̂S2 = ϕ̂1 + ϕ̂2 and ϕ̂S3 =

ϕ̂1 + ϕ̂2 + ϕ̂3 are shown in Fig. 5.1(b) and Fig. 5.1(c), respectively. Here, ϕ̂S2 and ϕ̂S3 represent
measured phases using synthetics wavelength of λS2 = λ1/2 = 330 nm and λS3 = λ1/3 = 220
nm. The purpose to show the three phases (ϕ̂1, ϕ̂S2, and ϕ̂S3) in the same figure is to illustrate that
the phase wrapping is greater while more phases are summed.

Figure5.1:(a) Phase map measured at wavelength of λ1 = 660 nm. Phase map measured at synthetic
equivalent wavelength of (b) λS2 = 330 nm, and (c) λS3 = 220 nm.

In order to obtain a surface topography of an aluminum thin film with super-resolution, we
use the phase-sum ϕ̂S3. This result is shown in Fig. 5.2.

On the other hand, two new phases, ϕ̂4 and ϕ̂5, computed from two sets of interferograms at
λ1 = 660 nm and λ2 = 530 nm are shown in Fig. 5.3(a) and Fig. 5.3(b), respectively. Whereas
the phase-sum ˆϕS12 = ϕ̂4+ ϕ̂5 is shown in 5.3(c). In these phasemeasurements, the spatial carrier
u0 was removed in order to illustrate the phase wrapping. Note that due to the maximum OPD
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Figure5.2:Surface topography of aluminum thin film using phase‐sum at equivalent wavelength λeqS =
220 nm.

is less than λ1/2, the phase ϕ̂4 is not wrapped. On the contrary, phases ϕ̂5 and ϕ̂S12 are wrapped,
because in these cases the maximumOPD is greater than λ2/2 and λeqS12/2.

Figure5.3:Phase map measured at wavelength of (a) λ1 = 660 nm and (b) λ2 = 530 nm. Phase
measured at synthetic equivalent wavelength of λS12 = 293.95 nm.

Surface topography of an aluminum thin film using interferograms at synthetic equivalenth
wavelength of λeqS12 = 293.95 nm is shown in Fig. 5.4, λeqS12 was computed using Eq. (5.8).

5.4 Discussion

Here,we showed a surface topographyof aluminumthinfilmwith super-resolution (see Fig. 5.2),
this surfacewas estimated using the phase-sumof three demodulated phases. Taking account that
demodulated phases correspond to three different sets of non-uniform phase-shifting interfero-
grams at λ1 = 660 nm, the sensitivity of phase-sum is of course beyond the phase information
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Figure5.4:Surface topography of aluminum thin film using phase‐sum at equivalent wavelength λeqS =
293.95 nm.

capacity of a single visible wavelength interferogram. Thus, ϕ̂S2 simulates a phase information
obtained from interferograms at ultraviolet equivalent-wavelength of λS3 = 220 nm. There-
fore, ϕ̂S2 is three times more sensitive than ϕ̂1, and it results in estimated surfaces with vertical
super-resolution.

This ultraviolet equivalent-wavelengthPSI canbe extended to evenhigher vertical super-resolution
interferometric measurements. That is to say, we can sum the demodulated phase ofM visible-
wavelength sets of interferograms, even using two or more different wavelengths, as we showed
in Fig. 5.4. In all cases, the synthetic wavelength is always smaller than the used wavelengths to
generate the interferograms.
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6
Conclusions and future works

6.1 Conclusions

We illustrated the phase shifts of interferograms acquired from a Michelson interferential mi-
croscope, which use a PZT as a phase shifter. We showed two types of graphics: 1) Absolutes
phase shifts, where phase shifts between the n-th and the first interferogram are depicted, and 2)
phase shift differences, where phase shifts between two consecutive interferograms are depicted.
In both cases, non-uniform phase shifts are contrasted with uniform phase shift in order to ex-
hibit deviation from the nominal value. Both graphics prove us that phase shift based on PZT
displacement are non-uniform but not random. Consequently, it is valid to affirm that non-
uniform phase shift can be expressed as the sum of the nominal value (ω0n), a linear detuning
(κ 1n), and a quadratic detuning (κ 2n2).
We deduced new conditions to design PSAs in order to avoid errors in phase measurement.

These errors, double-frequency ripple distortion and spurious piston, arise when interferograms
with non-uniform phase shifts are demodulated using conventional PSAs. Taking account that
non-uniform phase shift can be expressed as the sum of ω0n, κ 1n, and κ 2n2, we showed that
conditions for eliminating these errors are associated tom-th derivative of the PSA’s FTF.Hence,
we establish two additional condition: 1) them-th derivative of the FTF evaluated at ω = −ω0 to
suppress the double-frequency ripple distortion, and 2) them-th derivative of the FTF evaluated
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at ω = ω0 to eliminate the spurious piston.
We showed a detailed procedure to enhance the well-known four-frame PSA in order to elim-

inate its susceptibility to the double-frequency ripple distortion and the spurious piston. This
procedure comprised two stage: 1)To conditions of the four-framePSA,we add conditions given
by the 1st and 2nd derivative of the FTF evaluated at ω = −ω0, it result in a six-frame PSAwhich
is robust against the double-frequency ripple distortion, and 2) To conditions of the six-frame
PSA, we add conditions given by the 1st and 2nd derivative of the FTF evaluated at ω = ω0, it
result in a new eight-frame PSA whose estimated phase is error free. Simulation results prove us
right. We labeled this procedure as the evolution of the four-frame PSA. In the same way, any
conventional PSA can be modified in order to overcome errors produced by non-uniform phase
shifts.

We designed a custom-made nine-frame PSA in order to estimate the surface topography of
an aluminum thin film. This PSAwas designed using themodified phase-shifting interfegram Jn,
which was constructed from the non-uniform phase-shifting interferogram In and the measured
phase shift errors (Δn). Nine-frame PSA includes four-frame PSA condition, to which we added
the following conditions: 1) The 1st, 2nd, and 3rd derivative of the FTF evaluated at ω = −π/2,
and 2) The 1st derivative of the FTF evaluated at ω = {0, π}. All of it resulted in a nine-frame
PSA insensitive to the double-frequency ripple distortion. Design conditions did not include
conditions for eliminating the spurious piston, because, in this specific practical measurement,
this error is irrelevant.

We compared the obtained result by using the custom-made nine-frame PSAwith three other
methods such as: Fouriermethod, PCA, and least-square PSA. The obtained result fromFourier
method is over smoothed, the obtained results from least-square PSA and PCA are corrupted by
the double-frequency ripple distortion, whereas the surface topography profiles of an aluminum
thin film is free from the double-frequency ripple distortion, and it is not over smoothed. There-
fore, our propose, the custom-made nine-frame PSA, is suitable tomeasure thickness and rough-
ness, as it was demonstrated graphically in Figs. 4.5 and 4.6.

We estimated the surface topography of an aluminum thin film with vertical super-resolution
by using ultraviolet equivalent-wavelength PSI. To estimate this surface, we used the phase-sum
which was obtained from three demodulated phases. Each demodulated phase were computed
from a set of non-uniform phase-shifting interferograms, which were measured at λ1 = 660 nm.
Thus, the phase-sum simulate as if it was measured from interferograms at λeqS1 = 660/3 nm,
in this specific application the vertical resolution increased three times. This method is a good
option to analyze roughness in surfaces under test. Nonetheless, this method can be expanded to
a phase-sumof several demodulatedphases, evenphases computed from twoormorewavelength,
consequently the sensitivity of the phase-sum will increase.
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6.2 Future works

In this dissertation, we proposed the eight-frame PSA in order to suppress the double-frequency
ripple distortion and, mainly, to eliminate the spurious piston. However, we did not have the
opportunity to apply this PSA in real absolute phase measurement. On the other hand, the sen-
sitivity to random noise of this PSA is a serious problem, the signal-to-noise ratio gain (GSNR)
of the eight-frame PSA has to be increased. Both pending works are going to be published in
following scientific papers.

We are still working in surface measurement by using synthetic ultraviolet wavelength. As we
said this method is very useful to inspect roughness in surfaces with high resolution. Thus, we
are planning to use phase sum which will be obtained from several sets of phase shifting inter-
ferograms. At the same time, accumulated figures of merits and the quantity of summed phases
utilized to obtain the best roughness inspection will be studied in depth.

Finally, this dissertationdonot pretend to give anymagic PSA for phasemeasurement. All pro-
posed PSAs were designed under specific conditions in order to cope our requirements. Readers
should note that each experiment is different and the suitable solution can vary to each realiza-
tion. And, all of it motivates us to continue searching for new PSAs which permit us more accu-
racy measurements in industrial, research and development applications.
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A
The characteristic polynomial of PSAs

Any N-frame PSA can be associated with a characteristic polynomial in the Z-transform space
[7, 8, 64, 65]. This polynomial is defined by

P(z) =
N−1∑
n=0

cnzn,

where z is a variable on the complex plane, cn are the coefficients studied in chapter 2.3, and P(x)
is a polynomial of degreeN − 1. The characteristic polynomial of a PSA usually has its roots in
the complex-unit circle, and it is forbidden to have zero at the fundamental point z = exp(iω0).
The characteristic polynomial provide a straightforward method to design PSAs in order to

solve problems like the presence of harmonics in fringe profile, non-uniformphase shift [7], back-
ground intensity variation [8] and to investigate the effects of additive noise [64].

To exemplify the idea of the characteristic polynomial of anPSA, let us consider the four-frame
PSA and the Schwider-Hariharan PSA described in section 2.3, so the characteristic polynomials
of these PSAs are given by

Pff(z) = 1− iz− z2 + iz3, (A.1)

PSH(z) = 1− 2iz− 2z2 + 2iz3 + z4. (A.2)
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To represent the location of the roots of P(z) on the complex unit circle, a characteristic dia-
gram is employed. The corresponding diagrams of the four-frame PSA and Schwider-Hariharan
PSA are displayed in Figs. A.1(a) and A.1(b), respectively. In the case of PSH(z), multiple roots
are indicated by a blue dot surrounded by a circle.

FigureA.1:Roots position of (a) the Four‐Frame PSA and (b) the Schwider‐Hariharan PSA.

It is stated that a PSA has its roots in the complex-unit circle, as shown in Fig. A.1. However,
this is no always true, Hibino et al. [24] and Choque et al. [48] shows that roots along the
complex-unit circle are useful to eliminate spurious piston in phase measurement.
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B
Phase unwrapping

The phase computed as the argument of the analytic signal (b̂/2) exp[iϕ̂(x)] is indeterminate to
a factor of 2π, and it is known as wrapped phase. This problem occurs because the angle of this
analytic signal is computed by means of the arctan function, and this function is defined within
[−π, π] rad. This arctan operator can be considered as a wrapping operatorW [43, 66]. So, in
order to pass the searched phase ϕ(x)modulo 2π to a continuous signal is necessary to use a phase
unwrapping algorithm.

In the absence of noise, the unwrapping process is straightforward, discontinuities can be cor-
rected by adding or subtracting the appropriate multiple of 2π [50, 67]. However, in practical
measurement, there is always some amount of noise in the computed wrapped phase, in those
cases, a more robust approach is required, such as quality maps, path-following and minimum-
normmethods [66].

The first and most basic phase unwrapping method is the line integration of wrapped phase
differences proposed by Itoh [68], a modified version of this method was proposed by Estrada et
al. [69]. This new version result in a recursive low-pass filter/unwrapper system, which is given
by

ϕ̂(x) = ϕ̂(x− 1) + τW [ϕW(x)− ϕ̂(x− 1)]. (B.1)

In this equation, ϕ̂(x) is the estimated unwrapped phase, ϕ̂(x − 1) represent the previous un-
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wrapped site, ϕW(x) is the wrapped phase, and τ is related to the bandwidth of the low-pass
filtering. This procedure can be expanded to two-dimensional phase unwrapping.

Figure B.1 show schematically the phase unwrapping process, in this example, the specimen
wrapped phase is one to similar to the measured phase by using six-frame PSA.

FigureB.1:Phase unwrapping in fringe analysis. In red line the wrapped phase and in blue line the un‐
wrapped phase.

Phase unwrapping is the last step of data analysis of most interferogram analysis. To date,
phase unwrapping is a matter of study and a lot of papers papers are still publishing.
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C
Published material

Partial and final results contained in chapters 3 and 4 of this dissertation have been published in
the following journal articles:

First author:

• I. Choque, M. Servin, M. Padilla, M. Asmad, and S. Ordones, “Suppressing ripple distor-
tions and spurious pistons in phase-shifting interferometry,” J. Opt. Soc. Am. A 37(4),
614-620 (2020).

• I. Choque, M. Servin, M. Padilla, M. Asmad, and S. Ordones, “Phase measurement of
nonuniform phase shifted interferograms using frequency transfer function,” Appl. Opt.
58(15), 4157-4162 (2019).

Co-author:

• S.Ordones,M. Servin,M. Padilla, I. Choque, A.Muñoz, and J. L. Flores, ”Tukey’s robust
M-estimator for phase demodulation of interferograms with nonuniform shifts,” Appl.
Opt. 59(20), 6224-6230 (2020).
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sis for the generalized least squares phase-shifting algorithms with harmonic robustness,”
Opt. Lett. 44(9), 2358-2361 (2019).

• M. Servin, M. Padilla, I. Choque, and S. Ordones, ”Phase-stepping algorithms for syn-
chronous demodulation of nonlinear phase-shifted fringes,” Opt. Express 27(4), 5824-
5834 (2019).

The final version of the last published article (as first author) was presented in the SPIEOptics
+ Photonics 2020 meeting, it resulted in the following proceeding:

• I. Choque, Moises Padilla, Manuel Servin, Sotero Ordones, and Miguel Asmad ”Sup-
pressing ripple distortions and spurious pistons in phase-shifting interferometry”, Proc.
SPIE 11490, Interferometry XX, 1149006 (21 August 2020).
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The basic idea of a phase shifting
algorithm (PSA) is to demodulate
the phase from three or more phase

shifting interferograms. When the phase
shift is known and constant, e. g. π/2, each
interferogram canbe representedmathemat-
ically by an equation with three unknown
variables. Then, having three phase shifted
interferograms we can easily solve this equa-
tion system to obtain the searched phase.
This I just explained in about three minutes
is a PSA. Nonetheless, I have a Ph.D. major
in this subject.M. Servin

.
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