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Abstract 

In the area of photonics, photonic crystals are of great interest since they possess 

photonic band gaps. Therefore, the crystals are also known as photonic bang gap 

materials. The photonic band gaps of these materials are the key property which 

enables the design and fabrication of devices capable of controlling light propagation 

and light confinement: mirrors, waveguides, cavities, filters, and optical isolators. 

Furthermore, the manipulation of light that photonic crystals grant, can also be 

exploited in other areas of research such as: chemical sensing, biomedics, gas 

sensing, solar cells and communications. Among the devices previously mentioned, 

photonic crystal nanobeam cavities have proven to be the best resonator choice for 

integrated optics. Since these cavities are capable of providing large Purcell factors, 

thanks to their achievable high-quality factors (Q) and small mode volumes. For the 

purpose of latter integration with single photons emitters, in the present work a 1-D 

deterministic photonic crystal nanocavity design, with high in-line coupling to a 

waveguide, is investigated and used to fabricated two nanobeam cavities on a 

𝑆𝑖3𝑁4 − 𝑜𝑛 − 𝑆𝑖𝑂2 platform for two different operational wavelengths: 890 nm and 

646 nm. The photonic crystal nanobeam cavities were optimized through finite 

difference time domain (FDTD) simulations and later were fabricated via combination 

of electron beam lithography and dry etching technology. The cavities fabricated in 

this work exhibited quality factors on the range of 1000 to 10000 and mode volumes 

as small as 0.63(
𝜆𝑐

𝑛𝑆𝑖3𝑁4

)
3

and 0.94(
𝜆𝑐

𝑛𝑆𝑖3𝑁4

)
3
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Introduction 

Photonic crystals (PCs) are periodic dielectric structures that depending on the 

dimensionality of such periodicity, different classes of photonic crystals can be 

defined depending on the dimensionality of such periodicity: one-dimensional (1-D), 

two-dimensional (2-D) and three-dimensional (3-D) photonic crystals. These PCs 

possess a property known as photonic band gaps. A photonic band gap is a range 

of forbidden frequencies for photons to travel within the dielectric material, thus 

photons with energies lying in the band gap cannot propagate through the PCs [1, 

2]. 

These photonic bandgaps can be exploited to enable the control and propagation of 

light inside dielectric materials [2]. Therefore, by employing PCs it is possible to 

fabricate devices that can shape and mold the flow of light. Some examples of these 

devices are mirrors, beam splitters, waveguides, cavities, filters, and optical isolators 

[3]. A highly promising application of PCs is to fabricate optical nanocavities that 

have high quality factor (Q) and small mode volume (V) [4, 5]. The strong light 

localization of these photonic crystal nanocavities can enhance light-matter 

interactions, and because of this they are required for various applications in the 

fields of optics, including quantum information processing [6, 7], optofluidics [8], 

optical trapping [9] and optomechanics [10]. 

This work focuses on the design and fabrication of these cavities, which will be later 

integrated with single photon emitters (SPEs) in 2D materials, which are a central 

building block of quantum photonics circuits. Integrating SPEs with a cavity is 

particularly advantageous, because it turns out that the emission rate of an emitter 

can be modified by changing the environment of emitter. In this case if the emitter is 

coupled to a cavity mode the spontaneous emission rate can be increased, and this 

is known as the Purcell effect. Furthermore, the coupling efficiency between the 

emitter and a waveguide is also increased, because the Purcell effect increases the 

emission rate into the cavity mode and the cavity, which is coupled to the waveguide, 

redirects the light coming from the emitter to the waveguide [6]. 
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However, the design of PC cavities is not an easy task; it requires a considerable 

effort for the parameter search and optimization. Furthermore, since the simulation 

of high-Q cavities requires a long time, an empirical approach would not be practical 

[11]. In 2011, a deterministic design approach for ultra-high Q PC nanobeam cavities 

was developed [11], and it is this design and the previous work by Selim Scharmers 

[12] that the present work followed and continued for the fabrication of the cavities 

presented here. 
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Chapter 1 Theory  

Photonic crystals (PC) are periodic dielectric structures, this periodicity of the 

dielectric constant gives rise to a very interesting property “photonic band gaps”. This 

band gaps prevent light from certain range of frequencies to propagate inside the 

crystal and are the ones that will allows us to construct the nanobeam cavities 

presented in this work. Therefore, it is first necessary to understand the physics 

behind light propagation in photonic crystals and in this chapter a basic photonic 

crystals theory from Maxwell's equations will be presented along with some of the 

main properties of one-dimensional (1-D) photonic crystals. The theory that is 

presented in this chapter is based on the textbook by J .D. Joannopoulos et. al. [13] 

where the interested reader will find a more thorough derivation. 

1.1 Maxwell's equations and the Eigenvalue problem  

The behaviour of any electromagnetic wave traveling inside a dielectric media is 

governed by the Maxwell equations. In the present case the macroscopic Maxwell 

equations can be used since the dimensions of the dielectric structural features are 

larger than the atomic dimensions. In differential form and SI units, these equations 

take the form: 

𝛻 ⋅ �⃗⃗� (𝑟 , 𝑡) = 𝜌(𝑟 , 𝑡), I 

𝛻 × �⃗⃗� (𝑟 , 𝑡) −
𝜕�⃗⃗� (𝑟 , 𝑡)

𝜕𝑡
= 𝐽 (𝑟 , 𝑡), II 

𝛻 × �⃗� (𝑟 , 𝑡) +
𝜕�⃗� (𝑟 , 𝑡)

𝜕𝑡
= 0, III 

𝛻 ⋅ �⃗� (𝑟 , 𝑡) = 0. IV 

Where �⃗� (𝑟 , 𝑡) is the electric field, �⃗⃗� (𝑟 , 𝑡) the magnetic field, �⃗⃗� (𝑟 , 𝑡) the displacement 

field, �⃗� (𝑟 , 𝑡) the magnetic induction, 𝑝(𝑟 , 𝑡) the free charge and 𝐽 (𝑟 , 𝑡) the free 

current, all depending on the position vector 𝑟  and the time 𝑡.   
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Since only dielectric materials free of light sources are of interest, the following 

simplifications can be made:  

• There are no free charges and currents within the medium of propagation  

𝜌(𝑟 , 𝑡) =  𝐽 (𝑟 , 𝑡)  =  0 

• In the case of �⃗� (𝑟 , 𝑡) and �⃗⃗� (𝑟 , 𝑡), the relative magnetic permeability for the 

majority of dielectric materials 𝜇𝑟(𝑟 ) is almost one, so: 

𝐵(𝑟 , 𝑡)  =  𝜇0𝐻(𝑟 , 𝑡) 

where 𝜇0 is the magnetic permeability in the vacuum. 

And if the following two assumptions are taken: 

• �⃗� (𝑟 , 𝑡) and �⃗⃗� (𝑟 , 𝑡) are linearly dependent  

�⃗⃗� (𝑟 , 𝑡)  =  𝜀(𝑟 ) 𝐸⃗⃗  ⃗(𝑟 , 𝑡) where 𝜀(𝑟 ) = 𝜀0𝜀𝑟(𝑟 ) 

• The dielectric constant 𝜀(𝑟 ) frequency dependence is ignored, by considering 

a small frequency range. Hence, a single value of the dielectric constant can 

be chosen. 

Thus, the Maxwell equations I-IV take the form: 

𝛻 ⋅ [𝜀𝑟(𝑟 )�⃗� (𝑟 , 𝑡)] = 0, V 

𝛻 × �⃗⃗� (𝑟 , 𝑡) − 𝜀0𝜀𝑟(𝑟 )
𝜕�⃗� (𝑟 , 𝑡)

𝜕𝑡
= 0, VI 

𝛻 × �⃗� (𝑟 , 𝑡) + 𝜇0

𝜕�⃗⃗� (𝑟 , 𝑡)

𝜕𝑡
= 0, VII 

𝛻 ⋅ �⃗⃗� (𝑟 , 𝑡) = 0. VIII 

To find solutions for these equations the separation of variable method can be 

employed, thus the solution is separated in the spatial and temporal variables (this 

will later lead to an eigenvalue equation for the spatial modes). Since, we restrict 

ourselves to solutions with constant frequency across time, the temporal part takes 

the form e−iwt. Hence, these solutions are sinusoidal waves and can be written as: 
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�⃗⃗� (𝑟 , 𝑡) = �⃗⃗� (𝑟 )𝑒−𝑖𝑤𝑡, IX 

�⃗� (𝑟 , 𝑡) = �⃗� (𝑟 )𝑒−𝑖𝑤𝑡. X 

Inserting equations IX and X on V and VII give 

𝛻 ⋅ �⃗⃗� (𝑟 ) =  0, XI 

𝛻 ⋅ [𝜀𝑟(𝑟 )�⃗� (𝑟 )] = 0. XII 

which are the transversality requirements of the fields, this means that the fields are 

necessarily orthogonal to the direction of propagation of the electromagnetic wave. 

Then substituting equations IX and X into VI-VII give 

𝛻 × �⃗� (𝑟 )  −  𝑖𝜇0𝜔�⃗⃗� (𝑟 ) =  0, XIII 

𝛻 × �⃗⃗� (𝑟 ) + 𝑖𝜔𝜀0𝜀𝑟(𝑟 ) �⃗� (𝑟 ) = 0. XIV 

then, on dividing the bottom equation by 𝜀𝑟(𝑟 ) followed by taking the curl, it is 

possible to use equation XIII to eliminate �⃗� (𝑟 ) from XIV. Thus, obtaining a single 

equation in terms of �⃗⃗� (𝑟 ): 

𝛻 × (
1

𝜀𝑟(𝑟 )
𝛻 × �⃗⃗� (𝑟 )) = (

𝜔

𝑐
)
2

�⃗⃗� (𝑟 )    in which   𝑐 =
1

(𝜀0𝜇0)−1/2. XV 

where c is the speed of light and 𝜔 is the angular frequency of the wave. This last 

equation is known as the master equation because it contains all the information to 

be known about the modes �⃗⃗� (𝑟 ). 

Furthermore, by defining the operator 𝜃 as: 

𝜃 = ∇ × (
1

𝜀𝑟(𝑟 )
∇ ×) 

allows to rewrite equation XV:  
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θ̂�⃗⃗� (𝑟 ) = (
ω

𝑐
)
2

�⃗⃗� (𝑟 ). XVI 

This last equation XVI is an eigenproblem where the eigenvectors �⃗⃗� (𝑟 ) are the field 

patterns of the modes and the terms (
𝜔

𝑐
)
2

are the corresponding eigenvalues (from 

these eigenvalues the frequencies of the modes are extracted). Thus, the light 

propagation inside the dielectric structure is described by the solutions of equation 

XVI and the transversality condition of the field. 

Furthermore, the operator 𝜃 turns out to be linear and Hermitian, and has the 

following consequences on the eigenvalues and modes: 

• The eigenvalues (
𝜔

𝑐
)
2

are real and positive. Therefore, the frequency of the 

modes is also real and positive. 

 

• The modes �⃗⃗� 𝑖(𝑟 ) are mutually orthogonal. 

1.1.1 Scaling property 

There is a property due to the effect of the spatial scale. This property is present in 

equation XVI and it is important to it point out. This property shows that if a new 

system is formed by expanding (or compressing) a dielectric configuration, this new 

system will still behave the same way as the original system, but the modes for this 

new system will be expanded (or compressed) and the frequency will be reduced (or 

increased) accordingly. 

To see this, lets modify the dielectric configuration 𝜀𝑟(𝑟 ) and let it be compressed or 

expanded by a factor 𝐬, so now there is a new dielectric configuration  𝜀𝑟
′(𝑟 ). This 

can be written as follows: 

 𝜀𝑟
′(𝑟 ) = 𝜀𝑟(𝑟 /𝐬). XVII 
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letting 𝑟 ′ = 𝐬𝑟   results in x′ = 𝐬𝑥, y′ = 𝐬𝑦, z′ = 𝐬𝑧 (for each component of the vector), 

from it follows that 
𝜕

𝜕x′ =
1

𝐬

𝜕

𝜕𝑥
 (same for 𝑦 and 𝑧) and thus ∇′= ∇/𝐬. Then making the 

substitutions of 𝑟  and ∇ in XV gives: 

𝐬∇′ × (
1

𝜀𝑟(𝑟 ′/𝐬)
𝐬∇ × �⃗⃗� (𝑟 ′/𝐬)) = (

𝜔

𝑐
)
2

�⃗⃗� (𝑟 ′/𝐬). XVIII 

then, on dividing the previous equation by 𝐬 twice, one obtains: 

∇′ × (
1

𝜀𝑟(𝑟 ′/𝐬)
∇ × �⃗⃗� (𝑟 ′/𝐬)) = (

𝜔

𝑐𝐬
)
2

�⃗⃗� (𝑟 ′/𝐬). XIX 

finally, a new scaled version of the frequency 𝜔′ = 𝜔/ 𝐬 and the solution �⃗⃗� ′(𝑟 ′) =

�⃗⃗� (𝑟 ′/𝐬) can be defined, and since  𝜀𝑟
′(𝑟 ′)  = 𝜀𝑟(𝑟 

′/𝐬) one arrives at: 

∇′ × (
1

 𝜀𝑟
′ (𝑟 ′)

∇′ × �⃗⃗� ′(𝑟 ′)) = (
𝜔′

𝑐
)
2

�⃗⃗� ′(𝑟 ′). XX 

This last equation is the master equation for the new system, and it shows that the 

new system is just a scaled version of the original: The mode profiles are not 

changed (but they are scaled), and the frequencies of the modes are increased or 

decreased by the factor s. 

1.1.2 An important characteristic of the modes 

To close this section, let us take a quick look at some properties of the modes H⃗⃗ , 

which will later help us understand the origin of the photonic bandgap.  

The variational electromagnetic theorem [13]: 

𝑈𝑓(�⃗⃗� )  =  
(�⃗⃗� (𝑟 ), 𝜃�⃗⃗� (𝑟 ))

(�⃗⃗� (𝑟 ), �⃗⃗� (𝑟 ))
 . XXI 

 where the inner product is defined as: 
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(�⃗⃗� , 𝐹 ) ≜  ∫ �⃗⃗� ∗(𝑟) ∙ 𝐹 ∗(𝑟) 𝑑3𝑟. XXII 

shows that the eigenfunctions �⃗⃗�  of the system minimize the energy 𝑈f. The lowest-

frequency mode �⃗⃗� 0 has the smallest eigenvalue 𝜔0
2/𝑐2 and this eigenvalue 

corresponds to minimum value of 𝑈f. The next lowest eigenmode �⃗⃗� 1 has the 

eigenvalue 𝜔1
2/𝑐2, and it minimizes 𝑈f while also satisfying the orthogonality 

constraint of the modes. 

The physical consequence to be seen from equation XXI is better understood by 

rewriting XXI in terms of the electric field: 

𝑈𝑓(�⃗⃗� )  =  
(𝛻 × �⃗� , 𝛻 × �⃗� )

(�⃗� , 𝜀𝑟�⃗� )
=

∫|𝛻 × �⃗� (𝑟 )|
2
 𝑑3𝑟

∫ 𝜀𝑟(𝑟 )|�⃗� (𝑟 )|
2
 𝑑3𝑟

. XXIII 

Now, the denominator in XXIII tells us that concentrating the electric field in regions 

of high dielectric reduces the energy of the mode. Thus, the lowest frequency mode 

�⃗⃗� 0 will lower its energy by concentrating mostly in the high dielectric material. The 

higher order modes, due to the orthogonality condition of the modes, will be pushed 

out of the high dielectric material, hence they cannot concentrate their electrical field 

in the high dielectric material. The numerator will be small or big depending on the 

electric field spatial distribution. 

1.2 Photonic crystals 

As mentioned before the photonic crystals are categorized as one-dimensional (1-

D), two-dimensional (2-D) and three-dimensional (3-D) crystals according to the 

dimensionality of their building blocks, see Fig. 1. 1-D PC are formed by placing 

alternate layers of two different materials which have low and high dielectric 

constants, therefore the dielectric constant is modulated along one direction. In 2-D 

photonic crystals, the dielectric constant is periodic along two directions and extends 

to infinity in the third direction. In the 3-D structures, the dielectric constant is periodic 

along the three directions. This work is only concern with 1-D photonic crystals, 
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which are the simplest possible PCs, and in this section the most important features 

of the PCs will be discussed. 

 

 

Fig. 1 Photonic crystals with dielectric periodicity in one, two, and three dimensions. This figure 
was adapted from [13]. 

The 1-D photonic crystals are systems that has discrete translational symmetry in 

one direction. Consequently, if a displacement is performed in the direction of the 

discrete symmetry by a multiple of the periodicity length 𝑎 (known as lattice 

constant), then the value of εr does not change when the displacement a⃗  is 

performed, and this can be written as: 

𝜀𝑟(𝑟 ) = 𝜀𝑟(𝑟 ± 𝑎 ) XXIV 

where a⃗  is known as the primitive lattice vector. Since the structure of interested is 

assumed to be periodic in one direction (𝑥 − 𝑎𝑥𝑖𝑠), the lattice vector will be defined 

as a⃗ = 𝑎�̂� (Fig. 2). The repeating dielectric structure defined by the width 𝑎 in Fig. 2 

is known as unit cell, and it is the smallest repeating unit of the structure. 
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Fig. 2 Dielectric configuration in one dimension. The lattice constant is indicated. This figure was 
adapted from [13]. 

Now, the solutions for the multilayers structure shown in Fig. 2, in which the structure 

possess discrete translational symmetry in 𝑥, are already known. The solutions �⃗⃗� (𝑟 ) 

are given by Bloch’s theorem, and for periodicity in one dimension (𝑥-axis for the 

present case), the solutions have the form [13]: 

𝐻𝑘
⃗⃗⃗⃗  ⃗(𝑥 ) = ∑ 𝐶 𝑘𝑥,𝑚(𝑦, 𝑧)𝑒𝑖(𝑘𝑥+𝑚

2𝜋

𝑎
)𝑥

𝑚 , 

= 𝑒𝑖(𝑘𝑥∙𝑥) ∑ C⃗ kx,m(𝑦, 𝑧)e𝑖(𝑚𝑏)𝑥
m . 

XXV 

where the term b⃗ =
2π

a
�̂� is known as the reciprocal lattice vector. The summation 

term is just a Fourier series, hence it can be any function. Thus, equation XXV can 

be rewritten as 

𝐻𝑘
⃗⃗⃗⃗  ⃗(𝑥 ) = 𝑒𝑖𝑘𝑥∙x �⃗� kx

(x, y, z). XXVI 

where  �⃗� kx
 represents any function with period equivalent to lattice constant 𝑎. This 

means that  �⃗� kx
(x, y, z) =  �⃗� kx

(x + m𝑎, y, z).  

The solutions �⃗⃗� (𝑟 ) in equation XXVI are known as Bloch states and they consist of 

plane waves modulated by a periodic function �⃗� kx
. Furthermore, the Bloch states 

with wave vector that differed by a multiple of the reciprocal vector  
2𝜋

𝑎
  have the 

same eigenvalues. Hence, if the reciprocal vector value is divided by two and this 

result is set as upper positive and lower negative boundary, a region, without the 
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degeneracy previously mentioned, is defined. This region is known as the Brillouin 

zone, and is given by:  

−𝜋

𝑎
< kx <

𝜋

𝑎
 XXVII 

and since no degeneracy is present in this region, it is enough to examine the 

solutions in this space of wave vectors. 

Now, let us extent the previous result to three dimensions. For this let us remember 

again what a three dimensional photonic crystal is: it is a system with discrete 

translational symmetry in three directions. Hence, to extend Equation XXVI to 3 

dimensions it is first necessary to take the following changes: the lattice vector is 

defined in terms of three primitive lattice vectors a1, a2, a3, to account for the discrete 

translational symmetry in three directions, R⃗⃗ = 𝑙a1 + 𝑚a2 + 𝑛a3 (𝑙, 𝑚 and 𝑛 are 

integers). Now, the periodic function uk(r ) satisfices the condition uk(r ) = uk(r +

R⃗⃗ ) and the dielectric constant satisfices εr(r ) = εr(r ± R⃗⃗ ). The three dimensional 

reciprocal lattice vector is k⃗ = k1b1 + k2b2 + k3b3 and it consist of three primitive 

reciprocal lattice vectors b1, b2, b3. These primitive reciprocal lattice vectors satisfy 

the relation 𝑎𝑖⃗⃗  ⃗ ∙ 𝑏𝑗
⃗⃗⃗  = 2𝜋𝛿𝑖𝑗. Finally, the Bloch state can be written as 

 𝐻𝑘
⃗⃗⃗⃗⃗⃗ (𝑟 ) = 𝑒𝑖�⃗� ∙𝑟 𝑢𝑘(𝑟 ). XXVIII 

With the form of the solutions known, let us substitute the Bloch state into the Master 

Equation (XV). This will provide a better understanding of the band structure for 

photonic crystals: 

𝜃 Hk
⃗⃗⃗⃗⃗⃗ = (

𝜔( 𝑘⃗⃗  ⃗)

𝑐
)
2

 Hk
⃗⃗⃗⃗⃗⃗ , 

∇ ×
1

𝜀𝑟(r⃗ )
∇ × eik⃗⃗ ∙r⃗  uk(r ) = (

𝜔( 𝑘⃗⃗  ⃗)

𝑐
)
2

eik⃗⃗ ∙r⃗  uk(r ). 

XXIX 

Using twice the identity ∇ × γB⃗⃗ = γ(∇ × B⃗⃗ ) + (∇γ) × B⃗⃗  and dividing by the exponential 

term: 
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(∇ + ik⃗ ) ×
1

𝜀𝑟(r⃗ )
(∇ + ik⃗ ) × uk(r ) = (

𝜔( 𝑘⃗⃗  ⃗)

𝑐
)
2

uk(r ). XXX 

identifying the left-hand side term as the new Hermitian operator 𝜃𝑘 

𝜃𝑘 ≜ (∇ + ik⃗ ) ×
1

𝜀𝑟(r⃗ )
(∇ + ik⃗ ) ×. XXXI 

it yields 

𝜃𝑘uk(r ) = (
𝜔( 𝑘⃗⃗⃗  )

𝑐
)

2

uk(r ). XXXII 

With a quick look at 𝜃𝑘 is possible to notice that the new operator 𝜃𝑘 depends now 

on the wave vector  𝑘⃗⃗⃗   and acts on the periodic function uk(r ) instead of  Hk
⃗⃗⃗⃗⃗⃗ . 

Furthermore, the solutions for the light propagating inside the photonic crystal are 

now given by equation XXXII along with the conditions of transversality and 

periodicity: 

(∇ + ik⃗ ) ∙ uk = 0, uk(r ) = uk(r + R⃗⃗ ). XXXIII 

and analogous to the one dimensional case (thanks to the periodicity of the modes) 

it is possible to restrict the eigenvalue problem to the Brillouin zone (XXVII). 

As mentioned before, the Bloch states were substituted in the master equation to 

get a better understanding of the band structure for photonic crystals, so let us keep 

in the mind the remarks previously made and address now the band structure. The 

band structure of the photonic crystal describes the range of allowed frequencies 

that the light might have when traveling inside the photonic crystal. If k⃗  is fixed, one 

would obtain a set of discrete frequencies from the eigenvalues for each mode. But 

since k⃗  is a continuous variable, if one moves to the next values of k⃗  and obtains 

their respective set of discrete frequencies, at the end one would obtain an infinite 

set of discrete frequency bands (Fig. 3). These bands are classified with an integer 

number 𝑛 which is known as band number. The plot of these bands as function of 

the wavevector is known as band structure. 
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To conclude, the band structure provides most of the information required for 

designing photonic crystal. Thus, to extract the band structure, a huge effort has 

been made to develop methods for computing the solutions of the eigenvalue 

problem of equation XXXII. One of these methods is FDTD (Finite-Difference Time-

Domain) and it will be addressed on the next chapter. 

 

Fig. 3 Example of mode frequencies bands, the blue lines correspond to the modes localized in 
the dielectric. This figure was taken from [13]. 

1.2.1 The origin of the photonic band gap 

A complete photonic band gap is a range of frequencies in the band structure where 

there are not allowed modes for the light to propagate [13]. Hence, it does not matter 

which magnitude of k⃗  the mode possesses, and it does not matter the direction of 

propagation of the light, if the frequency of the mode is inside the range of forbidden 

frequencies by the band gap then it cannot propagate inside the photonic crystal, 

see Fig. 4.b). 

To understand the origin of the photonic band gap, let us once again consider the 

multilayer system with periodicity 𝑎 of Fig. 2. Let us not forget that the multilayer 

system is a one-dimensional photonic crystal, and it consist of two intercalated 
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materials with different dielectric constants. The band structure, also known as 

dispersion relation, for this multilayer system is shown in Fig. 4 (b). 

 

Fig. 4 Dispersion relation (band structure), frequency 𝜔 vs wavenumber 𝑘 of a: a) uniform medium. 

b) Effect on the bands of a physical periodic dielectric variation ∆𝜀𝑟 > 0. This figure was adapted 

from [13]. 

Now, let us consider the case when the materials of the multilayer system have the 

same dielectric constant 𝜀𝑟 so that ∆𝜀𝑟 = 0. In this case light sees no distinction 

between the materials and it behaves as if it was propagating inside a homogenous 

medium. For a homogenous medium the dispersion relation has the form [13]: 

𝜔(k) =
𝑐k

√𝜀𝑟

, where c is the speed of light 

this is depicted in Fig. 4 (a), just that a periodicity 𝑎 has been imposed and as a 

result the band bends back inside when reaching 
−𝜋

𝑎
 and 

𝜋

𝑎
.  Now, let us take a closer 

look to both plots a) and b) from Fig. 4. Both plots look alike, but there is an important 

difference, plot a) has no band gap and a value of ∆𝜀𝑟 =0 while plot b) has a band 

gap and a value of ∆𝜀𝑟 > 0. Thus, the band gap only appears if ∆𝜀𝑟 > 0. 

From the previous observations, it is easy to mistakenly think that the origin of the 

band gap is due to the dielectric contrast difference, but by taking a look again at the 
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variational principle (equation XXIII) and the remarks of that section 1.1.2, it is 

possible to get a better understanding of the physical origin of the photonic bandgap. 

In section 1.1.2, it was found that the way to minimize the function from equation 

XXIII, is by concentrating the electric field in regions of high dielectric constant 𝜀𝑟. 

This means that the modes under the gap, see Fig. 4.b), which correspond to the 

first eigenvalue of every solution for each k, tend to concentrate most of their energy 

in high dielectric regions. While the modes above the gap, which correspond to the 

second eigenvalue, concentrate less energy in the high dielectric region because 

they are pushed out by the orthogonality condition. Thus, the gap arises from this 

difference in field location. 

Finally, let us remember that we were dealing with a 1-D photonic crystal, this means 

that the photonic band will only exist in the direction of periodicity. Consequently, 1-

D photonic crystal do not form a complete band gaps, instead they form something 

called incomplete band gaps, which only exist over wavevectors in one certain 

direction. Thus, to create a complete band gap a 3-D photonic crystal would be need 

it. In either case, 1-D, 2-D or 3-D photonic crystals, the origin of the complete or 

incomplete gaps are the same [13]. 

1.2.2 Defects and cavities 

To conclude this chapter, this last section will address another important aspect of 

photonic crystals: defects. The introduction of a defect in the crystal structure of a 1-

D photonic crystal, can be done for example: by increasing the width of one of the 

layers or by changing the value of 𝜀𝑟 in just one of the layers. Either way this breaks 

the periodicity of the lattice and gives rise to the existence of a localized mode. The 

key feature here, is when the defect is done in a way so that the localized mode is 

introduced into the photonic band gap, thus creating a cavity, see (Fig. 5). This is 

analogous to the creation of energy levels inside the semiconductor band gap, in this 

case this is achieved by doping the semiconductor, which is the intentional 

introduction of impurities into the semiconductor. 
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Fig. 5 Band structure with a defect inside the photonic bandgap. This figure was adapted from [13]. 

For 1-D photonic crystals, the cavity is form by employing two Bragg mirrors inside 

a waveguide, one at each end of the cavity. This mirrors usually are formed by 

making an array of air-holes in the dielectric, thus creating the multilayer system with 

periodicity 𝑎, see (Fig. 6). For this array, the defect can also be introduced by 

modifying one or more air-holes, hence, breaking the periodicity of the lattice. 

 

Fig. 6 1-D Photonic Crystal cavity with Bragg mirror in both sides and periodicity 𝑎. 

Finally, let us summarize what the Quality factor is. The Quality Factor 𝑄 is a 

dimensionless quantity used to measure the losses of a cavity. This 𝑄 factor is 

defined as the ratio of stored energy and the loss of energy per cycle [13]: 

𝑄 = 𝜔0

𝐸𝑛𝑒𝑟𝑔𝑦 𝑠𝑡𝑜𝑟𝑒𝑑 

𝑃𝑜𝑟𝑤𝑒𝑟 𝑙𝑜𝑠𝑠
 

XXXIV 

 avity  ength

air hole a
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where 𝜔0 is the resonant frequency of the cavity.  

From equation XXXIV it can be seen that if a cavity has a high 𝑄 then the cavity has 

small losses and consequently it can store energy for a longer period of time. If there 

were zero loses, then the cavity in principle could store energy during an indefinite 

time. Unfortunately, loses are always present in any fabricated cavity, and they will 

limit the achievable values of the quality factor. In the case of 1-D photonic crystal 

reducing the loses becomes quite challenging since the photonic crystal only traps 

light in one direction. Thus, to confine light in the other two directions the cavity relies 

in total internal reflection.  
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Chapter 2 Modelling of photonic structures 

When designing photonic structures, there are two approaches for evaluating and 

optimizing the parameters of the structures one desires to fabricate: the first one is 

to just directly fabricate the structures while making variations of the parameters for 

each sample, so the parameters are optimized by trial and error. The second option 

is to first simulate the structures, using a commercial software like Lumerical [14]. 

The first option might be fast for very simple structures, but it can also be costly to 

fabricate them and time consuming to perform the experimental measurements. On 

the other hand, simulating the desired structures can provide a better understanding 

of the structures because for some complex geometries the solutions might not be 

intuitive or there might not be any known analytical solution. In addition, simulations 

can be used to verify experimentally obtained results, while having the advantages 

of time efficiency and lower cost. Generally, a mixture of both approaches leads to 

the most time efficient method when fabricating the nanostructures. 

In the past years, the simulation of photonics structures has matured so much that 

nowadays it might not be necessary to be concerned about the finer details of the 

numeric methods used to solve the Maxwell equations. However, it is still important 

to have basic understanding of the theory behind the simulation software for 

photonics, so in the next section a summary of the most important aspects of the 

utilized software Lumerical FDTD will be presented. 

2.1 Lumerical FDTD 

The FDTD-Method (Finite-Difference Time-Domain) numerically solves Maxwell 

equations in differential form by providing a way to obtain the future fields from the 

past fields (thus a starting electromagnetic field is needed). This allows to tackle a 

wide range of complicated problems, but the key feature of this method is that in a 

single simulation run it can obtain the response of the system for a wide range of 

frequencies. The drawback of this method is that most of the times it is 
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computationally expensive, therefore the solutions might require a considerably 

amount of computer memory and computation time. The method is efficient when 

the dimensions of the physical features for the structures of interest are on the order 

of the wavelength size. Hence, is important to keep this mind, if for example the 

wavelength is very small compared to the physical features of the structures of 

interest, although FDTD would be able to provide accurate results, a ray-based 

method might provide a more efficient way to address the problem and with a similar 

accuracy [15]. 

The FDTD algorithm can be summarized as follows (a more detailed explanation of 

the method can be found at [15] and [14]). First the space and time is discretized, 

consequently it is divided into small segments. With time and space discretized it is 

possible to apply the numerical method known as finite difference for solving 

differential equations, therefore one works with the differential form of the Maxwell 

equations. Then by applying the finite difference method, one obtains one pair of 

equations which give the electric and magnetic fields one step in the future in terms 

of the past fields. Second, the magnetic field is computed one step into the future. 

Then after computing the magnetic field first, the electric field is computed one step 

into the future. Finally, with the new updated fields it is possible to compute the fields 

one more step into the future where the previously computed field are the past fields 

for this new computation. This process is repeated until reaching the desired time in 

the future. It is important to keep in mind that due to the discretization of time and 

space for solving the differential equations, it is not possible to compute the electric 

and magnetic fields at the same point in space or at the same point in time, therefore 

to overcome this problem FDTD software like Lumerical use the interpolation method 

to compute this missing points of data. 

Lumerical FDTD, as the name indicates, is a commercial software which employs 

the Finite-Difference Time-Domain method to solve the Maxwell equations. The 

software can be used to design, analyze, and optimize photonic devices. As 

mentioned before the FDTD-method requires and starting electromagnetic field, 

hence, the software counts with several types of common sources when exciting 
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photonic devices such as: dipoles, beams, plane waves, a total-field scattered-field 

(TFSF) source, a guided-mode source, and custom sources. 

2.1.1 Mesh size 

One key aspect when running a simulation with this software is the mesh size of the 

simulation region. Lumerical uses a rectangular mesh, like the one shows in Fig. 7, 

and it is at each mesh point where the simulation quantities (material properties, 

geometrical information, electric and magnetic field) are calculated. Therefore, using 

a smaller mesh would give more accurate results, for example: as it can be seen in 

figure 7 (a) and (b) the depicted circle perimeter becomes more uniform as the mesh 

size becomes smaller.  

However, using a finer mesh comes with a cost, the simulation time and memory 

requirements will increase as the mesh becomes smaller. Thus, the simulation time 

and memory requirements will increase as a function of the mesh step (𝑑𝑥). In the 

case of 3D simulations, the memory requirements and simulation time grow as 

follows: 

𝑀𝑒𝑚𝑜𝑟𝑦 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠 ≈ (
1

𝑑𝑥
)
3

                𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 ≈ (
1

𝑑𝑥
)
4

 

 
Fig. 7 a) Applying a big mesh step size to depict the circle, b) Applying a finer mesh to depict the circle. 

To try to mitigate this it is possible to implement in Lumerical mesh override regions, 

which allows the user to define structures or regions of space with a finer mesh, thus 

the simulation time will be smaller than the case with uniform small mesh size. This 

can be seen in Fig. 8, where the circle has a mesh override region, the circle has the 
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same mesh size as Fig. 7 (b) but its surroundings has the same mesh size as Fig. 7 

(a). If a light source was placed and the simulation was to be to run the simulation 

time would be considerable less in the case of Fig. 8, than the simulation time of the 

Fig. 7 (b) which has uniform mesh over all region. 

  

Fig. 8 Circle with mesh override region, the circle has a finer mesh than its surroundings. 

2.1.2 Boundary conditions 

Another important aspect when implementing the simulation is the simulation 

boundaries. In the previous sections, what happens at the mesh endings or how to 

terminate the grid were not mentioned. For example, one might be interested on 

simulating the propagation of the fields in a small region from an open space or 

depending on the application it might be necessary to reflect the fields back into the 

simulation area. The solution to this are the boundary conditions, and many have 

been proposed in the literature. In the case of Lumerical it supports PML (Perfectly 

Matched Layer), metal, periodic, Bloch and PMC (Perfect Magnetic Conductor) 

boundaries. In this work only PML boundaries were used. 

The PML (Perfectly Matched Layer) is the most commonly used absorbing boundary 

condition, that has extremely small reflection. These boundaries attempt to absorb 

all the outgoing fields from the simulation region, without reflecting them back to the 

area of interest. However due to the numerical nature of the FDTD-method, perfect 

absorption is not possible, thus a very small field is reflected and lingers throughout 

the grid. More detailed information of this boundary can be found in [16]. 
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So far in this chapter a summary of the modelling technique for the photonic 

structures was presented, in a general approach the modelling theory was 

discussed, and the important simulation components needed to obtain accurate 

results while modelling photonic structures were reviewed. These parameters (light 

source, simulation region with boundary conditions and mesh size) are depicted on 

Fig. 9. But there is one more key thing to assess in this chapter, the calculation of 

the Q-factor of the simulated cavities. 

 

Fig. 9 Schematic of the main simulation components. 

2.1.3 Q-factor calculation 

There are two methods for extracting the Q factor when using Lumerical FDTD, 

choosing the suitable method leads to accurate results and avoids extra work and 

computation time for simulating the cavities. Lumerical FDTD divides cavities in two 

classes: low Q value cavities and high Q value cavities.  

A low Q value cavity is a cavity which electromagnetic fields fully decays during the 

simulation in an amount of time that can be simulated by FDTD with a reasonable 

amount of computational resources and computational time. If the decay time is too 
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long, then more memory and simulation computational time would be need it, making 

at some point the simulation not feasible. 

Thus, if the cavity has short decay time of the electromagnetic fields, then the best 

method for extracting the Q value is from the frequency spectrum. The Q is defined 

as the ratio of the resonant frequency 𝜔𝑟 of the mode and the full width at half 

maximum FWHM of the resonance in the spectrum [13]. 

𝑄 =
𝜔𝑟

𝐹𝑊𝐻𝑀
 XXXV 

If the cavity has a very long decay time of the mode therefore a high Q value, then 

in this case, is not possible to extract the Q value from the frequency spectrum 

because the FWHM of the resonance peak would vary with the simulated time. This 

last point can be easily understood by means of the Fourier transform of a 

rectangular pulse (Fig. 10), where the width of the main lobe in the frequency domain 

varies as 
1

𝑇
 where 𝑇 is the duration in time of the pulse, and by remembering that the 

rectangular pulse can be modulated by any function (in the current situation 𝑇 would 

be the simulated time). In the case of a high Q value cavity, the Q value can be 

extracted from the slope of the envelope of the decaying mode, using the formula: 

𝑄 =
−𝜔𝑟 log10(𝑒)

2𝑚
 XXXVI 

 where 𝑚 is the slope of the decay. The derivation of the above equation can be 

found in [14]. 

 

Fig. 10 Fourier transform of a rectangular pulse.  
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Chapter 3 Fabrication 

In this chapter, the processes involved in the fabrication of the nanobeam cavities 

are described. In order to fabricate the desired cavities the structure design from Fig. 

6 was chosen, due to is simplicity, good coupling efficiency with a waveguide, and 

achievable high quality factors along with small mode volumes (comparable to those 

found in 2-D photonic crystal cavities) as demonstrated in previous works [17, 18, 

19, 20]. In this work, the optimization of the parameters of the structure were done 

for a 𝑆𝑖3𝑁4-on-𝑆𝑖𝑂2 platform following the same deterministic method outline in [11]. 

The flow chart below Fig. 11 presents all the steps performed to fabricate the 

cavities. Since any small contamination (like dust particles, aerosol particles or 

particles coming from the body) could potentially interfere with the fabrication 

process or affect the purity of the materials been used, therefore ruining the quality 

of the manufactured devices or even leaving the manufactured devices completely 

useless, the fabrication procedures must be carried out inside clean room facilities. 

Clean rooms are controlled environments which can guarantee a working space with 

extremely low levels of contaminants. 

 

Fig. 11 Flow-chart showing steps of the fabrication process 
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3.1 𝑆𝑖3𝑁4-on-𝑆𝑖𝑂2 platform 

One of the most notable platforms for the development of photonic integrated circuits 

is silicon, not only because silicon is the second most abundant element in earth, 

but it also offers two important properties: high refractive index contrast and 

complementary metal-oxide-semiconductor (CMOS) fabrication compatibility [21] 

[22] . CMOS fabrication refers to the semiconductor manufacturing processes, which 

nowadays are well mastered, for integrated circuits based on silicon. 

Nowadays, most silicon products are built on silicon-on-insulator (SOI) platform with 

high index contrast (3.5 vs 1.5), but SOI only provides low absorption losses in the 

wavelength rage from 1.1 µm - 3.7 µm [22]. On the other hand, the 𝑆𝑖3𝑁4-on-𝑆𝑖𝑂2 

platform has moderate index contrast (2 vs 1.5), low absorption losses on the 

wavelength range from 400 nm - 2.35 µm [21], and it is also compatible with the 

standard CMOS processing, thus allowing the fabrication of extremely compact 

photonic circuits. 

 

Fig. 12 Schematic of 𝑆𝑖3𝑁4-on-𝑆𝑖𝑂2 platform. 

3.2 Cleaving  

Crystalline solids (crystals) consist of a structure of atoms or molecules arranged in 

a fixed and repeating three-dimensional pattern. This pattern has a definite 

geometrical shape. When some external pressure is applied to a crystalline solid, 

thus breaking it, it will have a tendency of splitting along a particular plane of its 

structure (where the bonding forces are the weakest), this plane is known as 

cleavage plane or crystallographic plane Fig. 13. The breaking up of a larger crystal, 
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along its cleavage plane, into smaller ones is known as cleaving. The resulting 

crystals will have smooth faces. 

For this work a 11mm x 11mm chip and a 11mm x 7mm chip were cleaved from a 

𝑆𝑖3𝑁4-on-𝑆𝑖𝑂2 wafer. The cleaving was performed by scratching the sample surface 

with a diamond tip, after it the sample can be easily broken using a couple of pliers. 

 

Fig. 13 Diagram of a crystalline solid and location of its cleavage plane 

3.3 Cleaning and Spin-coating 

To have a high adherence between the chip and the resist that will be applied later 

during the spin-coating procedure, it is first necessary to clean the chips surfaces 

from any organic materials that they might have stick to them. Thus, two ultrasonic 

baths with different organic solvents are performed: first a bath in acetone followed 

by another bath in isopropyl alcohol (IPA), for 5 minutes each. It is important to 

perform the baths in this order, otherwise the acetone could leave a small layer of 

residue on the chips surfaces which would reduce the adherence with the resist. The 

chip is not allowed to self-dry after each cleaning procedure: once the acetone bath 

is done the chip is rinse with IPA and later placed in IPA for the second bath, then 

when the second bath is completed the excess of IPA is removed with a nitrogen 

gun. 
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Spin-coating is a common method for applying a thin resist film on substrates. This 

spin-coating method can achieve a highly homogenous film of resist and allows 

control of the film thickness by adjusting the speed at which the sample is rotated. 

Some alternative methods are spray-coating and dip-coating. At the beginning of the 

spin-coating method a small quantity of the resist is dropped on the surface of the 

sample. Then, during the sample spinning, the centrifugal force is responsible for 

distributing the resist across the surface of the sample. Generally, the samples are 

spun at a speed starting from 1000 rpm to 8000 rpm [23]. If the sample was already 

spinning when the resist was applied the method is known as dynamic spin coating, 

and if the sample is spun after the application of the resist the method is known as 

static spin coating Fig. 14. Dynamic spin coating is used when either the resist or 

substrate has poor wetting abilities [24]. Finally, while the sample is spinning, part of 

the solvent of the resist is evaporated leading to stop of the thinning process (the 

rest of the solvent is evaporated by baking the sample afterwards). 

 

Fig. 14 Schematic of static spin coating process. 

In this work the samples were static spin coated with a positive resist layer, CSAR-

62 from Allresist company, of approximately 330 nm. This thickness is achieved at 

speed of 2000 rpm for 60 seconds. Next, for evaporating the remaining solvent in 

the resist and temper it, the samples are baked at 150°C during 60 seconds on a hot 

plate in accordance with the data sheet [25]. 
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3.4 Lithography and Development 

Once spin coating is completed, the next step is to print the desired pattern onto the 

chip´s surface. Then, to be able to print the pattern on the chip a process known as 

lithography is employed. There are two lithography techniques commonly used for 

printing the pattern on the chip: photolithography and e-beam lithography. 

In photolithography, a patterned mask is placed above the chip and then it is 

illuminated, the mask protects certain areas of the photo-sensitive resist from the 

incoming light, and allows light to reach to other areas of the resist. Consequently, 

the pattern is printed on the resist. In the case of electron beam lithography, also 

known as e-beam lithography or EBL, the electron beam is directly focused on the 

surface of the sample and thus allowing the electron-sensitive resist to be scanned. 

During the scanning, the designed pattern is draw on the chip’s surface, hence the 

use of a mask is not needed. Since EBL does not requires a mask, EBL is highly 

flexible when the pattern design needs to be modified and makes this method 

suitable for prototyping. The pattern for EBL can be designed using software like 

AutoCAD, Klayout1, Beamer2 and Raith toolbox for Matlab3, for giving some 

examples.  

In the case of EBL the resolution depends on the electrons interaction with the resist. 

On the other hand, photolithography is limited by diffraction. The smallest reported 

feature sizes found for photolithography are at 40nm [26]. While in the case of e-

beam lithography there are reports of feature sizes bellow 10 nm [27], but in most 

cases, by really working at it, 10 nm is the limit.  

After exposing the resist to the e-beam the next step is development, which is the 

process of dissolving the resist. Due to the e-beam exposure the solubility of the 

exposed areas changes, thus allowing us to dissolve the resist with an agent (usually 

called developer). There are two kinds of resist that can be used: positive or 

 
1 KLayout – Mask Layout: https://www.klayout.de 
2 GenISys Advancing the Standard – Beamer: https://www.genisys-gmbh.com/beamer.html  
3 See reference [21]. 

https://www.klayout.de/
https://www.genisys-gmbh.com/beamer.html
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negative, see Fig. 15, depending on which one is been used the exposed area of 

the resist is dissolved by the developer (positive resist) or remains (negative resist). 

On a negative resist, only the unexposed areas are dissolved by the developer. 

 

Fig. 15 Schematic of positive and negative resist after chemical developing 

In this work the patterns were defined by electron beam lithography on a Voyager 

unit from the company Raith Nanofabrication with a dose of 160
µC

𝑐𝑚2. Followed by 

development dipping the chip in AR 600-546 from Allresist for 70 seconds and 

moving the chip slowly all the time. Then the chip is rinse with IPA for 30 seconds to 

remove any remainings of the AR 600-546. Finally, after removing the IPA with the 

air gun, the chip is bake again on a hot plate for 1 minute at 130°C. All the patterns 

for the EBL were created with the Raith toolbox for Matlab [28] and from previous 

designs made by Selim Scharmers [12]. 

3.5 Etching 

Now, in order to fabricate the desired nanostructures, the pattern of the resist needs 

to be transferred onto the underlying material. To achieve this, it is necessary to 

remove the material that is no longer protected by the resist and this process is 

known as etching. 

The unprotected material can be removed via two methods: dry etching or wet 

etching. Dry etching techniques use plasma to etch the sample by bombarding it with 
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ions which physically eject the atoms of the material (this is known as sputtering), 

while wet etching techniques use a liquid chemical to dissolve the unprotected 

material and therefore removing it from the chips surface. 

As mentioned before dry etching techniques use a plasma to etch the sample. The 

plasma inside the chamber is created by applying a strong radio-frequency (RF) field 

to the gas which ionizes the gas molecules. Then by applying a bias voltage to the 

sample holder and electric field is generated and the ions are accelerated towards 

the sample. The ions which reach the sample remove the targeted material by 

sputtering.  

To further increase the etching process with plasma, it is possible to add another 

gas inside the gas chamber. This extra gas will chemically react with the substrate 

material that is been etched, therefore increasing the etching rate of the substrate 

material. This etching process, which achieves physical etching (sputtering) and 

chemical etching, is known as reactive ion etching (RIE). 

The direction of the etching process can be classified in two: anisotropic etching and 

isotropic etching. Isotropic etching acts in all directions of the material, while 

anisotropic only acts along one direction Fig. 17. If the targeted material was not the 

only etched during the process, then the etching process is poorly selective. Since 

the targeted material is the only material that has to be etch, then a highly selectivity 

etching process is desired Fig. 17. To conclude, a good etching process is highly 

selective and anisotropic. Thus, it would only etch the desired material and it would 

create vertical sidewalls for the designed structures (although, depending on the 

structure been fabricated, sloped walls might be desired). 
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Fig. 16 Difference between anisotropic and isotropic etchings. A perfect anisotropic etching 
produces vertical walls, while a perfect isotropic etching removes the same amount of the targeted 

material in all directions. 

 

Fig. 17 A highly selective etching process leaves the substrate untouched (left). While a 
poorly selective etches the targeted layer and part of the substrate (right). 

The etching process in this work is based on 𝐶𝐻𝐹3 and 𝑂2, at a moderate pressure. 

The RIE etching was carried out in the Oxford Plasmalab 100 unit, and the etching 

parameters and machine settings are summarized in the next Fig. 18. After the 

etching, the remaining resist is stripped with an ultrasonic bath with AR 600-71 from 

Allresist for 5 minutes, followed by 5 minutes of 𝑂2-ashing in case there are any 

remaining organics. 

𝑪𝑯𝑭𝟑/𝑶𝟐 38/2 sccm 

ICP power 100W 

RF power 40W 

𝑺𝒊𝟑𝑵𝟒 etch rate 40 nm / min 

Selectivity (𝑺𝒊𝟑𝑵𝟒/𝒓𝒆𝒔𝒊𝒔𝒕) 0.9 

Temperature 10°C 
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Carrier wafer Sapphire 

Pressure 12mTorr 

 

Extra 

Before loading the sample, a 

preconditioning of the 

chamber was done prior the 

etching by running the same 

recipe for the length of the 

etch duration. 

Fig. 18 Oxford Plasmalab 100 etching settings and etching parameters. 

3.6 Design 

To be able to follow the deterministic design method of Ref. [11] the structural design 

shown in Fig. 6 requires some minor modifications: The cavity length has to be zero 

and the radius of the holes are tapered. By making the cavity length equal to zero 

the mode volume is minimized and thus the Purcell factor increases, furthermore it 

reduces the loses from the cavity into the environment [29]. The tapering of the air-

holes reduces the losses that originate when total internal reflection criteria is not 

fulfilled between the interface of the cavity and air-cladding, by providing a smoother 

confinement of the field at the cavity edges [30].  

The cavity parameters are summarized in Fig. 19, where the 𝑆𝑖3𝑁4 cavity lies on top 

of a 𝑆𝑖𝑂2 substrate and is covered by a ℎ𝐵𝑁 layer to account for the later introduction 

of the emitters in an 2-D material heterostructure4 encapsulated in hBN. There are 

N unit cells on each side of the symmetry line. The width 𝑤 was chosen to be the 

same as the in-line coupled waveguide, which is designed for single mode operation 

at the targeted resonance frequency of the cavity. The radius is linearly tapered as 

a function of the hole index. All parameter optimization was done by full 3D FDTD 

simulation using the software Lumerical. 

 
4 A heterostructure is vertical stack of 2D materials. 
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Fig. 19 Cavity design based on Ref. [11]. Schematic of the cavity design parameters. a) Cross-
sectional view of the cavity. b) Structure seen from the top without hBN layer. 

The design steps from Ref. [11] are summarized as follows: 

1) A thickness for the nanobeam cavity is chosen, but this is constrained by the 

available wafers. In this work the thickness of the 𝑆𝑖3𝑁4 layer from the 

available wafers is 256 nm. 

 

2) A first guess of the periodicity 𝑎 can be made from the effective index of the 

Bloch mode given by 𝑛𝑒𝑓𝑓  =  
𝜆0

2𝑎
 → 𝑎 =  

𝜆0

2𝑛𝑒𝑓𝑓
 where 𝜆0 is the chosen 

wavelength of the cavity and 𝑛𝑒𝑓𝑓 can be estimated as the median value of 

the refractive indices of the three layered materials. The 𝑎 value in the design 

is not vital, because any 𝑎 that opens a bandgap can be used as starting point 

to construct a cavity [29]. 

 

3) Choose the width 𝑤 of the nanobeam cavity. For this work it was constrained 

to the width of the in-line coupled waveguide designed for single mode 

operation. 

 

4) Find the filling fraction of the first mirror segment that it has its dielectric band-

edge at the desired frequency. The filling fraction is given by 𝑓 =
𝜋𝑟2

 𝑎 w
, where 

𝑟 is the air hole radius and 𝑤 the width of the nanobeam cavity. Since the 

width is fixed (as mentioned in the previous step) the filling fraction 

optimization can be performed only as a function of the radius. This is the 

radius of the first air hole 𝑟1 (the hole closer to the symmetric dashed line).  If 

a value for the radius cannot be found, then the periodicity 𝑎 is adjusted 

accordingly. 

 

5) Find the radius 𝑟𝑀 that results in the maximum mirror strength for the desired 

frequency. The mirror strength is given by: 
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𝛾 = √(
𝜔𝑎𝑖𝑟 − 𝜔𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐

𝜔𝑎𝑖𝑟 + 𝜔𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐
)
2

− (
𝜔𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒 − 𝜔𝑚𝑖𝑑

𝜔𝑚𝑖𝑑
)
2
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where 𝜔𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 and 𝜔𝑎𝑖𝑟 are the frequencies of the dielectric band and air 

bad respectively, 𝜔𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒 is the chosen resonance frequency and 𝜔𝑚𝑖𝑑 is 

the mid-gap frequency. 

 

6) Choose the number of mirror segments 𝑁 for constructing the mirrors. Having 

more mirror segments would increase the Q factor but at the expense of 

having a smaller transmission to the coupled waveguide. 

 

7) Create the mirror by tapering the filling fraction quadratically. This is easily 

achieved by linearly tapering the airhole radius 𝑟, thus leading to quadratic 

tapering of the filling fraction. 
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Chapter 4 Results 

Two cavities were fabricated one for a resonance wavelength at 646 nm and the 

other at 890 nm. In this chapter the simulation results of the design parameters 

optimization for both wavelengths are first presented, followed by the 

characterization results of the fabricated cavities. 

4.1 Simulations 

The coupled waveguides chosen to be fabricated with the cavities are ridge-

waveguides also known as wire-waveguides, see Fig. 20. Since the thickness of the 

𝑆𝑖3𝑁4 layer from the available wafers is 256 nm the height of the waveguide is 

constrained to the same height, thus leaving the width as the only free parameter.  

 
Fig. 20 Schematic of a ridge-waveguide. 

The width range for single mode operation of the waveguide, for both wavelengths, 

was found with Lumerical Mode built in tool. The mode will be guided inside the 

waveguide when the effective refractive index 𝑛𝑒𝑓𝑓 of the mode is larger than the 

cladding: air on the top and 𝑆𝑖𝑂2 at the bottom for this case. If the effective refractive 

index is larger than 𝑆𝑖𝑂2 index, then it is also larger than the air refractive index, thus 

the width can be chosen only based on the difference between ∆𝑛 = 𝑛𝑒𝑓𝑓 𝑚𝑜𝑑𝑒  −

 𝑛𝑒𝑓𝑓 𝑆𝑖𝑂2
. In Fig. 21 the plots of ∆𝑛 vs waveguide width for both wavelengths are 

presented. 
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Fig. 21 Width of a ridge waveguide for single mode operation at 646nm and 890nm. The chosen 
width for fabrication is shown with a dashed line. 

In Fig. 21 the plot for the cavity operating at 890 nm is on the left hand side and the 

one for the cavity operating at 646 nm is on the right hand side. In both plots the 

change of the 𝑛𝑒𝑓𝑓 for the first two TE modes (blue for the first one and red for the 

second) as function of the increasing waveguide width are shown. As the width 

increases: the refractive index difference ∆𝑛 increases (thus 𝑛𝑒𝑓𝑓 also increases), 

and the waveguide at some point starts supporting another TE mode (if the width is 

increased more, one would expect that more supported modes would appear). 

Hence, taking into account that a single mode waveguide is desired, along with a 

high index difference: the widths chosen for the waveguides operating at 890 nm 

and 646 nm are 600 nm and 500 nm respectively. With this the design steps 1 and 

3, which were introduced at the end of the previous chapter, are covered. 

Now, an estimation of the periodicity is made with 𝑎 =  
𝜆0

2𝑛𝑒𝑓𝑓
, where 𝑛𝑒𝑓𝑓 is taken as 

the effective refractive index felted by the mode at the corresponding waveguide 

width, yielding for each wavelength: 𝑛𝑒𝑓𝑓−890 nm ≈ 1.7 and 𝑛𝑒𝑓𝑓−646 nm ≈ 1.8 → 

𝑎890 nm = 262 nm and 𝑎646 nm = 180 nm. If the results obtained with the first guess 

of the periodicity are not satisfactory, 𝑎 can be adjusted. In this work the first guessed 

did not provided a dielectric band mode with the desired frequency, thus the 

periodicity was adjusted to 𝑎890 nm = 267 nm and 𝑎646 nm = 183 nm. 
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Since 𝑎 and the waveguide width are fixed, the radius is the only parameter allowed 

to vary in the filling fraction equation. Therefore, the dielectric and air bands at the 

Brillouin zone edge can be obtained as function of radius. This bands can be seen 

in Fig. 22 were the desired frequencies (890 nm→336.8 THz and 646 nm→466.9 

THz) are found at 𝑟1−890 nm = 64 nm and  𝑟1−646 nm = 62 nm, which will be the radius 

of the first air hole in the taper.  

 

Fig. 22 Dielectric and air bands at the Brillouin zone edge as function of the radius for the cavities 
operating at 890nm and 646nm. 

Next, with the same simulation results from the air and dielectric band and the value 

of the operating frequency of the cavity, the mirror strength can be computed using 

the equation XXXVII. Thus, the mirror strength is also optimized as a function of the 

radius. This allows to find the radius of the last air-hole 𝑟𝑀 for the taper. This radius 

corresponds to the maximum mirror strength. The mirror strength as function of the 

radius is shown in Fig 23. Hence, from the data of this plots the corresponding 

extracted radius with maximum mirror strength are: 𝑟𝑀−890 nm = 44 nm and 

𝑟𝑀−646 nm = 47 nm. 
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Fig. 23 Mirror Strength as a function of the hole radius for the cavities operating at 890nm (left 
hand side) and 646nm (right hand side). 

Once the values of the radius for the first and last air-holes of the mirror, the taper 

can be constructed. The shrinking of the air-holes reduces the frequencies of the 

bands at each unit cell, this results in the confinement of the dielectric mode 

corresponding to the unit cell with radius 𝑟1. To ensure this confinement is satisfied, 

the full bandstructure is plotted for both radius 𝑟1 and 𝑟𝑀. Fig. 24 shows the dielectric 

band corresponding to 𝑟1 (colour red) lies inside the bandgap of 𝑟𝑀 (colour blue), 

thus providing the confinement of the mode. 

 

Fig. 24 Full band structure of the air and dielectric bands corresponding to the first (red) and last 

(blue) radius of the mirror. As required, the dielectric bands of the first 𝑟1 lies inside the bandgap 

of 𝑟𝑀. The full band structure for the cavity operating at at 890 nm is shown on the left-hand side 

and on the right-hand side lies the one corresponding to the cavity operating at at 646 nm. 
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Finally, the number of mirror segments (𝑁) is chosen. Reference [11] recommends 

at least 15, but if the obtained Q factor is unsatisfactory then N can be increased. 

For both cavities N was chosen equal to 50 segments. Then, with all the design 

parameters obtained a full 3D simulation of the cavity structure is performed to verify 

that a Gaussian attenuation of the mode inside the cavity structure is indeed 

achieved. These results are shown in Fig. 26 and Fig. 27 where the modes profiles 

are plotted as a function of the distance to the symmetry line of the cavity. In Fig. 26 

the mode profile is taken at the middle plane of the cavity (which is located at the 

middle height, corresponding to z=0). While in Fig. 27, to verify that a Gaussian 

attenuation is indeed achieve, a fit is performed on the field profile corresponding to 

the central line y=0 of the middle plane z=0. Table 1 summarizes the optimized 

parameters obtained from the simulations for both cavities. 

 

Wavelength (𝝀𝒄) 𝟖𝟗𝟎 𝐧𝐦 𝟔𝟒𝟔 𝐧𝐦 

𝒂 267 183 

𝐫𝟏 64 62 

𝐫𝑴 44 47 

𝐰 600 500 

N 50 50 

Q 19000 55000 

V 
0.63(

𝜆𝑐

𝑛𝑆𝑖3𝑁4

)
3

 0.94(
𝜆𝑐

𝑛𝑆𝑖3𝑁4

)
3

 

Fig. 25 Optimal parameters of the cavities structure. 
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Fig. 26 Mode profiles exhibiting Gaussian attenuation of |𝐸|2 for both cavities as function of the 
distance from the symmetry line of the cavity structure (see Fig. 19). The mode profile is taken at 

the middle plane of the cavity structure corresponding to z=0. 

 

Fig. 27 Mode profiles fitted to a Gaussian Function for both cavities as function of the distance 
from the symmetry line of the cavity structure. The mode profile is taken at the middle (y=0) of the 

plane which is located at z=0. 
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4.2 Characterization of the fabricated cavities 

To characterize the resonance wavelength of the cavities, room temperature 

transmission measurements were performed with a continuum laser “YSL sc-pro 7” 

and a grating spectrometer “Princeton Instruments Acton SpectraPro SP-2750”. The 

quality factor can be later extracted from these measurements. 

The setup shown in Fig. 28 was used to characterize the cavities. The cavities were 

pumped with the laser using a 100X 0.65 NA objective, and a 3-axis stage allows 

the focusing of the laser spot into to the cavity input waveguide by adjusting the 

sample’s position. The cavity response is later collected back through the objective 

and focused on a beam splitter. The reflected light of the beam splitter is directed to 

the spectrometer in order to identify the resonant features. The TM mode is 

suppressed, on the path between the beam splitter and the interferometer, by placing 

a half-wave plate followed by a linear polarizer. Additionally, on top of the chip, a 

long distance objective is mounted on a movable stage together with a camera and 

imaging light, this facilitates the coupling of the laser into the cavity input waveguide 

and permits the identification of the sample been tested.  

 

Fig. 28 Room temperature spectroscopy setup. 
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The spectrometer is equipped with two gratings that ideally provide resolutions of 

1200 lines/mm and 150 lines/mm. The lowest resolution grating was first used to 

locate the resonance peak. Once the peak position was known, the spectrometer 

was switched to the high-resolution grating in order to perform the measurement and 

extract the Q factor by fitting the data to a Lorentzian function.  

As mentioned in section 1.1.1 if the dielectric configuration is scaled then the 

frequency of the mode is shifted by the scaling factor of the dielectric configuration. 

Thus, by multiplying the parameters of a cavity by a scaling factor the resonance 

frequency of the cavity mode can be tuned. If this property is exploited, then it is 

possible to overcome any fabrication errors which shift the resonance frequency of 

the fundamental mode of the cavity from the desired resonance frequency. 

Therefore, multiple cavities with their parameters modified by a scaling factor, were 

fabricated on the same chip. 

4.2.1 Cavity operating at 646 nm 

For this wavelength cavities were fabricated with scaling from 0.95 to 1.05. Fig. 29 

shows an image of some of the fabricated cavities with different scale factors (in 

color yellow), where the scale factor 1 corresponds to the parameters values found 

through the simulations results of the previous section. The circle region indicates 

the location of the cavity, which is the same for each sample. The green arrow 

indicates the input of the waveguide coupled to the cavity and the red one the output. 
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Fig. 29 Fabricate cavities with scaling factor from 0.97-1.02. The green arrows at the bottom 
indicate the presence of more cavities with different scaling to the sides of the chip. The circle 
region indicates the location of the cavity. 

The transmission spectra of all the cavities is shown in Fig. 30, where the peak with 

the smallest wavelength corresponds to the fundamental mode of the cavity. The 

other peaks correspond to higher order cavity modes, but in this work we are not 

interested in them since the cavity is design to operate with the fundamental mode. 

More information about this higher order modes can be found in [11] and [29]. A 

smoothing filter was applied to the data in Fig. 30 making it easier to distinguish the 

peaks by eye for the reader.  

Fig. 31 summarises the wavelength of each peak corresponding to the fundamental 

mode for each scaled sample. Both the periodicity of the holes 𝑎 and their radius 𝑟 

play a role in defining the resonance of the mode, but the periodicity 𝑎 holds a major 

weight when defining the resonance of the mode, thus a change in the periodicity 

would cause a larger shift of the resonance than a change in the radius. This is the 

reason of why the resonance wavelength exhibits a linear growth as a function of 

the scaling factor. Also, the measurements show that the resonance wavelength for 

the optimal parameters (scaling factor = 1) is shifted downwards. This is mainly in 

part due to fabrication imperfections but also considerably due to absence of the 

hBN layer during the measurements. Further simulations, with the same optimal 
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parameters (scaling factor =1), shown that the absence of the hBN on top of the 

cavities causes blueshifting of the resonance wavelength by 10 nm. In other words, 

the cavity without hBN layer on top operates at a smaller resonance wavelength of 

636 nm, which is 10 nm smaller than the resonance wavelength of the cavity with 

hBN layer on top. From Fig. 31 data shows that none of the fabricated cavities 

achieves a resonance wavelength at 636 nm. This represents no major issue, since 

data also shows that every increase of 1% of the scaling factor leads to an increase 

of the resonance wavelength by 4 nm. Thus, to achieve the resonance wavelength 

of 636 nm one more scaling of the optimal parameters would be need it: 1.07. 

 

Fig. 30 Transmission spectra from the cavities with scaling factors from 0.95-0.99 on the upper 
part of the figure and on the lower part the transmission spectra for scaling factors from 1-1.05. 
The peak with the smallest wavelength is the mode that was designed for the operation of the 
cavity. A smoothing filter was applied to the data to make easier the distinction of the peaks by 
eye. 
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Fig. 31 Resonance wavelength as function of the scaling factor. A linear fit was performed on the 
data points to show the linear dependence of the resonance wavelength with the scaling factor. 

To extract the Q value a Lorentzian fitting is performed on the peak of the 

fundamental mode. The smallest wavelength peak corresponds to the mode of the 

cavity for which the cavity is design to operate. The transmission is given 

Joannopoulos et al. in [13]. 

𝑇(𝜔) =

1
4𝑄2

(
𝜔 − 𝜔0

𝜔0
)
2

−
1

4𝑄2
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where 𝑄 is the quality factor, ω is frequency and ω0 is the corresponding frequency 

to the maximum of the peak. The fabricated devices exhibit Q values in the range 

from 500 to 3100, where the device with highest Q= 3070 ± 1435 corresponds to 

the scaling factor of 1.03. The high uncertainty of this device, when compared to the 

others, arises from the fact that fewer data points forming the peak where available 

for the fitting. The Q values obtained for each device are summarized in Fig. 32.  
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Fig. 32 Q factors with their respective error bar for the different scaling factors. 

4.2.2 Cavity operating at 890 nm 

For these devices, the coupling was achieved by employing grating couplers on each 

side of the cavities Fig. 33 (a).  Thus, the setup used for characterizing the cavities 

was slightly modified by removing the camera and imaging light source which were 

above of the sample, and by adding another beam splitter before the objective Fig. 

33 (b) The camera is placed on the new path created by the beam splitter which 

allows for light imaging of the mounted sample. 
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Fig. 33 a) Room temperature spectroscopy setup. b) Photograph of the fabricated device with the 
optimal parameters of the cavity (scaling factor = 1). The circle region indicates the location of the 
cavity. 

 

Fig. 34 SEM Image of the cavity operating at 890nm. 

These cavities were fabricated with scaling factors ranging from 0.99 to 1.06, and 

their transmission spectrum exhibited a better signal to noise ratio when compared 

with the signal to noise ratio of the cavities from Fig. 30. Due to this worse signal to 
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noise ratio from the cavities from Fig. 30,  the fundamental resonance peak of the 

cavities could not be distinguished from the noise of the signal and consequently a 

smoothing filter had to be applied to the transmission spectra so the fundamental 

peak could be distinguished. While, due to the better signal to noise ratio of the 

cavities from Fig. 35, no smoothing filter was required and the fundamental mode of 

each device could be distinguished from the noise of the signal. 

 

Fig. 35 Transmission spectra from the cavities with scaling factors from 0.99-1.02 on the upper 
part of the figure and on the lower part the transmission spectra for scaling factors from 1.03-1.06. 
The black arrows indicate the location of the fundamental mode. 

As expected, the resonance wavelength also displays a linear behaviour against the 

scaling factor, see Fig. 36. The first two cavities with scaling factor 0.99 and 1.00, 

exhibited a first peak at 845 nm and 852 nm respectively. These peaks at 845 nm 

and 852 nm can be easily mistaken as the fundamental mode of each cavity. Instead, 

these peaks at 845 nm and 852 nm correspond to the second mode of each cavity. 

Like the fundamental modes the second modes are also linearly dependant from the 

scaling factor. Therefore, to corroborate that the peaks at 845 nm and 852 nm 

correspond to the second modes, a linear fit was performed on the resonances of 

the second modes and fundamental modes. The solid line in Fig. 36 shows the linear 

increase of the resonances of the seconds modes against the scaling factor, while 
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the dashed line is for the fundamental modes. From the linear fit for the fundamental 

modes one would expect to find the resonance for the fundamental modes at 841 

nm and 847 nm respectively. Also, one might be able to show the presence of the 

peaks of fundamental modes for the scaling factors 0.99 and 1.00 at their expected 

wavelength by performing multiple measurements followed by an ensemble 

averaging on the data, but this was not done because either way their resonances 

are far from the desired one.  

Similar than in the previous section, the simulations without hBN for the optimal 

parameters shown a downwards shifting of 11 nm for the resonance wavelength. 

Thus, for these optimal parameters one expects to find the resonance wavelength 

of the cavity at 879 nm, which is indeed achieve in the device with scaled parameters 

by 1.05 which shows a resonance wavelength at 878.9 nm. 

 

Fig. 36 Resonance wavelength as function of the scaling factor. The solid line corresponds to a 
linear fit on the second modes of the spectrum for each scaling factor. The dashed line 
corresponds to a linear fit on the fundamental modes of the spectrum for the scaling factors from 
1.01 to 1.06 

Same as in the previous section, to extract the Q factor the resonance peak 

corresponding to the fundamental mode was fitted to the Lorentzian function of XXV. 
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These devices exhibit Q values in the range from 1600 to 10958 Fig. 37. The device 

with scaling factor of 1.05 has a resonance wavelength at 878.9 nm and it has a Q=

8944 ± 2823.  

Since the cavities are designed to operate with the fundamental mode [11, 29] the 

resonances of 0.99 and 1, which correspond to the second mode of the cavity, have 

a smaller Q value. While the low Q value of 1.01 and 1.02 is due to the poor 

transmission of the fundamental mode which is just above the noise baseline. 

 
Fig. 37 Q factors with their respective error bar for the different scaling factors. The Q values of 
the cavities with scaling factors 0.99 and 1.00 are not from the fundamental mode, those values 
correspond to the Q values of the second mode. 

4.2.3 Purcell factor and transmission to the coupled waveguide 

In reference [29] it is demonstrated that the band edge modes have unity 

transmission to the coupled waveguide. Thus, their peaks values can be used for 

estimating the transmission of the fundamental mode to the coupled waveguide. 

The peak of the band edge mode is highlighted in the next figure for the cavity with 

scaling factor 1.04 from the previous section 4.2.2. The transmission yields 𝑇 =

 0.28 ±  0.06. Similarly, the transmission for the cavity with scaling factor of 1.05 from 

section at 4.2.1 is calculated and it yields 𝑇 =  0.09 ±  0.03. 
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Fig. 38 Transmission spectra for the sample with scaling factor of 1.04 from section 4.2.2. 

To conclude this section the Purcell factor is estimated for the cavities 

890 nm 𝑆𝑐𝑎𝑙𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 = 1.05 and 646 nm 𝑆𝑐𝑎𝑙𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 = 1.05, with the mode volumes 

obtained from the simulations and measured Q values. For a cavity, whose cavity 

mode is aligned with the polarization of the emitter, whose linewidth is wider than the 

emitter’s linewidth and whose maxima’s location coincides with the position of the 

emitter, the Purcell factor is given by [31]: 

𝐹𝑝 =
4

3𝜋2

𝑄

𝑉
(
𝜆

𝑛
)
3

 
XXXIX 

 where 𝜆 is the resonance wavelength of the cavity, 𝑛 the refractive index of the 

cavity’s dielectric, 𝑄 is the quality factor of the cavity and 𝑉 is the mode volume. 

Substituting the previously obtained values in this chapter, equation XXVI yields: for 

the cavity at 890 nm with scaling factor of 1.05 Fp−890 nm−1.05 = 118 ± 38 and for the 

cavity at 646 nm with scaling factor of 1.05 Fp−890 nm−1.05 = 36 ± 13. 

4.3 Discussion and further work 

The quality factors obtained in the previous section are comparable to the ones 

previously reported for similar 𝑆𝑖3𝑁4 cavities: a maximum quality factor of 7000 is 
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reported in Ref. [18], and values starting from 10000 are reported in Ref. [17]. Still, 

there is a point to discuss regarding the low Q values of the fabricated cavities for 

646 nm (without hBn layer 636 nm) when comparing it to the cavities for 890 nm. 

Since the confinement in 𝑦 and 𝑧 is achieved through total internal reflection, the 

bandgap of the chosen design does not form a complete bandgap (a complete 

bandgap exhibits forbidden frequency intervals in any possible direction of light 

propagation). Because of this, as pointed out in [32], there is always a coupling 

between modes inside de bandgap (that appear due to the introduction of a defect 

in the lattice) and the continuum of states located above the light line. This coupling 

between the modes, for 1-D cavities, can be reduced by localizing the modes in 𝑘 

space and strongly localizing the mode in real space. The later one can be achieved 

with a large bandgap and having the resonance mode as close as possible to the 

mid-gap frequency. While the first one is harder for high mid-gap frequencies since 

the light cone becomes wider for higher frequencies leading to an increase of the 

overlapping between the resonance and the continuum of modes. Thus, increasing 

the leaking of the cavity.  

It is possible to further reduce this loses into the continuum by making a suspended 

cavity [19] [17] [33] (instead of fabricating one on a substrate) which would increase 

the vertical confinement of the mode.  Alternative, one could try to design a different 

geometry for the photonic crystal based on momentum space design [34, 35]. But 

since in this work we are also interested in the Purcell factor for the later integration 

of the cavities with 2-D emitters (which is the future step of this work), we could also 

concentrate our efforts in decreasing the mode volume instead of make the quality 

factor bigger, since the Purcell factor is proportional to 
𝑄

𝑉
 [31] where 𝑉 is the mode 

volume. 

Unfortunately achieving smaller mode volumes than the ones reported here or in 

[11] would require a change in the design structure (if one wishes to keep the high 

quality factor values). Since the design used here suffers from a mode volume size 

increase when adding more segments to the mirror section [11], which is done if one 

wishes to increase the quality factor.  
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A remarkable work in this aspect is found in [36] and [37] where they employed a 

bowtie design for each unit cell. The achieved mode volumes are two orders of 

magnitude smaller than the ones reported in this thesis and in [11, 29], and with 

quality factors up 100000. A similar layout design than the one of this work but with 

a suspended cavity and rectangular shaped holes is found at [38] with quality factor 

up to 5000 and mode volumes of one order of magnitude smaller than the ones of 

this work. Finally, a cavity with low mode volume and high quality factor that employs 

topological materials for its fabrication can guarantee the existence of a single mode 

within the photonics bandgap [39]. 
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Conclusions 

In this work, a 1-D deterministic photonic crystal nanocavity design with in-line 

coupling is reviewed and implemented to fabricate two cavities operating at 646 nm 

and 890 nm on a 𝑆𝑖3𝑁4 platform, with transmissions to the coupled waveguide being 

𝑇646 nm  =  0.09 ±  0.03 and 𝑇890 nm  =  0.28 ±  0.06, respectively. This design is 

advantageous in the sense that the method for computing and optimizing the cavities 

parameters is not based on trial-and-error, resulting in shorter computation time 

needed for obtaining the cavity parameters. In the present work the computation time 

was further reduced by fixing the cavity width at the same width of the coupled 

waveguide that was designed for single mode operation. In this deterministic design 

the enhancement of the Q factor for the targeted cavity mode is achieved by tapering 

the air-holes radius, which leads to spatial localization (in k-space) of the major 

components at the edge of the Brillouin zone, thus achieving a weak coupling 

between the mode inside the bandgap and the continuum of states above the light 

line. However, the cavities achieved with this deterministic design support more than 

a single mode and these unwanted extra modes cause a further leaking of the light 

trapped inside the cavity into the environment surrounding the cavity since these 

extra modes possess a higher coupling to the continuum of states above the light 

line. 

By employing 3D FDTD simulations the cavities were optimized and tested prior to 

fabrication. It is important to point out that in this design, the periodicity does not 

have to be a particular value; actually, the cavity parameters can be found for 

multiple different values of the periodicity 𝑎. Meanwhile, the number of mirror 

segments N can play a major role, since it can affect the quality factor Q, the 

transmission to the coupled waveguide T, and the mode volume V values. A higher 

number of N results in a smaller value of T and in increased values for Q and V. A 

higher value of V is not desired since it will result in a smaller value for the Purcell 

factor. Thus, if a cavity with smaller V and higher Q is desired a change in the cavity 

structure will have to be implemented. 
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Finally using optimized fabrication procedures (spin coating, e-beam lithography and 

RIE-etching), the designed cavities were experimentally demonstrated to exhibit a 

high Q value and small mode volume. Thus, these cavities possess the required 

qualities and potential for the enhancement of the spontaneous emission of single 

photon emitters that will later be integrated as the next stage of this work. 
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