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Abstract

In this work, simulations of propagation of helical Ince-Gauss beams, elliptical solutions of the paraxial wave

equation that carry orbital angular momentum, were performed in order to investigate how the nature of

these modes affect their performance as information carrying beams in free space optical communication

systems. Special attention was given to the effects that the order p, degree m and ellipticity ε parameters,

and their evolution, have on the robustness of the beam. We find that for a given mode, the chose of basis

in which it is projected (ellipticity value) does not strongly affect the light spatial mode performance as

information carrier. However, for a chosen helical Ince-Gauss mode, it is rather more strongly affected by

the combination of p and m and their difference p−m . These results were obtained by varying propagation

parameters such as the refractive index structure parameter C2
n or propagation distances and using different

beam structure parameters as the mentioned p, m and ε. From the simulations, both intensity and phase

transverse profiles were calculated as well as propagation measurements such as the fidelity of the modes,

and specially defined scintillation index and strehl ratio. Additionally, the generation of these vortex beams

using spatial light modulators was demonstrated, showing the evolution of the transverse intensity profile of

the modes with the ellipticity ε parameter. From this, a detection scheme of these modes is proposed using

their near-field intensity profile.
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Chapter 1

Introduction

1.1 Motivation

In recent years, optical communications have had great impact in our everyday lives, steadily replacing elec-

tronic communication systems, due mainly to their bigger capacity of information carrying. Today’s state

of the art of optical communications consists mainly of fiber optics based systems. While fiber optics based

systems are very mature in development, they represent a really high cost if they are to be considered to fully

replace legacy wire communication networks. This is why they are not, in some cases, a viable solution for

last mile connectivity or for the building of networks in really remote places [1]. Especially for these reasons

and among others, the possibility to use different basis like polarization and optical angular momentum of

light to encode information that is resistant to eavesdropping, free space optical communications have gained

special attention in the last couple of years [2–6].

Propagation of laser beams through the atmosphere has important applications not only in communica-

tions systems, but also in fields such as Laser Radar (LADAR) technologies [7], Light Detection and Ranging

(LIDAR) [8], remote sensing [9], imaging [10], etc. This is a reason why the characterization of the effects of

atmospheric turbulence in beam propagation is of big importance for their implementation and optimization

in these kind of systems.

Plenty of studies have been made on propagation of laser beams through the atmosphere, focusing mainly

on the properties of fundamental Gaussian beams, as they are the most common kind of transverse beam

profiles for these applications. However, in recent years other kinds of modified Gaussian beams have been

studied, as it has been found that initial beam properties such as shape, phase, size, coherence, etc. strongly

affect the performance of these beams [11]. Because of this, one of the hot topics regarding selection and

optimization of free space propagation of beams resides on the so-called structured light beams, that are a
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CHAPTER 1. INTRODUCTION

result of the manipulation of the spatial degree of freedom of light, i.e., spatial modes of light. Of special

interest are structured light beams that carry orbital angular momentum [3,12,13], which began to be broadly

studied following the work by Allen et al. [14].

The orbital angular momentum is an intrinsic property of light that resides in a theoretically infinite-

dimension space, which translates to an infinite-dimension basis of orthogonal modes, each with the capacity

of being an independent channel of information. Comparing this to the capacity of another usually used

degree of freedom such as polarization, which resides in an only 2-dimensional space, the usage of orbital

angular momentum as information carrier results in a massive advantage due the raw number of communi-

cation channels [15]. The mathematical treatment of beams carrying OAM, also known as optical vortexes,

has great resemblance to the physics lying in vortexes in fluids as well as giving a connection between macro-

scopic optics and quantum effects [16, 17]. Thus, the importance of these OAM carrying beams not only

resides in the realm of optical communications, as they are used in a broad field of applications and studies

such as those regarding: optical tweezers, imaging and microscopy, biomedicine, metrology, astronomy, fluids

mechanics [18–24] and even in tests and applications of quantum mechanics, such as quantum entanglement

and high dimensional quantum key distribution [25,26].

While the use of optical vortex beams for free space applications has been studied in free space quan-

tum key distribution and satellite communications systems [27, 28], most of the work has been done using

Laguerre-Gaussian beam profiles, natural solutions of the paraxial wave equation in cylindrical coordinates

that carry orbital angular momentum. However, limited study has been done using a more general beam

profile family of modes that also contains orbital angular momentum: The Ince-Gaussian modes, elliptical

solutions of the paraxial wave equation that have an additional degree of freedom in their ellipticity param-

eter [29]. This characteristic makes them as potential candidates for usage in applications involving optical

vortex beams, particularly those regarding free space propagation.

In this thesis, we investigate properties of these Ince-Gaussian beam profile by presenting a procedure on

how these modes can be created and then simulating their propagation through atmospheric turbulence. A

quantitative and qualitative analysis on the performance and behavior of these beams is made with special

attention to their usage in free space communication systems.

1.2 Objectives

The main objective of this thesis is to study, in a theoretical way through mathematical simulations, how

different transverse beam profiles behave and change while propagating through turbulent atmosphere. In

particular, how a family of solutions of the Paraxial Wave Equation, the Helical Ince-Gauss modes, is affected

12
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by these turbulence effects. These modes display the meaningful trait of carrying orbital angular momentum,

which makes them candidate for carrying big quantities of information in optical communications systems

with the advantage of having an additional degree of freedom compared to other orbital angular momentum

modes: the ellipticity. Special attention is given on how the order, degree and ellipticity parameters of these

beams influence the way and degree in which their transverse profiles are modified, in order to obtain general

guidelines on which kind of transverse beam profiles exhibit better behavior through atmosphere, and thus,

are more suited for their eventual use in free space optical communication systems.

As such, in this work several aspect regarding Ince-Gauss modes are touched upon, such as their math-

ematical descriptions, the processes in which they can be generated, and of particular importance, their

performance while propagating through atmospheric turbulence.

1.3 Thesis structure

The content of this thesis will be distributed in four main chapters besides the introduction one: In the

first of these chapters, a theoretical background necessary to understand the different procedures and their

respective results carried out in this text is given. Several topics are explored, such as the different solutions

of the paraxial wave equations, how these can be used to build light modes with a certain topological charge,

and thus orbital angular momentum and finally how the propagation of these beams through atmosphere

can be modeled. In the second chapter, a description and demonstration on how this kind of orbital angular

momentum carrying modes can be created using a spatial light modulators is presented. In the third chapter,

several simulations of orbital angular momentum carrying modes propagated through atmosphere are detailed,

by varying some parameters of the light modes and the atmospheric turbulence model. Finally, a conclusion

on the overall results of the work is given and the perspective of the project and possible future research

work is revised.
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Chapter 2

Theoretical framework

In this chapter, the different considerations to take into account for the origin, generation and propagation

of Laguerre, Hermite and Ince-Gauss modes are presented. First, the mathematical expressions for these

modes are constructed from the Maxwell equations and the nature of these modes as ortho-normal families of

solutions of the paraxial wave equation is discussed. Then, helical beams, superpositions of these modes that

carry Orbital Angular Momentum are presented and discussed upon. Finally, the different considerations for

models of propagation of light beams through the atmosphere are discussed.

2.1 Maxwell Equations and the paraxial wave equation

The description of classical electromagnetic phenomena is enclosed in Maxwell’s equations, which for no free

charges or currents in SI units and in their differential form are given by [30]:

~∇× ~E = − ∂

∂t
(µ ~H), (2.1)

~∇× ~H =
∂

∂t
(ε ~E), (2.2)

~∇ · ε ~E = 0, (2.3)

~∇ · µ ~H = 0, (2.4)

where ~E and ~H represent the electric and magnetic fields, and ε and µ are the electrical permittivity

and magnetical permeability of a medium. Through some mathematical manipulations of these equations, a

wave equation for the electric field can be derived:

∇2 ~E − µε ∂

∂t2
~E = 0, (2.5)
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were the term 1√
µε gives the speed of the electromagnetic wave. An analogous expression for the wave

equation of the magnetic field with the same wave speed can be obtained as well.

The permittivity and permeability, have the information of the propagation medium and are related to

the electric and magnetic susceptibilities of said medium (χe and χm) as:

ε = ε0εr = ε(1 + χe), (2.6)

µ = µ0µr = µ(1 + χm), (2.7)

with ε0 and µ0 the permittivity and permeability of vacuum, while εr and µr correspond to the relative per-

mittivity and permeability respectively. Both susceptibilities are in general, spatial and frequency dependent.

From the aforementioned quantities, a parameter of the medium called the refractive index can be defined,

for a paramagnetic medium (µr = 1):

n =
√
εr =

√
1 + χe. (2.8)

Because the speed of the electomagnetic wave is given by 1√
εµ and ε is dependent on εr, then the speed of

the electromagnetic wave is n dependent. If the media is vacuum, (εr = µr = 1) the speed of the electromag-

netic wave is c, the speed of light and the refractive index is n = 1. For higher values of εr and µr, the speed

of the wave reduces while n increases. Thus, the real part of n is a measure of how much slower light travels

through a medium with respect to vacuum or how ”dense” the medium is to light. Both susceptibilities can

be complex quantities and thus n is in general a complex quantity.

Assuming that the electric field has only components in one direction, the electric field can be written as:

~E = En~en, (2.9)

having ~en as a unitary direction vector. Assuming that the amplitude of the field can be decomposed into

temporal and spatial parts:

En = T (t)Er(~r). (2.10)

It is well known that the the temporal dependence of the electric field is of the form:

T (t) = eiωt, (2.11)

with ω the radial frequency, while the spatial dependence of the electric field Er(~r)) gives place to the

wave equation in (2.5) is transformed into the Scalar Helmholtz Equation:

∇2Er(~r) + k2Er(~r) = 0, (2.12)

where k is the wave number, magnitude of the propagation vector ~k and defined as:
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k =
nω

c
. (2.13)

Now assuming that the propagation of the wave is predominantly along the optical axis of the beam,

which is chosen to be the z-axis, the following expression holds:

Er(~r) = Φ(~r)eikz, (2.14)

and by saying that the amplitude of the electric field Φ(~r) is a slow-varying function with respect to z,

that is to say:

∣∣∣∣∂2Φ(~r)

∂z2

∣∣∣∣ << k

∣∣∣∣∂Φ(~r)

∂z

∣∣∣∣. (2.15)

Equation (2.12) becomes:

∇tΦ(~r) + 2ik
∂Φ(~r)

∂z
, (2.16)

were ∇t is the Laplacian for the x and y directions. Equation (2.16) is known as the Paraxial Helmholtz

Equation or Paraxial Wave Equation (PWE) [31].

2.2 Solutions of the paraxial wave equation

The lowest-order solution of the PWE is the fundamental Gaussian beam, whose expression is [32]:

ΦG(~r) =
w0

w(z)
exp

[
r2

w2(z)
+ i

kr2

2R(z)
− iφg(z)

]
, (2.17)

where r is the radial distance from the center axis of the beam, w0 corresponds to the beam width at z = 0,

w2(z) describes the width of the beam, R(z) is the radius of curvature of the phase front and φg(z) is the

Gouy phase shift. The referred zR quantity is known as the Rayleigh range, which gives the distance zR at

which w(z) =
√

2w0. The introduced parameters are defined as [32]:

w2(z) = w2
0

(
1 +

z2

z2
R

)
, (2.18)

R(z) = z +
z2
R

z
, (2.19)

φg(z) = arctan

(
z

zR

)
, (2.20)

zR =
kw2

0

2
. (2.21)

Even though equation (2.17) is the most straight forward solution to the PWE, other very important

solutions can be derived if one assumes that the beam profile is the aforementioned gaussian beam solution

modulated by some other kind of transverse profile, meaning:
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Φ(~r) = At(~rt)[iZ(z)]ΦG(~r), (2.22)

where At(~rt) is a function that depends only on the transverse coordinates of the beam contained within

the transverse position vector ~rt. The solutions of the PWE given by this construction strongly depend

on the coordinate system in which it is solved, as when inserting (2.22) into (2.16) the transverse Laplacian

operator changes with the coordinate system, giving place to differential equations with solutions that involve

recursion polynomials which depend on the coordinate system.

For a polar coordinate system on the transverse plane, the solutions are given by the Laguerre-Gaussian

(LG) modes LGe,on,l [33]:

LGe,on,l(r, θ, z) =

[
4n!

(1 + δ0,l)π(n+ l)!

] 1
2 1

w(z)

(
cos(lθ)

sin(lθ)

)[√
2r

w(z)

]|l|
L|l|n

(
2r2

w2(z)

)
exp

[
r2

w2(z)

]
exp

[
i

(
kz +

kr2

2R(z)
− (2n+ |l|+ 1)φg(z)

)]
, (2.23)

here r is the radial coordinate, θ the azimuthal coordinate, n and l the radial and azimuthal numbers and e, o

represents the parity of the mode, either even or odd, choosing the cosine term for even and the sine one for

odd parity. Lln are the associated Laguerre polynomia [33]. Examples of different LG modes can be seen in

Figure 2.1, where examples of odd and even modes are shown. All of these modes have azimuthal symmetry

and characteristic concentric-ring shapes, with the number of rings is given by the radial parameter n.

(a) LGe1,3 (b) LGo1,3 (c) LGe2,4 (d) LGo2,4

Figure 2.1: Intensity pattern of different LG modes. Here we consider different values of n and l for even

and odd parity. A beam waist w0 = 5cm was used.

Another solution of the PWE can be derived for Cartesian coordinates, yielding the known Hermite-

Gaussian (HG) modes HGnx,ny which in normalized form are:
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HGnx,ny (x, y, z) =

(
1

2nx,ny−1πnx!ny!

)1/2
1

w(z)
Hnx

(√
2x

w(z)

)
Hny

(√
2y

w(z)

)

exp

[
−r2

w2(z)

]
exp

[
i

(
kz +

kr2

2R(z)
− (nx + ny + 1)φg(z)

)]
, (2.24)

where x and y are the Cartesian coordinates, r2 = x2 +y2 and Hni is the Hermite polynomial of order ni [33].

Again, examples of these beams are given in Figure 2.2. As can be seen from the figure, The main difference

between the parity is the orientation of the beam, so a HGe2,3 mode would be a HGo3,2.

(a) HGe2,3 (b) HGo2,3 (c) HGe4,4 (d) HGo4,4

Figure 2.2: Examples of even and odd HG modes. Odd and even parity are considered, with varying nx and

ny. The shown modes have a beam waist w0 = 5cm.

Other solutions for the PWE can be derived depending on the coordinate system. For instance, one could

propose the solution for the PWE in elliptical coordinates:

IG(~r) = E(ξ)N(η)eiZ(z)ΦG(~r). (2.25)

Here, z = z and the elliptical coordinates ξ and η are defined as x = f(z)cosh(ξ)cos(η) and y =

f(z)sinh(ξ)sin(η), with ξ ∈ [0,∞) and η ∈ [0, 2π), being ξ and η the radial and angular elliptic vari-

ables. f(z) = f0w(z)/w0 is the semi focal separation with f0 the initial semi focal separation. By inserting

Equation (2.25) into Equation (2.16) three separate differential equations are obtained:

d2E

dξ2
− εsinh(2ξ)

dE

dξ
− [a− pεcosh(2ξ)]E = 0, (2.26)

d2N

dη2
− εsin(2η)

dN

dη
− [a− pεcos(2η)]N = 0, (2.27)

−
(

4z2 + k2w4(0)

2kw2(0)

)
dZ

dz
, (2.28)

where a and p are separation constants and ε = 2f2
0 /w

2
0 parameter is known as the ellipticity parameter.
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Equation (2.27) is known as the Ince equation and was studied and solved first by Edward Lunsay Ince [34].

By taking z = 0, the solutions of these differential equations are the Ince-Gauss beams [29,35]:

IGe,εp,m =
Cw0

w(z)
Cmp (iξ, ε)Cmp (η, ε)exp

[
−r2

w2(z)

]
exp

[
i

(
kz +

kr2

2R(z)
− (p+ 1)φg(z)

)]
, (2.29)

IGo,εp,m =
Sw0

w(z)
Smp (iξ, ε)Smp (η, ε)exp

[
−r2

w2(z)

]
exp

[
i

(
kz +

kr2

2R(z)
− (p+ 1)φg(z)

)]
, (2.30)

with e, o referring to even or odd. The ε parameters adjust the ellipticity of the transverse structure, while

the parameters w0 and f0 scale the physical size of the mode.

The suffix p corresponds the order and m to the degree of the modes, both having the same parity integer

numbers and with the condition p ≥ m ≥ 0 for even numbers and p ≥ m ≥ 1 for odd numbers. Cpm and Spm

are the even and odd Ince-Polynomials of order p and degree m and C and S are normalization constants [35].

The Ince-Polynomials can be found by assuming a harmonic expansion [29,36]:

C2K,2nη(η, ξ) =
n∑
r=0

Ar(ε)cos(2rη), (2.31)

C2K+1,2n+1η(η, ξ) =

n∑
r=0

Ar(ε)cos((2r + 1)η), (2.32)

S2K,2nη(η, ξ) =
n∑
r=0

Br(ε)sin(2rη), (2.33)

S2K+1,2n+1η(η, ξ) =
n∑
r=0

Br(ε)sin((2r + 1)η), (2.34)

with K having values from 0 to n. By using these expansions and applying them to the differential

equations, a series of recurrence relations appear for the weight constants Ar and Br, which can be expresed

as the kernel of the characteristic equation of some matrix, defined by the recurrence relations, having then

a taking the role of the eigenvalues of the matrix, whit an associated eigenvector which defines the values of

the constants [35].

For the transverse profile of an IG mode, m gives the number of hyperobolic nodal lines, and (p−m)/2

is the number of elliptic nodal lines. Higher indices modes have larger physical size as it occurs with LG

and HG modes. Examples of IG intensity profiles are given in Figure 2.3. In said figure, even and odd IG

modes are shown, with values of ellipticity ε = 2 and ε = 3.42, showing that the value of ε is not necessarily

and integer number. It is important to notice that ε heavily affects the shape of the intensity profiles, which

have symmetry axis given by this value.
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(a) IGe,25,3 (b) IGo,25,3 (c) IGe,3.42
8,4 (d) IGo,3.42

8,4

Figure 2.3: Intensity profiles for IG modes. Even and odd intensity profiles are shown for, even and odd

parity of p and m, as well as integer and non-integer values of ε. A beam waist w0 = 5cm was used.

Due to the fact that all of these solutions contain within themselves the mathematical expression of a

Gaussian beam, but modulated with a certain function depending on the transverse coordinates, all of these

solutions represent a beam of non-Gaussian intensity distribution but with the same wavefronts and angular

divergence as a Gaussian beam. As such, regardless of the intensity as can be seen from equations (2.23)-

(2.30), the beam width of all modes depends on the factor w0/w(z) but is shape-invariant, as is the radiature

R(z) of the beams. This also means that the ABCD matrix treatment for the propagation of Gaussian Beams

applies for the different solutions of the PWE.

Each family of solutions of the PWE constitutes an ortho-normal basis, that is to say that the inner

product of the modes (assuming them to be normalized) is of the form:

∫ ∞
−∞

∫ ∞
−∞

AkuĀ
k′
u′dS = δuu′δkk′ , (2.35)

where A would be a generic mode function, u and k are generic names for the index or indices of the

modes, dS is a differential surface element and δ is the Kronecker delta functional. In the particular case of

Ince-Gaussian modes, the orthogonality of the modes is written as:

∫ ∫ ∞
−∞

IGσp,m
¯IGσ
′
p′,m′dS = δσσ′δpp′δmm′ . (2.36)

All of Laguerre, Hermite and Ince-Gaussian modes create on their own an orthonormal family of solutions

of the PWE, and thus, each solution on a certain basis can be transformed into another one. In particular,

we can look at the Ince-Gaussian modes, as their particular solutions depend on the f0 parameter, and thus

the ellipticity of the used coordinate system. The transition of a IG mode into a LG mode occurs when

ε = 0 (circular cylindrical coordinates), while the transition into HG when ε = ∞ (Cartesian coordinates).

Similar to how ε = 0 and ε =∞ define a complete orthogonal basis of modes, any value of the ellipticity

20



CHAPTER 2. THEORETICAL FRAMEWORK

parameter describes an individual orthogonal basis [35]. As for the transition of the indices, for LG

modes these are related as: m = l and p = 2n+ l, while for HG these relations depend on the parity of the

IG mode: For even ones nx = m and ny = p−m, while for odd ones nx = m− 1 and ny = p−m+ 1. These

relations of the indices come from the fact that the Gouy shifts of the beams should match and these are

modulated by the indices as can be seen in from (2.23)-(2.30). The transition of orthogonal basis of a mode

due to the ellipticity parameter is depicted in Figure 2.4., where the evolution of a IGo,ε5,3 with the value of ε

is shown, transforming the original LGo1,3 mode into a HG2,3 mode for extreme values of ε. As expected, the

symmetry of the beam is transformed due to the coordinate system used in each beam, going from azimuthal

to rectangular.

(a) LGo1,3 = IGo,05,3 (b) IGo,15,3 (c) IGo,4.25,3

(d) IGo,10
5,3 (e) HGo2,3 = IGo,∞5,3

Figure 2.4: Evolution of a IGo5,3 beam, w0 = 5cm, by varying the ellipticity parameter from ε = 0 to ε =∞.

In general, a transformation matrix method can be used in order to convert IG⇒LG, IG⇒HG or LG⇒HG

modes (or vice versa) considering the subset of degenerate modes that in both families have the same Gouy

shifts. This is because, in order to construct a structurally stable beam in a family of modes from another

basis, they need to remain in the same phase as they propagate. This is a very important result, as it also

means that the mode decomposition in any of the transformations is finite.

With this in mind, for any basis one could consider all the modes with a Gouy Phase of φp(z) = (p+1)φg(z)

for any basis and note that the number of degenerate modes Np that form a complete subbasis of orthogonal
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modes is given by:

Np =

(p+ 2δσ,e) for even p,

(p+ 1)/2 for odd p.

(2.37)

And thus, any IGσp mode with a certain p order and σ parity can be constructed by Np weighted modes of

the other subsets LGσp or HGσp . This transformation of basis can be written as a matrix transformation of

the form:

~Sσp =
[
R⇒ST

σ
p

]
~Rσp , (2.38)

where ~Rσp is the subset of weighted orthogonal modes in a sub-basis to be transformed into the subset ~Sσp

of another sub-basis by the NpxNp
[
R⇒ST

σ
p

]
transformation matrix. These transformation matrices have

the property:
[
R⇒ST

σ
p

]−1
=
[
R⇒ST

σ
p

]T
=
[
S⇒RT

σ
p

]
and each of their columns and rows form a basis of an

space of dimensionality Np.

Finally, the elements of the transformation matrix for a certain p subset of modes from one basis to

another can be determined by doing the inner products of each mode of one basis with each of the other one.

These are well known expressions [37], however in this work the particular interest is focused on the one that

considers IG and LG modes:

∫ ∫ ∞
−∞

LGσn,l
¯IGσ′
p,mdS = δσσ′δp,2n+l(−1)n+l+(p+m)/2

√
(1 + δ0,l)Γ(n+ l + 1)n!Aσ(l+δo,σ)/2(amp ), (2.39)

where the term Aσ(l+δo,σ)/2(amp ) is the (l + δo,σ)/2th Fourier coefficient of the Ince polynomial. From this

expression, the Dl,n coefficients of the LG modes that are an expansion of a certain IG mode are:

IGσp,m(ξ, η, ε) =
∑
n,l

Dn,lLG
σ
n,l(r, θ), (2.40)

and thus the elements of the transformation matrix can also be determined for the Np dimensional case.

It is noteworthy to state that these coefficients strongly depend on the ellipticity of the modes. Thus, it

is only necessary to know two transformation matrices in order to be able to build a complete transformation

scheme. An example of decomposition of an IG mode into the LG basis is shown in Figure 2.2, where a

IGe,55,3 is decomposed into the LG basis with a superposition of modes LGe2,1, LGe1,3 and LGe0,5. It is impor-

tant to notice that the parity of the modes is kept and the sign of the modes can be either positive or negative.

We want to note that, there are four special modes that, due to the relations of these families of modes,

have exactly the same transverse distribution independently of the basis chosen to build or describe them.
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Figure 2.5: Decomposition of IGe,55,3 into the LG basis with a superposition of modes LGe2,1, LGe1,3 and

LGe0,5.

Figure 2.2 shows these four fundamental modes which all have phase discontinuities (besides the pure Gaus-

sian mode). The fact that these modes are exactly the same, even when described by different families

of modes reveals the underlying symmetries and connections between the exact families of solutions of the

PWE. [35].

Figure 2.6: Four fundamental modes of the paraxial wave equation, corresponding to from a) to d) IG0,0,

IG1,1, IG1,1 and IG2,2 for IG modes, LG0,0, LG0,1, LG0,1 and LG0,2 for LG modes and HG0,0, HG1,0,

HG0,1 and HG1,1 for the HG modes. Besides the pure Gaussian mode, all of these modes have phase

discontinuities, showcased on the phase profiles for each beam ( e) to h) ), depicted in the same order as

before.

Finally, the different families of solutions of the PWE equations have very interesting properties, since

they are exact and orthogonal solutions. They have structurally stable transverse profiles, this means they

do not change shape during propagation and they are also transverse eigenmodes of stable resonators [38]. A

final and very distinctive feature of them is that, by constructing a certain superposition of these modes, it is

possible to obtain helical beams, Orbital Angular Momentum (OAM ) carrying beams which will be touched

upon in the next subsection.
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2.3 Orbital angular momentum of light and helical modes

It is well known that a beam of light carries optical angular momentum. This angular momentum on light,

considering a beam traveling in the paraxial regime, can be divided into its spin and orbital components [39].

The spin orbital angular momentum (SAM ) is related to the circular polarization of the beam, having

a value of ±h̄ per photon, depending if the beam is right circularly polarized (+ sign) or left circularly po-

larized (− sign).The manifestation of this orbital momentum has been observed when a SAM-carrying beam

is absorbed by a particle, as the particle is made to spin about and axis defined by its own center of mass. [36]

On the other hand, the OAM of a light field comes from its overall transverse phase structure and has

a value per photon of ±lh̄, where l can take any integer value. A particle absorbing a certain quantity of

OAM is instead made to rotate about the central axis of the beam itself with the direction of rotation being

determined by the sign of OAM. It is also important to notice that, because it is an external (from the beam

or photon) form of angular momentum, the value of OAM is coordinate system dependent. This behavior is

schematically shown in Figure 2.7 [40].

Figure 2.7: Interaction angular momentum of light with matter. SAM is related to the circular polarization

of a light beam and makes an object rotate around its own axis, while OAM, related to the phase

distribution of the light beam makes the same object rotate about the central axis of the beam.

A particular characteristic of the solutions found in section 2.2 is that certain superpositions of LG, HG

and IG modes give place to the called helical modes, which at localized parts of their phase profiles have

polar phase indeterminations characterized by discontinuities with value ±2πl′, l′ ∈ Z, which give place to

local zeros of intensity in the beam profile and an OAM value of l′h̄ per photon at said discontinuity. This

value is called the topological charge of the beam.
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The normalized Laguerre Gaussian helical modes of radial and azimuthal numbers n and l are given by:

HLG±n,l(r, θ, z) =
1√
2

[
LGen,l(r, θ, z)± iLGon,l(r, θ, z)

]
. (2.41)

The respective Hermite-Gaussian helical modes are given by [41]:

HHG±p,m(x, y, z) =
1√
2

[HGl,2n(x, y)± iHGl−1,2n+1(x, y)] , (2.42)

with p = 2n+ l and m = l. In the case of the Helical Ince-Gaussian modes, these are produced through

a superposition of modes as:

HIG±,εp,m(ξ, η, ε) =
1√
2

[
IGe,εp,m(ξ, η, ε)± iIGo,εp,m(ξ, η, ε)

]
. (2.43)

It is important to note that on performing the superposition shown in (2.41), the resulting mathematical

expression that can be explicitly derived from (2.23) has a term of the form e−ilθ which in the optical axis of

the beam (r = 0) is responsible for a phase discontinuity of value ±2πl as well as of a topological charge of

l per photon. In contrast, equations (2.42) and (2.43) yield localized phase discontinuities, at various points

of the beam profile, each with a value of ±2π (or OAM h̄ per photon) at the position of the vortices. A

comparison of the different helical modes is presented in Figure 2.8.

Figure 2.8 illustrates several special characteristics of OAM carrying beams, for each of the three families

of modes that have been described above. In the case of HLG modes, the 2πl indeterminations in the phase

profile are contained exactly at the optical axis of the beam and are given by the azimuthal number l, having

OAM = lh̄ per photon, while other non-π ring-shaped phase discontinuities arise from the radial number

n. The intensity beam profile is ring-shaped as well, with a zero intensity point at the optical axis. As for

the HHG modes, the phase profiles exhibit 2π phase indeterminations as well, but these are distributed

all around the beam profile in a rectangular way, with the number phase indeterminations and distribution

determined by nx and nx. Finally, the intensity shape of HIG modes also shows zero-intensity points (and

thus 2π phase indeterminations) at varying points of the beam, whose number and distribution strongly

depends on the values of order p and degree m, as well as the ellipticity parameter ε and, as in HLG, the

ring-shaped regions are present as well, but bended due to the elliptical symmetry of the beam. For all these

helical modes, the positive and negative signs indicate the direction in which all phase vortices are directed:

clockwise, or anti-clockwise. All individual vortices for these beams carry OAM ±h̄ at their position, but

the beam as a whole, referred to its optical axis, does not necessarily carry the sum OAM of all its phase

discontinuities as will be seen later.

A very important and intriguing property of this kind of helical beam profiles is that they have a well

known quantum representation. In particular, the creation operator Laguerre-Gauss-Fock states or Laguerre-

Gauss-number states, or states describing individual photons projected in a LG mode can be written as [42]:

â†snl(k0) =

∫ ∞
−∞

LGn,l(~q)â
†
s(~q, k0), (2.44)
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(a) HLG1,3 intensity (b) HLG+
1,3 phase (c) HLG2,4 intensity (d) HLG−2,4 phase

(e) HHG2,3 intensity (f) HHG+
2,3 phase (g) HHG4,4 intensity (h) HHG−4,4 phase

(i) HIG2
5,3 intensity (j) HIG+,2

5,3 phase (k) HIG3.42
8,4 intensity (l) HIG−,3.42

8,4 phase

Figure 2.8: Examples of different OAM carrying beams, which result from the super-positions depicted

from equations (2.41)-(2.43) using the modes shown in Figures 2.1-2.3. Each intensity profile has at its

right the phase profile of the beam, which in every case shows the phase discontinuities.

with s representing a polarization state either 1 or −1, ~q the transverse momentum vector and LGn,l(~q)

the Fourier transform of a LG mode as function of ~q. The annihilation operator is similarly defined and obeys

the usual commutation relation:

[âsnl(k0), â†s′n′l′(k
′
0)] = δs,s′δn,n′δl,l′δ(k0 − k′0). (2.45)

Any paraxial photon state can be written as:

|φ〉 =
∑
s,n,l

∫ ∞
0

dk0Csnl(k0)â†snl |0〉 , (2.46)

where Csnl is a normalized weight function of each mode. In particular, the scalar Helical-Laguerre-Gauss

Fock states
∣∣L±nl〉 are defined as: ∣∣∣L̂±nl〉 = â†nl(k0) |0〉 , (2.47)
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with ± being the sign of the topological charge. These modes happen to be eigenvectors of the OAM operator

L̂z defined as:

L̂z = h̄
∑
s,n,l

l

∫ ∞
0

â†snl(k0)âsnl(k0). (2.48)

Also, the even and odd LG modes can be written as a sum of helical modes of opposite sign:

|Lenl〉 =
1√
2

[∣∣L+
nl

〉
+
∣∣L−nl〉] , (2.49)

|Lonl〉 =
1

i
√

2

[∣∣L+
nl

〉
−
∣∣L−nl〉] . (2.50)

Considering the above results and also the corresponding advantage of the correspondence principle be-

tween the PWE and quantum physics [43], a quantum description of HHG or in particular HIG modes can

be made, so that the quantum HIG modes can be written as:

∣∣I±pm〉 =
1√
2

=

∑
n,l

De
nl |Lenl〉 ± i

∑
n′,l′

De
n′l′ |Lon′l′〉

 , (2.51)

with the Dnl terms being the same as in equation (2.40). An advantage of using this quantum description

of the modes is that it is possible to determine the expectation value of L̂z in non LG modes. While the

value of the topological charge for HLG modes is well defined at the optical axis of the beam, in the case of

HHG and HIG modes, this is not straight forward, because of the existence of phase discontinuities outside

of the optical axis. A solution of the determination of OAM value can be solved by obtaining the expectation

value of L̂z for
∣∣I±pm〉 states. By doing so, the result yields then [36]:

〈L̂z〉 = ±
∑
n,l

h̄lDe
n,lD

o
n,l. (2.52)

It can be seen that the OAM expectation value of non azimuthally symmetric modes is not necessarily

an integer number, and is also not a direct average of the modes comprising the LG decomposition. This

is caused by the fact that OAM arises from the gradient of the transverse phase structure of the beam. As

the argument (phase of a mode) is not a linear function, an OAM value for HIG modes (HHG modes when

ε = ∞) can not be reconstructed from weighted averages of well known HLG modes OAM values. Also, as

the decomposition values of the transformation Dσ
n,l are a function of the ellipticity of the modes, 〈L̂z〉 is

also a function of ellipticity, as shown in Figure 2.9.

From the graphs it is evident that both the order and the degree of the evolving HIG mode have an

important impact on the expectation value of OAM. In the case of modes having the same degree m, at

ε = 0 all have the same OAM value, which is OAM = mh̄, these results makes sense as the zero ellipticity

mode corresponds to a HLG with azimuthal number m = l, which is known to be directly related to the

OAM value [44], however as the ellipticity increases, modes with bigger difference p−m tend to increase their

initial OAM, contrasting with decrease of this value for lower p −m. A bigger difference in p −m, at zero

ellipticity is related to an increase in the radial mode n of the HLG mode, so it could be said that for bigger
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(a) OAM vs ellipticity for fixed m= 3 (b) OAM vs ellipticity for fixed m= 3

(c) OAM vs ellipticity for fixed p= 5 (d) OAM vs ellipticity for fixed p= 8

Figure 2.9: Expectation value of OAM as a function of ellipticity for different modes. a) and b) for a fixed

value of m. c) and d) for fixed p. .

initial radial modes of HLG, by varying the ellipticity the total expected value of OAM can be increased.

As for the graphs showing OAM for fixed order p, they also show this behaviour related to p − m, with

the modes having a tinier difference presenting a more abrupt decay of OAM value referring to the initial

mode as ellipticity increases. The decay or increase of OAM with the ellipticity however reaches an almost

constant value at a certain ε value, as if it is signaling that the mode behaves almost as aHHGmode would do.

A very interesting result that is present in all graphs is that there are intersections between the graphs,

meaning that there can be two modes with different values of ellipticity (and thus projected into a different

basis) with the same value of OAM. This kind of result can be helpful, for example, in a OAM of light

preservation experiment in which one could project the values of the generated photons to a certain value of
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(a) HLG1,3

Intensity

(b) HIG1
5,3

Intensity

(c) HIG4.2
5,3

Intensity

(d) HIG10
5,3

Intensity

(e) HHG2,3

Intensity

(f) HLG1,3 Phase (g) HIG1
5,3 Phase (h) HIG4.2

5,3 Phase (i) HIG10
5,3 Phase (j) HHG2,3 Phase

Figure 2.10: Evolution of the ellipticity parameter for HIG5,3, intensity (a) - e)) and phase (f) - j)) profiles.

The chosen values of ellipticity are ε = 0, ε = 1, ε = 4.2, ε = 10 and ε = 0 from left to right for a) - e) and

f) - j). The waist of the beams is w0 = 5cm.

OAM, by using different basis. This could as well be used as an extra degree of freedom for communication

schemes, in the case of having control of the ellipticity and the OAM value of a beam.

Finally, in order to make clear how the change of the OAM of a certain beam is related to the elliptic-

ity parameter, the ellipticity evolution of theHIG beams presented in Figure 2.9 is shown in Figures 2.10-2.13.

The evolution of the OAM with the ellipticity can be observed from Figures 2.10-2.13. The initial OAM

value of the HLG which is contained in the optical axis phase indetermination, breaks down into individual

2π discontinuities along the horizontal axis, all giving place to zero-intensity regions. Depending on the value

of the order p, other 2π indeterminations appear outside the propagation axis as ε increases. The number

of phase indeterminations, which is maximum for HHG modes, strongly depends on the difference p −m,

resulting in more zero-intensity points for bigger value of p−m. As was seen from 2.9, bigger values of p−m

also lead to higher values OAM for increasing ellipticity, that may be attributed to these generated extra

phase discontinuities. In the particular case of p = m, which translates to n = 0 for the HLG modes, the

initial 2πl OAM phase discontinuity is distributed into l 2pi ones, outside the optical axis, which explains

the abrupt decay in OAM value as ellipticity increases for this particular kind of modes.

The fact that Helical beams carry OAM make them great candidates for optical communications channels,

as the OAM degree of freedom is infinitely dimensional in theory. In particular, their use in free space
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(a) HLG3,3

Intensity

(b) HIG1
9,3

Intensity

(c) HIG4.2
9,3

Intensity

(d) HIG10
9,3

Intensity

(e) HHG3,6

Intensity

(f) HLG3,3 Phase (g) HIG1
9,3 Phase (h) HIG4.2

9,3 Phase (i) HIG10
9,3 Phase (j) HHG3,6 Phase

Figure 2.11: Evolution of the ellipticity parameter for HIG9,3, intensity (a) - e)) and phase (f) - j)) profiles.

The chosen values of ellipticity are ε = 0, ε = 1, ε = 4.2, ε = 10 and ε = 0 from left to right for a) - e) and

f) - j). The waist of the beams is w0 = 5cm.

(a) HLG2,4

Intensity

(b) HIG1
8,4

Intensity

(c) HIG4.2
8,4

Intensity

(d) HIG10
8,4

Intensity

(e) HHG4,4

Intensity

(f) HLG2,4 Phase (g) HIG1
8,4 Phase (h) HIG4.2

8,4 Phase (i) HIG10
8,4 Phase (j) HHG4,4 Phase

Figure 2.12: Evolution of the ellipticity parameter for HIG8,4, intensity (a) - e)) and phase (f) - j)) profiles.

The chosen values of ellipticity are ε = 0, ε = 1, ε = 4.2, ε = 10 and ε = 0 from left to right for a) - e) and

f) - j). The waist of the beams is w0 = 5cm.
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(a) HLG0,8

Intensity

(b) HIG1
8,8

Intensity

(c) HIG4.2
8,8

Intensity

(d) HIG10
8,8

Intensity

(e) HHG8,0

Intensity

(f) HLG0,8 Phase (g) HIG1
8,8 Phase (h) HIG4.2

8,8 Phase (i) HIG10
8,8 Phase (j) HHG8,0 Phase

Figure 2.13: Evolution of the ellipticity parameter for HIG8,8, intensity (a) - e)) and phase (f) - j)) profiles.

The chosen values of ellipticity are ε = 0, ε = 1, ε = 4.2, ε = 10 and ε = 0 from left to right for a) - e) and

f) - j). The waist of the beams is w0 = 5cm.

communications is of interest because of their structural sturdiness, which is given by the fact of being

solutions of the Helmholtz equation. However, this sturdiness is only perfect for a completely isotropic

medium. The atmosphere, in which these light beams are intended to propagate is, however, not and isotropic

medium. For this, the introduction of atmospheric turbulence models is necessary in order to comprehend

and estimate the effectiveness of Helical beams as information carriers. These atmospheric turbulence models

are explored in section 2.4.

2.4 Atmospheric turbulence modeling for light propagation

When light travels through the atmosphere, it travels though a medium where the refractive index is not

continuous, but rather varies both spatially and temporally, due mainly to temperature variations on the

atmosphere but also to other factors like pressure and the wavelength of light itself. This behavior of the

propagation media randomly aberrates the wavefronts of light, say, a laser beam, a light source that is usually

used for free space optical communications. This aberration of the wavefront gives place to an aberration of

the initial mode, and therefore loss of the information the beam is carrying. So, in order to clearly understand

how this change in beam structure is made, it is necessary to build models to represent the fluctuations of

the refractive index in the atmosphere [45].
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The refractive index of the atmosphere, due to this fluctuations of temperature and pressure can be

expressed as:

n(~r) = nair + δn(~r), (2.53)

where δn(~r) represents the fluctuations of the refractive index and has a mean value 〈δn(~r)〉 = 0.

With this in mind, while a beam is propagating, the effect of the turbulence on the beam can be viewed

as a local change on the phase of the wavefront, due to the little changes of the refractive index. This phase

change depends on the coordinates in which the phase is measured and acts on the beam traveling a distance

∆z. Assuming a beam propagating in the z-direction through the air, it will experience a phase variation

from point to point given by:

δθ(~r) = k0

∫ ∆z

0

δn(~r)dz. (2.54)

If the turbulence is considered to be locally homogeneous and isotropic, the covariance function of δn(~r)

only depends on the distance between points measured (r = |~r1 − ~r2|) instead of their respective coordinates

as depicted in Figure 2.14 [46].

Using this consideration, the covariance function of the refractive index can be written as:

Bn(r) = 〈δn(~r1)δn(~r2)〉 = 〈δn(0)δn(r)〉, (2.55)

so that the covariance function for the phase can be written as

Bθ(r) = 〈δθ(~r1)δθ(~r2)〉 = k2
0

∫ ∫ ∆z

0

〈δn(0)δn(r)〉dz1dz2. (2.56)

Figure 2.14: Measurement of the covariance function of phase considering a length differential ∆z and the

relative distance between transverse points.

From the covariance function, the so called Power Spectrum (Φn) can be derived by doing a three dimen-

sional Fourier transform:

Bθ(r) =
1

(2π)3

∫ ∫ ∫ ∞
−∞

Φn~ke
−i~k·~rd3r. (2.57)
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The power spectrum represents a function that measures the phase fluctuation differences in the Fourier

space, and therefore can be used to characterize the shape and strength of atmospheric turbulence in the

Fourier space. Based on this, the phase change of a beam induced by atmospheric turbulence can be charac-

terized by the inverse Fourier transform of a certain power spectrum function. [47]

In general, turbulence of a media is characterized by two kinds of turbulent cells: First, the outer scale

cells, with square side size L0 in the order of meters, which are the one that cause a beam to be randomly

deflected from its path, causing fluctuations in the direction and position of the beam at the receiver aperture

and are the biggest cell size possible of the turbulence. On the other hand, the inner scale cells, of square

side size l0, in the order of millimeters are responsible of the small scale effects that distort the wavefront

resulting in a randomly aberrated phase (and intensity distribution) at the receiver end.

While turbulence models using this characteristic cells typically provide only statistical averages for

variations of atmosphere, they are sufficiently effective to describe the effects of turbulence. The first model

of these approaches is the Kolmogorov model of turbulence, that assumes l0 = 0 and L0 = ∞, which yields

a power spectral density of the refractive index fluctuations ΦKn (κ) given by [48]:

ΦKn (κ) = 0.033C2
nκ
−11/3 for 1/L0 � κ� 1/l0. (2.58)

Here, κ is on the angular spatial frequency vector and C2
n the refractive index structure parameter, which

is an indicative of how strong the turbulence is as an average and in general is a function of both wavelength

of signal and height at the atmosphere, and thus can be considered a constant for horizontal propagation.

However, a more precise turbulence model power spectrum, that considers non-zero finite size of the turbu-

lence cells can be obtained as an extension of the Kolmogorov model: The von-Karman power spectrum [47].

For this model, the power spectral density is given by:

ΦvKn (κ) = 0.033C2
nκ
−11/3 exp(−κ2/k2

m)

(κ2 + k2
0)11/6

for 0 ≤ κ <∞, (2.59)

with km = 5.92/l0 and k0 = 2π/L0. This model has the main advantage of considering quantities smaller

than l0 and bigger L0 and some easier numeric calculations. This is the power spectrum that is used in

calculations for this work.

By using these, or any other kind power spectrum depending on the used model, it is possible to generate

individual snapshots of turbulence in the form of phase screens, that if are applied to a certain electric field

profile and then propagated by using either an impulse response or a transfer function, give as a result a

beam profile function with the effects of atmospheric turbulence in it. An example of these phase screens

and the results of applying them to a certain field is shown in Figure 2.15. In this figure, a comparison on

the effects of propagation of an HIG2
5,3 initial mode a) are shown. A comparison is made between the beam
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propagated 4km with b) and without c) turbulence, finally, an example of random turbulence phase-screen

is depicted in d).

When measuring the effectiveness and robustness of a light beam profile for its usage in optical commu-

nications, there are plenty of parameters to be considered, but for the results in this particular work, there

are three main measurements that ware taken into account: the scintillation index, the strehl ratio and the

overlap.

The scintillation index σ2 is a number representing the intensity variance of a light beam, meaning, it is

a number that measures how much the brightness of the beam changes during propagation at a certain point

or how much the beam scintillates, hence the name. The scintillation index is given by [49]:

σ2(z′) =
〈I2(z′)〉 − 〈I(z′)〉2

〈I(z′)〉2
=
〈I2(z′)〉
〈I(z′)〉2

− 1, (2.60)

where I(z′) is the intensity of the beam profile at a certain distance of propagation z′. The smaller the

value of σ2 the more stable the beam is.

The strehl ratio SR is defined, in the case of this work as:

SR(z′) =
I(z′)

I0(z′)
, (2.61)

where I0 is the total intensity of the beam while propagating with no turbulence. This quantity gives

a measure of how much of the turbulence propagated beam intensity goes out of a window defined by the

size of the beam without turbulence. The closer the value of the strehl ratio is to 1, the less the beam is

distorted or deviated by atmospheric turbulence. It is important to notice that this quantity in some other

works regarding atmospheric turbulence [45] takes mean values of intensity instead of total intensity, while

the original description of strehl ratio actually comes from optical design, were it describes the ratio of peak

focal spot intensity of a manufactured optical system to the diffraction-limited peak intensity. In general, it

is a measure of how much the intensity of a beam is well directed in a system.

Finally, the overlap OV (also refered as fidelity) of a light beam refers to how much the initial beam

power is kept in the original selected mode after propagation, and is defined by a ratio of inner products of

the original beam and the propagated one [45]:

OV (z′) =

∫ ∫∞
−∞E(x, y, z′)Ē(x, y, z′)dxdy∫ ∫∞
−∞E(x, y, z′)Ē′(x, y, z′)dxdy

, (2.62)

where E(x, y, z′) refers to the transverse electrical field of the mode propagated a distance z′ without tur-

bulence and E′(x, y, z′) the mode after propagation through turbulent media, Ē(x, y, z′) and Ē′(x, y, z′) are
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(a) Initial HIG2
5,3 beam profile (b) HIG2

5,3 beam propagated 4000m

without turbulence

(c) HIG2
5,3 beam propagated 4000m

with simulated turbulence

(d) Example of multiple

random turbulence phase

screens applied to the

propagated beam

Figure 2.15: Results of applying a series of random phase screen to a beam profile. a) Corresponds to the

initial HIG2
5,3, w0 = 1cm intensity profile. b) and c) depict the beam after propagatin 4km with and

without turbulence and d) is an example of a turbulence random phase-screen.
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the respective complex conjugates of the fields. Assuming normalized electric fields, OV can take values

between 0 and 1, meaning total lost or total conservation of the original beam transverse profile. This loss

of intensity on the initial beam mode is due to the changes experimented by the propagated beam through

turbulent media, which changes its phase, and thus its intensity distribution randomly, making the photons

leak into other spatial modes. The description of this leakage of modes can be done in any basis. This value

is particularly important in the real of communication systems as it directly measures the robustness of a

certain mode to keep the same beam profile through atmosphere, meaning that if information is encoded in

that particular mode, the bigger the overlap value, the less loss of information is perceived at the receiver’s

end.

Another quantity to measure the robustness, and usually more used in the literature is the crosstalk (CT)

of a mode, simply defined for normalized modes as:

CT = 1−
∫ ∫∞
−∞E(x, y, z′)Ē(x, y, z′)dxdy∫ ∫∞
−∞E(x, y, z′)Ē′(x, y, z′)dxdy

= 1−OV , (2.63)

which measures how much leakage of modes there is in a propagation. For the presentation of this work

the quantity OV is used for practicality and presentation.
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Chapter 3

Generation of OAM carrying beams

using Spatial Light Modulators

In this chapter, the generation of Helical Ince-Gauss in laboratory was explored, doing this using Spatial

Light Modulators, devices capable of generating localized gradients of refractive index, that result in phase

shifts applied to light beams incident on them. By generating special phase masks in MATLAB from the

superposition of several weighted Laguerre-Gaussian modes, applying these into SLMs and using an imaging

system, Helical Ince-Gaussian modes were produced.

3.1 Spatial Light Modulators

In order to engineer complex optical fields many devices had been developed for the manipulation of typical

beam transverse profiles, such as Gaussian beams, that change the characteristics of the electrical fields in

order to engineer complex optical fields ad hoc. Some of these devices include microelectromechanical sys-

tems (MEMS) and digital micromirror devices (DMDS), but the ones specifically used in this work are liquid

crystal based spatial light modulators (SLM).

Liquid crystal is a phase of matter, reachable in certain materials, in which the properties of the molecular

order of said materials lay between liquid and those of a crystal, as they present certain kinds of anisotropy

only seen in crystals but also show flow behavior of liquids, with random position and orientation of molecules.

This orientation of the molecules can be manipulated by applying an external electric field (voltage) into the

material, which rotates it, and therefore rotates the optical axis of the material. Because of the before men-

tioned anisotropy trait, liquid crystals exhibit a voltage-dependent birefringence, being the angle of rotation

of the crystal θc a function of applied voltage. [50]

37



CHAPTER 3. GENERATION OF OAM CARRYING BEAMS USING SPATIAL LIGHT MODULATORS

These properties of liquid crystals are used in liquid crystal spatial light modulators: Arrays of cells with

liquid crystal inside, each of them with an individual external voltage control. This makes that the system

has a localized retardation modulation, that translates to a phase or polarization imprinting into a light beam

incident in the device, whether the beam is reflected or transmitted. Spatial light modulators, with a prior

adequate system calibration, can be used then for the purpose of implanting a phase pattern into an incident

light beam, thus changing their spatial structure an making possible the engineering of complex beams, in

particular for this work, elliptical vortex beams.

3.2 Building of IG profiles as decomposition of LG modes

In order to define an adequate phase pattern to be put in an SLM for the production of Ince-Gauss modes,

the mathematical expressions of the beams need to be implemented, however, an analytical expression for

Ince-Gaussian modes of varying ellipticity is rather complicated to get. Because of this, it was necessary to

do a decomposition of the desired elliptical beam profiles into an easier to implement basis: The Laguerre

Gaussian modes. As was demonstrated in section 2.2, any Ince-Gauss mode can be decomposed into the

family of Laguerre-Gauss modes, by means of equation (2.40). Based on this, a decomposition of Ince-Gauss

profiles into the family of Laguerre-Gauss modes was implemented. The decomposition algorithm was de-

veloped by Dr. William N. Plick of the University of Dayton, while the implementation of this algorithm in

MATLAB was done by the author of this text. The aforementioned procedure was as follows:

The main idea of the algorithm is first to obtain a representative matrix of the IG mode to be transformed.

Then, using the correct eigenvalues of the obtained matrix, which depend on the m and p parameters, and

applying the inner product expression in (2.2), a decomposition into LG modes can be derived.

As shown in equation (2.37), the number of modes that form a complete sub-basis of the orthogonal

modes, as well as the possible decomposition of a certain mode into another depends entirely on the value of

the order p, and as such the size of the representative matrix depends on that value. So, given the values for

the desired IG modes to be decomposed (order p, degree m, ellipticity ε and helicity h, the dimentionanility

of the representative matrix was determined depending on the parity and order p. Then, the elements of the

matrix were found using the harmonic decomposition of the Ince-Polynomials and their respective recurrence

relations, initially developed by Bandres et al. [35]. The eigenvectors of the resulting representative matrix

were obtained, and the specific eigenvector for the desired mode chosen and normalized. After that, using the

transformation rules brought up in section 2.2, the LG modes available for the decomposition were deter-

mined, and using the inner product relation of equation (2.2) directly applied to the determined eigenvector,
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the weight of each of these modes was calculated and normalized.

This whole procedure was done twice, to get the weighted LG decomposition of both even and odd parity

IG modes and the results were retained in matrices for both even and odd modes decomposition. The used

code is shown in Appendix A.

3.3 Phasemask patterns for OAM carrying beams

In order to create engineered complex optical fields using SLM’s, the information of these beams needs to be

imprinted into an incident light field, typically a Gaussian beam, as is the kind of spatial profile that comes

out from most LASERs. Because of this, knowing the actual electric field distribution of the desired profile

is crucial. In the case of making scalar IG modes, the only thing that is necessary to engrave the desired

mode into the incident Gaussian beam is the phase profile of the desired mode, as this information directly

makes the mode mold into a Gaussian profile modulated by the specific parameters of the IG mode.

The phase profile of a desired mode was obtained from the resulted electric field matrix, that was cal-

culated from the decomposition of the desired IG mode into LG modes. Each of the weighted LG modes

obtained from the decomposition described in section 3.2 was built into a NxN matrix with physical el-

ement size u by implementing a transformation of Cartesian coordinates to Cylindrical ones and using the

equation (2.23) to fill the value of each element. All of the resulting matrices were then added together, ob-

taining a NxN complex matrix with the electric field for the desired IG mode. The NxN phase matrix of the

whole mode was then obtained simply by calculating the argument of the electric field at each matrix element.

Finally, in order to get a correct modulation of phase using an SLM, a calibration curve for the device

must be made. Once having an adequate calibration curve, it is applied to the phase matrix and the resulting

calibrated phase matrix is embedded into the SLM. An example of these phase profiles is given in Figure 3.1

In some experimental arrangements, the complex field coming out of the SLM (either transmissive or

reflective) is required to be redirected at a certain angle. This is done by inserting a diffraction grating

expression into the phase profile, especifically a blazed diffraction grating [51], that makes most of the power

of the transmitted or reflected beam reside into the first diffraction order. The addition of this grating gives

place to a OAM fork for phase patterns deriving from an OAM mode. These are shown in Figure 3.2.

In the case of this work, the different calibration curves were given but the process of calibration involves

measuring the retardation given by the SLM cell as a function of the applied voltage as is well explained in [46].
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Figure 3.1: Example of SLM phase profile used to generate an HIG4.2
5,3 mode out of a Gaussian beam. At

the right lays the desired mode and at the right the phase mask to be put in the SLM, already calibrated in

order to generate the desired optical field.

3.4 Modes generated and considerations

To generate helical Ince-Gaussian beam profiles, the experimental arrangement design by Qiwen et al. [52]

shown in Figure 3.3 was used [52]. This optical system is capable of generating custom complex beam profiles,

with full control on the phase, amplitude, polarization and retardation parameters on the desired electric field

profile, doing this by using a combination of spatial filters, polarizers, quarter-wave plates, beam splitters

and reflective SLM’s implemented in a series of 4F imaging systems with magnification M = 1. The three

channel (RGB) capability of the two SLM was put into use in this setup by applying two different phase

patterns in each half of each SLM, one in the R channel and the other in the G one. These implemented

phase channels in both SLMs, in combination with the calibration of the other optical elements, gave the

desired modulation of the four mentioned parameters (two per SLM) and thus, by applying a certain optical

field (Gaussian beam laser profile), the target complex optical beam could be obtained at the output.

In the case of generation of scalar vortex beams, such as different HIG beams, the only parameter that

was necessary to modulate was the phase, because of the Gaussian beam profile already coming out of the

laser source. As such, only modulation on the SLM1 was used, in the G channel especifically. An example of

these designed phase patterns on an SLM is shown in Figure 3.4 . These phase patterns were inserted into a

Holoeye HEO 1080p SLM using a HE-NE Laser light source at 632.8 nm emission.

3.4.1 Imaging of Helical Ince-Gauss modes in the far field

Examples of some generated modes of the previously discussed families of Helical beams that were imaged

into an Spiricon CCD camera using the system in Figure 3.3 are presented in Figure 3.5.
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(a) Example of OAM fork for HIG+,5
5,3 mode

(b) Desired mode intensity (c) Phase of the desired mode (d) Blazed diffraction grating

Figure 3.2: Example of an OAM fork used to generate a HIG5
5,3 mode for λ = 405nm at a 3. Using a

blazed diffractive grating ensures that most of the original power that arrives at the modulating SLM is

reflected (or transmitted) at the desired angle. Notice that the the diffraction grating is embedded into the

phase of the desired beam, making a fork-like figure.

It is demonstrated in Figure 3.5 that the method used for the imaging of the Helical beams was effective,

as characteristic features of OAM carrying beams can be observed: It is shown that the physical size of the

beam is modulated by the values of order p and degree m used for each beam, all of which transformed into

the IG basis would correspond to: a) HIG0
1,1, b) HIG0

4,4, c) HIG2
8,2 and d) HIG∞7,3. More complex beams

(with higher order and degree) tend to be bigger in size but with maximum point intensity lower than that

of simpler profiles. This size relation agrees with the fact that HLG modes exhibit bigger physical size when

the OAM value of the beam increases. Additionally, the distinctive zero-intensity points of Helical beams

derived from phase indeterminations are observed at the expected positions of the beam profile, to a certain

extent.

The fact that the beams could be imaged with good degree of fidelity gave the opportunity to image the

evolution of a certain transverse mode varying its ellipticity (and thus its symmetry), as was depicted in

Figures 2.10- 2.13. In particular, the imaging of the evolution of the ellipticity parameter for a HIG5,3 mode

is displayed in Figure 3.6.
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Figure 3.3: Experimental setup used for the generation of custom complex optical beams. 2 SLMs configure

the phase, amplitude, polarization and retardation parameters using a combination of phase patterns and

four imaging systems.

As expected from the previous result, the resulting modes present a similar physical size due to having

the same order and degree. They also show the characteristic zero-intensity phase discontinuity points in the

beam transverse profile.

However, even with the main characteristics of the transverse profiles Helical modes portrayed in Figures

3.5 and 3.6, the obtained intensity profiles were not equal as the ones expected to get. This was especially

the case in modes with greater p and m values, as some of the the smaller vortexes were heavily distorted or

not detected. This issue can be attributed to an small misalignment in the optical systems due to its high

sensitivity distance changes of the elements. In particular, a misalignment in the image plane (camera) plane

was the main reason of these issues, that could not be solved due to time constrains and difficulties to the

access to the optical system. However, this situation is easily solvable by adjusting the optical elements to

the correct distances and relative tilt.

As an alternative to the imaging of the mode was to let the beam profile propagate until the far-field

intensity pattern was visible. In order to do this, the collimating lens L6 on Figure 3.3 was removed, as well
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Figure 3.4: Example of SLM pattern displayed in SLM1 of Figure 3.3 for the generation of a HIG+,4.2
5,3

mode. The right part of the image would correspond to Section one, controlling the phase of the input

Gaussian beam. The left part would be left at a value in which the reflectivity was maximum for the chosen

wavelenght. The circular pattern shown in the phase patter was made to collect only the light at the center

of the beam.

as the detector, and the beam was let propagate freely for a distance of approximately one meter, in which

the far field intensity(that was brought up to the camera by the L6 lens) pattern was visible. The results of

doing this for some beams is presented in Figure 3.7.

While the intensity profiles are recognizable in Figure 3.7, from b) it is clear that there was a slight

misalignment in the elements of the optical system, due to the distorted shape with which the beam ended

up propagating. This misalignment is however easily fixed as mentioned before.

Nonetheless, this procedure further demonstrated that this kind of Helical beams can be produced for

any desired applications, using adequate equipment and experimental setups.

3.4.2 Imaging of Helical Ince-Gauss modes in the near field

A characteristic of Helical beams that is usually ignored is the intensity profile in the near-field, since these

beams are usually propagated to a distance that allows the far-field detection. However, the near-field pat-

terns of these beams may be useful in beam detection schemes, as these patterns are strongly related to the

2D-Fourier transformation of the desired beam profile. In order to view the near-field intensity pattern of

the beam, the detection camera was positioned between the spatial filter SF2 and imaging lens L6 in Figure

3.3, and the results of some of the modes observed are presented in Figure 3.8.

It is a very interesting (while expected) result that the near-field intensity patterns of the observed modes

retain zero-intensity points in the expected position from the far-field profile, with the important difference

that these zero intensity points are very clearly defined. Especially the one that is observed in the HLG0,4
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Figure 3.5: Generation of various Helical beams: a) HLG0,1, b) HLG0,4, c) HIG4
8,2 and d) HHG3,4. Below

every mode lays the desired transverse intensity profile, as well as the phase profile put in the SLM in order

to generate said beam.

Figure 3.6: Evolution of HIG5,3 mode transverse intensity profile with the ellipticity parameter. a) ε = 0,

b) ε = 1, c) ε = 4.2, d) ε = 15, each with the expected intensity profile and the used SLM phase pattern.

mode, in which the size of the optical vortex is considerably bigger than in other modes. This is related to

the value of the phase discontinuity (and thus OAM) of each phase indetermination, as the HLG0,4 mode

has an indetermination of 2 ∗ 2π while the other modes have individual 2π ones. Due to this characteristic of

the phase discontinuities at the near field, the idea of using the zero-intensity points patterns to determine

the characteristics of Helical beams in a detection scheme arises, as the optical vortex position seems to be

easier to detect in the near-field than in the far-field.

For the HIG mode, it is also possible to obtain the evolution of this mode as a function of the ellipticity.

This is shown in 3.9.
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Figure 3.7: Examples of far-field intensity patterns of Helical beams without using a detector. a) HLG1,3,

b) HIG4
8,6, both modes with the expected intensity profile and SLM phase profile. The size of the beam

profiles is in the order of centimeters.

Figure 3.8: Generation of various Helical beams intensity profiles in the near field: a) HIG5
7,1, b) HIG5

7,7,

c) HLG0,4 and d) HHG4,0. Below every mode lays the far-field intensity profile, as well as the phase profile

put in the SLM in order to generate the beam.

It’s clearly seen from 3.9 the change that occured to the OAM vortices of a beam with the change of

ellipticity. The mode HLG1,3 (a), initially had central indetermination 3 ∗ 2π at the optical axis of the

beam. When the ellipticity of the mode is increased, the central indetermination was split into three 2π

indeterminations that remained as the beam changed. The bigger the ellipticity was, the more off-axis 2π

indeterminations appeared, changing the general mode OAM value and having a certain distribution pattern

for each mode and ellipticity.

Regarding the quality of the modes detected, a ring-like low intensity region can be appreciated surround-

ing the optical vortexes. This region appeared due to the window size in which the input beam was incident
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Figure 3.9: Evolution of HIG5,3 mode transverse near-field intensity profile with the ellipticity parameter.

a) ε = 0, b) ε = 1, c) ε = 4.2, d) ε = 15, each with the near-field intensity profile and the used SLM phase

pattern.

in the phase pattern put in the SLM. The central region of the beam appeared to be distorted as well, due

to the fact that the input beam used in these cases was unfiltered. These issues can be easily fixed by using

a bigger radii input beam acceptance region for the phase patterns, as well as a low-pass filter to clean the

input signal. Unfortunately, due to time constraints, these actions were not performed.

3.5 Partial conclusions on Generation of OAM beams using Spa-

tial Light Modulators

In this section, the possibility of generating OAM-carrying helical beams with adecuate optical devices was

demonstrated even with the technical difficulties and consideration that the process of generation of the beams

may convey. The evolution of these helical beams with the ellipticity parameter was observed, verifying as

well the retention and splitting of the OAM phase initial phase indetermination, as well as the creation of new

zero-intensity points. This characteristics of OAM beams and their evolution with the ellipticity parameter

were again recognized using the near-field intensity patterns, in which the indeterminations are more easily

recognizable and well defined. As such, the possibility of using this characteristics of the near-field intensity

pattern for the detection of different Helical beams is given.
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Chapter 4

Atmospheric propagation of helical

Ince-Gaussian modes

In this section it is explained how several MATLAB®scripts were made in order to simulate propagation of

elliptical scalar vortex beams through the atmosphere, the parameters that were used for the simulations and

the different considerations to be taken into account. Parameters such as the ellipticity ε of the beams, the

choose of modes with varying order p and degree m and the values of the refractive index structure parameter

C2
n were the main focus these simulations. The results of these simulations were then analyzed and general

conclusions on how these modes would behave under atmospheric turbulence were made.

4.1 Propagation of modes through atmospheric turbulence proce-

dure and considerations

The general idea of the atmospheric turbulence propagation codes was to determine a matrix method in

which a complex matrix of dimensions NxN could contain the transverse electric field profile of a desired

HIG mode. In order to do this, the initial parameters of the beam matrix, such as the matrix size N and

the matrix physical size L(in microns) were selected. After that, the initial beam parameters, such as the

wavelength λ, beam waist w0, order p, degree m and ellipticity were chosen and the resulting expression of

the HIG mode was implemented into the NxN matrix, taking this expression by decomposing the desired

HIG mode into a superposition of LG modes, as was done in section 3.2. This was due to the easier imple-

mentation of Laguerre polynomials compared to Ince polynomials. Next, the total distance of propagation

ZT as well as the total number of distance divisions ndiv was selected, in order to evaluate the dynamics

of the modes at selected different distances. Then, the atmospheric turbulence parameters, such as C2
n, the

power spectral density Φn and the distance between random phase screens dscr, representing the atmospheric
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turbulence, was chosen. Finally, an adequate number of times to propagate the mode nprop was implemented,

in order to get a reliable average result of measured quantities. This was done due to the random nature of

refractive index fluctuations in the atmosphere, resulting in no beam propagation being the same and thus

having to rely on average results.

Once the initial conditions were defined, as well as the initial beam profile matrix was obtained, the

following algorithm was used: A random phase screen of the same size and dimension as that of the beam,

representing the atmospheric turbulence, was generated and multiplied by the beam profile matrix. The

result of this was then Fourier transformed and that propagated a distance dscreen using a transfer function,

to eventually apply an inverse Fourier transform and by doing that get a new beam profile matrix. This

process was repeated until a distance corresponding to a multiple of ZT/ndiv was reached and at that point,

the measurement of the scintillation index, overlap and strehl ratio was performed, comparing the turbulence

propagated beam profile to one with the same initial conditions, but propagated the same distance without

atmospheric turbulence (C2
n = 0). The results were stored and the process repeated until the total distance

ZT was reached, at which point, a check on the number of propagations was performed and if it was not equal

to nprop, the whole process was repeated. Until reaching the propagation number nprop, at each distance

multiple of ZT/ndiv the beam profile was stored, as well as its phase profile and at the end of the cycle, an

average for each of the measurements over all propagations nprop was made.

The generation of the random phase screens, based on works such as [53] was as follows: A pseudorandom

NxN array of complex numbers was generated, and then multiplied by 2π/(N∆k)
√

2πk2dscrΦn, having ∆k

the spatial sampling interval in the Fourier space. The result was then inverse Fourier transformed, getting

a real space complex random phase field, choosing in this case the imaginary part of said phase field as a

random phase screen. Is as well noteworthy to indicate that the turbulent atmospheric beam propagation

algorithm here presented is heavily based on previous work by Qiwen et al. [54] and Sevilla [46], by using

modified versions of their turbulence propagation algorithms even thought the mentioned works were only

focused in HLG modes, both in the scalar and vector cases.

As for the way in which the values of scintillation index, overlap and strehl ratio were calculated, some

points have to be addressed. In the case of the overlap integral, the expression of equation (2.62) was used,

having the beam profile matrix affected by turbulence as E′(x, y, z′) and the one propagated without turbu-

lence as E(x, y, z′), straining the limits of the integrals to the size of the matrices.

The scintillation index as well as the strehl ratio are very shape-dependent measurements. For the scin-

tillation index this is because the mean value of intensity varies heavily from point to point depending on the

geometrical shape of the transverse profile. For the strehl ratio, it is because the size of the complete beam
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profile matrices is in general bigger than that of the transverse profile itself. Therefore, a reference region

for the evaluation of these values was delimited. The limit of said region was defined by the last elements of

the no-turbulence propagated beam profile to have an intensity greater than or equal to 1/e2 the maximum

intensity value of the whole beam profile. This limit region for measurements is pictured in Figure 4.1, where

a HIG2
5,3 mode, propagated with and without turbulence is shown. The no-turbulence propagated profiles

defines the strehl ratio and scintillation index measurement region for the turbulence propagated beam char-

acterization.

(a) Reference window (b) Turbulence beam window

Figure 4.1: Example of a) reference window a) and b) measurement window for HIG4
5,3. As can be

graphically seen, some of the power from the turbulence propagated beam escapes from the measurement

window, heavily affecting the value of the Strehl ratio, the Scintillation index is affected by the distortion

on the intensity profile of the beam, caused by the turbulence.

4.2 Beam propagation simulation: results and analysis

Using the described method of simulation of beam propagation through atmospheric turbulence, different

Helical Ince-Gauss modes were chosen to be propagated, varying their ellipticity values, order, degree and

the strength of the turbulence, indicated by the value of C2
n. For the realized simulations, some initial beam

parameters remained the same, in order to keep consistency in the obtained results. These rigid param-

eters were: The size of the matrix N = 1024, the physical size of the matrix L = 50cm, the wavelength

λ = 632.8nm, the initial beam waist size w0 = 10000µm, the inner scale l0 = 1cm, the outer scale L0 = 3m

and the number of propagation per simulation nprop = 200. The combination of these values proved to be ad-

equate both for feasible beam propagation experiments and the simulation algorithm here presented. For the

case of the refractive index structure parameter, its value varied from C2
n = 10−14m2/3 to C2

n = 10−16m2/3,

representing strong to weak turbulence values for the chosen wavelength [47]. Finally, the chosen power

spectrum was the von-Karman power spectrum from equation (2.59), as it brought accurate results and an
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easy computational implementation.

4.2.1 Propagation of a single Helical Ince-Gaussian mode

The first simulation performed was the propagation of a HIG2
5,3 mode through 4000m, with C2

n = 10−15m2/3.

The initial mode intensity and phase profiles are shown in Figure 4.2, while the results of these propagations

for the intensity profile and the corresponding phase profiles with a comparison to non-turbulence propaga-

tion profiles are shown in Table 4.1. As a side note, the different tables presented in this chapter will be

positioned at the end of it for better aesthetics of the text.

(a) Original mode intensity (b) Original mode phase

Figure 4.2: Initial beam intensity and phase profiles of HIG2
5,3 beam.

From the visual results shown in Table 4.1 it can be seen that for the chosen conditions of propagation,

the intensity distribution is kept almost the same for most of the propagation, except further away than 3000

meters, where the intensity profiles zero intensity regions can not be individually distinguished. However,

by looking at the phase distribution of the beam it can be clearly detected that the three characteristic 2π

phase discontinuities of the beam, while dislocated from their initial positions relative to each other, remain

intact throughout the whole propagation inside the beam. This behavior could imply that for long distance

propagation, the HIG beam retains most of its general structure, in particular its vortex structure that keeps

well defined, even thought the intensity one may not be as clearly identified. The preserving of the phase

vortexes is exemplified in Figure 4.3.

It is worthy to note as well that the phase patterns obtained, specially for the relatively short distance

cases (500m and 1000m) present a speckle-like pattern of random phases, that is due to the random phase

50



CHAPTER 4. ATMOSPHERIC PROPAGATION OF HELICAL INCE-GAUSSIAN MODES

(a) 500 m (b) 2000 m (c) 4000 m

Figure 4.3: Retention of characteristic phase discontinuation of HIG2
5,3 beam at different distances. The

relative position of each phase discontinuation changes due to the turbulence effects but the vortexes

remain in the beam profile picture, even if they are not distinguishable in the intensity profile.

Figure 4.4: Random phase regions on the beam propagated 1000m. In green are the regions resulting from

the random propagation phase masks used, in blue the phase regions arising from the low intensity regions

of the beam profile and the FFT method.

masks applied to the whole beam matrix and not just the matrix region where the mode is visibly at. At the

same time, symmetric-esque phase regions outside the main beam phase profile can be identified and are a re-

sult of the FFT method used to get the phase. These regions in the phase profiles are signalized in Figure 4.4.

In any case, a better understating on the sturdiness of the mode can be achieved by getting the measure-

ments of SR, σ2 and OV described in section 2.4 as a function of propagation distance. These are shown in

Figure 4.5.

It can be seen from Figure 4.5 that, as expected, for longer distances the measurements of overlap, scintil-

lation index and strehl ratio were gradually getting worse. The most notable of these results was the overlap

value for the mode dropping to near 29% after 4000m of propagation, meaning that around 71% of the mode

leaked into other modes. Even for distances below 2500m this leakage of intensity from the original mode is
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(a) Overlap value (b) Strehl Ratio (c) Scintillation index

Figure 4.5: Propagation characterization of HIG2
5,3 mode with C2

n = 10−15m2/3.

above 50% of the intensity. In the case of the scintillation index there is a clear increase in its value with the

distance, showing clearly that due to turbulece effects, the propagated profile becomes less coherent. Finally,

the Strehl Ratio decays significantly more slowly than the other parameter, not dropping below 0.98 for the

whole 4000m propagation, which means that almost all of the intensity of the beam remains in the same

region as the beam propagated with no turbulence.

A lot information about propagated beam can be obtained from these measurements. The overlap value

gives a clear parameter of how much of the intensity of the beam is kept in the selected initial mode. In a

communication scheme this is equivalent to how much the information in a channel is kept while transmitting

said information for a certain distance. The scintillation index, as the name indicates, shows how much the

beam scintillates (varies in local intensity) and thus can be understood as a measure of the beam intensity

stability. Finally, the strehl ratio defines how much of the total power of the beam is deviated from the

original. In a communication system this could be translated to how much of the initial intensity is kept at

the receivers end compared to the intensity with no turbulence effects. Higher values for the overlap and

strehl ratio and lower scintillation index values are preferred.

4.2.2 Propagation of a single Helical Ince-Gaussian mode varying the turbulence

strength

Although the simulation of propagation of a HIG beam was sucessfully performed, the main objective of this

work was to investigate how different parameters affect the propagation performance of HIG modes. The first

of these parameters to be studied was the turbulence strength, characterized by the refractive index structure

parameter C2
n. In order to do so, the propagation of a HIG2

5,3 mode shown in Figure 4.2 was performed

for three values of C2
n: C2

n = 10−14m2/3 (strong turbulence), C2
n = 10−15m2/3 (medium turbulence) and

C2
n = 10−16m2/3 (weak turbulence). The propagation of the modes was performed over a distance of 2000m,
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following the same algorithm explained before and having this distance as the standard for several propaga-

tions due to computation time and the chosen size of the window. The results of the propagation simulation

are shown graphically in Tables 4.1, 4.2 and 4.3, each of which has the propagation of the same beam for a

different value of the refractive index structure parameter which represent low, medium and strong turbulence

regimes. As the mode without turbulence is known to be structurally stable, the transverse profiles of the

mode without turbulence profiles will no longer be shown and only the initial beam of Figure 4.2 will be kept

as a reference.

The effect of the value of the refractive index structure constant is critical in the sturdiness of the in-

tensity profile of the initial beam, as can be seen from Tables 4.1-4.3. While the apparent effects on the

intensity profile for the weak turbulence case are barely noticeable to the eye, even at 2km, the distortion of

the transverse profile is evident for medium turbulence and very apparent for the strong one that loses great

part of its structure at around 1500 meters of propagation, where the characteristic zero-intensity points are

barely recognizable. This seems to be the case as well for the phase profile, with the exception that the phase

discontinuities are still kept in their totality, just heavily moved away from their initial relative position inside

the beam. This result is important, as it exemplifies that even for strong turbulence the vortex nature of

the helical beam, and thus at least part of the OAM of the original beam is kept. To exactly see what the

effects of the turbulence strength on the nature of the mode were, the sturdiness parameters of the beam were

calculated and are shown in Figure 4.6, where the characterization parameters results for the propagation a

HIG2
5,3 in different turbulence parameters are shown.

(a) Overlap value (b) Scintillation index (c) Strehl Ratio

Figure 4.6: Propagation characterization of HIG2
5,3 mode with varying turbulence strength.

As expected from the intensity profiles, the turbulence strength seems to play a determining role in the

sturdiness of the beam, more importantly in the leakage of modes. This is more noticeable for strong turbu-

lence even for short distances because for long distances, like 2km only 20% of the original beam structure

was kept. This effect is important but not at the same degree with medium turbulence, while for weak one,
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it seems that the beam can propagate through a much more significant distance without losing too much

information. As for the scintillation index, the increase for strong turbulence is much worse than the other

cases, which can be explained by the fact that the intensity transverse profile is strongly distorted, and thus

not as structurally stable as in the beginning. A similar case happens with the Strehl Ratio, because for a

stronger turbulence, the bigger the angle in which the beam can be partially deflected, thus making more

probable the leaking of power from the measurement window. Although even for strong turbulence and long

distance, the intensity at the receptor plane does not drop to less than 90%. This can be attributed to the

fact that a paraxial propagation is considered and that the size of the beam as such is not as heavily affected

by the turbulence due to the nature of propagation of Gaussian beams.

As the effects of turbulence were measured and described, it was a good idea to assess the effects of the

nature of the beam itself, meaning the choose of mode numbers on the beam. As a first approximation and

following the tendency of the work to look into this parameter, the effects on the variation of the ellipticity

value of a beam were studied under atmospheric turbulence effects.

4.2.3 Propagation of Helical Ince-Gaussian modes varying the ellipticity param-

eter

For the variation on the ellipticity parameter of HIG modes through atmosphere, the chosen mode to prop-

agate was the HIG5,3, as the evolution of the transverse intensity and phase profile patterns with the change

of ellipticity parameter was already studied both theoretically in section 2.3 and experimentally in section

3.4.1. For the propagation of these modes, a refractive index structure parameter of C2
n = 10−15m2/3 was

used in the 2km propagation and the ellipticity parameter values were chosen so that a change of the beam

from HLG to HHG modes could be seen. Due to quantity of beam profiles that were handled in this sim-

ulation (as in future ones) only the initial intensity and phase profiles are shown for each mode involved, as

well of an intermediate and a final distance point intensity and phase profile for each mode. This modes are

shown in Table 4.4 and 4.5.

The different intensity and phase profiles on the aforementioned tables exhibit similar characteristics to

those found for the propagation of a single mode in section 4.2.1, from distortion of the intensity profiles to

the movement of the phase discontinuities in the phase profiles. Because of this, much better information of

these beams was obtained by the comparison of the propagation measurements, which is presented in Figure

4.7. In particular and beginning from this point of the work, the overlap value of the modes is presented

in the form of tables (with some exceptions for the sake of not being redundant), for better reading of the

results obtained in this regard. For the case of the aforementioned mode, these results are shown in Table 4.6.

This is done only for the overlap values due to it being the most important characterization measurement

regarding the performance of modes as information carriers.
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(a) Overlap value (b) Scintillation index (c) Strehl Ratio

Figure 4.7: Propagation characterization of several HIG5,3 modes with varying ellipticity values at

C2
n = 10−15m−2/3.

The ellipticity parameter seems to have heavy impact in the scintillation index of the modes, with certain

ellipticity values having a considerably bigger value than others. This is due to the geometrical structure

nature of the measurement, that takes into account the intensity mean values for all points of the mode. By

having a mode in which the intensity of the beam is mainly concentrated at a certain region of the transverse

profile, as happens for HIG5,3 with low ellipticity, the difference in intensity between the outer parts of the

mode and the inner parts, that are almost zero, make the scintillation index much bigger. In contrast, higher

values on the ellipticity make the intensity of the beam to be more evenly distributed, and thus, seem to

help diminish the scintillation index value. As for the Strehl ratio value, the ellipticity of the beam seems

to have a very subtle effect that is not very appreciable with a C2
n = 10−15m−2/3 refractive index structure

parameter. As was seen before, the Strehl ratio of these beams is more heavily affected by the strength of

the turbulence, rather than the nature of the beam itself.

However, the most important result of this simulation relates to the fact that the overlap of the modes

as a function of distance is almost the same for all values of ellipticity at all distances, with no particular

preference for a value of this parameter that would make the beam profile more resilient to mode leakage by

turbulence effects. This result would mean that for a certain mode, defined by the order p and degree m,

any family of modes that is chosen to propagate this mode through the atmosphere would have around, if

not the same effectiveness. In other words, the robustness of a beam through the atmosphere can

be consider to be very little dependent on the chosen symmetry or family of modes chosen to

propagate it. In order to corroborate this result, more simulations were made. First, the same selected

ellipticity modes (minus ε = 8, for computation time) were propagated through weak and strong turbulence

and a comparison of the measurement of the overlap value for these conditions is presented in Figure 4.8.

As well, a HIG8,2 propagation simulation for varying ellipticities was performed, to see if the observed

characteristics of the propagated beams with the ellipticity are consistent for other sub-basis of modes. The

55



CHAPTER 4. ATMOSPHERIC PROPAGATION OF HELICAL INCE-GAUSSIAN MODES

results of these propagations are shown in Table 4.7, Figure 4.9 and Table 4.8.

(a) Overlap for strong turbulence (b) Overlap for medium turbulence (c) Overlap for weak turbulence

Figure 4.8: Comparison of overlap value obtained for HIG5,3 modes with varying ellipticity for different

turbulence strength

(a) Overlap value (b) Scintillation index (c) Strehl Ratio

Figure 4.9: Propagation characterization several HIG8,2 with varying ellipticity values at C2
n = 10−15m−2/3

The results from Figures 4.8 and 4.9 as well of Table 4.7 and 4.8 show that the general characteristics

of the beam propagation discussed for HIG5,3 for varying ellipticities hold for both different turbulence

strengths and different modes. In particular, the relation of the overlap value of the propagated beam with

its ellipticity holds for all cases, which raises the question: What is it, if not the family or symmetry of the

mode, that influences the performance of helical OAM-carrying beams?

As a first approximation to this question, the propagation of the well studied HLG mode was performed,

as is seen in the next section.
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4.2.4 Propagation of Helical Laguerre-Gaussian modes

A comparison on the propagation of different HLG with varying topological charges was performed. The

chose on this specific family of modes was made because these are the more broadly studied vortex beams,

due to their mathematical and geometrical relative simplicity, and to the fact that because of their azimuthal

symmetry, they have a topological charge per photon of 2πl, where l is the azimuthal index of the mode.

Studies have been made that the topological charge of these beams (meaning the azimuthal mode) directly

affects their performance in turbulent media [55]. As it is known from section 2.3, the topological charge

of these beams and the radial mode are directly linked to the order and degree of a IG modes when ε = 0

and because of that the results of the simulation of these particular integer OAM beams could give insight

on the parameters of HIG beam that affect their performance through turbulent media.

The simulation of these modes was made for the geometrically simpler cases, with radial index n = 0 and

varying l values, which resulted in single ring-like beam profiles with size increasing with the value of the

azimuthal number. The propagation of these transverse profile was made for a value of C2
n = 10−14m−2/3, in

order to see more clearly the differences on the performance of the modes caused by the turbulence effects.

The results of this procedure are shown in Table 4.9, with the initial and final intensity and phase profiles of

each mode, and in Figure 4.10 and Table 4.10, where the results for the distinctive measurements of turbulent

propagation are presented.

(a) Overlap value (b) Scintillation index (c) Strehl Ratio

Figure 4.10: Propagation characterization of several HLG0,l with varying l at C2
n = 10−14m−2/3.

In the case of the Laguerre-Gaussian modes, the scintillation index and the strehl ratio are more depen-

dent on the actual size of the beam. For the scintillation index, it seems to have better values for lower values

of OAM, even thought all of the modes have the same tendency. The Strehl ratio is actually more strongly

impacted by the size and shape of the beams, with better results for higher l modes, a situation that can

be comprehended because of the larger transverse area that higher l modes fill compared to lower modes,

especially Gaussian modes, that are physically smaller, and as such, a smaller window for the measurement
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means that is more probable for some of the intensity to go out of the measurement window, especially for

high turbulence. However and more importantly, the effect on the overlap of the modes with the OAM of

the beam shows that with a lower l value, modes become much more resilient to turbulence effects. This can

be explained using the complexity of the beam structure and in particular, the phase structure of the beam.

A regular Gaussian beam does not have a phase indetermination (and thus no OAM), so when propagating

through the atmosphere there is not a rigorous spatial phase structure to be maintained. Meanwhile, as can

be seen from Table 4.9, for higher l values like 5, the in-propagation axis initial 2πl phase indetermination

is split into individual 2π indeterminations because of the effects of the random phase screens. Losing this

spatial phase structure, that is more complex for higher l, can be seen as the leakage of these modes into

other ones, losing some of the overlap value. The splitting of the axis phase indetermination for HLG is

exemplified in Figure 4.11.

(a) 0m (b) 500m (c) 1000m

(d) 1500m (e) 2000m

Figure 4.11: Splitting of central phase in determination of HLG0,3 mode at varying distances of

propagation for C2
n = 10−14m−2/3.

As showcased in Figure 4.11, the initial OAM vortex in a HLG mode as it propagates through the at-

mosphere begins to split into individual 2π phase vortexes, that while at small distances of propagation are

easily identified, for longer distances not as well, due to the effects of turbulence. As a matter of fact, one

could think that instead of the axis vortex splitting into individual ones, the individual vortexes are at the

beginning overlapping and they individually move away from the axis due to the turbulence effects, changing

the overall structure of the vortex beam by doing so.
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Now, having checked that indeed, the OAM of HLG modes influences their robustness in turbulence

propagation, a relation of this OAM value for these modes can be made to the order p and degree m of HIG

modes, as OAM is heavily dependent on these to indexes as seen before. Because of this, the effects of the

change in this to parameters on the robustness of Helical beams is studied in the next two subsections.

4.2.5 Propagation of Helical Ince-Gaussian modes, varying the degree m pa-

rameter

The next propagation simulation to be done involved the the performance of the beam depending on the

degree parameter m for HIG modes, recalling that this parameter is closely related to the OAM of helical

beams, specially when the ellipticity of the mode is ε = 0, where the HIG0
p,m transforms into a HLGn,l mode

with l = m and OAM = lh̄ per photon. The change in the value of the azimuthal number l was studied

in the previous section, showing that lower values of l behave better in turbulence. A similar behaviour is

thus expected for the elliptical azimuthal number m of HIG modes with ε 6= 0. The simulation performed in

this section involved HIG modes with fixed order p = 5 and a turbulence strength of C2
n = 10−14m−2/3 was

implemented in the propagation. The results for the transverse intensity and phase profiles of the propagated

beams are present in Table 4.11, while the results on the characterization of the propagation are showed in

Figure 4.12 and Table 4.12.

(a) Overlap value (b) Scintillation index (c) Strehl Ratio

Figure 4.12: Propagation characterization of several HIG2
5,m with at C2

n = 10−14m−2/3 by varying the

degree of the mode.

The remarks that could be done regarding the phase and intensity transverse profiles of the propagated

beams are very similar to the ones already explored in previous sections. However, is in the characterization

measurements of the beam were the important results appear. As for the the scintillation index and the

strehl ratio of the beams, while there were already defined as mode-geometry dependent measurements, it

is interesting to note that at some points of the propagation the preferred m changes, but in general higher
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values of m behave better. This could be explained by noticing that lower values of m, or rather, bigger

differences in p−m generate more elongated modes than those with lower p−m value, as such, the window

in which these quantities are initially checked is more elongated in the x (or y) axis and the turbulence effects

on the beams tend to distort it and deviate beam intensity from the measurement window. Regarding the

overlap value, it can be seen that for longer propagations the turbulence strength has a bigger effect on the

leakage of power into other modes from the initial beam, the bigger values of m performed better, which is

contrary to the initial assumption on the performance of the beam with the m parameter. Because of this,

it is congruent to assume that not only the m parameter, but the order p parameter takes part in the effec-

tiveness of these beams. Therefore, the variation of this mode parameter was investigated in the next section.

4.2.6 Propagation of Helical Ince-Gaussian modes, varying the order parameter

In this section, the effects of the order p parameter on HIG beams are studied in order to, in conjunction

with the results obtained from varying the degree m parameter, obtain information about how the physical

structure of the HIG beams affects their performance in turbulent media. The simulation of propagation

was done for HIG2
p,3 mode with a refractive index structure constant of C2

n = 10−14m−2/3. The results of

the simulation are shown in Table 4.13, for the intensity and phase transverse profiles and in Figure 4.13 and

Table 4.14 for the characterization of the propagations.

(a) Overlap value (b) Scintillation index (c) Strehl Ratio

Figure 4.13: Propagation characterization of several HIG2
p,3 with at C2

n = 10−14m−2/3 by varying the order

of the mode.

A similar result to the one obtained for propagation of modes with a fixed m parameter is obtained,

since both the scintillation index and strehl ratio have a strong dependency on the geometry of the initial

transverse beam profile. In the cases of the modes used, a smaller p value is preferred for the scintillation

index up to a certain distance, where most of the modes seem to converge to a very similar value except for

the lower p = 3 mode. As for the Strehl Ratio, there is no clear mode with radically better performance.
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This can be then attributed to the geometrical form of the modes, that as seen in Table 4.13 is not that

elongated in any mode. As a general rule then, a bigger impact on these two measurements (and thus to the

transverse geometry) can be attributed to the degree m of a mode, rather than to the order p.

However, for the overlap measurement, there is a clear preference in performance for lower p modes, that

is even more marked than the preference for higher values of m, having the HIG2
3,3 around double the overlap

value compared to the worst performing mode HIG2
9,3.

Having the results for the overlap for both fixed p and m parameters a remarkable condition can be

defined. Rather than just looking at these values separately, one could look at the results for modes with

different p − m. In both Figures 4.12 and 4.13, the modes with an smaller difference between these two

values perform better than the others. To make a better understanding of this result one could look at the

relation of this parameter with the radial parameter n in HLG modes, where n = (p−m)/2, so that for the

increase of the radial mode, the worst that the performance is of the beam in turbulence, or at any ellipticity,

it could be seen as the number of phase regions defined by the beam, as discussed in section 2.3. Another

way to see this result would be that, as the p value has more impact on the robustness of the mode than

m, and p, represents a family of modes that share the same Gouy phase and form a complete sub-basis of

orthogonal modes , as seen in section 2.2, lower p modes perform better, as there are less modes within

the same sub-basis of orthogonal modes in which the mode can leak to, with the different possible values of

m being the most probable modes to leak to. However, there is also leakage into other modes due to loss of

coherence.

4.3 General results on propagation of Helical Ince-Gauss beams

The results reported in this work show several remarkable properties regarding helical modes propagating

through turbulent media. First, there was special attention put into the effects that the turbulence has into

the modes, showing that the performance of all modes is highly dependent with the strength of the turbu-

lence, however, for modes that propagate in normal turbulence conditions (around C2
n = 10−15m−2/3) the

losses on intensity and structure are low, while the leakage of modes is not very critical. Also, the effects the

phase vortexes, the actual carriers of OAM on these beams, were shown to move around their initial relative

position inside the beam in an amount and randomness according to the strength of turbulence, showing that

the turbulence can change, to a certain degree, the average value of the mode OAM.

Remarkable is the shown property that the ellipticity parameter of the modes themselves ε does not

strongly impact the overlap performance of the modes, and rather is the combination of order p and degree
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m and their difference p−m the parameters that do. This could be explained due to the fact that p and m

define the complexity of a mode and the ε defines the basis in which the mode is projected, each basis having

its own symmetry. Also, p in particular defines a sub-family of coherent modes with different Gouy phase.

This means that in a free space optical communication system whatever chosen basis (ellipticity) to put a

mode into, the mode will keep the information with barely the same fidelity, at least without considering a

particular measurement system and for the used turbulence model, as other studies, with different param-

eters give differing results [56–58]. These discordance is discussed in the general conclusions. The overlap

value can be as well optimized with the correct p and m values depending on the system. All of p, m, ε

had an impact on the scintillation index and strehl ratio measurements, by giving the beam its geometrical

shape and axial symmetry, with less elongated modes being preferred. Although the way in which these two

parameters were measured in this work was by taking the original beam without propagation as basis for the

detection window, in an actual free space communication system these measurements are heavily dependent

on the characteristics of the receivers end.

However, the results obtained show the nature of the beam profile itself and thus could be used as a

reference when designing a specific free space communication system based on OAM carrying beams.
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Distance Mode without turbulence Mode with turbulence Phase profile

500 m

1000 m

1500 m

2000 m

2500 m

3000 m

3500 m

4000 m

Table 4.1: Propagation of a HIG2
5,2 mode through 4km. of turbulent atmosphere with C2

n = 10−15m2/3

(medium turbulence)
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Distance Mode with turbulence Phase profile

300 m

600 m

900 m

1200 m

1500 m

2000 m

Table 4.2: Propagation of a HIG2
5,3 mode through 4km. of turbulent atmosphere with C2

n = 10−14m2/3

(strong turbulence).
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Distance Mode with turbulence Phase profile

300 m

600 m

900 m

1200 m

1500 m

2000 m

Table 4.3: Propagation of a HIG2
5,3 mode through 4km. of turbulent atmosphere with C2

n = 10−16m2/3

(weak turbulence).
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Ellipticity Intensity at 0m Intensity at 1000m Intensity at 2000m

ε = 0

ε = 2

ε = 4

ε = 6

ε = 8

ε =∞

Table 4.4: Comparison of propagation of varying HIG5,3 modes transverse intensity profile through 2km of

turbulent atmosphere with C2
n = 10−15m2/3 and varying ellipticity value.
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Ellipticity Intensity at 0m Intensity at 1000m Intensity at 2000m

ε = 0

ε = 2

ε = 4

ε = 6

ε = 8

ε =∞

Table 4.5: Comparison of propagation of varying HIG5,3 modes phase profile through 2km of turbulent

atmosphere with C2
n = 10−15m2/3 and varying ellipticity value.
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Distance (m) ε = 0 ε = 2 ε = 4 ε = 6 ε = 8 ε =∞

0 1 1 1 1 1 1

100 0.9919 0.991 0.9925 0.9914 0.9922 0.9932

200 0.9824 0.9824 0.9844 0.9833 0.983 0.9855

300 0.9727 0.9748 0.9753 0.9763 0.9734 0.9756

400 0.9635 0.9659 0.9635 0.9646 0.9637 0.965

500 0.9532 0.9535 0.9488 0.9546 0.9503 0.9509

600 0.9386 0.9399 0.9325 0.9438 0.9363 0.9377

700 0.9245 0.9268 0.9189 0.9306 0.922 0.9192

800 0.9068 0.9094 0.9078 0.9185 0.9047 0.9031

900 0.8859 0.8924 0.8861 0.9043 0.8792 0.8845

1000 0.8743 0.869 0.8639 0.8848 0.8615 0.8629

1100 0.8511 0.85 0.8478 0.8672 0.8385 0.8421

1200 0.8278 0.8231 0.8338 0.8436 0.8152 0.8194

1300 0.8014 0.7963 0.8121 0.8229 0.7903 0.7915

1400 0.7741 0.7759 0.7951 0.7975 0.7674 0.7671

1500 0.7469 0.7525 0.7725 0.7688 0.7441 0.7371

1600 0.7137 0.7238 0.7495 0.737 0.7192 0.7157

1700 0.6879 0.6928 0.7259 0.7113 0.6901 0.687

1800 0.6552 0.672 0.6999 0.6883 0.6602 0.6742

1900 0.6369 0.6445 0.6672 0.6595 0.6175 0.6406

2000 0.6071 0.6199 0.6321 0.636 0.5984 0.6071

Table 4.6: Results of overlap value for HIG5,3 mode at varying propagation distances with C2
n = 10−15m−2/3

for varying ellipticity value.
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Ellipticity Initial Intensity Final Intensity Initial Phase Final Phase

ε = 0

ε = 2

ε = 4

ε = 6

ε = 8

ε =∞

Table 4.7: Comparison of propagation of varying HIG8,2 modes transverse intensity profile through 2km of

turbulent atmosphere with C2
n = 10−15m−2/3 and varying ellipticity values.
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Distance (m) ε = 0 ε = 2 ε = 4 ε = 6 ε = 8 ε =∞

0 1 1 1 1 1 1

100 0.9895 0.9901 0.9895 0.9896 0.9896 0.99

200 0.9785 0.98 0.979 0.9767 0.9778 0.9791

300 0.9663 0.9679 0.9681 0.9615 0.9652 0.9686

400 0.9546 0.9555 0.9533 0.9486 0.9551 0.957

500 0.9429 0.9403 0.9393 0.9339 0.9388 0.9417

600 0.9274 0.9294 0.9242 0.9153 0.9261 0.9224

700 0.9062 0.9066 0.9059 0.8994 0.9071 0.9053

800 0.8876 0.8841 0.8907 0.8771 0.8869 0.8842

900 0.8677 0.8631 0.8691 0.8588 0.8669 0.8602

1000 0.846 0.8312 0.8475 0.8337 0.8379 0.8398

1100 0.8153 0.8057 0.8158 0.8067 0.8186 0.8182

1200 0.795 0.7849 0.7934 0.7797 0.7963 0.7877

1300 0.764 0.7559 0.7722 0.7602 0.7677 0.7596

1400 0.7316 0.7351 0.7368 0.725 0.7409 0.7159

1500 0.7083 0.7059 0.706 0.7028 0.7163 0.6907

1600 0.6715 0.6803 0.6714 0.6758 0.6767 0.6563

1700 0.6514 0.6513 0.6405 0.6478 0.651 0.6413

1800 0.6323 0.6218 0.6129 0.6339 0.6185 0.6102

1900 0.6062 0.5943 0.5848 0.6066 0.5839 0.5787

2000 0.5858 0.5599 0.5612 0.5744 0.5538 0.5413

Table 4.8: Results of overlap value for HIG8,2 mode at varying propagation distances with C2
n = 10−15m−2/3

for varying ellipticity values.
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Mode Initial Intensity Final Intensity Initial Phase Final Phase

Gaussian beam

HLG0,1

HLG0,2

HLG0,3

HLG0,4

HLG0,5

Table 4.9: Comparison of propagation of varying HLG0,l modes transverse intensity profile through 2km of

turbulent atmosphere with C2
n = 10−14m−2/3.
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Distance (m) Gaussian Beam HLG0,1 HLG0,2 HLG0,3 HLG0,4 HLG0,5

0 1 1 1 1 1 1

100 0.9791 0.9684 0.9583 0.936 0.9384 0.9282

200 0.9604 0.9317 0.9137 0.8893 0.8733 0.8498

300 0.9371 0.8914 0.8769 0.8225 0.8151 0.7928

400 0.9154 0.8634 0.8291 0.761 0.7244 0.7107

500 0.8854 0.8256 0.765 0.7011 0.6608 0.6339

600 0.8588 0.7765 0.6942 0.6372 0.5799 0.5584

700 0.8271 0.72 0.6261 0.5717 0.5071 0.495

800 0.7958 0.6709 0.5633 0.5257 0.4625 0.4597

900 0.7702 0.6155 0.499 0.4734 0.4225 0.4093

1000 0.7248 0.5702 0.4419 0.4431 0.3791 0.3823

1100 0.6802 0.5176 0.4134 0.3885 0.351 0.3415

1200 0.6321 0.4659 0.379 0.3579 0.3333 0.3166

1300 0.5808 0.4243 0.3541 0.3319 0.307 0.2995

1400 0.5408 0.3846 0.3162 0.315 0.2743 0.2803

1500 0.4965 0.3706 0.3163 0.2927 0.2811 0.2638

1600 0.4601 0.351 0.2863 0.2622 0.2558 0.2306

1700 0.4156 0.3183 0.2718 0.2545 0.2319 0.2274

1800 0.3845 0.2927 0.2489 0.2363 0.2143 0.2049

1900 0.3648 0.2677 0.2417 0.2086 0.1951 0.1874

2000 0.3454 0.2699 0.2271 0.2081 0.1839 0.1749

Table 4.10: Results of overlap value for different HLG0,l modes at varying propagation distances with

C2
n = 10−14m−2/3.
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Mode Initial Intensity Final Intensity Initial Phase Final Phase

HIG2
5,1

HIG2
5,3

HIG2
5,5

Table 4.11: Comparison of propagation of HIG2
5,m modes transverse intensity profile through 2km of turbulent

atmosphere with C2
n = 10−14m−2/3 and varying degree m values.

73



CHAPTER 4. ATMOSPHERIC PROPAGATION OF HELICAL INCE-GAUSSIAN MODES

Distance (m) HIG2
5,1 HIG2

5,3 HIG2
5,5

0 1 1 1

100 0.927 0.9281 0.9254

200 0.8564 0.8576 0.8532

300 0.7818 0.7582 0.7784

400 0.7048 0.7019 0.7058

500 0.6538 0.6322 0.6511

600 0.5828 0.5676 0.5747

700 0.5346 0.5024 0.5153

800 0.4807 0.4512 0.4572

900 0.4276 0.3935 0.411

1000 0.3929 0.3592 0.3676

1100 0.3458 0.3302 0.3388

1200 0.3144 0.3162 0.3115

1300 0.2833 0.2879 0.3023

1400 0.2446 0.2479 0.2973

1500 0.2356 0.2131 0.2697

1600 0.1962 0.2072 0.2391

1700 0.1921 0.1979 0.2276

1800 0.1714 0.1781 0.2045

1900 0.1628 0.1713 0.1851

2000 0.1517 0.1534 0.1741

Table 4.12: Results of overlap value for different HIG2
5,m modes at varying propagation distances with

C2
n = 10−14m−2/3.
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Mode Initial Intensity Final Intensity Initial Phase Final Phase

HIG2
3,3

HIG2
5,3

HIG2
7,3

HIG2
9,3

Table 4.13: Comparison of propagation of HIG2
p,3 modes transverse intensity profile through 2km of turbulent

atmosphere with C2
n = 10−14m−2/3 and varying order p values.
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Distance (m) HIG2
3,3 HIG2

5,3 HIG2
7,3 HIG2

9,3

0 1 1 1 1

100 0.9471 0.9265 0.9147 0.8869

200 0.9019 0.8547 0.8382 0.7953

300 0.841 0.7886 0.7401 0.7046

400 0.7827 0.7257 0.6449 0.6146

500 0.7225 0.6598 0.5777 0.558

600 0.6674 0.5724 0.5145 0.4868

700 0.6211 0.4992 0.4514 0.4094

800 0.5775 0.4388 0.3961 0.3434

900 0.5224 0.3914 0.3592 0.2978

1000 0.4817 0.3573 0.3195 0.2871

1100 0.4381 0.3121 0.2917 0.2497

1200 0.3872 0.278 0.2502 0.2056

1300 0.3479 0.2541 0.2215 0.1937

1400 0.3233 0.2383 0.2137 0.1722

1500 0.305 0.2201 0.1814 0.1577

1600 0.266 0.2007 0.1707 0.143

1700 0.2521 0.1801 0.1547 0.1378

1800 0.239 0.1638 0.1471 0.1264

1900 0.2305 0.1537 0.1343 0.1185

2000 0.2148 0.1406 0.1258 0.1101

Table 4.14: Results of overlap value for different HIG2
p,3 modes at varying propagation distances with

C2
n = 10−14m−2/3.
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Chapter 5

Conclusions and future work

In this work, different and remarkable properties of orbital angular momentum carrying beams were explored

both theoretically and experimentally, making big use of simulations in order to obtain a general perspective

on the behavior of these beams while propagating through turbulent atmosphere.

The physical generation of orbital angular momentum beams using spatial light modulators was per-

formed, proving the feasibility of these methods and also opening opportunities for the use of these generated

intensity profiles in several applications. In particular, the possibility of using the generated vortex beams

in the scheme of quantum optics are to be explored, as the tuning of them can be used to generate ad hoc

states, for example, by projecting these modes into the pump or signal and idler beams in a Spontaneous

Parametric Down Conversion crystal. This kind of procedure is then meant to be used for the generation

of tunable bell states and to observe the evolution of a certain helical Ince-Gauss mode with the ellipticity

parameter at the single photon count rate, using the OAM conservation property of the SPDC process. Also,

the option of using the near-field intensity profile of helical Ince-Gauss modes for beam detection processes is

proposed, as the optical vortexes of these beams seem to be more easily detected and characterized in these

conditions.

As for the propagation of helical beams through the atmosphere, several properties of the beams in these

conditions were observed and measured. The effects on the strength of the turbulence in these modes were

observed both in the intensity and phase transverse profile, noticing the movement, but not the loss of the

phase indeterminations of the beams. The properties of the order, degree and ellipticity parameters were

studied as well, concluding that the performance of these vortex beams while carrying and maintaining infor-

mation is more influenced by the order p and degree m of the modes, than by the chosen ellipticity ε of the

mode, that had no practical impact in the overlap of a mode. This means that the chose of basis in which a

mode with given order and degree is propagated has no effect on its robustness to keep information in the

initial mode.
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As general rules, the effects on the robustness of the beam lay instead in the chose of p, the difference

p −m and the value of m in that order. As a matter of fact, a similar work to the done in this thesis was

recently published by Gu et al [57]. In this work, simulation of Helical Ince-Gauss beams was done, paying

special analysis on the robustness of the modes as information carriers according to the ellipticity parameter,

finally concluding that this parameter plays a big role on the performance of the modes, as well as the degree

m parameter. Also, another study by Zhu et al was done [58] in which the robustness of entangled modes in

turbulent atmosphere can be modified by the ε parameter. Comparing their results to the ones presented in

this work, considering both the simulation and methods used, there was a good agreement on the obtained

values. However, there was not such agreement on the interpretation of the results. While for them the effect

of ellipticity can be considered significant, for us it is in fact practically negligible compared to the choose

of order p, based on the overlap values presented in the several Tables. As such, we have demonstrated

that the actual choose of modes rather than the basis in which they are described affects more heavily the

performance of these modes of light as information carriers.

As an extension of these results, performance of polarized helical beams propagating through turbulent

atmosphere can be studied using simulations as well, hoping that an additional degree of freedom of the

propagated beams could provide other means to optimize the robustness of the modes. Another interesting

thing to study more deeply could be the dynamics of the phase vortexes for helical beams: how their

distribution changes with atmospheric effects and how this distribution change modifies the orbital angular

momentum and information carrying efficiency of the modes. However, the most important steps to take

would be to design and perform experiments in free space communication systems to test the simulations

results and check the feasibility to use these modes to carry information in free space.
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Appendix A

Code for decomposition of Ince-Gauss

modes into the Laguerre-Gauss basis

Here I present the MATLAB code used for the decomposition of IG, necessary for the generation of IG

intensity profiles for the simulations of atmospheric propagation and the respective phase profiles used in

the generation of said modes Spatial Light Modulator phase patterns. As mentioned before, the original

algorithm for this code was done by Dr. William Plick and based on the work by Bandres et. al. [29]. The

version here presented is a translation of said algorithm to MATLAB.

% Credit to Dr. William Plick (University of Dayton) for original Mathematica code, translation

% and adjustments by Emmanuel Narv ez.

% For more information: Miguel A. Bandres and Julio C. Guti rrez −Vega, "Ince Gaussian

% modes of the paraxial wave equation and stable resonators," J. Opt. Soc.

% Am. A 21, 873−880 (2004)

%Calculation of the p,m Ince−Gauss modes in the even (LGE) and odd (LGO) Laguerre−Gauss basis

%Choice of p, m, elipticity "e" and helicity "h" and get the parity of p and m on "ParP"

%and %ParM

%enter choice of m, must be same parity and less than or equal to p,

%equal to or greater than zero if p is odd, greater or equal to 1 if p

%is even functions

%The output gives two matrixes, each row of said matrixes has three

%elements, the first is the coefficient of the LG mode, the second the "n"

%value and the third the "l" value

function [LGE, LGO] = IGLG(p,m,h,e)
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ParP = mod(p,2);

ParM = mod(m,2);

%Calculation of the even (Cosine based) LG modes

% We define the expansion of the IG polynomial and dimensionality of the representative matrix

if ParP == 0

A = zeros(1,(p/2)+1);

mxE = (m/2)+1;

MdimE = (p/2)+1;

MEe = zeros((p/2)+1, (p/2)+1);

MEe(1,1) = 0;

MEe(1,2) = e*((p/2)+1);

if MdimE > 2

MEe(2,1) = e*p;

MEe(2,2) = 4;

MEe(2,3) = e*((p/2)+2);

end

if MdimE > 3

r = 3;

while r <= MdimE−1

MEe(r,r−1) = ((p/2)−(r−2))*e;

MEe(r,r) = 4*(((r−2)+1)ˆ2);

MEe(r,r+1) = ((p/2)+(r−2)+2)*e;

r = r+1;

end

end

if MdimE > 2

MEe(MdimE, MdimE−1)= e;

MEe(MdimE,MdimE)= 4*(((p/2))ˆ2);

end

if MdimE == 2

MEe(MdimE,MdimE−1)=2*e;

MEe(MdimE, MdimE)= 4;

end

else

A = zeros(1,((p−1)/2)+1);

mxE = ((m−1)/2)+1;

MdimE = ((p−1)/2)+1;
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MEe = zeros(((p−1)/2)+1, ((p−1)/2)+1);

MEe(1,1) = ((e/2)*(p+1))+1;

MEe(1,2) = (e/2)*(p+3);

if MdimE > 2

r = 1;

while r <= MdimE−2

MEe(r+1,r) = −(e/2)*((2*r)−p−1);

MEe(r+1,r+1) = ((2*r)+1)ˆ2;

MEe(r+1,r+2) = (e/2)*(p+(2*r)+3);

r = r+1;

end

end

if MdimE > 1

MEe(MdimE,MdimE−1) = e;

MEe(MdimE,MdimE) = pˆ2;

else

MEe = zeros(((p−1)/2)+1, ((p−1)/2)+1);

MEe(MdimE,MdimE) = pˆ2;

end

end

%The size of A is the number of Cosine harmonic terms. If the size of A is 3,

%the terms would be A[1] + A[2] Cos[2 \[Eta]] + A[3] Cos[4 \[Eta]]

%Eigenvalues and Eigenvectors of the representative matrix, giving the las

%element of the Eigenvector value of 1

if p > 0

[VEigen,DEigen] = eig(MEe);

[DEigenOr,EOrd] = sort(diag(DEigen));

VEigen = VEigen(:,EOrd);

EigenV= zeros(MdimE,MdimE);

for i = 1:MdimE

for j = 1:MdimE

EigenV(j,i) = VEigen(j,i)/VEigen(MdimE,i);

end

end

%Choice of the correct eigenvector

EigenV;

NC=size(A);

NC(2);
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for h = 1:NC(2);

A(1,h)=EigenV(h,mxE);

end

A;

%Calculate which laguerre−gauss even modes (LG[n,l]) will be needed to expand

%the Ince−gauss mode (need to have same Gouy phase).

modesE=0;

countE=0;

ModesE = zeros(10,3);

if ParP==0

for l = 0:p

l;

for n = 0:p/2

n;

b = (2*n)+l;

if b == p

countE = countE+1;

ModesE(countE,1)= countE;

ModesE(countE,2)= n;

ModesE(countE,3)= l;

end

end

end

else

for l = 1:p

l;

for n = 0:(p/2)+1

n;

b = (2*n)+l;

if b == p

countE = countE+1;

ModesE(countE,1)= countE;

ModesE(countE,2)= n;

ModesE(countE,3)= l;

end

end

end

end

countE;

ModesE;

ModE = zeros(countE,2);
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%Fill the used modes

for k = 1:countE

ModE(k,1) = ModesE(k,2);

ModE(k,2) = ModesE(k,3);

end

%First column are n, second are l

ModE;

coefE = zeros(1,countE);

%Coefficients of each even LGE mode

for u = 1:countE

coefE(u) = ((−1)ˆ(ModE(u,1)+ModE(u,2)+((p+m)/2)))*sqrt((1+KDelta(ModE(u,2),0))*

factorial(ModE(u,1))*factorial(ModE(u,1)+ModE(u,2)))*A(u);

end

coefE;

NcofE=coefE/(norm(coefE));

%Calculation of the odd (Sine based) LG modes

% We define the expansion of the IG polynomial and dimensionality of the representative matrix

if ParP == 0

B = zeros(1,(p/2));

mxO = (m/2);

MdimO = (p/2);

MOe = zeros((p/2), (p/2));

MOe(1,1) = 4;

MOe(1,2) = e*((p/2)+2);

if MdimO > 2

r = 1;

while r <= (MdimO−2)

MOe(r+1,r) = e*((p/2)−(r));

MOe(r+1,r+1) = 4*((r+1)ˆ2);

MOe(r+1,r+2) = e*((p/2)+2+r);

r=r+1;

end

end

if MdimO > 1

MOe(MdimO,MdimO−1)=e;

MOe(MdimO,MdimO)=4*((p/2)ˆ2);

else
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MOe = zeros((p/2), (p/2));

MOe(MdimO,MdimO)=4*((p/2)ˆ2);

end

else

B = zeros(1,(p+1)/2);

mxO = ((m−1)/2)+1;

MdimO = ((p−1)/2)+1;

MOe = zeros(((p−1)/2)+1, ((p−1)/2)+1);

MOe(1,1) = 1−((e/2)*(p+1));

MOe(1,2) = (e/2)*(p+3);

if MdimO > 2

r = 1;

while r <= MdimO−2

MOe(r+1,r) = −(e/2)*((2*r)−p−1);

MOe(r+1,r+1) = ((2*r)+1)ˆ2;

MOe(r+1,r+2) = (e/2)*(p+(2*r)+3);

r = r+1;

end

end

if MdimO > 1

MOe(MdimO,MdimO−1) = e;

MOe(MdimO,MdimO) = pˆ2;

else

MOe = zeros(((p−1)/2)+1, ((p−1)/2)+1);

MOe(MdimO,MdimO) = pˆ2;

end

end

MOe;

%The size of B is the number of Sine harmonic terms. If the size of A is 3,

%the terms would be A[1] + A[2] Sin[2 \[Eta]] + A[3] Sin[4 \[Eta]]

%Eigenvalues and Eigenvectors of the representative matrix, giving the last

%element of the Eigenvector value of 1

[VEigenO,DEigenO] = eig(MOe);

[DEigenOO,OOrd] = sort(diag(DEigenO));

VEigenO = VEigenO(:,OOrd);

EigenVO= zeros(MdimO,MdimO);

%Getting the same as mathematica (last element of Eigenvector = 1)
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for i = 1:MdimO

for j = 1:MdimO

EigenVO(j,i) = VEigenO(j,i)/VEigenO(MdimO,i);

end

end

EigenVO;

NCO=size(B);

NCO(2);

for h = 1:NCO(2)

%Case m = 0

if mxO == 0

B(1,h)=EigenVO(h,1);

else

B(1,h)=EigenVO(h,mxO);

end

end

B;

%Calculate which laguerre−gauss even modes (LG[n,l]) will be needed to expand

%the Ince−gauss mode

modesO=0;

countO=0;

ModesO = zeros(10,3);

if ParP==0

for l = 1:p

l;

for n = 0:p/2

n;

b = (2*n)+l;

if b == p

countO = countO+1;

ModesO(countO,1)= countO;

ModesO(countO,2)= n;

ModesO(countO,3)= l;

end

end

end

else

for l = 1:p

l;

for n = 0:((p−1)/2)

n;

b = (2*n)+l;
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if b == p

countO = countO+1;

ModesO(countO,1)= countO;

ModesO(countO,2)= n;

ModesO(countO,3)= l;

end

end

end

end

ModO = zeros(countO,2);

countO;

ModesO;

%Fill the used modes

for k = 1:countO

ModO(k,1) = ModesO(k,2);

ModO(k,2) = ModesO(k,3);

end

%First column are n, second are l

ModO;

%Coefficients of each odd LGO mode

coefO = zeros(1,countO);

for u = 1:countO

%Case m = 0

if mxO == 0

coefO(u) = 0;

else

coefO(u) = ((−1)ˆ(ModO(u,1)+ModO(u,2)+((p+m)/2)))*sqrt((1+KDelta(ModO(u,2),0))*

factorial(ModO(u,1))*factorial(ModO(u,1)+ModO(u,2)))*B(u);

end

end

coefO;

NcofO=coefO/(norm(coefO));

LGE = zeros(countE,3);

LGO = zeros(countO,3);

for u=1:countE

LGE(u,2) = ModE(u,1);

LGE(u,3) = ModE(u,2);

LGE(u,1) = NcofE(u);
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end

for u=1:countO

LGO(u,2) = ModO(u,1);

LGO(u,3) = ModO(u,2);

LGO(u,1) = NcofO(u);

end

else

LGE = zeros(1,3);

LGO = zeros(1,3);

LGE(1,2) = 0;

LGE(1,3) = 0;

LGE(1,1) = 1;

LGO(1,2) = 0;

LGO(1,3) = 0;

LGO(1,1) = 1;

end

end
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Codes used for propagation of Helical

Beams through atmospheric

turbulence

In this appendix the codes used for the simulation of propagation of different scalar vortex beams are pre-

sented, the first of these covers the propagation of any electrical field using the properties of the transfer

function of the air. The second, shows the construction of the random phase screens used to simulate turbu-

lence in the atmosphere. The last code shows the complete propagation simulation of Helical beams through

the atmosphere, in particular, the code used for the comparison of different ellipticities of a same beam is

shown, but all the codes used for different propagation parameters show the same structure. As mentioned

in the main text, the core of the algorithms is attributed to Qiwen Zhan of UD and Carlos Sevilla Gutierrez,

graduate of UD and CIO. However, very significant changes to said algorithms were made.

B.1 Code for the propagation of a beam through a medium using

the transfer function

%scalar2d(in,N,d,Lembda,n,lembda) is 2D scalar diffraction propagation

% in is the starting field

% N is sampling points

% d is propagation distance

% Lembda is spatial dimension in x and y direction

% n is index of refraction
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% lembda is wavelength

% out is the result of the propagation

function out=scalar2d(in,N,d,Lembda,n,lembda)

k=2*pi*n/lembda;

% Generate x and y coordinates

Deltax=Lembda/N;

Deltay=Lembda/N;

Nmid=N/2;

for i=1:N

x(i)=(i−Nmid−1)*Deltax;

y(i)=(i−Nmid−1)*Deltay;

end

[x,y]=meshgrid(fftshift(x),fftshift(y));

% Generate k−space

Deltakx=2*pi/Lembda;

Deltaky=2*pi/Lembda;

for i=1:N

kx(i)=(i−Nmid−1)*Deltakx;

ky(i)=(i−Nmid−1)*Deltaky;

end

[kx,ky]=meshgrid(fftshift(kx),fftshift(ky));

kz=sqrt(kˆ2−kx.ˆ2−ky.ˆ2);

%kz=−(kx.ˆ2+ky.ˆ2)/2/k; % Fresnel propagator

% Calculate the angular spectrum of input

spectrum=fft2(in);

% Multiply transfer function, this transfer function only

% subject to scalar theory

temp=exp(j*d*kz).*spectrum;

% Claculate the resulted field

out=fftshift(ifft2(temp));

B.2 Code for the creation of random turbulence phase mask

%Propagation of Scalar Vortex Beams

function [E,x,y]=scalarprop1(Lambda,L,Z,N,Cn2,E0)

%RETURN TO l0 = 10*10ˆ3 and L0=3*10ˆ6

%b=zeros(1,10);
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w0=70*10ˆ3;

l0=10*10ˆ3;

L0=3*10ˆ6;

% Grid in space

Deltax=L/N;

Deltay=L/N;

Nmid=N/2;

for i=1:N

x(i)=(i−Nmid−1)*Deltax;

y(i)=(i−Nmid−1)*Deltay;

end

[x,y]=meshgrid(x,y);

% Generate k spcae coordinator

Deltakx=2*pi/L;

Deltaky=2*pi/L;

for i=1:N

kx(i)=(i−Nmid−1)*Deltakx;

ky(i)=(i−Nmid−1)*Deltaky;

end

[kx,ky]=meshgrid(fftshift(kx),fftshift(ky));

k=sqrt(kx.ˆ2+ky.ˆ2);

% Set up the parameters for propagation

% Set up the random phase screens

% Use randn() to generate independent N(0,1) noises

% Use Kolmogorov power spectrum law 0.033*Cn2*kˆ−11/3

% Cn2 is the index structure constant

% For weak turnbulence Cn2˜10ˆ−17 mˆ−2/3 or less

% For strong turbulence Cn2˜10ˆ−13ˆ−2/3 or more

% The phase spectrum is related to the index spectrum through

% psdofphase(k)=2*pi*kˆ2*Z*psdofindex, where Z is the distance propagated

%for p=1:50

% start randn with different initial state everytime

randn('state',sum(100*clock));

A=randn(size(E0));
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randn('state',sum(100*clock));

B=randn(size(E0));

% Index power spectral density

%kolmogorov model

%indexpsd=0.033*Cn2*k.ˆ(−11/3);

%Karman model

indexpsd=0.033*Cn2*exp(−(k.*l0/5.92).ˆ2).*(k.ˆ2+(2*pi/L0).ˆ2).ˆ(−11/6);

% Phase power spectral density

phasepsd=2*pi*(2*pi/Lambda)ˆ2*Z*indexpsd;

% Random phase screen (this results two random screens)

% (N*Deltakx)ˆ2 factor is for the normalization of inverse FFT

phi=ifft2(sqrt(phasepsd).*(A+j*B)/Deltakx)*(N*Deltakx)ˆ2;

phi1=real(phi);

phi2=imag(phi);

% Phase screen due to turbulence, this random phase will be multipled to

% the field E for further propagation

phasescreen=exp(j*phi1);

max(max(x));

mask=zeros(size(x));

mask(find(sqrt(x.ˆ2+y.ˆ2)<=1.5*10ˆ6))=1;

% Linear propagation of each orthogonal field component

E=scalar2d(fftshift(E0.*phasescreen),N,Z,L,1,Lambda);

B.3 Code for the simulation of propagation of helical beams

% This script investigates the Scalar Vortex Propagation of Ince−Gaussian

% profile beams through turbulent atmosphere

%Units are microns

clear all; clc; close all

Lambda=0.6328;%1.55;

hw=0;
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% Set up the coordinates, number of pixels and size in microns of windows

% and each pixel

N=1024;

L=5*10ˆ5;

pixs = L/N;

pixa = pixsˆ2;

% For IG parameters (pp "radial", m "azimuthal", e "ellipticity")

pp = 8;

m = 2;

e = 0.00001;

%Beam waist

w0 = 10000;

rang1 = ceil(w0/pixs);

z0=pi*(w0*10ˆ−6)ˆ2/(Lambda*10ˆ−6);

%Total distance (2000*10ˆ6)

ZT = 2000*10ˆ6;

%Divide the distance by

dparts = 20;

%Number of random phase screens per each division

nscre = 5;

%Number of times to propagate

npro = 200;

% Strength of turbulence (−16 weak, −15 normal, −14 strong), according to

% von Karman model

Cn2=10ˆ−15*10ˆ−4;

%For several ellipticities

nue = 6;

%Cell of 5 because we need distance, value of overlap, value of

%scintillation name and Strehl Ratio

elli = cell(5,nue);

dv = zeros(dparts+1,1);

for tt = 1:(dparts+1)

dv(tt) = (tt−1)*(ZT/dparts)*10ˆ−6;

end

for tt = 1:nue

elli{1,tt} = dv;

elli{2,tt} = zeros(dparts+1,1);

elli{3,tt} = zeros(dparts+1,1);

name = sprintf('e= %1.1d', (tt−1)*2);
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elli{4,tt} = name;

if tt==nue

name = sprintf('e= INF');

elli{4,tt} = name;

end

elli{5,tt} = zeros(dparts+1,1);

end

%Total number of iterations

Ni = nue*(dparts+1)*npro;

%Decomposition of IG modes into LG modes, more information in the function

%file, IGe has even LG components, IGo the odd.

%First column is weight, second is radial mode and third is azimuthal mode

[IGe,IGo] = IGtoLG2(pp,m,1,e)

%Get the matrix with the Ince Gaussian modes, the order is the Even, Odd,

%Helical+ and Helical− modes, Expectation value of OAM and grid in x,y.

%As input, one uses the 3 column matrix of LG modes with weight,

%wavelenght, number of pixels of window, physical size of window, beam

%waist and degree m of IG mode.

[EMODES,OMODES,EIG,EIG2,OAM,x,y] = IGgrid(IGe,IGo,Lambda,N,L,w0,m);

% %Initial Intensity and phase, if not wanting to see, put inside figure ""Visible", false"

% figure("Visible", false)

% surfc(x,y,abs(EIG).ˆ2);

% colormap hot;

% shading interp

% h = colorbar;

% ylabel(h, 'Intensity')

% xlabel('X direction (um)');

% ylabel('Y direction (um)');

% axis equal

% view(0,90)

% title(sprintf('IG p=%1d, m=%1d, e=%1d \nnot propagated',pp,m,e))

% print(sprintf('0IG p=%1d, m=%1d, e=%1d not propagated.jpg',pp,m,e),'−djpeg');

%Initiation for parameters

E2 = EIG;

%Z=(ZT/dparts);

Z = 0;

% 3 for just scintillation and overlap, add 1 to add strehl ratio and 3 for

% variance of each quantity.

tab = zeros(dparts+1,7);
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E0 = E2;

TD = 0;

int = 0;

% Propagation distance; Here we can change the distance to get the

% interference pattern

for t = 1: nue

%Decomposition of IG modes into LG modes, more information in the function

%file, IGe has even LG components, IGo the odd.

%First column is weight, second is radial mode and third is azimuthal mode

[IGe,IGo] = IGtoLG2(pp,m,1,e)

%Get the matrix with the Ince Gaussian modes, the order is the Even, Odd,

%Helical+ and Helical− modes, Expectation value of OAM and grid in x,y.

%As input, one uses the 3 column matrix of LG modes with weight,

%wavelenght, number of pixels of window, physical size of window, beam

%waist and degree m of IG mode.

[EMODES,OMODES,EIG,EIG2,OAM,x,y] = IGgrid(IGe,IGo,Lambda,N,L,w0,m);

E2 = EIG;

%Z=(ZT/dparts);

Z = 0;

tab = zeros(dparts+1,3);

E0 = E2;

TD = 0;

%Initialize file to get data report in txt

cc = char(datetime('today'))

filename = sprintf('Report IG %d %d e=%d,Cn2 = %d, Distance = %d, nscre = %d, number

prop = %d %s.txt', pp, m, e, Cn2*10ˆ4, ZT*10ˆ−6, nscre, npro, cc)

save(filename);

tab = zeros(dparts+1,7);

%Initialize arrays of each value to measure

ovv = zeros(npro,1);

siv = zeros(npro,1);

srv = zeros(npro,1);

%For each number of propagation

for u = 1:npro

%For each distance

for q=1:dparts+1 %100
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if mod(q,1) == 0

int = int+1;

% Display the progression of simulation

display('**********************************************')

display('In progress:')

display(sprintf('Distance No. = %2d of %2d, Number of run = %2d of %2d,

Ellip = %2d',q,dparts+1, u,npro, e));

display(sprintf('Iteration No. %2d of %2d', int, Ni))

end

%Reset or not reset the original profile

%E0=E2;

%Here I temporary divide propagation distance into nscre parts, each with

%random turbulence.

M=(ZT/dparts)/nscre;

if q == 1

M = 0;

end

for p=1:nscre

[Ep,x,y]=scalarprop1(Lambda,L,M,N,Cn2,E0);

TD = TD+M;

wzzz=sqrt(w0ˆ2*(1+(TD*Lambda/pi/(w0ˆ2))ˆ2));

E0=Ep;

end

%calculate beam waist after Z distance propagation

wz=sqrt(w0ˆ2*(1+(Z*Lambda/pi/(w0ˆ2))ˆ2));

%Profile propagated without turbulence

Z

ENT =fftshift(scalar2d(EIG,N,Z,L,1,Lambda));

%Calculate where to analize scintillation(square of 2wz size)

%or actual size of the beam

aENT = ENT.*conj(ENT);

norm = max(aENT(:));

fil= aENT((N+2)/2,:);

col = aENT(:,(N+2)/2);

for j = 1:N

if fil(j)>(((1/exp(1))ˆ2)−.08)*norm

if fil(j)<((1/exp(1))ˆ2)*norm

xcor = j;

break
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end

end

end

for j = 1:N

if col(j)>(((1/exp(1))ˆ2)−.08)*norm

if col(j)<((1/exp(1))ˆ2)*norm

ycor = j;

break

end

end

end

%rang = ceil(wz/pixs);

rangx = N/2−xcor;

rangy = N/2−ycor;

% reg = Ep((N/2)−rang:(N/2)+rang,(N/2)−rang:(N/2)+rang);

% regENT = EIG((N/2)−rang:(N/2)+rang,(N/2)−rang:(N/2)+rang);

reg = Ep((N/2)−rangy:(N/2)+rangy,(N/2)−rangx:(N/2)+rangx);

regENT = ENT((N/2)−rangy:(N/2)+rangy,(N/2)−rangx:(N/2)+rangx);

%Scintillation index with and without region

SII = mean(mean(abs(reg).ˆ4))/(mean(mean(abs(reg).ˆ2)))ˆ2−1;

%SI=mean(mean(abs(Ep).ˆ4))/(mean(mean(abs(Ep).ˆ2)))ˆ2−1;

%Strehl ratio calculation IENT is intensity without turbulence

%IEP with turbulence

IENT = 0;

for pixelx = 1:(2*rangy+1)

for pixely = 1:(2*rangx+1)

Vpixel = regENT(pixelx,pixely)*conj(regENT(pixelx,pixely));

IENT = IENT + Vpixel;

end

end

IEP = 0;

for pixelx = 1:(2*rangy+1)

for pixely = 1:(2*rangx+1)

Vpixel = reg(pixelx,pixely)*conj(reg(pixelx,pixely));

IEP = IEP + Vpixel;

end

end
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SRV = abs(IEP/IENT);

%Overlap integrals without and with turbulence

SumintNP = 0;

for pixelx = 1:N

for pixely = 1:N

Vpixel = ENT(pixelx,pixely)*conj(ENT(pixelx,pixely))*pixa;

SumintNP = SumintNP + Vpixel;

end

end

SumintP = 0;

for pixelx = 1:N

for pixely = 1:N

Vpixel = ENT(pixelx,pixely)*conj(Ep(pixelx,pixely))*pixa;

SumintP = SumintP + Vpixel;

end

end

%Overlap and scintillation value and fill of the columns

MV = abs(SumintP/SumintNP);

SII;

tab(q,2) = tab(q,2)+MV;

tab(q,3) = tab(q,3)+SII;

tab(q,4) = tab(q,4)+SRV;

ovv(u,1) = MV;

siv(u,1) = SII;

srv(u,1) = SRV;

if u == npro;

% Fill the columns

tab(q,1) = Z*10ˆ−6;

tab(q,2) = tab(q,2)/npro;

tab(q,3) = tab(q,3)/npro;

tab(q,4) = tab(q,4)/npro;

tab(q,5) = std(ovv);

tab(q,6) = std(siv);

tab(q,7) = std(srv);

% See the transverse fields and phases, ENT is without

% turbulence, Ep with turbulence

aEp = Ep.*conj(Ep);

aEp = abs(aEp);

normE = max(aEp(:));

figure("Visible", false)

97



APPENDIX B. CODES USED FOR PROPAGATION OF HELICAL BEAMS THROUGH
ATMOSPHERIC TURBULENCE

surfc(x,y,aEp/norm);

colormap hot;

shading interp

h = colorbar;

ylabel(h, 'Intensity')

xlabel('X direction (um)');

ylabel('Y direction (um)');

axis equal

view(0,90)

title(sprintf('IG p=%1d, m=%1d, e=%1d Vortex propagated Z= %2d m\nC nˆ2= %2d, OV=%d '

,pp,m,e,Z*10ˆ−6,Cn2*10ˆ4, tab(q,2)))

print(sprintf('IG p=%1d, m=%1d, e=%1d Vortex propagated Z= %2d m,C nˆ2= %2d, OV=%d.jpg'

,pp,m,e,Z*10ˆ−6,Cn2*10ˆ4, tab(q,2)),'−djpeg');

figure("Visible", false)

surfc(x,y,angle(Ep));

colormap hot;

shading interp

h = colorbar;

ylabel(h, 'Phase')

xlabel('X direction (um)');

ylabel('Y direction (um)');

axis equal

view(0,90)

title(sprintf('Phase IG p=%1d, m=%1d, e=%1d Vortex propagated Z= %2d m\nC nˆ2= %2d,

IV=%d ',pp,m,e,Z*10ˆ−6,Cn2*10ˆ4, tab(q,2)))

print(sprintf('Phase IG p=%1d, m=%1d, e=%1d Vortex propagated Z= %2d m,C nˆ2= %2d,

IV=%d.jpg',pp,m,e,Z*10ˆ−6,Cn2*10ˆ4, tab(q,2)),'−djpeg');

end

Z=Z+(ZT/dparts);

end

%Reset to the original distance

%Z=(ZT/dparts)

Z = 0;

E0 = E2;

end

%Fill report file

fid = fopen(filename, 'w');

fprintf(fid, "Propagation of scalar Ince−Gaussian mode, p = %d, m=%1d, e=%1d Z= %1dm.

\nNumber of propagations=%1d\n", pp,m,e,ZT*10ˆ−6, npro)

fprintf(fid, "Number of screens: %1d, Wavelength = %1d nm, Initial Beam waist = %1d m,

Turbulence = %1d\n", nscre, Lambda*1000, w0*10ˆ−6, Cn2*10ˆ4)

fprintf(fid, "Distance (m)\tOverlap (mean)\tSDev OV\tScintillation (mean)\tSDev SciInd
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\tStrehl Ratio (mean)\tSDev SthRat\r");

for i = 1:dparts+1

fprintf(fid,'%8.4f\t%8.4f\t%8.4f\t%8.4f\t%8.4f\t%8.4f\t%8.4f\r',tab(i,1), tab(i,2)

, tab(i,5), tab(i,3), tab(i,6), tab(i,4), tab(i,7));

end

fclose(fid);

elli{2,t} = tab(:,2);

elli{3,t} = tab(:,3);

elli{5,t} = tab(:,4);

if t==1

e = e−e;

end

e = e+2;

%Final ellipticity is "infinite"

if t==nue−1

e = 1000000;

end

end

%Comparison graphing

figure()

for i=1:nue

plot(elli{1,i}, elli{2,i},'LineWidth',1)

if i == nue

title(sprintf('Overlap value as function of distance for different ellipticities

\n p=%1d

, m=%1d, C nˆ2= %2d',pp,m,Cn2*10ˆ4));

xlabel('Distance [m]');

ylabel('Overlap integral value');

ylim([0 1]);

legend(elli(4,:),'Location','southwest');

end

hold on

if i == nue

print(sprintf('Overlap value as function of distance for different ellipticities

p=%1d

, m=%1d, C nˆ2=%2d.jpg',pp,m,Cn2*10ˆ4),'−djpeg')

end

end

figure()

for i=1:nue
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plot(elli{1,i}, elli{3,i},'LineWidth',1)

if i == nue

title(sprintf('Scintillation index as function of distance for different ellipticities

\n p=%1d, m=%1d, C nˆ2= %2d',pp,m,Cn2*10ˆ4));

xlabel('Distance [m]');

ylabel('Scintillation Index');

legend(elli(4,:),'Location','northwest');

end

hold on

if i == nue

print(sprintf('Scintillation index as function of distance for different ellipticities

p=%1d, m=%1d, C nˆ2= %2d.jpg',pp,m,Cn2*10ˆ4),'−djpeg');

end

end

figure()

for i=1:nue

plot(elli{1,i}, elli{5,i},'LineWidth',1)

if i == nue

title(sprintf('Strehl Ratio as function of distance for different ellipticities

\n p=%1d, m=%1d, C nˆ2= %2d',pp,m,Cn2*10ˆ4));

xlabel('Distance [m]');

ylabel('Strehl Ratio');

ylim([0.8 1]);

legend(elli(4,:),'Location','southwest');

end

hold on

if i == nue

print(sprintf('Strehl Ratio as function of distance for different ellipticities

p=%1d, m=%1d, C nˆ2= %2d.jpg',pp,m,Cn2*10ˆ4),'−djpeg');

end

end
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[53] J. M. Martin and S. M. Flatté, “Simulation of point-source scintillation through three-dimensional

random media,” J. Opt. Soc. Am. A, vol. 7, pp. 838–847, May 1990.

[54] W. Cheng, J. W. Haus, and Q. Zhan, “Propagation of vector vortex beams through a turbulent atmo-

sphere,” Opt. Express, vol. 17, pp. 17829–17836, Sep 2009.

[55] M. P. J. Lavery, “Vortex instability in turbulent free-space propagation,” New Journal of Physics, vol. 20,

p. 043023, apr 2018.

104



BIBLIOGRAPHY

[56] M. A. Cox, L. Maqondo, R. Kara, G. Milione, L. Cheng, and A. Forbes, “The resilience of hermite– and

laguerre–gaussian modes in turbulence,” J. Lightwave Technol., vol. 37, pp. 3911–3917, Aug 2019.

[57] X. Gu, L. Chen, and M. Krenn, “Phenomenology of complex structured light in turbulent air,” Opt.

Express, vol. 28, pp. 11033–11050, Apr 2020.

[58] K. Zhu, Z. Lin, L. Yin, C. Wang, and G. Long, “Entanglement protection of ince-gauss modes in

atmospheric turbulence using adaptive optics,” Opt. Express, vol. 28, pp. 38366–38375, Dec 2020.

105


	Introduction
	Motivation
	Objectives
	Thesis structure

	Theoretical framework
	Maxwell Equations and the paraxial wave equation
	Solutions of the paraxial wave equation
	Orbital angular momentum of light and helical modes
	Atmospheric turbulence modeling for light propagation

	Generation of OAM carrying beams using Spatial Light Modulators
	Spatial Light Modulators
	Building of IG profiles as decomposition of LG modes
	Phasemask patterns for OAM carrying beams
	Modes generated and considerations
	Imaging of Helical Ince-Gauss modes in the far field
	Imaging of Helical Ince-Gauss modes in the near field

	Partial conclusions on Generation of OAM beams using Spatial Light Modulators

	Atmospheric propagation of helical Ince-Gaussian modes
	Propagation of modes through atmospheric turbulence procedure and considerations
	Beam propagation simulation: results and analysis
	Propagation of a single Helical Ince-Gaussian mode
	Propagation of a single Helical Ince-Gaussian mode varying the turbulence strength
	Propagation of Helical Ince-Gaussian modes varying the ellipticity parameter
	Propagation of Helical Laguerre-Gaussian modes
	Propagation of Helical Ince-Gaussian modes, varying the degree m parameter
	Propagation of Helical Ince-Gaussian modes, varying the order parameter

	General results on propagation of Helical Ince-Gauss beams

	Conclusions and future work
	Code for decomposition of Ince-Gauss modes into the Laguerre-Gauss basis
	Codes used for propagation of Helical Beams through atmospheric turbulence
	Code for the propagation of a beam through a medium using the transfer function
	Code for the creation of random turbulence phase mask
	Code for the simulation of propagation of helical beams


