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ABSTRACT 

The spatial structure of light as a degree of freedom holds great potential for encoding 

large amounts of information in both classical and quantum optical communication systems. 

Spatial modes such as Hermite Gauss, or Laguerre Gauss modes are embedded in an infinite 

dimensional Hilbert space, a feature that can significantly enhance quantum information 

processing protocols. In particular, Laguerre Gauss modes, which are associated with discrete 

value of orbital angular momentum (OAM), have enabled numerous experimental 

demonstrations of high-dimensional quantum protocols that exhibit key advantages such as 

improved noise-tolerance or channel capacity in comparison to two-dimensional qubit state 

encoding. Quantum states exhibiting orbital momentum entanglement can be generated via 

spontaneous parametric down conversion (SPDC) in a nonlinear crystal as a consequence of 

momentum conservation during the process. 

This thesis we investigate a two-photon state in space and frequency using a Gaussian 

pump beam, for SPDC bulk in non-linear crystals, considering a collinear geometry, and 

restricting the spectral bandwidth to the narrowband case. We derive analytic expressions for 

two- and single photons spectral brightness. We also investigate the role of focusing 

parameters. As well as the optimal waist for the pump and the collection modes. A solution 

for the pair collection efficiency was previously derived in [1]. However, an analytical 

expression for the single photon collection has not been (to the best of our knowledge) 

reported, in order to verify that our results are correct, we calculate the heralding efficiency 

(given by the ratio of pair collection detection and the detection of a single photon) and 

compare our results with the one reported in [2]. For both (pair- and single-photon) collection 

probabilities our findings are in excellent agreement with the previous studies. The results 

obtained in this work are expected to be useful for designing SPDC sources with high 

performance in multiple categories.  
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1 Introduction  

Quantum communications systems are based on the linearity of quantum theory and the 

existence of superpositions of quantum bits (qubits) [3]. When multiple qubits exist in a 

simultaneous superposition state, the system is said to be entangled. The photons that 

constitute the entangled states are strongly correlated and their entangled nature can be 

preserved over large distances. The most common source for generating entangled photon 

pairs is by means of spontaneous parametric down conversion, in which a strong field (pump) 

interacts with a non-linear crystal, generating a lower frequency photon pair (signal and idler) 

that propagates at certain angle [4]. When SPDC is properly engineered, the photon pairs can 

be entangled in any degree of freedom for example path [5], time-bin [6], frequency [7], or 

spatial modes [8]. The spatial structure of entangled states can be encoded in the orbital 

angular momentum (OAM) [9], which provides an infinite-dimensional discrete Hilbert 

space [10]. This characteristic is of interest since it can be used to conduct proof-of-principle 

demonstrations of quantum protocols whose implementation requires higher-dimensional 

Hilbert spaces, such as the violation of Bell inequalities with qutrits [8] and the 

implementation of quantum key distribution (QKD) [11], [12]. The spatial structure of the 

down-converted bi-photons can be expressed as a superposition of Laguerre–Gauss (LG) 

modes of different amplitudes, angular and radial momenta, with the width of the modal 

expansion relating to the amount of entanglement of the final state [13].  

In general the efficiency of the photon pairs generated by SPDC is very slow, hence 

efforts have been made to improve the brightness of the entangled photon sources by 

exploring different nonlinear crystals in bulk [14], [15] and waveguide [16] structures, 

different phase-matching geometries including type-II [17], [18], type-I [19] and type-0 [18], 

[20], [21], and different experimental schemes. Moreover, any experimental detection system 

collects only part of the total number of the generated pair, for this reason, it is of our interest 

to maximize the coupling efficiency into the single mode fibers. This single mode coupling 

efficiency of a pair source is commonly quantified in terms of per-photon probability of 

collecting a photon pair, the spectral bandwidth, and the probability of collecting a photon 

pair, conditioned on the collection of a single photon. 
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Several studies of SPDC [1], [22], [23] have addressed the question of how to focus the 

pump and/or collection modes, as well as, the proper sizes of the beam waist of these fields 

for a given crystal length can optimize the probabilities for photon pairs generated by SPDC, 

and if there is a tradeoff between them. Palacios et. al. [1] have derived an analytical solution 

for the pair-collection probability, where one can easily find the optimal size of the pump 

and mode collection waist that leads to a maximum value of ~82% under this ideal conditions. 

The importance of this result lies on the fact that this value is a universal quantity and it is 

independent of the crystal length. The work of Bennik’s [22] gives an extensive analysis 

restricted to collinear Gaussian modes for the pump field and collected photon for the peak 

spectral density, photon bandwidths, absolute pair collection probability, heralding ratio, and 

spectral purity, finding that most of these properties are independent of the crystal length. 

But more important, he concluded that higher heralding ratios can be achieved, at the cost of 

significantly reduced brightness, by focusing the modes less tightly. 

With regard to these previous studies, in the present thesis we have reproduced the 

calculation for the two-photons collection probability presented in [1] with the aim of 

corroborating the optimal parameters achieved in this article and having a better 

understanding of the role of some parameters such as the crystal length and the focusing 

parameters. We also have extended the analysis for the single photon collection probability, 

finding an analytical solution for this quantity. Using the two analytical solutions given by 

the spectral brightness, we could easily calculate the heralding efficiency and compare our 

results with previous studies reported on references [2], [22]. Our approach is based on a 

periodically-poled nonlinear crystal of length L, illumined by a continuous wave pump beam 

in the collinear configuration for SPDC type II in the narrowband limit. A better 

understanding and characterization of both properties (spectral brightness and heralding 

efficiency) are then crucial to the development of future quantum technologies [24], [25]. 

Chapter 2 gives a brief overview of the spatial modes of light, as well as the relevant 

concepts for the description of the SPDC process, it also shows the derivation of the main 

equations that lay in the foundations of our analysis. Chapter 3 shows the analytical and 

numerical results obtained for single-mode fiber coupling efficiency and spectral properties 

of SPDC photons after the mode projection, and the discussion regarding our results and 
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previous studies. Chapter 4 summarizes the major results of this thesis. We provide a brief 

note on the further experiments we plan to perform using spatial modes of light and a mode 

sorter. Additional to this, Appendix A presents some experimental configuration for 

generation and manipulation of the spatial modes. 
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2 Theory  

2.1 Wave equation  

From the description of Classical Electrodynamics given by Maxwell’s Equations, for 

the case of no free charges and currents where the quantities 𝑬̃ and 𝑯̃ are given in units of 

Volt/m and ampere/m respectively, we have that [26]:  

∇ ⃑⃑  ⃑ ∙ 𝜀𝑬̃ =  0, (1) 

∇ ⃑⃑  ⃑ ∙ 𝜇𝑯̃ =  0, (2) 

∇ ⃑⃑  ⃑ × 𝑬̃ = − 
𝜕

𝜕𝑡
 (𝜇𝑯̃), and (3) 

∇ ⃑⃑  ⃑ × 𝑯̃ =  
𝜕

𝜕𝑡
 (𝜀𝑬̃), (4) 

Using these equations, we can obtain an expression that describes the propagation of the 

electromagnetic radiation in a medium. This is well defined by the wave equation [27]:  

∇2𝝋 − 𝜇𝜀
𝜕2

𝜕𝑡2 𝝋 = 0, (5) 

where 𝝋 is a scalar function representing the field amplitude and ε, μ represents the 

permittivity and permeability, respectively, which are related to the electric and magnetic 

susceptibilities of the medium, 𝜒𝑒 and  𝜒𝑚 as: 

𝜀 = 𝜀𝑟𝜀0 = 𝜀0(1 + 𝜒𝑒), and (6) 

𝜇 = 𝜇𝑟𝜇0 = 𝜇0(1 + 𝜒𝑚), (7) 

here 𝜀𝑟 and 𝜇𝑟 are the relative permittivity and permeability, respectively. 

In case of a linear, homogenous, isotropic medium and a monochromatic wave (i.e. 

sinusoidal time variations in the fields), if the field is polarized in one component 𝐸̃ = 𝐸𝑖ê𝑖 

it is possible to write it as a product of its spatial temporal components 𝐸𝑖 = 𝑇(𝑡)𝑈(𝑟). Now 

if we substitute it in Eq. (5) it is straight forward to show that the temporal dependence of the 

electric field is: 

𝑇(𝑡) = 𝑒𝑖𝜔𝑡, (8) 

and the spatial dependence part 𝑈(𝑟) is the solution of the time independent wave equation 

or Helmholtz equation given by: 
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∇2𝑈(𝑟) + 𝑘2𝑈(𝑟) = 0, (9) 

where k is the propagation constant (or wave number) defined as: 

𝑘 =
𝜔

𝑉
= 𝜔

𝑛

𝑐
 , (10) 

here 𝑉 is the velocity of the propagation of the wave 𝑉 = 
𝑐

√𝜖𝜇
 being c the speed of the light. 

Then, we can express the refraction index as: 

𝑛 = √𝜖𝜇 . (11) 

Now, assuming that the propagation of the wave is along the optical axis z and applying 

the paraxial approximation we can write 𝑈(𝑟) as: 

𝑈(𝑟) = 𝑢(𝑟)𝑒−𝑖𝑘𝑧. (12) 

As a consequence of the paraxial assumption and using the slowly varying envelope 

approximation, we find that: 

|
𝜕2𝑢

𝜕𝑧2| ≪ 𝑘 |
𝜕𝑢

𝜕𝑧
|. (13) 

Then Eq. (9) becomes [27]: 

∇2𝑢(𝑟) − 2𝑖𝑘
𝜕𝑢(𝑟)

𝜕𝑧
= 0. (14) 

The Helmholtz equation in the paraxial regime can find different families of solutions 

and be solved in different coordinate systems. 

2.2 Hermite-Gauss modes 

For rectangular coordinates system the solution of the paraxial equation are given by the 

product of a Gaussian functions and Hermite polynomials and a phase term. The 

mathematical representation of Hermite-Gaussian modes is [28]: 

𝐻𝐺𝑛𝑚(𝑥, 𝑦, 𝑧) =
1

𝑤(𝑧)
√

2(1−𝑚−𝑛)

𝜋𝑛!𝑚!
𝐻𝑚 (

√2𝑥

𝜔(𝑧)
)𝐻𝑛 (

√2𝑦

𝜔(𝑧)
) 𝑒[𝑖(𝑚+𝑛+1)𝜉(𝑧)] × 

𝑒
−𝑟2

𝑤2(𝑧)𝑒
−𝑖𝑘𝑟2

2𝑅 𝑒−𝑖𝑘𝑧, 

(15) 

where 𝐻𝑚 and 𝐻𝑛 are Hermite polynomials with 𝑛,𝑚 positive integers. The Term 𝑧𝑅  

represents the Raylegh range, 𝜉(𝑧) is the Gouy phase and 𝜔(𝑧) the beam size given by: 
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𝑟 = √𝑥2 + 𝑦2, (16) 

ω(𝑧) =  𝜔0√1 + (
𝑧

𝑧𝑅
)
2

, (17) 

R(𝑧) = 𝑧 [1 + (
𝑧𝑅

𝑧
)
2

], (18) 

𝜔0 = 𝑧√
𝜆𝑧𝑅

𝜋
, and (19) 

𝜉(𝑧) = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑧

𝑧𝑅
). (20) 

Eqs.(18) and (19) describes radius of curvature R(z) and beam waist 𝜔0 of the 

paraboloidal wave given by Eq. (15). We can notice that the Gouy phase 𝑒[𝑖(𝑚+𝑛+1)] contains 

information regarding the mode order defined as 𝑁 = 𝑛 + 𝑚.   

 

Figure 2.1 Intensity profile: a) HG10, b) HG11, c) HG30 and below them their respective phase profiles of 

each of these HG modes. 

In the Figure 2.1 the intensity and phase profiles for some HG modes are shown. Here 

the number of lobes in the x-direction is given by (𝑚 + 1) and similarly for the y-direction 

where the modes have (𝑚 + 1) lobes.  
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2.3 Laguerre-Gauss modes 

Laguerre-Gaussian modes are the solution of the paraxial Helmholtz Equation in 

cylindrical coordinate system where this solution is given by the product of a Gaussian 

function with a generalized Laguerre polynomial as [28]: 

𝐿𝐺𝑝
𝑙 (𝜌, 𝜑, 𝑧) =

𝜔0

𝜔(𝑧)
√

2𝑝!

𝜋(|𝑙| + 𝑝)!
(
√2𝜌

𝑤(𝑧)
)

|𝑙|

𝐿𝐺𝑝
𝑙 [2 (

𝜌

𝑤(𝑧)
)
2

] 𝑒[𝑖(2𝑝+|𝑙|+1)𝜉(𝑧)]

× 𝑒
−𝜌2

𝑤2(𝑧)𝑒
−𝑖𝑘𝜌2

2𝑅 𝑒[−𝑖𝑙𝜑] , 

(21) 

where 𝐿𝐺𝑝
𝑙  is the associated Laguerre polynomial, 𝑙 is the azimuthal index and 𝑝 is the radial 

index. In particular (𝑝, 𝑙) are integer numbers with 𝑝 ≥ 0 while 𝑙 can take both positive or 

negative values. The other variables in eq. (21) were described in the section 2.2. The lowest 

order of these mode 𝑝 = 𝑙 = 0 is the Gaussian beam (TEM00 mode). Experimentally, both 

angular (𝑙) and radial (𝑝) momenta are controlled and converted between one another using 

several methods, being the most common the diffractive optical elements (holograms) 

displayed by spatial light modulators (SLMs) [See Appendix A]. 

 

Figure 2.2 Intensity profile and phase of some LG modes: a) LG01, b) LG11, c) LG03 and below their 

respective phase profile. LG mode intensity cross section, with l > 0 comprises p+1 concentric rings with a 

zero on-axis intensity. 
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It is well known that light beams with an azimuthal phase dependence of 𝑒[−𝑖𝑙𝜑], as it is 

the case of the LG modes, carry an orbital angular momentum (OAM) [29]. The phase front 

has a helicoidally pattern along the 𝑧̂ in such a way that the contact between all different 

phases in the center of the transverse plane causes that the field intensity vanishes, giving 

rise to a phase singularity. The torque exhibited leads to an optical vortex that it is associated 

to a number known as topological charge 𝑙 that refers to the number of twist of the wavefront 

over a distance. This twisting causes a non-vanishing contribution of the OAM [30]. The 

intensity and phase profiles of some LG modes are shown in Figure 2.2. 

Laguerre-Gaussian modes, as well as Hermite-Gaussian modes, are a complete set of 

orthonormal modes both in the radial index when it is integrated over ρ, and in the azimuthal 

index over φ. Mathematically this is expressed as: 

∫ 𝑑𝜑
2𝜋

0

∫ 𝜌 𝑑𝜌[𝐿𝐺𝑝
𝑙 (𝜌, 𝜑, 𝑧)][𝐿𝐺𝑝′

𝑙′(𝜌, 𝜑, 𝑧)]
∗
= 𝛿𝑝𝑝′𝛿𝑙𝑙′

∞

0

 . (22) 

Hermite-Gaussian modes are also orthonormal with an analogous condition as in Eq. (22) 

but with 𝑚 and 𝑛 index, when integrated over 𝑥 and 𝑦, respectively. 

2.4 Spontaneous Parametric Down Conversion theory  

Spontaneous parametric down-conversion (SPDC) is a non-linear optical process, where 

a high energetic pump photon of frequency 𝜔𝑝 interacts with a non-linear medium and 

spontaneously generates a pair of photons of frequency 𝜔𝑠 and 𝜔𝑖 (where the subscripts p, s 

and i denote pump, signal and idler photons respectively) which have lower energy than the 

incident photon. Unlike in classical parametric processes, the fields of the photons signal and 

idler are in their respective vacuum sates (see Figure 2.3.a). 

Inasmuch as SPDC is a parametric process the phase matching requirements should be 

fulfilled, given by the conservation of the energy and momentum as: 

∆𝜔 = 𝜔𝑝 − 𝜔𝑠 − 𝜔𝑖 , (23) 

∆𝑘 = 𝑘𝑝 − 𝑘𝑠 − 𝑘𝑖  . (24) 

In Eq. (23) energy conservation allows that the decay process to take place in many target 

modes (showed it in Figure 2.3.c), while Eq.(24) is known as phase-matching since it 

establishes the geometrical configuration of the SPDC (Figure 2.3.b). This condition should 
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be satisfied to the conversion takes place into any particular pair of directions. As a result of 

these conditions the created photons are strongly correlated in frequency and direction of 

emission. 

 

Figure 2.3 Sketch of the SPDC process. a) A Guassian pump propagating in the z axis incised on a non-linear 

crystal producing a pair of photons at angles θs and θi to the pump propagation’s direction. b) Conservation of 

momentum and c) conservation of the energy 

2.4.1 Phase matching   

Ideally the case that satisfies Eq. (24) for an efficient non-linear parametric process is 

reached when ∆𝑘 = 0, the requirement for this condition to be fulfilled is: 

𝑘1 + 𝑘2 = 𝑘3 =
𝑛3𝜔3

𝑐
=  

𝑛1𝜔1

𝑐
+

𝑛2𝜔2

𝑐
, (25) 

which is not realistic in most of the materials due to the normal dispersion 𝑛1(𝜔1) <

𝑛2(𝜔2) < 𝑛3(𝜔3). The refraction index decays when the wavelength increases in the 

transparent regime. Nevertheless, birefringent materials [31] which have different refractive 

indices along different symmetry axes (two in the case of the uniaxial crystal or three for 

biaxial crystals) can be used to satisfy this condition. Uniaxial crystals are characterized by 

a particular direction named optical axis (z axis). When the polarization of the light 

propagating is perpendicular to the plane containing the vector k and the optical axis, it is 

called ordinary polarization. On the other hand, if the light propagates with its polarization 
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perpendicular to the ordinary ray (polarization direction parallel to the optical axis) it is called 

extraordinary polarization and the refractive index depends on the angle between k and the 

optical axis as: 

1

𝑛𝑒(𝜃)2
=

𝑠𝑖𝑛2(𝜃)

𝑛̅𝑒
2

𝑐𝑜𝑠2(𝜃)

𝑛𝑜
2

, (26) 

where 𝑛̅𝑒 is the principal value of the extraordinary refractive index. In order to satisfy the 

phase matching condition, the angle θ must be adjusted till 𝑛𝑒(𝜃) reaches ∆𝑘 = 0. 

Depending on the polarization direction of the pump with respect of the optical axis and k 

vector (as we describe above) we will have different configuration for SPDC. For the first 

configuration called type-0, the pump photon, as well as, generated pair (signal and idler) 

have the same polarization, either ordinary or extraordinary. In the second configuration 

(type-I) the generated pair of photons can be propagated collinear or non-collinear satisfying 

the phase matching conditions and the pair photons will have the same polarization but 

opposite to the polarization direction of the pump. In this configuration the photons signal 

and idler possess the same refractive index and thus lie on the same cone Figure 2.4. 

 

Figure 2.4 SPDC type-I: degenerate, non-collinear case, idler and signal cone are identical. 

In Figure 2.4, the generated case is shown, where the wavelength of the photons pair are 

double the pump wavelength, by changing the angle of the pump with respect to the crystal 

the emission the cone changes its size. For the third configuration of SPDC (type-II) the 
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photons pairs signal and idler have orthogonal polarizations, provoking that the cones created 

by the two photons be not coaxial as a consequence of the different refractive index of the 

signal and idler photons (see Figure 2.5). Table 2.1 exemplify the SPDC configuration 

describe above. 

 

Figure 2.5 SPDC type-II: degenerate, non-collinear case, idler and signal with non-coaxial cone. 

The apertures of the cone are given by the emission angles 𝜃𝑠,𝑖 associated to the 

frequencies 𝜔𝑠,𝑖. In degenerate SPDC, both photons are emitted at the same angle 𝜃𝑠 = 𝜃𝑖 

and the cones overlap. There are two cases of degenerated SPDC: the collinear in which the 

aperture of the cones tends to zero due to the photons pair propagation is parallel to the pump, 

and the non-collinear case in which the signal and idler photons are not parallel to the pump 

that is the case exemplify in Figure 2.4 and Figure 2.5. 

 

 

 

 

 



21 

 

Table 2.1 Refraction index of each photon (pump, signal and idler) for different SPDC type. In this table we 

assume that the pump polarization is in the extraordinary direction. 

SPDC type Pump Signal Idler 

Type-0 ne ne ne 

Type-1 ne no no 

Type-2 ne no ne 

 

When the condition of perfect phase matching ∆𝑘 = 0 cannot be satisfied, it is possible 

to reach phase matching by considering the formation of layers with alternate orientation in 

a birefringent material, called periodical poling [27], then the mismatching factor reads: 

∆𝑘 = 𝑘𝑝 − 𝑘𝑠 − 𝑘𝑖 −
2𝜋

𝛬
, (27) 

where 𝛬 is the poling period. Even though the phase matching condition defines the main 

characteristics of the generated two-photon state, it is necessary to consider other important 

factors that allow us to have a better understanding of this phenomena, such as a description 

of the mathematical model that give us information about the quantum state evolution inside 

the medium, considering the spatial structure of the pump beam and at the generated pair, the 

properties of the crystal, as well as, the detection system. The next section describes the two-

photon state mathematically, taking into account all these factors. 

2.4.2 Classical non-linear description 

The susceptibilities 𝜒𝑒 and 𝜒𝑚 defined in Eqs. (6) and (7),respectively, can be spatial and 

frequency dependent. They describe the medium response to the interaction with an external 

electromagnetic field. This interaction is in the form of an induced polarization 𝑃̃ or 

magnetization, 𝑀̃ as: 

𝑃̃ = 𝜖0𝜒𝑒𝐸 ̃, (28) 

𝑀̃ = 𝜒𝑚𝑀̃ . (29) 
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For small field amplitudes, the polarization is approximately linear. We can find a 

general expression for the induced polarization by expanding it in a power series to consider 

the non-linear contributions of the electric field as [31]: 

𝑃̃(𝑡) = 𝜖0[𝜒
(1)𝐸̃(𝑡) + 𝜒(2)𝐸̃(2)(𝑡) + 𝜒(3)𝐸̃(3)(𝑡) + ⋯ ], (30) 

where 𝜒(1) represents the linear susceptibility and 𝜒(2), 𝜒(3) are the second and third order 

non-linear susceptibilities, respectively. 

As we mention before Eq. (28) is the result of a small field amplitude that allows us to 

neglect the rest of the terms in Eq. (30). However, when the amplitudes of the electric field 

increases, the higher order terms in the induced polarization become relevant, in such way 

that a non-linear responds of the material to the field appears. Some optical non-linear 

processes resulting from these interactions include for example, Kerr effect, harmonics 

generation, frequency generation, Raman scattering [31]. 

The non-linear polarization of second order (non-linear) process according to Eq. (30) is 

given by: 

𝑃̃(2)(𝑡) = 𝜖0𝜒
(2)𝐸̃(2)(𝑡). (31) 

Non-linear processes are highly inefficient, being 𝜒(2)  of the order of 10−12. Therefore 

an intense electric field is needed to observe non-linear optical phenomena and they are only 

present in non-centrosymmetric media, where, the electronic potential is not symmetric. 

Under these assumptions and considering propagating waves of the form: 

𝐸̃𝑛(𝑟, 𝑡) = 𝐴̃𝑛(𝑟)𝑒
𝑖(𝑘𝑛𝑧−𝜔𝑛𝑡) + 𝑐. 𝑐 (32) 

where c.c is the complex conjugate term and 𝑘𝑛 =
𝑛𝑛𝜔𝑛

𝑐
 with 𝑛𝑛

2 = 𝜀(1)(𝜔𝑛) where the upper 

index (1) is the linear part only. If we consider a three wave interaction only [32], [33], which 

is the case of the non-linear process of SPDC as well as Second Harmonic Generation (SHG) 

we will only take into account the first non-linear for the polarization given by: 

𝑃𝑖
𝑁𝐿 = 𝜀0 ∑∑𝜒𝑖𝑗𝑘

(2)
𝐸𝑗𝐸𝑘

𝑘𝑗

, (33) 
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with {𝑖, 𝑗, 𝑘} = {𝑥, 𝑦, 𝑧} and 𝜒𝑖𝑗𝑘
(2)

 the second order term non-linear susceptibility of the 

medium. Substituting Eqs. (32) and (33) into the wave equation ∇⃑⃑ 2𝐸̃ −
1

𝑐2

𝜕2𝐸̃

𝜕𝑡2
=

1

𝜀0𝑐2

𝜕2𝑃̃

𝜕𝑡2
 we 

can get the following equation: 

𝑑2𝐴3

𝑑𝑧2
+ 2𝑖𝑘3

𝑑𝐴3

𝑑𝑧
= −

4𝑑𝑒𝑓𝑓𝜔3

𝑐2
𝐴1𝐴2𝑒

𝑖𝑧(𝑘1+𝑘2−𝑘3), (34) 

where 𝑑𝑒𝑓𝑓 =
1

2
𝜒𝑒𝑓𝑓. Eq. (34) can be simplified by assuming the slow varying amplitude 

approximation (Eq. (13)) which allow us to neglect the first term, now if we integrate the 

expression from 0 to L (length of the crystal) and considering that 𝐼𝑖 = 2𝑐𝑛𝑖𝜀0|𝐴𝑖|
2 the 

solution in terms of the intensity is given by: 

𝐼3 =
8𝑑𝑒𝑓𝑓

2 𝜔3
2𝐼1𝐼2

𝑛1𝑛2𝑛3𝜀0𝑐3
𝐿2𝑠𝑖𝑛𝑐2 (

∆𝑘𝐿

2
), (35) 

here ∆𝑘 = 𝑘1 + 𝑘2 − 𝑘3  and it is called phase matching parameter. 

SPDC is the reverse process of Sum-Frequency Generation (SFG) which is non-

degenerate SPDC, i.e. different wavelengths for the two output photons. In classical non-

linear optics this process is known as Parametrical Amplification in which the conservation 

of the energy requires that for every photon that is created at the difference 𝜔3 = 𝜔1 − 𝜔2, 

a photon at the higher input frequency (𝜔1) must be destroyed and a photon at the lower input 

frequency (𝜔2) must be created. Thus, the lower frequency input field is amplified by process 

of difference-frequency generation (see Figure 2.3). 

In the same way we calculated Eq. (34) we can derive the same type of equations for 

Parametric Amplification process (that lead to the Manley-Rowe relations [34]) for the case 

∆𝑘 = 0. Then, we get: 

𝐴2(𝑧) = 𝑖√
𝜔2𝑛1

𝜔1𝑛2

𝐴3

|𝐴3|
𝐴1

∗(0) sinh(𝛼𝑧), (36) 

𝐴1(𝑧) = 𝐴1(0) cosh(𝛼𝑧), (37) 

𝛼 = √
𝜔2𝑛1

𝜔1𝑛2

𝜒𝑒𝑓𝑓
(2)

|𝐴3|

𝑐
. (38) 
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From these solutions we note that if there is not initial incident power at frequency 𝜔1 

(𝐴1(0) = 0) the signal and idler photons would not exist and SPDC would not be possible. 

SPDC, as stated in its name, is the result of a spontaneous process since no other field 

stimulates the transition, except the vacuum fluctuations. For this reason the classical non-

linear optics doesn’t allow us to describe SPDC, a quantum description is needed. We can 

treat SPDC as the quantum evolution of a closed system (i.e. the electromagnetic field), 

where the Hamiltonian describing the nonlinear interaction determines the state of the field.  

2.4.3 Quantum description 

In order to derive an expression for SPDC state, we consider that a strong pump laser 

propagates along the principal axis of a non-linear crystal of length L, in our case we use the 

z-axis. (Figure 2.6). Assuming that the wave-vector distribution of the pump, signal and idler 

are mainly around this axis we can separate them into a longitudinal (𝑘𝑧𝒆𝑧) and 

transversal 𝒒 = (𝑞𝑥𝑒𝑥 + 𝑞𝑦𝑒𝑦), then the k vector is given by: 

𝒌 = 𝑘𝑗
𝑧(𝜔, 𝒒)𝑒𝑧 + 𝒒, (39) 

being 𝜔 the angular frequency and the index 𝑗 = 𝑝, 𝑠, 𝑖 represents the pump, signal, and idler 

respectively.  

 

Figure 2.6 Coordinate system used as reference for the SPDC mode function. 

The quantization of the electromagnetic field leads to a quantization of the second order 

polarization, so we can express Eq. (31) as: 

𝑃̂(2) = 𝜖0𝜒
(2)(𝐸̂(+)+𝐸̂(−))(𝐸̂(+) + 𝐸̂(−)), (40) 
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where 𝐸̂(+) and 𝐸̂(−) are the positive and the negative frequencies of the electromagnetic field 

operators [35]. It is possible to express 𝐸̂(−) as function of the creation operator 𝑎̂†(𝒌) at a 

position 𝒓⊥ = (𝑥, 𝑦) and time t as: 

𝐸̂𝑗
(−)(𝒓⊥, 𝑡, 𝑧) =  ∑

𝒆𝑘,𝑗

(2𝜋)3 2⁄
∫𝑑𝜔𝑗𝑑𝒒𝑗𝑎̂𝑘,𝑗

† (𝜔𝑗 , 𝒒𝑗)𝑓(𝜔𝑗
0)

𝑘=𝐻,𝑉

× 𝑒𝑥𝑝(𝑖𝑘𝑗
𝑧(𝜔𝑗, 𝒒𝑗)𝑧 + 𝑖𝒒𝑗 ∙ 𝒓⊥ − 𝑖𝜔𝑗𝑡), 

(41) 

being 𝑓(𝜔𝑗
0) = (ℏ𝜔/2𝜖0𝑐𝑛𝑗(𝜔𝑗))

1/2
 a normalization factor. The positive frequency part of 

the field is the Hermitian conjugate of the negative one, such that 𝐸̂(+)(𝒓⊥, 𝑡, 𝑧) =

 (𝐸̂(−)(𝒓⊥, 𝑡, 𝑧))
†

. In Eq. (41) the operator 𝑎̂𝑘,𝑗
† (𝜔𝑗, 𝒒𝑗) creates a photon in the plane-wave 

spatial mode with transverse wave-vector 𝒒𝑗, frequency 𝜔𝑗, and polarization unit vector 𝒆𝑘,𝑗. 

On the other hand, the annihilation operator  𝑎̂𝑘,𝑝(𝜔𝑝, 𝒒𝑝) removes a photon from the pump 

field. The creation and annihilation operators fulfill the commutator relations given in 

reference [35]. 

To calculate the state of SPDC after the interaction, we consider that the three-photon 

interaction is the initial state |𝜓𝑖𝑛𝑖𝑡𝑖𝑎𝑙⟩ and begins at a time t1 and finishes at a time t2. Then 

we can describe the non-linear process with the time evolution operator as: 

|𝜓𝑓𝑖𝑛𝑎𝑙⟩ = 𝑒𝑥𝑝 (−
𝑖

ℏ
 ∫ 𝐻̂𝐼𝑑𝑡

𝑡2

𝑡1

) |𝜓𝑖𝑛𝑖𝑡𝑖𝑎𝑙⟩, (42) 

here 𝐻̂𝐼 is the Hamiltonian operator that mediates the SPDC interaction between the pump, 

signal, and idler fields that is defined as: 

𝐻̂𝐼 = 𝜖0 ∫𝑑𝑉𝜒(2)(𝑧)𝐸̂𝑝
(+)(𝒓⊥, 𝑡, 𝑧)𝐸̂𝑠

(−)(𝒓⊥, 𝑡, 𝑧)𝐸̂𝑖
(−)(𝒓⊥, 𝑡, 𝑧) + 𝐻. 𝑐, (43) 

where the spatial dependence of the non-linear coefficient is 𝜒(2)(𝑧) =  𝜒(2)𝑒
𝑖2𝜋𝑧

∧  with ∧ the 

poling period along the crystal axis (z) and H.c stands for Hermitian conjugate. 

From the first order perturbation theory [36], [37] ( making a Taylor expansion of the 

exponential in Eq. (42) the interaction of an incident field 𝐸̂𝑝(𝒓⊥, 𝑡, 𝑧) on a material of volume 

V with non-linear polarization 𝑃̂(2), generates a state after the interaction at time t2: 
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|𝜓𝑓𝑖𝑛𝑎𝑙⟩ = (1 − 
𝑖

ℏ
 ∫ 𝐻̂𝐼𝑑𝑡

𝑡2

𝑡1

) |𝑣𝑎𝑐𝑠⟩|𝑣𝑎𝑐𝑖⟩ + ⋯, (44) 

where |𝜓𝑖𝑛𝑖𝑡𝑖𝑎𝑙⟩ =  |𝑣𝑎𝑐𝑠⟩|𝑣𝑎𝑐𝑖⟩. Here, we have just considered the first order contribution 

that corresponds to the vacuum state and the term related to the photon pair emission, the rest 

of the terms in the expansion correspond to the multiple pair emission. Nevertheless in the 

present thesis, we are mainly interested in the generation of pair photons. The remaining term 

(the two photon contribution) is proportional to the annihilation operator for the pump and 

the creation operator for the signal and idler photons, then we rewrite the term that contains 

𝐻̂𝐼 in Eq. (44) as: 

|𝜓⟩
𝑠,𝑖

(2)
~∫𝑑𝒒𝑠𝑑𝒒𝑖𝜙(𝒒𝑠, ω𝑠, 𝒒𝑖 , ω𝑖)𝑎̂

†(𝒒𝑠, ω𝑠)𝑎̂
†(𝒒𝑖, ω𝑖)|𝑣𝑎𝑐𝑠⟩|𝑣𝑎𝑐𝑖⟩, (45) 

where |𝜓⟩
𝑠,𝑖

(2)
 is two photon contribution of Eq. (44). As a consequence of the low efficiency 

of the SPDC, it is possible to consider the pump as a classical field and the respective pair 

photons as quantum fields, we can express the term 𝜙(𝒒𝑠, ω𝑠, 𝒒𝑖 , ω𝑖) know as the mode 

function in terms of the transverse momentum and frequency space as: 

𝜙(𝒒𝑠, ω𝑠, 𝒒𝑖 , ω𝑖)

∝ ∫𝑑𝑧𝑑𝝆𝑑𝑡𝑑ω𝑝𝑑𝒒𝑝𝐸𝑝(𝑞𝑝)𝑆𝑝(ω𝑝) exp[−𝑖(ω𝑝 − ω𝑠 − ω𝑖)𝑡]

× exp[𝑖(𝑘𝑝
𝑧(𝒒𝑝) − 𝑘𝑠

𝑧(𝒒𝑠) − 𝑘𝑖
𝑧(𝒒𝑖) − 𝐺𝑧) z]

× exp[i(𝒒𝑝 − 𝒒𝑠 − 𝒒𝑖) ∙ 𝝆]. 

(46) 

Eq. (46) contains all the information about the spatial mode (𝐸𝑝(𝑞𝑝)) and the spectral 

profile (𝑆𝑝(𝜔𝑝)) of the two-photon system, not only about their individual state but the 

correlations between them. 

2.4.4 Approximation for the SPDC mode function   

In order to solve the mode function is necessary to consider some approximations and 

assumptions. We assume a pump beam with a Gaussian temporal distribution, then the term 

𝑆𝑝(ω𝑝) in Eq. (46) takes the form of: 

𝑆𝑝(ω𝑝) = exp [−
𝑇0

2

4
 𝜔𝑝

2], (47) 
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being 𝑇0 the pulse duration. In the case of a continuous wave (CW), 𝑇0 tends to infinity. This 

thesis considers the frequency ω of each field as the sum of a constant central frequency ω0 

, and a small deviation from that frequency 𝛺, so that ω = ω0 + 𝛺.  

For the spatial distribution of the pump, we assume an optical vortex with an amount 𝑙𝑝ℏ of 

OAM per photon, so in this way we can project the pump beam in the Laguerre-Gaussian 

basis Eq. (21)  and since the pump has a Gaussian distribution (𝑙𝑝 = 0) 𝐸𝑝(𝑞𝑝) simplifies to: 

𝐸𝑝(𝒒) =  √
𝜔𝑝

2𝜋
exp(−

|𝒒|2 𝜔𝑝
2

4
 ), (48) 

Now for solving the integral over the time 𝑡 we consider that the time is significantly 

longer than the time that light takes to travel the length of the non-linear crystal, but not so 

large that multiple photons are likely to be generated in a time 𝑡. In this case the limits of the 

integration can be extended from −∞ < 𝑡 < ∞, then due to the energy conservation 

condition we get as a result: 

∫ 𝑑𝑡 exp[−𝑖(𝜔𝑝 − 𝜔𝑠 − 𝜔𝑖)𝑡] 
𝑡

0

→ ∫ 𝑑𝑡 exp[−𝑖(𝜔𝑝 − 𝜔𝑠 − 𝜔𝑖)𝑡] 
∞

−∞

∝  𝛿(𝜔𝑝 − 𝜔𝑠 − 𝜔𝑖). 

. 

(49) 

To integrate over the volume, we have to consider that the transversal dimensions of the 

crystal are much larger than in the region that the pump field is confined. The result of the 

integral leads to 

∫ d𝝆 exp [i(𝒒𝑝 − 𝒒𝑠 − 𝒒𝑖) ∙ 𝝆] 
∞

−∞

∝  𝛿(𝒒𝑝 − 𝒒𝑠 − 𝒒𝑖), (50) 

and 

∫ dz exp[𝑖(𝑘𝑝
𝑧(𝒒𝑝) − 𝑘𝑠

𝑧(𝒒𝑠) − 𝑘𝑖
𝑧(𝒒𝑖) − 𝐺𝑧) ∙ 𝑧]

𝐿
2⁄

−𝐿
2⁄

∝  𝑠𝑖𝑛𝑐 (
∆𝑘𝑧𝐿

2
).  (51) 

Under this assumptions it is possible to rewrite Eq. (46) as: 

𝜙(𝒒𝑠, 𝜔𝑠, 𝒒𝑖 , 𝜔𝑖) = Lσ𝐸𝑝(𝒒𝑠 + 𝒒𝑖)𝑆𝑝(𝜔𝑠 + 𝜔𝑖)𝑠𝑖𝑛𝑐 (
∆𝑘𝑧𝐿

2
), (52) 
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∆𝑘𝑧 = (𝑘𝑝(𝒒𝑠 + 𝒒𝑖) − 𝑘𝑠(𝒒𝑠) − 𝑘𝑖(𝒒𝑖) −
2𝜋

∧
) represents the wave vector mismatch in the z 

axis for a periodically poled non-linear crystal with poling period ∧, 𝜔𝑝 is the pump waist at 

the center of the crystal. If we use the paraxial approximation around the point of perfect 

collinear quasi-phase matching (∆𝑘𝑧) we get that ∆𝑘𝑧 = 
|𝒒𝒔−𝒒𝒊|

2

2𝑘𝑝
0 + 𝛺𝑗 …+ 𝐺𝑗(𝜴) where 𝑘𝑝

0 

is the wave number at the central frequency, 𝐺𝑗 is the group velocity and 𝛺𝑗 = 𝜔𝑗 − 𝜔𝑗
0 the 

angular frequency deviation. Here we have restricted the considerations to the case of single-

frequency continuous wave (CW) pump where 𝛺𝑠 = 𝛺𝑖 ≡ 𝛺. Then we can express the bi-

photon function Eq. (48) in terms of (𝒒𝑠, 𝒒𝑖 , 𝛺) as: 

𝛷(𝒒𝑠, 𝒒𝑖 , 𝛺) =  
𝐿 𝜎̃𝜔𝑝

√2𝜋
exp (−

|𝒒𝑠 + 𝒒𝑖|
2 𝜔𝑝

2

4
) sinc (

|𝒒𝑠 − 𝒒𝑖|
2 𝐿

4𝑘𝑝
0 −

𝐷𝛺𝐿

2
), (53) 

with 𝐷 the inverse group velocity of the mismatch and 𝜎̃ a dimensionless non-linear 

coefficient 𝜎̃ =  σ√𝐹𝑝 given by: 

𝜎̃ =  𝜒(2)√
ℏ 𝜔𝑝 𝜔𝑠 𝜔𝑖 𝐹𝑝

32𝜋2𝜖0𝑐3𝑛𝑝𝑛𝑠𝑛𝑖
, (54) 

here 𝐹𝑝 represents the total flux (photons/s) of pump photons that traverse the non-linear 

crystal. For the next calculations we set that 𝐹𝑝 = 1, such all probabilities are per-pump-

photon probabilities.   

We can see from Eq. (53) that the bi-photon mode function is formed by the contribution 

of the pump field, which determines the total transverse momentum and the energy storage 

for the process, and the phase matching contribution which as we described in section 2.4.1 

ensures that the phase between the interacting fields is maintained along the propagation axis. 
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3 Theoretical results  

In this section we study the general theory for SPDC in bulk periodically poled nonlinear 

crystal with emission in the visible spectral range. Here, we are particularly interested in 

some properties of the collected biphoton state, such as, the joint spectral density, the two- 

and single-photon collection probability, and the heralding ratio (pair/single photon 

collection ratio). These properties are calculated analytically and numerically as functions of 

experimental parameters, and compared with previous studies that have adopted similar 

scenarios. 

3.1 Definition  

3.1.1 Phase matching function 

In an analogous way to the decomposition of an electromagnetic field as a series of plane 

waves, it is possible to decompose the field in other basis. The photon pairs generated during 

the SPDC process are distributed over a number of spatial modes and they are entangled in 

OAM due to the conservation laws of angular momentum. For instance, we can decompose 

a quantum state as a sum of Laguerre-Gaussian modes which are especially convenient since 

these modes are eigenstates of the OAM operator [29]. The state of a single photon in a LG 

mode is given by: 

|𝑙, 𝑝⟩ =  ∫𝑑𝒒𝐿𝐺𝑝
𝑙 (𝒒) 𝑎̂†(𝒒)|0⟩, (55) 

where 𝑝 represents the number of radial zero crossings and 𝑙 the helical structure phase front 

around the singularity, and determines the OAM carried per photon in ℏ units; the 𝐿𝐺𝑝
𝑙  modes 

are given by Eq. (21). In this basis, we can express the SPDC mode function given by Eq. 

(45) as: 

|𝜓⟩
𝑠,𝑖

(2)
=  ∑ ∫𝑑𝛺 𝐶𝑝𝑠𝑝𝑖

𝑙𝑠,𝑙𝑖, (𝛺)|𝑙𝑠, 𝑝𝑠⟩

𝑙𝑠,𝑙𝑖,

𝑝𝑠𝑝𝑖

|𝑙𝑖, 𝑝𝑖⟩|𝛺𝑠⟩|−𝛺𝑖⟩. (56) 

As we mentioned in section 2.4, when OAM is conserved (as in the case of collinear 

SPDC) the pump beam transfers the total OAM to the photon pair according to 𝑙𝑝 = 𝑙𝑠 + 𝑙𝑖. 

In our case, we have assumed that the pump beam is of a Gaussian shape, thus 𝑙𝑝 = 0 and 
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we can calculate the mode amplitude by projecting the bi-photon SPDC state Eq. (53) onto 

the target modes (Eq. (56)): 

𝐶𝑝𝑠𝑝𝑖

𝑙𝑠,𝑙𝑖, (𝛺) =  ⟨𝑙𝑠, 𝑝𝑠, 𝑙𝑖, 𝑝𝑖|𝜓𝑆𝑃𝐷𝐶
(2)

⟩, (57) 

or  

𝐶𝑝𝑠𝑝𝑖

𝑙𝑠,𝑙𝑖, (𝛺)  = ∫𝑑𝒒𝑠𝑑𝒒𝑖𝛷(𝒒𝑠, 𝒒𝑖 , 𝛺)[𝐿𝐺𝑝𝑠
𝑙𝑠 (𝒒𝑠)]

∗
[𝐿𝐺𝑝𝑖

𝑙𝑖 (𝒒𝑖)]
∗
. (58) 

The coincidence probability of finding a photon pair in a particular LG mode is giving by the 

square of Eq. (58).  

3.1.2 Pair collection 

As we will explain in further ahead to find the maximum achievable coupling efficiencies 

with respect to the focusing condition of the pump, as well as, the collection modes, it is 

convenient to express this focusing in terms of a dimensionless representation of focusing 

geometry, defined as: 

𝜉𝑗 = 
𝐿

2 𝑧𝑗
, (59) 

where 𝑧𝑗 is the Rayleigh range giving by 𝑧𝑗 = 
𝜔𝑗

2𝑘𝑗

2
 and the index 𝑗 = 𝑝, 𝑠, 𝑖 represents the 

pump, signal, and idler respectively. For a weak focusing strength 𝜉 ≪ 1, while for strong 

focusing 𝜉 > 1.  

Pair collection probability is the probability per pump photons that a pair is generated in 

the crystal, and that both photons of an entangled pair are coupled into their respective single 

mode fibers. The pair collection probability is usually given in terms of the focusing 

parameters:  

𝑃(2)(𝜉𝑝, 𝜉𝑠, 𝜉𝑖). (60) 

3.1.3 Single photon collection 

The probability per-pump-photon of collecting a photon in the desired spatial mode, 

irrespective of the collection of the partner can be represented as: 

𝑃𝑠
(1)

(𝜉𝑝, 𝜉𝑠, 𝜉𝑖), and (61) 
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𝑃𝑖
(1)

(𝜉𝑝, 𝜉𝑠, 𝜉𝑖) (62) 

where 𝑃𝑠
(1)

 corresponds to probability for the signal photon and 𝑃𝑖
(1)

 for the idler photon. 

Single-coupling efficiency is useful when maximizing the individual rate of photons present 

in the fibers. 

3.1.4 Heralding 

Heralding can be defined as the probability with which the presence of the signal photon 

heralds to the detection of the idler photon in its conjugate spatial mode. According to the 

Bayes’ theorem we can write the heralding as: 

𝜂𝑠(𝜉𝑝, 𝜉𝑠, 𝜉𝑖) =  
𝑃(2)(𝜉𝑝, 𝜉𝑠, 𝜉𝑖)

𝑃𝑠
(1)

(𝜉𝑝, 𝜉𝑠, 𝜉𝑖)
, (63) 

𝜂𝑖(𝜉𝑝, 𝜉𝑠, 𝜉𝑖) =  
𝑃(2)(𝜉𝑝, 𝜉𝑠, 𝜉𝑖)

𝑃𝑖
(1)

(𝜉𝑝, 𝜉𝑠, 𝜉𝑖)
. (64) 

3.1.5 Total pair and single photon collection probability 

For calculating these probabilities, we will make use of the two photon (𝑆(2)(𝛺)) and 

single photon (𝑆(1)(𝛺)) spectral brightness which are described in detail in the next section. 

Additional to this, we should consider spectral filter functions of signal ℋ𝑠(𝛺) and idler 

photons ℋ𝑖(𝛺), thus the total pair-photon and single-photon collection probability in the 

presence of varied degrees of spectral filtering are defined as [38]: 

𝑃(2) = ∫𝑑𝛺ℋ𝑠(𝛺)ℋ𝑖(−𝛺)𝑆(2)(𝛺), (65) 

𝑃𝑠
(1)

= ∫𝑑𝛺ℋ𝑠(𝛺)𝑆(1)(𝛺), and (66) 

𝑃𝑖
(1)

= ∫𝑑𝛺ℋ𝑖(𝛺)𝑆(1)(𝛺). (67) 

where 𝑃(2) represents the pair-photon collection probability and the single-photon collection 

probability for the signal and idler is given by 𝑃𝑠
(1)

 and 𝑃𝑖
(1)

 respectively. 

3.2 Theoretical model  

The parameters considered for this section are based on typical bulk SPDC sources, 

which may be defined to have the following characteristics: the length of the medium is 𝐿 ≥
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10 𝑚𝑚, its refractive index is 𝑛 ≥ 1.5; and emission spectral range, with 𝜆𝑝 = 405 𝑛𝑚 and 

𝜆𝑠,𝑖 = 2𝜆𝑝. We will also consider degenerate type II collinear SPDC. 

3.2.1 Spectral Bandwidth 

For the spectral bandwidth in which the detected photons are distributed is necessarily to 

consider both the spectral bandwidth when both photons are collected, which is named two-

photon spectral bandwidth (∆𝛺)(2) and single-photon spectral brightness (∆𝛺)(1) that it is 

given by the spectrum of all the photons detected, irrespective the of the photon partner 

detection. In certain SPDC experiments, when a pair of identical photons is preferable to a 

pair of highly correlated photons, one can narrowly filter the frequency spectrum of the signal 

and idler photons. The bandwidth of these frequency filters may be some orders of magnitude 

narrower than the natural bandwidth of the down-converted spectrum (∆𝛺𝐹 ≪ ∆𝛺𝑆𝑃𝐷𝐶). 

We consider the extreme case, in which a spatial filter with a narrow passband, centered 

around the collinearly phase-matched central wavelengths (𝛺 = 0) limit the number of 

detected signal and idler photons. Narrowband spectral filtering can be necessary to ensure 

spectral indistinguishability. In this case, the spectral bandwidth of the detected signal is 

determined by a passband spectral filter (∆𝛺𝐹), then Eqs. (65) to (67) can be approximated 

to the pair and single collection efficiency, respectively as: 

𝑃(2) ~ 𝑆(2)(0)∆𝛺𝐹, and (68) 

𝑃(1) ~ 𝑆(1)(0)∆𝛺𝐹. (69) 

3.2.2 Spectral Brightness and Collection efficiency 

Filtering is one of the most important aspects of photon-pair engineering. Spatial filtering 

and more specifically coupling the photon pairs to a single mode fiber, like an optical fiber, 

is the first requirement for long-distance communications. The coupling efficiency is then a 

crucial parameter, and in order to calculate this parameter we should first determine the 

Spectral brightness, two- and single photon density. First, we will derivate an analytical 

solution for 𝑆(2)(𝛺), defined as the probability density for collecting a pair of photons per 

Hz bandwidth per-pump-photon. This is obtained by projecting the SPDC mode function into 

the Gaussian modes 𝑝𝑠 = 𝑝𝑖 = 0 and 𝑙𝑠 = 𝑙𝑖 = 0, since the spatial mode that propagates 

trough a SFM is approximately the fundamental mode. As we mentioned before, the 



33 

 

coincidence probability of finding a photon pair in a particular LG mode is giving by the 

absolute square of Eq. (58). In this way 𝑆(2)(𝛺)  will be given by: 

𝑆(2)(𝛺) =  |𝐶0,0
0,0 (𝛺)|

2
. (70) 

For the calculation of Eq. (70) we have assumed the photons signal and idler are projected 

into a common spatial mode (𝜔𝑠 = 𝜔𝑖). Additional to this, it is necessary to consider the 

change of variable 𝒒+ = 𝒒𝑠 + 𝒒𝑖 and 𝒒− = 𝒒𝑠 − 𝒒𝑖 . In order to simplify the calculation, it is 

convenient to change to cylindrical coordinate system as |𝒒+|2 → 𝜌+
2 and |𝒒−|2 → 𝜌−

2. 

Integrating Eq. (70) over 𝜌+ we obtain: 

𝑆(2)(𝛺 = 0) =  
2𝜋𝐿2𝜎̃2𝜔𝑝

2𝜔𝑠
4

(2𝜔𝑝
2 + 𝜔𝑠

2)
2  |∫ 𝑑𝜌 exp(−

|ρ|2 𝜔𝑠
2

4
) 𝑠𝑖𝑛𝑐 (

|ρ|2 𝐿

4𝑘𝑝
0 )

∞

0

|

2

, (71) 

where we have changed to a cylindrical coordinates system such that ρ = |𝒒−|. Here, we also 

have already considered the particular case when 𝛺 = 0. The exact solution of Eq. (71) is 

given by: 

𝑆(2)(𝛺 = 0) =  
8𝜋(𝑘𝑝

0)
2
𝜎̌2𝜔𝑝

2𝜔𝑠
4

(2𝜔𝑝
2 + 𝜔𝑠

2)
2  |𝑡𝑎𝑛 −1 (

2𝐿

𝑘𝑝
0𝜔𝑠

2
)|

2

. (72) 

For the narrowband limit, it is useful to normalize the collection probabilities with 

respect to the total number of photons emitted by the nonlinear crystal (total spectral 

brightness F) defined as: 

𝐹(𝛺 = 0) = ∫𝑑𝒒𝑠𝑑𝒒𝑖|𝛷(𝒒𝑠, 𝒒𝑖 , 0)|
2. (73) 

Substituting Eq.(53) in Eq. (73) and considering the same change of variable as before 

𝒒± = 𝒒𝑠 ± 𝒒𝑖, the result of the total spectral brightness is: 

𝐹 = 
𝑘𝑝

0𝜋2𝜎̃2𝐹𝑝 𝐿

2
 (74) 

Using Eq. (72) and Eq. (74) we can obtain the normalized two photon spectral brightness 

𝑆(2)(0)/𝐹(0). As we mentioned before, since we are considering narrowband filters, it is 

possible to approximate the two-photon spectral brightness to the pair collection efficiency 

according to Eq.(68). Then, the pair collection efficiency is found to be: 
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𝑃(2)(𝛺 = 0) =  
16 𝑘𝑝

0𝜎̃2𝜔𝑝
2𝜔𝑠

4

𝜋𝐿 (2𝜔𝑝
2 + 𝜔𝑠

2)
2  [tan−1 (

2𝐿

𝑘𝑝
0𝜔𝑠

2
)]

2

 (75) 

We would like to note that our result given by Eq.(75) is the same as the one reported in 

[1]. According to [22] and [39], a maximum collection efficiency is reached when: 

𝜉𝑝
𝑜𝑝𝑡 = 𝜉𝑠

𝑜𝑝𝑡. (76) 

In order to obtain a relation between the beam waist of the pump and the collection 

modes, we substitute the definition of the focusing parameters, given in Eq. (59) in Eq.(76), 

so that: 

𝜔𝑠
𝑜𝑝𝑡 = √2 𝜔𝑝

𝑜𝑝𝑡. (77) 

The above equation gives the conditions for the optimal parameters that must be satisfied in 

order to maximize the value of the collection efficiency. This result was also obtained by 

Palacios et al. [1]. If we substitute Eq.(77) in Eq. (75) this condition will lead to: 

1

2
𝑡𝑎𝑛 −1(𝛼) =

𝛼

1 + 𝛼2
 , (78) 

where 𝛼 =  𝐿
𝑘𝑝

0(𝜔𝑝
𝑜𝑝𝑡)2⁄ . By solving numerically Eq. (78) we can determine that the value 

of 𝛼 is a constant and equal to 1.39. In this way, we can clearly see that the values of 𝜔𝑝
𝑜𝑝𝑡

 

will depend on the parameter 𝛼 as: 

𝜔𝑝
𝑜𝑝𝑡 = √

𝐿

𝛼𝑘𝑝
0 . (79) 

Eq. (77) and Eq. (79) are then and as we expected, the optimal values that maximize the 

number of generated photons in the SPDC process. Figure 3.1 shows the pair collection 

probability defined in Eq. (75) for different crystal lengths, when the value of the pump waist 

is chosen to be 𝜔𝑝 = 𝜔𝑝
𝑜𝑝𝑡

. Three different values for the crystal length are plotted in the 

figure below, 10 mm (pink line), 15 mm (blue line), and 20 mm (green line). As we can 

observe, the maximum value we can reach in the three cases is 𝑃(2) ~ 82 %, proving that the 

pair collection efficiency remains the same as a global maximum being independent of the 

value of 𝐿, as a consequence of approximating the field of the fiber’s fundamental mode with 

a Gaussian function which is in agreement with the results reported on [1]. 
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Figure 3.1 Pair collection efficiency (𝑃(2)) in term of the pump waist when is hold 𝜔𝑝 = 𝜔𝑝
𝑜𝑝𝑡

 for different 

crystal lengths. 

We can express the pair collection efficiency (Eq. (75)) as function of the dimensionless 

focusing parameters 𝜉𝑝 and 𝜉𝑠 according to the definition given in Eq. (59). Figure 3.2 shows 

𝑃(2) as function of 𝜉𝑝 and 𝜉𝑠. In this figure, we have plotted 𝑃(2) for 𝐿 = 10 𝑚𝑚, since the 

behavior of the chart was not affected by changing the crystal length. Notice that there is an 

area (dark red) where is possible to get a coupling efficiency (pair collection) close to the 

maximum value, this what we call a regimen of good focusing. The fact that this regimen of 

a good focusing be broad, gives the advantage of having more options for choosing a set of 

parameters that lead us to a high efficiency and not being restricted to a single value as in 

Figure 3.1. This range for good focusing can be convenient for experimental work. We have 

a global maximum value for 𝑃(2) is reached when 𝜉𝑝 = 𝜉𝑠,𝑖 = 1.39, which is compatible 

with the one reported on [2]. 
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Figure 3.2 Pair collection efficiency 𝑃(2) as a function of the focusing parameters 𝜉𝑝,𝑠,𝑖 for the narrow band 

limit. The maximum value for the pair collection efficiency 𝑃(2) ~ 82 % is reached when 𝜉𝑝 = 𝜉𝑠,𝑖 = 1.39 

In references [1], [22] it has been reported that the collection probabilities as well as, the 

heralding ratios are determined by the dimensionless ratios 𝜉𝑝, 𝜉𝑠, 𝜉𝑖,. We can notice that 

changing the crystal length has no effect on these parameters if the pump duration and 

confocal ranges are also scaled by the same factor. We can observe this behavior from Figure 

3.1 and Figure 3.2. In the end, the crystal length just sets the bandwidth of the system. 

Analogous to the definition of the two-photon spectral brightness, the single-photon 

spectral brightness (𝑆(1)(𝛺)) is the probability density for collecting a single-photon per HZ 

bandwidth, per-pump-photon. The calculation of 𝑆(1)(𝛺) is obtained by tracing out the 

partner photon’s (in our case the photon idler) as: 

𝑆(1)(𝛺𝑠) =  ∫𝑑𝒒𝑖 |∫𝑑𝒒𝑠𝛷(𝒒𝑠, 𝒒𝑖, 𝛺𝑠)[𝐿𝐺𝑝𝑠
𝑙𝑠 (𝒒𝑠)]

∗
|
2

. (80) 

Due to the complexity of the direct integration of Eq. (80) it is convenient to use the mode 

decomposition Eq. (57) that allows us to simplify the calculation, then we can rewrite the 

single-photon spectral brightness as: 
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𝑆(1)(𝛺𝑠) = ∑|𝐶0,𝑝𝑠

0,0,  (𝛺𝑠)|
2

∞

𝑝𝑠=0

. (81) 

The fact that we can write the expression as a sum over 𝑝𝑠 has its justification in the 

conservation of the orbital angular momentum in which for the Gaussian case it must be hold 

that 𝑙𝑠 = −𝑙𝑖, in such way, that if the idler photon is being collected in the fundamental mode 

𝑙𝑖 = 0, then the signal photon should be 𝑙𝑠 = 0 and the higher order modes (𝑝𝑠 ≠ 0) will be 

undetected. 

For solving the integral given in Eq. (81), we have considered the same change of 

variables used for integrating Eq.(70), that is 𝒒+ = 𝒒𝑠 + 𝒒𝑖 and 𝒒− = 𝒒𝑠 − 𝒒𝑖. Where the 

transformation to the cylindrical coordinate system will be of the form |𝒒+|2 → 𝜌+
2 and 

|𝒒−|2 → 𝜌−
2. Taking into account these new variables (𝜌+ and 𝜌−) we can rewrite the 

coordinate 𝜌𝑠
2 as: 

𝜌𝑠
2 =

1

4
[𝜌+

2 + 𝜌−
2 + 2𝜌+𝜌− cos(𝜑+ − 𝜑−)].  

 

(82) 

In this way, the new integral to solve becomes: 

𝐶0,𝑝𝑠

0,0 (0) =
𝐿𝜎̃𝜔𝑝𝜔𝑠

2

8𝜋𝐿√2𝜋
∫𝑑𝜌+𝑑𝜌−𝑑𝜑+𝑑𝜑−𝑑𝑧 𝜌+𝜌− exp (

−𝜌+
2𝜔𝑝

2

4
)  

× exp(
−𝜔𝑠

2

8
(𝜌+

2 + 𝜌−
2)) exp(

𝑖𝑧𝜌−
2

2𝑘𝑝
0 ) ∑(−1)𝑘

𝑝𝑠!

(𝑝𝑠 − 𝑘)! 𝑘!2

𝑝𝑠

𝑘=0

  

× (
𝜔𝑠

2

8
[𝜌+

2 + 𝜌−
2 + 2𝜌+𝜌− cos(𝜑+ − 𝜑−)] )

𝑘

 

(83) 

Note that in this last expression we have substituted the 𝑠𝑖𝑛𝑐 function for its exponential 

form. Using the binomial identity we can evaluate the integral in Eq. (83) over the radial 

variables and azimuthal angle (𝜌+, 𝜌−, 𝜑+, 𝜑−) of the transverse component 𝒒, we obtain the 

following expression for the single-photon spectral brightness: 
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𝑆(1)(0)

= ∑ |𝑓 ∑ ∑ ∑ 2𝑛′
 

(−1)𝑘𝑝𝑠!

(𝑝𝑠 − 𝑘)! (𝑘!)2

𝑘! 𝑑!

(𝑘 − 𝑛′)! 𝑛′! (𝑑 − 𝑙)! 𝑙!

𝑘−𝑛′

𝑙=0

(
𝜔𝑠

2

8
)

𝑘𝑘

𝑛′=0

𝑝𝑠

𝑘=0

∞

𝑝𝑠=0

 

×
𝛤 (

2𝑙 + 𝑛′ + 2
2 )

2 (
𝜔𝑝

2

4 + 
𝜔𝑠

2

8 )

[𝑙+𝑛′/2+1]
 
2(1 + (−1)𝑛′

)𝜋
3

2⁄ 𝛤 (
1 + 𝑛′

2 )
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(84) 

where 𝑑 = 𝑘 − 𝑛′ and 𝑓 =  
𝐿𝜎̃𝜔𝑝𝜔𝑠

2

8𝜋√2𝜋 𝐿
. From this last expression we can clearly see that when 

we sum over the first value that corresponds to zero, i.e. 𝑝𝑠 = 0 and 𝑑 − 𝑙 +
𝑛′

2
= 0, Eq. (84) 

gives as result Eq. (72). On the other hand, when (𝑑 − 𝑙 +
𝑛′

2
) > 0, the analytical expression 

for all the values of 𝑝𝑠 results in: 
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𝑆(1)(0)

= ∑ |𝑓 ∑ ∑ ∑ 2𝑛′
 

(−1)𝑘𝑝𝑠!

(𝑝𝑠 − 𝑘)! (𝑘!)2

𝑘! 𝑑!

(𝑘 − 𝑛′)! 𝑛′! (𝑑 − 𝑙)! 𝑙!

𝑘−𝑛′

𝑙=0

(
𝜔𝑠

2

8
)

𝑘𝑘

𝑛′=0

𝑝𝑠

𝑘=0

∞

𝑝𝑠=0

 

×
𝛤 (

2𝑙 + 𝑛′ + 2
2 )

2 (
𝜔𝑝

2

4 + 
𝜔𝑠

2

8 )

[𝑙+𝑛′/2+1]
 
2(1 + (−1)𝑛′

)𝜋
3

2⁄ 𝛤 (
1 + 𝑛′

2 )

𝛤 (1 +
𝑛′

2 )
 𝛤 (

2(𝑑 − 𝑙) + 𝑛′ + 2

2
) 

× 

(
𝑖𝐿

4𝑘𝑝
0 +

𝜔𝑠
2

8 )

−[(𝑑−𝑙)+
𝑛′

2
]

− (−
𝑖𝐿

4𝑘𝑝
0 +

𝜔𝑠
2

8 )

−[(𝑑−𝑙)+
𝑛′

2
]

𝑖
2𝑘𝑝

0 [(𝑑 − 𝑙) +
𝑛′

2 ] |

|

2

, 

(85) 

In order to compare our results with previous ones, we select the value of 𝑝𝑠 = 2, then the 

above equation reduce to: 
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(86) 

As we already mentioned previously, but we wish to emphasize here, an analytical expression 

for the single-photon spectral brightness, to the best of our knowledge, has not been reported. 

Notice that the first term of Eq. (86) is the same expression that we got for the two-photon 

spectral brightness that corresponds to the case when 𝑝𝑠 = 0. 

Let us highlight the importance of having an analytical expression for 𝑆(1): We note that 

in the expression given in Eq.(83) there are at least for integrals that have to be performed, 

which for some of them the integration limits is infinity. This is not convenient from a 

numerical point of view, since these kind of calculations are time consuming and it also 

represents a high computing cost. On the other hand, having an analytical expression avoids 

these issues, and also allows us to see explicitly how each of the free parameters affect the 

behavior of the spectral brightness, and based on these observations we can find the optimal 
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conditions that maximize the value of single density. For 𝑆(1) we have also found a maximum 

value when 𝜉𝑝 = 𝜉𝑠,𝑖 = 1.39. Figure 3.3 shows this probability assuming the condition given 

in Eq. (69). In the figure below, we can note that the shape of the plot is also not affected by 

changing L and the condition given by Eqs. (77) and (79) are hold for the single-photon 

probability, as well.  

 

Figure 3.3. Single collection efficiency as a function of the focusing parameters for the narrow band limit, 

having a maximum when 𝜉𝑝 = 𝜉𝑠,𝑖 = 1.39 

Once that we have achieved both analytical solutions for the two- and single photon spectral 

brightness we can easily compute the next property of interest. 

3.2.3 Heralding efficiency 

Ideally, the detection of a signal photon is used to indicate the presence of an idler photon, 

although the photons are always emitted in pairs, conditions generally allow one photon to 

be emitted into a spatial mode, defined by the collection optics while its partner is emitted 

into a non-collected spatial mode. For this reason, it is desirable to have a high heralding 

ratio, which is defined as the probability of a single-photon state, conditional on a heralding 

detector signal, mathematically represented in Eqs.(63) and (64). Using narrowband filters, 

and the definitions of Eqs. (68) and (69), as well as the explicit expressions for the single- 

and two-photon spectral brightness, we can rewrite the heralding efficiency as: 
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𝜂 =
𝑆(2)(𝛺 = 0)

𝑆(1)(𝛺 = 0)
=  

|𝐶0,0
0,0, (0)|

2

∑ |𝐶0,𝑝𝑠

0,0,  (0)|
2∞

𝑝𝑠=0

. (87) 

 

We have found an analytical expression for 𝑆(1), which is valid for different values of 

𝑝𝑠, however here we focus on the case 𝑝𝑠 = 3 to compare the behavior of our heralding 

efficiency with the one reported in [2]. Then, using the results from Eqs. (75) and (85) we 

numerically calculated the heralding efficiency form Eq. (87). This is plotted in Figure 3.4, 

in terms of the focusing parameters. We would like to highlight that our figure shows the 

same behavior as the one obtained entirely numerical in [2] proving the veracity of our 

analytical expression in Eq. (85). 

 

Figure 3.4 Heralding efficiency for the narrow band case when 𝛺 = 0 expressed in term of the confocal 

parameters. 

As the probability of collecting both photons cannot exceed the probability of collecting 

one of the photons, the heralding ratio can be at most equal to 1. The most interesting 

characteristic observed in Figure 3.4 is that the heralding efficiency can reach values of 𝜂 

>99% for every value of 𝜉𝑝 by choosing the correct confocal parameters 𝜉𝑠,𝑖, offering a 

broader range for increasing the detection if we compared with the single value of the spectral 

brightness. On the other hand, previous studies [22], [23], [40] have demonstrated that 
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without the use of spectral filtering a trade-off between heralding efficiency and pair 

collection rates must be consider, i.e. η cannot be increased without decreasing 𝑆(2), and 

vice-versa; while the maximum of the pair rate is obtained for small values of the pump and 

collection waist, the heralding increase for large values of waist. However, in the limit of the 

narrowband, such as trade is not observed since a maximum heralding efficiency can be 

achieved for all the pump values. The veracity of these results was demonstrated 

experimentally in [18] where they have evaluated the improvement of the heralding 

efficiency by using large beam waist, as well as, spectral filtering showing that restricting the 

spectral bandwidth leads to a more beneficial trade-off, improving both quantities the 

heralding efficiency and the pair rate. 

Finally, in Figure 3.5 the collection probability of finding a photon pair in a particular 

LG mode for SPDC |𝐶0,𝑝𝑠
0,0 (𝛺 = 0)|

2
 (that we can get from (85) without effecting the sum 

from 𝑝𝑠 to ∞) is shown in terms of the focusing parameters of the collection modes ξs,i. for 

different fixed values of ξp. Each value of ξp corresponds to a different focused regimes: we 

have considered the values of ξp = 0.01 weakly focused, while ξp = 1.5 for a regime close 

to the optimal focusing; and finally ξp = 5 for strongly focusing. In the plot that corresponds 

to 𝑝𝑠 = 0 for a fixed pump of ξp = 1.5, note that the highest peak is at 𝑃(2) ≈ 0.82 when 

ξs,i ≈ 1.5 which agrees with the results from Figure 3.1 and Figure 3.2. In this figure we can 

clearly see how the collection efficiency decrease for higher order of 𝑝𝑠, finding in all the 

cases the higher fraction of  emitted photon pairs into the fundamental mode. Note, however, 

that a heralding efficiency of 𝜂 > 99% can be achieved, regardless of the choice of the pump 

mode, since mode contributions with 𝑝 ≠ 0 are suppressed by choosing a correct collection 

waist according to Figure 3.4. 
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Figure 3.5. Coincidence probability of finding a photon pair in a particular LG mode |𝐶0,𝑝𝑠
0,0

(𝛺 = 0)|
2
 for 

SPDC in terms of the focusing parameters of the collection modes 𝜉𝑠,𝑖 . with a fixed 𝜉𝑝 for: weakly focused 

𝜉𝑝=.01, close the optimal focusing 𝜉𝑝=1.5; and strongly focusing 𝜉𝑝=5. 
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4 Conclusion 

In this thesis we have investigated a two-photon state in space and frequency using a 

Gaussian pump beam, for SPDC bulk in non-linear crystals, considering a collinear 

geometry, and restricted to the spectral bandwidth to the narrowband case when 𝛺 = 0. We 

calculated analytic expressions for two- and single-photons spectral brightness. We have 

investigated the conditions and parameters such as the crystal length, size of the waist (for 

pump and collection modes) and the focusing parameters that maximize the pair- and single-

collection efficiency. In the case of pair collection efficiency, our results are in agreement 

with the ones reported in [1]. On the other hand, an analytical expression for the single photon 

collection has not been (to the best of our knowledge) reported. We corroborated the veracity 

of our expression by calculating the heralding efficiency and comparing it with the one 

reported in [2].  

In chapter 2, we have shown the essential factors contributing to the two-photon state in 

terms of space and frequency by deriving this expression from first principles. We began 

with deriving a general Hamiltonian for SPDC processes, and simplified it for the popular 

cases of bulk crystals. 

In chapter 3, we have discussed how the single-photon and two-photon spectral 

brightness is affected by the choice of focusing parameters, and how this choice relates to 

heralding efficiency. For the two photons spectral density, we have confirmed that the 

optimal parameter that increase the pair collections (𝑃(2) ≈ 82%) is reached when  

𝜔𝑝
𝑜𝑝𝑡 = √

𝐿

𝛼𝑘𝑝
0   and  𝜔𝑠

𝑜𝑝𝑡 = √2 𝜔𝑝
𝑜𝑝𝑡

 and independent of the crystal length, being in 

agreement with the results reported in [1]. We also have found that the value that maximized 

the Pair collection function expressed in terms of the confocal parameters is 𝜉𝑝 = 𝜉𝑠,𝑖 =

1.39. Additional to this, we have calculated an analytical solution for the single photon 

spectral density that to the best of our knowledge has not been reported in previous works. 

We plotted how the pair collection efficiency varies when we focus the pump weakly, near 

to the optimal parameters and strongly finding (as it was expected) high efficiency for the 

values close to 𝜉𝑝 =  1.39 and for the fundamental mode.  
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The results presented here, suggests that the presence of narrowband filters leads us to 

an improvement in both quantities (brightness and heralding efficiencies) for any values of 

the pump by choosing the correct confocal parameters. Understanding the behavior of these 

properties are of our interest for their application to experiments that develop bright sources 

with high heralding efficiency. Entangled photon sources with high heralding and brightness 

will be of particular significance to multi-photon experiments as well as for closing the 

detection loophole in fundamental experiments and device-independent QKD with entangled 

photons. 
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5 Appendix A: Methods for generation and manipulation of spatial 

modes 

Since the experimental investigation of orbital angular momentum started in the ’90s, 

many approaches for creating and manipulating the spatial modes beams have been proposed 

and demonstrated. Until now, some of these attempts to design devices for generating such 

beams include spiral phase plates [9], computer-generated holograms imprinted onto spatial 

light modulators (SLMs) [41], [42], mode converters (array of cylindrical lenses) [43], q 

plates (non-uniform liquid crystal plates) [44], and some types of sorters [45], [46], Even 

though, these modes of light offer several advantages, the development of devices that allows 

us to manipulate and detect of spatial modes stills limited. 

In this appendix we will describe some techniques and the experimental configuration 

for beam shaping light by the means of digital holography in the configuration of phase-only, 

complex amplitude modulation, a mode converter, as well as, the characterization of a 

commercial mode sorter (CAILabs PROTEUS-S-10-1550) based on the technique of 

Multiplane Light conversion (MPLC). 

5.1 Light modulators and beam shaping 

There are different techniques for generating Hermite-Gaussian and Laguerre-Gaussian 

beams being the liquid crystal on Silicon Spatial Light Modulators (SLM) [28] the most 

commonly used. A Spatial Light Modulator is a pixelated displays that can manipulate 

properties of light in which each pixel is an independent birefringent liquid crystal where the 

orientation of the optical axis of the liquid crystal is rotated by applying a certain voltage V 

(see Figure 5.1). The voltage is addressed by using the grayscale bitmap that is displayed on 

the SLM and depending on the orientation of the molecules the refractive index will change 

giving rise to a phase shift to the incoming beam with a specific polarization. The calibration 

of the SLM is done in such a way that a linear phase response to the incoming beam through 

the displayed grayscale image. Usually 8-bit are encoding, and allowing 256 colors, where 

black (0) corresponds to a phase equal to zero and white (255) corresponds to a 2π phase. 
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Figure 5.1 Schematic of a SLM screen, showing a different rotation of the optical axis in each pixel, therefore, 

a different phase modulation per pixel. 

There are some difficulties that we should take into account when we use SLMs, among 

them it is the diffraction of the light in many directions due to the 2-D amplitude grating 

formed by each pixel and the space between them allows some rays of light to reflect without 

acquiring the desired phase (zeroth diffraction order) creating interfere with the diffracted 

light, which has the desired phase profile imprinted by the SLM, leading to a deterioration of 

the quality of the generated beams. To overcome this limitations, one can add a blazed grating 

to the generated hologram. The blazed grating has the advantage that a high percent of the 

light is diffracted into the desired order by moving the diffracted beam (first order) away 

from the undiffracted (zeroth order). Figure 5.2 shows some examples of the phase masks 

with blaze for generating HG and LG modes. 

 

Figure 5.2 Phase modulation holograms for the generation of the HG and LG modes. In these case: a) HG01, 

b) HG21, c) LG30, and d) LG11. 
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Generating an arbitrary beam accurately requires phase and amplitude modulation 

simultaneously. Since most of the SLM are phase-only modulation, it is necessary to perform 

complex modulation (see Figure 5.3). This technique can be performed by making use of a 

modified hologram in which we can modulate the phase height of the grating programmed 

into the hologram [47]. The amplitude at any point in a plane can be controlled by adjusting 

the efficiency of the blazing in the corresponding region of the hologram. One can simply 

impose the desired intensity of the beam with some modifications to account for the mapping 

of phase height to diffraction efficiency to produce the hologram. 

 

Figure 5.3 Complex amplitude modulation holograms for the generation of HG and LG modes. Where we 

have considered: a) HG11, b) HG30, c) LG01, and d) LG0-1. 

Even though this generation method produces the spatial modes fairly accurately, it has 

some disadvantages. The input field is assumed to be a plane wave in its derivation [48], and 

even when this is a good approximation for the large Gaussian input beams, the intensity 

profile might not be optimally flat. Also, due to the amplitude masking, the method is very 

lossy. 
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5.1.1 Mode converter from HG to LG  

As we mentioned in previous sections, LG and HG modes form a complete set of 

orthogonal functions, allowing us to express HG basis in terms of LG basis and vice versa. 

Based on the fact that HG modes oriented at 45° can be decomposed into a set of HG mode 

that can be rephrased and combine to form a particular LG mode by using an astigmatic mode 

converter (two cylindrical lenses) [43]. This HG modes can be expressed in terms of LG 

modes and vice versa through the relations: 

𝐿𝐺𝑝
𝑙 (𝑥, 𝑦, 𝑧) = ∑ 𝑖𝑘𝑏(𝑙, 𝑝, 𝑘)

𝑁

𝑘=0

𝐻𝐺𝑁−𝑘,𝑘(𝑥, 𝑦, 𝑧) (88) 

where 

𝑏(𝑙, 𝑝, 𝑘) =
(𝑁 − 𝑘! 𝑘!)1/2

𝑙! 𝑝! 2𝑁

1

𝑘!

𝑑𝑘

𝑑𝑡𝑘
[(1 − 𝑡)𝑙(1 + 𝑡)𝑝]𝑡 = 0 (89) 

From Eqs. (88) and (89) we can observe that the set of HG and LG modes are related to 

each other by: 

𝑙 = 𝑛 − 𝑚 (90) 

𝑝 = min (𝑛,𝑚) (91) 

Moreover, the correspondence between HG and LG modes is fixed by the mode order 

N, defined as: 

𝑁 = 𝑛 + 𝑚 = 2𝑝 + |𝑙| (92) 

From this last Eq. (92), it is possible to express the indexes of the HG modes in terms of 

the mode order 𝑁 and the LG modes as: 

𝑛 =
𝑁 + 𝑙

2
 (93) 

𝑚 =
𝑁 − 𝑙

2
 (94) 

Experimentally, all these relations can be used to generate LG modes starting from HG 

modes emitted by lasers, through mode converters using an arrangement of cylindrical lenses 

based on Eq. (88). 
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Transformation occurs due to the mode dependence of the Gouy phase obtained by the 

HG and LG modes. The cylindrical lens mode converters have two main forms: the 
𝜋

2
 

converter which converts a HG to a LG mode or vice versa, and the 𝜋 converter which 

exchanges the indices of the incoming mode and thereby converts a LG mode into one with 

opposite azimuthal dependence. When a beam is non-astigmatic, the Gouy phase is given by 

(𝑛 + 𝑚 + 1)ϛ(𝑧), but for astigmatic beam the Gouy phase is characterized in terms of 

different Rayleigh planes 𝑥𝑧(𝑍𝑅𝑥) and 𝑦𝑧(𝑍𝑅𝑦) as: 

(𝑛 +
1

2
) arctan (

𝑧

𝑧𝑅𝑥
) + (𝑚 +

1

2
) arctan (

𝑧

𝑧𝑅𝑦
) (95) 

A diagonal HG input beam that passes through two identical cylindrical placed at a 

distance of ±𝑑, induces a phase difference [43]: 

𝜃 = 2 [𝑎𝑟𝑐𝑡𝑎𝑛
1

𝛽
− 𝑎𝑟𝑐𝑡𝑎𝑛𝛽] , 𝛽 = √

1 − 
𝑑
𝑓

1 + 
𝑑
𝑓

 (96) 

The radius of curvature of both the components are equal to restore the beam back to the 

original shape (Figure 5.4). To achieve the required phase shift, it was found that the distance 

between the cylindrical lenses should be 𝑑 =
𝑓

√2
 , with f being the focal lengths of the 

cylindrical lenses. To make the beam astigmatic only inside the cylindrical lenses, the mode 

matching condition has to be satisfied, which requires the input beam to have a Rayleigh 

range of 𝑍𝑅𝑥 = 𝑓 − 𝑑 = (1 −
1

√2
)𝑓 and 𝑍𝑅𝑦 = 𝑓 + 𝑑 = (1 +

1

√2
)𝑓. These conditions allow 

to implement experimentally the 
𝜋

2
-converter. For 𝜋-converter, it is possible to set 𝜃 = 𝜋 

leading to 𝑑 = 𝑓 and as a result a collimated beam. 
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Figure 5.4 Sketch of a symmetric mode converter. The dashed curve denotes the Gaussian beam envelope in 

the (x,z) plane, and the solid curve in the (y,z) plane, with F is the focal length of the lenses. Here, L1 focuses 

the beam only along the y-direction, making the beam astigmatic and L2 restores the beam to the original 

shape or vice versa 

The advantage of these lenses over holograms is that the optical efficiency of conversion 

is much higher, limited only by the quality of the antireflection coating of the lens. 

5.1.2 Multiplane light conversion scheme 

Although there are some well-known technique, such as “phase flattening”, where the 

incoming mode is allowed to pass through a hologram with its conjugate phase to produce a 

Gaussian mode which can be coupled to a single mode fiber [9]. This method is a projective 

measurement technique with an efficiency of 1/d being d the dimension of the system. 

Experimentally quantum communication would require a device that can map different 

spatial modes to specific points in space not only for one-dimension (typically the azimuthal 

𝑙) but also that allows simultaneous sorting of both index 𝑝 and 𝑙. This device is known as 

the mode sorter based on Multi-Plane Light Conversion technique. 

Multiplane light conversion (MPLC) is a mode selective spatial multiplexing technique, 

which is performed by a unitary transformation on spatial modes, since it converts a given 

mode basis into another one, independent of the mode basis. Theoretically, for any desired 

set of N orthogonal spatial modes can be transform into any other set of N orthogonal modes 

through a sequence of transverse phase profiles, between the input and output plane, 

separated by free space propagation acting as a fractional Fourier transform operation. This 

succession of phase profile are usually generated by using SLMs or phase plates. Phase 

profiles can be calculated by an algorithm called “wavefront matching” which generates the 

phase masks at the different planes in the propagation direction by calculating the overlap of 
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the input field and the complex conjugate of the output field at all points in space for a specific 

plane (and for each plane). At each step the phase mask is updated to become the phase of 

the superposition of the overlap between each pair of the input field (An) and the output 

modes (Bn*) at a specific plane (n) where the updated mask is given by 𝜑𝑛 =

arg {∑ 𝐴𝑛𝐵𝑛
∗𝑁

𝑛=1 }, with N is the total number of modes and An  and Bn* are the nth modes in 

the forward and backward direction. 

The input field is multiplied by the calculated phase at that plane then propagated to the 

next one iteratively. The process is repeated until the last plane and then the same algorithm 

is used backward propagation (see Figure 5.5) then the iteration is repeated and continued 

until both fields (input and output) converge at each plane during the propagation forward 

and backward. 

 

Figure 5.5 Sketch of the wave-front matching procedure. A(x,y,z) is the input field and B(x,y,z) the output field 

(and vice versa), calculating the overlap of these field at an specific plane n (in the figure n=1,2,3) and 

updating the phase mask 𝜑𝑛 = arg {∑ 𝐴𝑛𝐵𝑛
∗𝑁

𝑛=1 }. 

MPLC can be used in the reverse direction, performs the inverse unitary transform 

generating the same modes operating as a de-multiplexer. In practice, MPLC is implemented 

using a multi-pass cavity, which is formed by a mirror and a single reflective phase plate 

where the successive phase profiles are all produced. Nevertheless, the number of phase 

profiles required for a given MPLC is a trade-off between the number of modes, the 

complexity of the phase and amplitude profile of the modes [49]. 
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Figure 5.6 Schematic of the multiplane light conversion system [Depiction of the transformation of a 

Gaussian mode at the input to any other spatial mode (here HG11) and vice versa] 

As we mention before MPLC is one of the most promising techniques since it can 

measure full transverse structure of the spatial modes with good efficiency. Recently, a 

Laguerre Gaussian mode sorter which can decompose 210 modes into a Cartesian grid of 

Gaussian spots was realized by using MLPC and requiring only seven plane [50]. In this 

article the MPLC was used to transform a triangular array of Gaussian spots to Hermite-

Gauss modes which later are converted to Laguerre Gaussian modes using an array of 

cylindrical lens as a mode converter. The experimental scheme involved the beam 

propagating between an SLM and a mirror to perform the required transformation. The screen 

of the SLM is split into seven planes where each of the required phase mask is displayed and 

the free space propagation is obtained by the successive reflections from the mirror. Figure 

5.6 shows a schematic MPLC based mode transformation where a Gaussian mode is 

transformed to a particular Hermite-Gaussian mode. MPLC is proposed to overcome several 

disadvantages of the already existing spatial mode transformations, specifically OAM 

detection schemes as it can perform true two-dimensional decomposition in any spatial mode 

basis. However, even though there are some spatial mode sorters of light which are 

commercially available [49], this sorting technique still at their early development stage. 
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5.2 Experiments 

5.2.1 SLM’s Gamma curve characterization  

For these experiments we used a SLM-200 Santec which has a display of 1920*1200 

pixels and a pixel pitch of 8 μm. The value of the phase is related to the value of the gray 

level read by the SLM, in this case 10 bits (1024-gray levels). However, even when this is 

linear, we had to characterize it due to some irregularities of the SLM for reading the 

holograms. For this configuration we required a quarter wave plate (QWP) with its fast axis 

at 45° with the horizontal, and a SLM placed parallel to the QWP with its extraordinary axis 

parallel to the horizontal one Figure 5.7. This characterization was performed for a 

wavelength 𝜆 = 1550 𝑛𝑚. 

 

Figure 5.7 Set-up for the characterization of the Gamma curve 

A beam propagating through this system impinging at normal incidence is going to see 

a QWP at 45°, a phase modulation (δ(x,y)) in the horizontal polarization component 

proportional to the 𝑛𝑒(𝑉) − 𝑛𝑜, a reflection from the SLM, and finally, the same QWP but 

this time at 135°. Applying the Jones Matrix formalism, this system is described by [51]: 

𝑀 = 𝑅 (
3𝜋

4
) 𝐽𝑄𝑊𝑃𝑅 (−

3𝜋

4
) (

−1 0
0 1

) 𝐽𝑆𝐿𝑀𝑅 (
𝜋

4
) 𝐽𝑄𝑊𝑃𝑅 (−

𝜋

4
) (97) 

Solving Eq. (97) gives as a results 
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𝑀 = 𝑒𝑖𝛿(𝑥,𝑦)/2
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The Jones matrix is given in the terms of a rotation matrix with and extra phase term of 

𝜋

2
+

𝛿(𝑥,𝑦)

2
 with respect to the horizontal. Experimentally we can get this phase factor by 

measuring the polarization at an angle 𝜙. 

 

Figure 5.8 Gamma curve that represents the value of the phase in terms of the gray level. The purple line is 

used as a reference to show how a good calibration of the system should be. The blue line shows the 

experimental data obtained by using the method described above. 

The use of this method is possible since the incidence angle on the SLM is small. The 

polarization rotation is found using a power-meter and a linear polarizer (LP), that is rotated 

θ radians, until we find a minimum intensity, which occurs when 𝜃 =
𝜋

2
+

𝛿(𝑥,𝑦)

2
−

𝜋

2
. Then, 

the phase is: 

𝛿(𝑥, 𝑦) = 2𝜃 (99) 

The value of the phase is found for different values of gray level set in the SLM until 

completing a period (from 0 to 2π) as it shown in Figure 5.8. 

5.2.2 SML configuration 

For the generation of Hermite-Gauss and Laguerre-Gauss beams, the phase masks were 

displayed on a spatial light modulator (SLM-200 Santec), the reflectivity of the SLM used in 
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our experiments is about 93%. The diffraction efficiency is defined as the ratio of the power 

diffracted in the first order with the respective blaze level to the power in the zeroth order 

with non-addressed SLM. 

For the configuration of phase only modulation of the incident field on the SLM, the far 

field diffraction will generate the desired field distribution (Figure 5.9). The modulated beam 

is obtained at the focal plane of a lens after the SLM, which is equivalent to propagate the 

beam to the far field or performing the Fourier transform. In the case of  simultaneous phase 

and amplitude modulation scheme, the corresponding field is generated in the near field of 

the SLM which it is equivalent to allow selectively the desired field distribution be modulated 

in both phase and amplitude to propagate in a specific diffraction order (in our case  the first 

order). Using a telescopic arrangement is used to detect the desired field at the image plane 

of the SLM, by placing a spatial filter at the focal plane of the first lens to spatially filter the 

unwanted diffraction orders (Figure 5.11). 

 

Figure 5.9 Add figure of phase only generation and the generated beams. 

Phase only modulation does not provide beam profiles as it is desired due to the fact that 

the holograms do not account for exact amplitudes. This feature exhibits in the form of the 

spreading intensity in the lobes of the Hermite-Gauss beams in Figure 5.10. We could 

observe some inhomogeneity in the intensity of the lobes, related to the imperfect phase front 

of the beam incident on the SLM. Another possible reason could be inaccurate positioning 

of the beam profiler (Thorlabs BP209-IR/M) exactly at the Fourier plane of the lens. 
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Figure 5.10 Intensity profiles in phase modulation only for: a) 𝐻𝐺10, b)  𝐻𝐺20, c) 𝐻𝐺30, d) 𝐻𝐺11, e) 𝐻𝐺01, f) 

𝐻𝐺02, g)  𝐻𝐺03, h)  𝐻𝐺21,  i) 𝐻𝐺12 

To obtain the desired HG, LG modes more precisely, the incident field should be 

modulated in both phase and amplitude. Figure 5.12 shows the generated modes at the image 

plane of the SLM. 

 

Figure 5.11 Add figure of complex amplitude modulation and the obtained beam. 

The intensity profiles of the Hermite-Gauss modes using the amplitude modulation 

matches well with the expected intensity profiles. Figure 2.1 shows some of the other beams 

generated using amplitude modulation technique. Even though the intensity profile of the 
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generated beam matches well with the theoretical predictions, this technique is extremely 

lossy as we are allowing only the required intensity patterns from the input beam to diffract 

into the first order. 

 

Figure 5.12 Intensity profiles in amplitude modulation for: a) 𝐻𝐺20, b) )  𝐻𝐺21, c) 𝐻𝐺30, d) 𝐿𝐺0
1, e) 𝐿𝐺0

2, f) 

𝐿𝐺0
3, g) 𝐿𝐺1

2, h) 𝐿𝐺1
0, i) 𝐿𝐺1

1 

5.2.3 Multiplexing scheme 

The mode sorter (CAILabs PROTEUS-S-10-1550) works as a multiplexer by performing 

a transformation in the Gaussian spots at each spatial position into a corresponding Hermite-

Gauss mode by MPLC. The CAILabs PROTEUS-S-10-1550 is designed to perform these 

transformations for the first 10 modes of the Hermite-Gauss mode family. In this device, the 

Gaussian spots are fiber coupled and can act as a spatial mode multiplexer if we couple into 

the single mode fibers simultaneously. The experimental configuration to characterize the 

transmission efficiency of each of the channel for multiplexing is shown in Figure 5.13. A 

collimated beam from a diode laser emitting at 1550 nm (QSDIL-500) is coupled to a single 

mode fiber, which is connected to each of the fiber ports of the mode sorter to measure the 

corresponding efficiency of the port, on the other side of the device (playing the role of the 

output) there is a multimode fiber and at a distance of approximately 3 mm the aspheric lens 
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was placed. In order to see the output of the sorter, we placed and InGaAs camera in front of 

the MMF. 

 

Figure 5.13 Experimental setup for multiplexing characterization. 

During the characterization of this device we found that the intensity profiles of the 

modes where not matching, since when light propagates through a MMF experiences spatial 

distortions that scramble the intensity profile. We attributed this problem to the fact that when 

we excite a mode at the input, we are also exciting the "degenerated" modes of the optical 

fiber as it is explained in [52]. In our experiment, as we can see in Figure 5.14 when the 

HG03 mode propagates, we observe at the output the following modes: 𝐻𝐺03 + 𝐻𝐺12 +

𝐻𝐺21 + 𝐻𝐺30 as a result of modes from the same group mixing inside the fiber provoked that 

input and output were different. This can happen in only a few meters but the distance in our 

experiments is small. 
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Figure 5.14 HG modes with the mixing modes problem. 

As a solution to overcome this issue it is a free space output which will allow us the 

possibility to retrieve our input information because, without a fibered output we can delete 

this mixing phenomenon. 

5.2.4 De-multiplexing scheme 

The aim of the characterization of the device as a de-multiplexer was to understand how 

efficiently it can be decomposed arbitrary beam shapes in the Hermite-Gauss basis. For this, 

we generated HG beams and LG beams using a spatial light modulator as is show in Figure 

5.15 experimental setup for the de-multiplexer characterization. 

Since the SLM is polarization dependent, the collimated incident beam from a 1550 nm 

laser is split into orthogonal polarizations using the PBS and in this way the beam will only 

acquire the phase displayed on the screen of the SLM. We obtained a nearly Gaussian beam 

with an approximate beam diameter of 0.6 mm, which is then expanded to nearly 4 mm using 

the pair of lenses L1 (f=100 mm) and L2 (f=200 mm) before being incident on the SLM. The 

first order diffracted beam from the SLM is modulated in phase and amplitude and passes 

through the telescopic system consisting of L3 (f=100 mm) and L4 (200 mm). An iris 

aperture was placed at the focal plane of the lens L3 in order to eliminate the diffraction 

orders other than the first propagating through the system. After lens L4 was placed the 

InGaAs camera to make sure that our desire mode was generated properly. Lenses L3 and 
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L4 were chosen such way that the beam diameters of the Gaussian beams match at the image 

plane of the SLM. The lens L5 (f= 100 mm) was placed at a distance equal to its focal length 

from the image plane of the SLM, L5 was used to match the beam waist of the generated HG 

beams from the SLM with the mode sorter. 

 

Figure 5.15 Experimental setup for de-multiplexing characterization.  

It is possible to achieve the required beam parameters by making appropriate changes in 

the phase masks displayed on the SLM, in our case we have chosen a beam waist parameter 

of 1 mm for the beams which gets de-magnified after passing through the telescope in such 

a way that it can match with the beam from the sorter at the image plane of the SLM. 

Unfortunately, regarding to the same problem that we mentioned in the section above the 

propagation of the generated HG and LG beams through the device and the measurement of 

the coupling efficiency as well as cross talks between the channels was not possible to 

achieve. 

5.3 Conclusions 

In this work, we also have studied the sorting of spatial modes with the aim of using them 

in quantum optical experiments, specifically in analyzing the correlations between the photon 

pairs in their spatial modes. We selected a laser diode emitting at 1550 nm for the 

experiments, which is in the telecommunication spectral range. Nevertheless, we could not 

complete the characterization of the device due to the phenomenon of mode mixing inside 

the multimode fiber included in the sorter. Our next step would be the full characterization 
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of the sorter in free space to delete the effect and allows us to compare its efficiency compared 

with other methods with the aim of use the MPLC based mode sorter for generating modes 

with OAM that can be used for high dimensional QKD experiments for a wavelength of 1550 

nm. 
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