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Abstract 

In this thesis, we introduce a novel, accurate optical technique for measuring refractive 

indexes of liquid transparent or turbid samples using the diffractive properties of 

spherical aberrated Gaussian beams. The heights of the primary side-lobes of the 

normalized intensity profiles measured at a plane of observation in a near vicinity around 

the focal region of a lens permit attaining with high accuracy and repeatability the index 

of refraction of the samples under inspection. We demonstrate analytically and 

experimentally that, as the technique relies on the diffracted properties of the Gaussian 

beam transmitted through the samples under test, the measurements are immune to 

noise and external environmental conditions. The sensitivity of the technique can easily 

be modified making it useful to different applications. We exemplify the use of the 

technique by applying it to glucose concentration measurements due to its importance in 

the medical, biological, and industrial fields. Further examples can be found in 

applications in which the determination of the concentration can be used to describe the 

purity of solutions in the pharmaceutical and medical areas, as well as pollution, 

communication materials, and substances for the food industry.  

The technique can be tuned at different concentrations ranges according to a required 

specific application by simply modifying the initial set up. Our experimental results are 

analytically compared with theoretical models to allow measuring analytically the 

performance of the optical system. For this purpose, we use the Fresnel Gaussian shape 

invariant method (FGSI), which founds to be appropriate for calculating with high 

accuracy the overall diffraction propagation process, starting from the illuminating 

source beam, through the optical components of the optical system and up to a plane of 

observation.  

In the case of high sensitivity measurements, our experimental results were compared 

with reference data in a Clarke error grid.  The changes in glucose concentrations fall 

appropriately in the range of clinical tests demonstrating the relevance of our optical 

technique for medical applications.  
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1. Introduction 

 

The refractive index is an important optical property of materials that are used to 

characterize them. For example, some applications can be found in which 

determination of the concentration can be used to describe the purity of solutions 

in the pharmaceutical and medical areas, as well as pollution, communication 

materials, and substances for the food industry [1, 2, 3].  In this thesis, we introduce 

a novel and accurate optical technique for measuring the refractive index of 

transparent liquid samples. The technique can be tuned at different concentrations 

ranges according to a required specific application by simply modifying the initial 

set up. For example, if the measurements should require measurements in accuracy 

steps of 100 mg/dl, as shown in the next section, the sample under test will be placed 

in a cuvette containing it, and a focusing lens will be used to produce the aberrated 

focused beam. In contrast, if a very high accuracy step is required for example of the 

order of l0 mg/dl, then, the liquid sample is introduced in a focusing lens-shaped 

container to produce the aberrated focused Gaussian beam. 

The optical technique presented here is based on the diffractive properties of the 

propagated aberrated beam which are immune to external noise or even to changes 

on ambient conditions [4], allowing to obtain the measurements with high 

repeatability. Then, the optical system described in this thesis provides reliable 

results even for the case of high sensitivity requirements. We exemplify the 

feasibility and repeatability of the technique in the field of glucose concentration 

measurements by measuring different glucose concentrations of transparent and 

turbid samples in liquid tri-distilled water solutions. We use controlled laboratory 

conditions for our illustrative experiments to attain feasible comparisons between 

our technique and other optical techniques.  Different techniques in this field have 

been proposed as photoacoustic [5, 6], NIR and MIR spectroscopy [7, 8], Raman 

spectroscopy [9], kromoscopy [10], polarimetric [11], OCT [12], fluorescence [13], 

NIR optoacoustic spectroscopy [14] and multispectral photoacoustic sensing [15]. 
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In general, most of these optical techniques are based in the acquisition of a single, 

low signal to noise ratio signal, requiring additional complex numerical processing 

to extract substantial data to attain the measurements [16, 17]. As a consequence, 

when the measurements have to be performed in an industrial ambient or under 

high sensitivity requirements, the reliability of the measurements decreases.  

The optical technique introduced here overcomes the above limitation, as it is based 

on the inherent diffractive properties of a propagated Gaussian beam.  As it is well-

known, the diffractive characteristics of a beam, that can be calculated, with good 

accuracy by means of the Fresnel diffraction integral, depend only on the path of 

propagation and on the beam wavelength. The intensity profile that is calculated 

after the propagation of a Gaussian beam is well characterized and stable, and it 

remains unaffected, even under changes of the refractive index of the air where the 

beam propagates. Thus, measurements that depend only on the diffractive 

properties of a propagated beam, in principle, are expected to be highly stable, 

potentially providing high repeatability. Furthermore, a technique that takes 

advantage of these characteristics will not depend on a single signal. On the 

contrary, as the intensity profile of a propagated beam has a unique shape, the 

measurements so obtained result highly reliable. Moreover, if the measurements are 

based on the normalized intensity profiles, the power of the illuminating beams does 

not affect the measurements. 

The optical technique described in the following sections consists of measuring the 

vertical heights of the primary side-lobes of the normalized intensity profiles of the 

propagated Gaussian probe beam in which high spherical aberration has been 

introduced intentionally. Furthermore, it is only necessary to determine the relative 

height of only one of the lateral side-lobes. The measurements are taking at a plane 

of observation once that the beam has been transmitted through the liquid sample 

under test. We remark, that the measurements can also be obtained even for turbid 

samples. Furthermore, the side-lobes of the aberrated beam exhibit such a high 

sensitivity, that glucose concentrations in steps as small as 10 mg/dl can be 
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obtained.  Measurements with such a high sensitivity may result in a challenge for 

reliable measurements by other optical techniques. 

To obtain the spherically aberrated Gaussian probe beam, a large area of the front 

surface of a convex-plane singlet lens is illuminated. The diffractive normalized 

intensity profiles so obtained are acquired utilizing a dedicated homodyne profiler, 

specially designed in our lab for this purpose. This detector allows enhancing, even 

more, the accuracy and reliability of the measurements.  

We also show in the following sections, that the width variations of the probe beam 

attributable to the laser cavity do not affect the measurements. Should Gaussian 

beam widths occur, these are negligible for the Gaussian He-Ne laser, as 

demonstrated in the next section, thus, maintaining unaffected the results. 

Our experimental results are analytically compared with theoretical models to allow 

measuring analytically the performance of the optical system. For this purpose, we 

use the Fresnel Gaussian shape invariant method (FGSI) [18-21], which founds to be 

appropriate for calculating with high accuracy the overall diffraction propagation 

process, starting from the illuminating source beam, through the optical 

components of the optical system and up to a plane of observation. In the next 

chapter, we provide our theoretical description.  
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2. Theoretical Framework  

As our optical system fits well with the scalar paraxial diffractive model, for 

sustaining properly our theoretical analysis, it will be convenient to first 

demonstrate that the Fresnel diffraction integral is an exact solution of the paraxial 

wave Helmholtz differential equation.  

 2.1 Wave equation 

The scalar Helmholtz differential equation can be written as,  

𝛻2Ψ(𝑥, 𝑦, 𝑧) + 𝑘0
2Ψ(𝑥, 𝑦, 𝑧) = 0.                                         (2.1) 

In Equation (2.1), 𝑘0 =
2𝜋

𝜆
, represents the wave number and 𝜆  represents the 

wavelength of the illuminating source. The function Ψ(𝑥, 𝑦, 𝑧)  represents the 

amplitude distribution of the field in a three-dimensional coordinate space. 

As the field propagates mainly in the 𝑧 direction, which corresponds to the optical 

axis, it is possible to propose a solution for  Ψ(𝑥, 𝑦, 𝑧) in a separable expression as, 

Ψ(𝑥, 𝑦, 𝑧) = 𝑓(𝑥, 𝑦, 𝑧) exp(ⅈ𝑘0𝑧).                                      (2.2) 

We now proceed in calculating the first and second derivatives of Equation (2.2) 

with respect to z as follows, 

𝜕Ψ

𝜕𝑧
= ⅈ𝑘0𝑓(𝑥, 𝑦, 𝑧) exp(ⅈ𝑘0𝑧) +

𝜕𝑓(𝑥,𝑦,𝑧)

𝜕𝑧
exp(ⅈ𝑘0𝑧),                           (2.3) 

𝜕2Ψ

𝜕𝑧2
= −𝑘0𝑓(𝑥, 𝑦, 𝑧)𝑒𝑥𝑝(ⅈ𝑘0𝑧) + 2ⅈ𝑘0

𝜕𝑓(𝑥, 𝑦, 𝑧)

𝜕𝑧
𝑒𝑥𝑝(ⅈ𝑘0𝑧)

+
𝜕2𝑓(𝑥, 𝑦, 𝑧)

𝜕𝑧2
exp(ⅈ𝑘0𝑧) . 

(2. 4) 

Substituting the derivatives given by Equations (2.3) and (2.4) into Equation (2.1), 

we obtain, 
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𝜕2𝑓

𝜕𝑥2 +
𝜕2𝑓

𝜕𝑦2 + [−𝑘0
2𝑓 + 2ⅈ𝑘0

𝜕𝑓

𝜕𝑧
+

𝜕2𝑓

𝜕𝑧2
] + 𝑘0

2𝑓 = 0 .                       (2.5) 

As the curvature of the field can be neglected because the propagation has already 

been considered in the expression of Equation (2.1), we can assume for practical 

purposes that  
𝜕2𝑓

𝜕𝑧2 ≪
𝜕𝑓

𝜕𝑧
 . This approximation is known as a paraxial approximation. 

Then, upon neglecting the term  
𝜕2𝑓

𝜕𝑧2 in Equation (2.5), one obtains,  

𝛻2𝑓(𝑥, 𝑦, 𝑧) + 2ⅈ𝑘0
𝜕𝑓(𝑥,𝑦,𝑧)

𝜕𝑧
= 0.                                             (2.6) 

Equation (2.6) can be rewritten as, 

− (
𝜕2𝑓

𝜕𝑥2 +
𝜕2𝑓

𝜕𝑦2) = 2ⅈ𝑘0
𝜕𝑓

𝜕𝑧
 .                                              (2.7) 

It may result interesting to notice that the Equation (2.7) has the following 

Schrödinger wave equation shape, 

−
ℏ2

2𝑚
𝛻2Ψ = ⅈℏ

𝜕Ψ

𝜕𝑡
 .                                                     (2.8) 

To solve the paraxial approximation of the Helmholtz differential Equation (2.8), or 

equivalently its Schrödinger equivalent equation, we will consider the Fourier 

transform of  𝑓(𝑥, 𝑦, 𝑧) and its corresponding inverse Fourier transform 𝐹(𝑢, 𝑣, 𝑧), 

𝑓(𝑥, 𝑦, 𝑧) = ∬ 𝐹(𝑢, 𝑣, 𝑧) exp[ⅈ2𝜋(𝑢𝑥 + 𝑣𝑦)] ⅆ𝑢 ⅆ𝑣
∞

−∞
  ,                         (2.9) 

and, 

𝐹(𝑢, 𝑣, 𝑧) = ∬ 𝑓(𝑥, 𝑦, 𝑧) exp[−ⅈ2𝜋(𝑢𝑥 + 𝑣𝑦)] ⅆ𝑥 ⅆ𝑦
∞

−∞
.                   (2.10) 

The corresponding derivatives for  𝑓(𝑥, 𝑦, 𝑧)  in Equation (2.9) are, 

𝜕2𝑓

𝜕𝑥2 = ∬ (−4𝜋2𝑢2)𝐹(𝑢, 𝑣, 𝑧) exp[ⅈ2𝜋(𝑢𝑥 + 𝑣𝑦)] ⅆ𝑢 ⅆ𝑣
∞

−∞
,           (2.11) 

𝜕2𝑓

𝜕𝑦2 = ∬ (−4𝜋2𝑣2)𝐹(𝑢, 𝑣, 𝑧) exp[ⅈ2𝜋(𝑢𝑥 + 𝑣𝑦)] ⅆ𝑢 ⅆ𝑣
∞

−∞
,          (2.12) 
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and, 

𝜕𝑓

𝜕𝑧
= ∬

𝜕𝐹(𝑢,𝑣,𝑧)

𝜕𝑧
exp[ⅈ2𝜋(𝑢𝑥 + 𝑣𝑦)] ⅆ𝑢 ⅆ𝑣

∞

−∞
 .                             (2.13) 

In Equations (2.9 - 2.13),  𝑢 and 𝑣 correspond to the spatial frequency of 𝑥 and 𝑦 

respectively. 

Substituting Equations (2.11-2.13) in the paraxial approximation, Equation (2.7) 

reads, 

∬ {−4𝜋2(𝑢2 + 𝑣2)𝐹(𝑢, 𝑣, 𝑧) + 2ⅈ𝑘0

𝜕𝐹(𝑢, 𝑣, 𝑧)

𝜕𝑧
} exp[ⅈ2𝜋(𝑢𝑥 + 𝑣𝑦)] ⅆ𝑢 ⅆ𝑣 = 0

∞

−∞

 . 

(2.14) 

From Equation (2.14), one obtains,  

{−4𝜋2(𝑢2 + 𝑣2)𝐹(𝑢, 𝑣, 𝑧) + 2ⅈ𝑘0
𝜕𝐹(𝑢,𝑣,𝑧)

𝜕𝑧
} = 0 .                     (2.15) 

Equation (2.15) can be solved as follows. First, Equation (2.15) is written as, 

4𝜋2

2ⅈ𝑘0
(𝑢2 + 𝑣2)𝐹(𝑢, 𝑣, 𝑧) =

𝜕𝐹(𝑢,𝑣,𝑧)

𝜕𝑧
.                                     (2.16) 

Then, using 𝑘0 =
2𝜋

𝜆
 allows rewriting Equation (2.16) as  

−ⅈ𝜋𝜆(𝑢2 + 𝑣2)𝜕𝑧 =
𝜕𝐹(𝑢,𝑣,𝑧)

 𝐹(𝑢,𝑣,𝑧)
.                                            (2.17) 

Equation (2.17) can then be solved, we obtain,  

−(𝑢2 + 𝑣2)ⅈ𝜋𝜆𝑧 + 𝐶 = 𝑙𝑛 𝐹.                                       (2.18) 

From Equation (2.18) we now obtain,  

𝑒𝑥𝑝[−𝑐 − ⅈ𝜋𝜆𝑧(𝑢2 + 𝑣2)] = 𝐹(𝑢, 𝑣, 𝑧) = 𝐴𝑒𝑥𝑝[−ⅈ𝜋𝜆𝑧(𝑢2 + 𝑣2)].             (2.19) 

And finally, Equation (2.19) gives, 
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𝐹(𝑢, 𝑣, 𝑧) = 𝐺(𝑢, 𝑣)𝑒𝑥𝑝[−ⅈ𝜋𝜆𝑧(𝑢2 + 𝑣2)].                                (2.20) 

If in Equation (2.20),  𝑧 = 0  then  𝐹(𝑢, 𝑣, 0) = 𝐺(𝑢, 𝑣) , so Equation (2.19) can be 

rewritten as 

𝐹(𝑢, 𝑣, 𝑧) = 𝐹(𝑢, 𝑣, 0)𝑒𝑥𝑝[−ⅈ𝜋𝜆𝑧(𝑢2 + 𝑣2)].                           (2.21) 

Substituting  𝐹(𝑢, 𝑣, 𝑧) given in Equation (2.21) in Equation (2.9) gives, 

𝑓(𝑥, 𝑦, 𝑧) = ∬ 𝐹(𝑢, 𝑣, 0)𝑒𝑥𝑝[−ⅈ𝜋𝜆𝑧(𝑢2 + 𝑣2)]exp [ⅈ2𝜋(𝑢𝑥 + 𝑣𝑦)] ⅆ𝑢 ⅆ𝑣
∞

−∞
. 

(2.22) 

Now, calculating the Fourier transform of Equation (2.22) gives,  

𝑓(𝑥, 𝑦, 𝑧) = ℱ{𝐹(𝑢, 𝑣, 0)𝑒𝑥𝑝[−ⅈ𝜋𝜆𝑧(𝑢2 + 𝑣2)]}.                      (2.23) 

In solving Equation (2.23), we find that,  

𝑓(𝑥, 𝑦, 𝑧) = ℱ−1{𝐹(𝑢, 𝑣, 0)}⨂ℱ−1{𝑒𝑥𝑝[−ⅈ𝜋𝜆𝑧(𝑢2 + 𝑣2)]}.                (2.24) 

In Equation (2.24) the symbol ⨂ represents the operation of convolution. Equation 

(2.24) can readily be rewritten as,  

𝑓(𝑥, 𝑦, 𝑧) = 𝑓(𝑥, 𝑦, 0)⨂ℱ−1{𝑒𝑥𝑝[−ⅈ𝜋𝜆𝑧(𝑢2 + 𝑣2)]}.               (2.25) 

Equation (2.25) can also be written as,  

𝑓(𝑥, 𝑦, 𝑧) = 𝑓(𝑥, 𝑦, 0)⨂
1

ⅈ𝜆𝑧
𝑒𝑥𝑝 [− 

𝜋

ⅈ𝜆𝑧
(𝑥2 + 𝑦2)].                   (2.26) 

Now, Equation (2.26) is rewritten as,  

𝑓(𝑥, 𝑦, 𝑧) = 𝑓(𝑥, 𝑦, 0)⨂
1

ⅈ𝜆𝑧
𝑒𝑥𝑝 [

ⅈ𝜋

𝜆𝑧
(𝑥2 + 𝑦2)].                           (2.27) 

And Equation (2.27) gives,  

𝑓(𝑥, 𝑦, 𝑧) =
1

ⅈ𝜆𝑧
∬ 𝑓(𝜉, 𝜂, 0)𝑒𝑥𝑝 {

ⅈ𝜋

𝜆𝑧
[(𝑥 − 𝜉)2 + (𝑦 − 𝜂)2]} ⅆ𝜉ⅆ𝜂

∞

−∞
.              (2.28) 

Using Equation (2.28) allows writing Ψ(𝑥, 𝑦, 𝑧) as, 
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Ψ(𝑥, 𝑦, 𝑧) =
𝑒𝑥𝑝(ⅈ𝑘𝑧)

ⅈ𝜆𝑧
∬ 𝑓(𝜉, 𝜂, 0)𝑒𝑥𝑝 (

ⅈ𝜋

𝜆𝑧
[(𝑥 − 𝜉)2 + (𝑦 − 𝜂)2]) ⅆ𝜉ⅆ𝜂

∞

−∞
.     (2.29) 

Equation (2.29) is relevant and physically it is referred to as the Fresnel Diffraction 

Integral [22, 23], and it is an analytical exact solution of the paraxial Helmholtz 

differential equation [24].  

The solution given by the Equation (2.29) is expressed in terms of 𝑓(𝜉, 𝜂, 0). As no 

restrictions were made on this function in the above calculations, it can, therefore, 

be any arbitrary well-behaved function at the initial plane, without any restrictions. 

The Equation (2.29) may be regarded as a generator of solutions of the paraxial 

wave equation. 

We can now proceed to calculate accurately the propagation of beams using the 

Fresnel diffraction integral, as described in the next section. 

 

2.2 Fresnel Diffraction Integral 

One of the most useful tools to calculate the propagation of beams in the scalar, the 

paraxial model is represented by the Fresnel diffraction integral [22, 23]. Although, 

as demonstrated in section 2.1, this integral represents a generator of solutions of 

the Schrödinger type differential equation. The Fresnel diffraction integral can be 

used to describe accurately the propagation of beams, thus, obtaining the diffraction 

patterns of experimental observations. 

To perform the propagation analytically with the Fresnel diffraction integral, the 

initial field Ψ𝐼(𝑥, 𝑦) is located at an initial plane with coordinates (𝑥, 𝑦, 𝑧 = 0). Then, 

at a distance 𝑧  a plane of observation is placed and has coordinates (𝜉, 𝜂, 𝑧 = 𝑧). 

Both planes are parallel between them as depicted in Fig.(2.1). The amplitude 

distribution of the propagated field Ψ𝐹(𝜉, 𝜂) is obtained as  

 



9 
 

Ψ𝐹(𝜉, 𝜂) =
𝑒𝑥𝑝(ⅈ𝑘𝑧)

√ⅈ𝜆𝑧
∬ Ψ𝐼(𝑥, 𝑦) 𝑒𝑥𝑝 (

ⅈ𝜋

𝜆𝑧
[(𝑥 − 𝜉)2 + (𝑦 − 𝜂)2]) ⅆ𝑥 ⅆ𝑦

∞

−∞

 

(2.30) 

where 1−=i , and   is the wavelength of the illuminating field. 

 

Fig. 2.1. Propagation with the Fresnel diffraction integral. Initial field Ψ𝐼(𝑥, 𝑦) at 

a plane (𝑥, 𝑦, 𝑧 = 0) and its corresponding distribution Ψ𝐹(𝜉, 𝜂)  in a plane of 

observation (𝜉, 𝜂, 𝑧 = 𝑧)  once it has been propagated a z distance. 

___________________________________________________________________________________________ 

 

By expanding the quadratic terms, allows rewriting Equation (2.30) as, 

Ψ𝐹(𝜉, 𝜂) =
𝑒𝑥𝑝(ⅈ𝑘𝑧)

√ⅈ𝜆𝑧
𝑒𝑥𝑝 (

ⅈ𝜋

𝜆𝑧
(𝜉2 + 𝜂2))

× ∬ Ψ𝐼(𝑥, 𝑦) 𝑒𝑥𝑝 (
ⅈ𝜋

𝜆𝑧
(𝑥2 + 𝑦2)) 𝑒𝑥𝑝 (−

ⅈ2𝜋

𝜆𝑧
(𝑥𝜉 + 𝑦𝜂)) ⅆ𝑥 ⅆ𝑦

∞

−∞

 . 

  (2.31) 

In Equation (2.31), using the Fourier transform notation gives,  

Ψ𝐹(𝜉, 𝜂) =
𝑒𝑥𝑝(ⅈ𝑘𝑧)

√ⅈ𝜆𝑧
𝑒𝑥𝑝 (

ⅈ𝜋

𝜆𝑧
(𝜉2 + 𝜂2)) ℱ {Ψ𝐼(𝑥, 𝑦) exp (

ⅈ𝜋

𝜆𝑧
(𝑥2 + 𝑦2))} .        (2.32) 
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The Fresnel diffraction integral given by Equation (2.32) is used to calculate the 

propagation of beams. In our experiments, the illuminating source is a laser beam 

with a Gaussian intensity profile. At the plane of observation, our specially dedicated 

homodyne detector obtains the propagated intensity profile. For descriptive 

purposes, in the next section, we provide the corresponding analytical bases to 

propagate some type of beams. This study will help us to support our theoretical 

model.  

 

2.3 Propagation examples of some beams by using 

the Fresnel diffraction integral. 

For brevity of our description, the majority of our examples will be one-dimensional.  

 

2.3.1 Example 1: Propagation of a Gaussian beam 

The amplitude of a Gaussian distribution at the initial plane can be written as 

Ψ(𝑥) = 𝑒𝑥𝑝 (− (
𝑥

𝑟0
)

2

) ,                                               (2.33) 

where 𝑟0 is its semi-width.  

Substituting the amplitude given by Equation (2.33) in the Fresnel diffraction 

integral, Equation (2.30) gives, 

Ψ(𝜉) =
𝑒𝑥𝑝(ⅈ𝑘𝑧)

√ⅈ𝜆𝑧
∫ 𝑒𝑥𝑝 (− (

𝑥

𝑟0
)

2

)
∞

−∞
𝑒𝑥𝑝 (

ⅈ𝜋

𝜆𝑧
(𝑥 − 𝜉)2) ⅆ𝑥 .                (2.34) 

Expanding the quadratic phase in the Equation (2.34) gives, 

Ψ(𝜉) =
𝑒𝑥𝑝(ⅈ𝑘𝑧)

√ⅈ𝜆𝑧
𝑒𝑥𝑝 (

ⅈ𝜋

𝜆𝑧
𝜉2) ∫ 𝑒𝑥𝑝 (−𝜋𝑥2 (

𝜆𝑧−ⅈ𝜋

𝜋𝑟0
2 −

ⅈ

𝜆𝑧
))

∞

−∞
𝑒𝑥𝑝 (

ⅈ2𝜋

𝜆𝑧
𝑥𝜉) ⅆ𝑥.    (2.35) 
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Now, introducing the parameter 𝑢 =
𝜋

𝜆𝑧
   in Equation (2.35) gives, 

Ψ(𝜉) =
𝑒𝑥𝑝(ⅈ𝑘𝑧)

√ⅈ𝜆𝑧
𝑒𝑥𝑝 (

ⅈ𝜋

𝜆𝑧
𝜉2) ℱ {𝑒𝑥𝑝 (−𝜋𝑥2 (

𝜆𝑧−ⅈ𝜋𝑟0
2

𝜋𝑟0
2𝜆𝑧

))}|
𝑢=

𝜉

𝜆𝑧

.          (2.36) 

Finally, we rewrite Equation (2.36) as, 

Ψ(𝜉) =
𝑒𝑥𝑝(ⅈ𝑘𝑧)

√ⅈ𝜆𝑧
∙ √

𝜋𝑟0
2𝜆𝑧

𝜆𝑧−ⅈ𝜋𝑟0
2 ∙ 𝑒𝑥𝑝 (

ⅈ𝜋

𝜆𝑧
𝜉2) 𝑒𝑥𝑝 (−𝜋 (

𝜋𝑟0
2𝜆𝑧

𝜆𝑧−ⅈ𝜋𝑟0
2) (

𝜉

𝜆𝑧
)

2

) .               (2.37) 

Equation (2.37) is the expression of the amplitude distribution at the plane of 

observation. To better visualize the implications given by Equation (2.37), we 

rewrite it as 

Ψ(𝜉) =
𝑒𝑥𝑝(ⅈ𝑘𝑧)

√ⅈ𝜆𝑧
∙ √

𝜋𝑟0
2𝜆𝑧

𝜆𝑧−ⅈ𝜋𝑟0
2 𝑒𝑥𝑝 (

ⅈ𝜋

𝜆𝑧
𝜉2) 𝑒𝑥𝑝 (−𝜋2𝑟0

2 (
𝜆𝑧+ⅈ𝜋𝑟0

2

𝜆2𝑧2+𝜋2𝑟0
4)

𝜉2

𝜆𝑧
).         (2.38) 

Now, it is possible to define the complex constant term, 

𝐴 =
𝑒𝑥𝑝(ⅈ𝑘𝑧)

√ⅈ𝜆𝑧
√

𝜋𝑟0
2𝜆𝑧

𝜆𝑧−ⅈ𝜋𝑟0
2  ,                                               (2.39) 

And the semi-width 𝑟 of the Gaussian beam as, 

𝑟 = 𝑟0√1 +
𝜆2𝑧2

𝜋2𝑟0
4   .                                                  (2.40) 

Additionally, it is possible to define the radius of curvature 𝑅 as,   

𝑅 =
𝜆2𝑧2+𝜋2𝑟0

4

𝜆2𝑧
  .                                                      (2.41) 

Equations (2.39 – 2.41) allows rewriting Equation (2.38) as,  

Ψ(𝜉) = 𝐴𝑒𝑥𝑝 (−
𝜉2

𝑟2) 𝑒𝑥𝑝 (ⅈ
𝜋

𝜆

𝜉2

𝑅
).                                     (2.39) 

It will be noticed from the Equation (2.39), that Ψ(𝜉), at the observation plane, is 

also a Gaussian distribution with amplitude 𝐴  and with a quadratic phase. The 

Gaussian behavior at the plane of observation is given by the real exponential 
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expression. If the distance of propagation 𝑧  increases, the semi-width 𝑟  of the 

Gaussian beam increases accordingly, while its amplitude 𝐴 is adjusted according to 

the energy of the beam that must be preserved. Fig. (2.2) depicts how the Gaussian 

beam intensity distribution evolves as it propagates along the 𝑧  distance. The 

amplitude distribution at the plane of observation has unique characteristics as a 

function of the semi width due only to the diffractive properties as obtained 

analytically utilizing the Fresnel diffraction integral. It has to be remarked that the 

experimental results compare well with this integral, demonstrating its usefulness 

to calculate experimental observations, even though it is a paraxial approximation 

solution. 

 

Fig. 2.2. Gaussian intensity distributions at three distances of propagation.  

The continuous line plot is at  𝑧 = 1 m, the dotted line plot is at 𝑧 = 3 m and the 

dashed line plot  is at  𝑧 = 6 m ,   𝑟0 = 6 × 10−4 m   and  𝜆 = 638 × 10−9 m . 

___________________________________________________________________________________________ 
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2.3.2 Example 2: Propagation of a Circ function. 

The Circ function is widely used in optics. It is useful to characterize optical 

apertures of lenses, especially for the case of spherical lenses or circular mirrors 

with finite size. The Circ function is usually used for truncating and diffracting 

light. In this section, we will consider the diffraction due to these circular 

components utilizing the Fresnel diffraction integral. 

The Circ function is defined as, 

Circ(r) = {1     if    r < 𝑎
0   otherwise

  .                                           (2.40) 

In Equation (2.40),  

r = √𝑥2 + 𝑦2,                                                      (2.41) 

and 𝑎 represents the radius of the circular aperture. 

The amplitude distribution Ψ(𝜉, 𝜂) at the observation plane with coordinates  

)(  −  can be calculated using the Fresnel diffraction integral, 

Ψ(𝜉, 𝜂) =
𝑒𝑥𝑝(ⅈ𝑘𝑧)

√ⅈ𝜆𝑧
∬ Ψ(𝑥, 𝑦) 𝑒𝑥𝑝 (

ⅈ𝜋

𝜆𝑧
[(𝑥 − 𝜉)2 + (𝑦 − 𝜂)2]) ⅆ𝑥 ⅆ𝑦 .

∞

−∞
       (2.42) 

It is convenient to introduce the following change of variables for solving the 

above integral Equation (2.42),       

𝑥 = 𝜌 cos ∅ ,  𝑦 = 𝜌 sin ∅, 

(2.43) 

𝜉 = 𝑟 cos Θ ,  𝜂 = 𝑟 sin Θ. 

                            (2.44) 

With the variables defined by Equations (2.43) and (2.44)  Ψ(𝑥, 𝑦) in Equation 

(2.42) will become now a function of (𝜌, 𝜙) . We will also assume radial 
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symmetry. Thus, the amplitude distribution becomes a one-variable function 

as,  Ψ(𝜌). 

Under the above conditions, Equation (2.42) can now be written as 

Ψ(𝜉, 𝜂) =
𝑒𝑥𝑝(ⅈ𝑘𝑧)

√ⅈ𝜆𝑧
𝑒𝑥𝑝 (

ⅈ𝜋

𝜆𝑧
𝑟2)

× ∫ Ψ(𝜌)𝜌 ⅆ𝜌 𝑒𝑥𝑝 (
ⅈ𝜋

𝜆𝑧
𝑟2)

∞

0

∫ d∅

2π

0

𝑒𝑥𝑝 (− 
ⅈ2𝜋

𝜆𝑧
𝑟𝜌 𝑐𝑜𝑠(∅ − Θ)) . 

          (2.45) 

Using the integral definition of the Bessel function of the first kind, zero-order 𝐽0, 

𝐽0(𝑎) =
1

2𝜋
∫ 𝑒𝑥𝑝(−ⅈ𝑎 𝑐𝑜𝑠(∅ − Θ)) ⅆ∅

2𝜋

0
.                            (2.46) 

Using equation (2.46) allows rewriting Equation (2.45) as,  

Ψ(𝜉, 𝜂) =
𝑒𝑥𝑝(ⅈ𝑘𝑧)

ⅈ𝜆𝑧
𝑒𝑥𝑝 (

ⅈ𝜋

𝜆𝑧
𝑟2) 2𝜋 ∫ Ψ(𝜌)𝑒𝑥𝑝 (

ⅈ𝜋

𝜆𝑧
𝜌2)

∞

0

𝐽0 (
2𝜋

𝜆𝑧
𝑟𝜌) 𝜌 ⅆ𝜌 . 

                     (2.47) 

Equation (2.47) cannot be solved analytically, thus, it has to be estimated by 

numerical algorithms. At long distances of propagation, it is possible to neglect 

the quadratic phase in the integral of Equation (2.47). When this is the case, this 

approximation is referred to as the Fraunhofer diffraction. Then, neglecting the 

term 𝑒𝑥𝑝 (
ⅈ𝜋

𝜆𝑧
𝜌2)  allows writing the integral in Equation (2.47) as 

Ψ(𝜉, 𝜂) =
𝑒𝑥𝑝(ⅈ𝑘𝑧)

ⅈ𝜆𝑧
𝑒𝑥𝑝 (

ⅈ𝜋

𝜆𝑧
𝑟2) 2𝜋 ∫ Ψ(𝜌)

ρ=𝑎

ρ=0

𝐽0 (
2𝜋

𝜆𝑧
𝑟𝜌) 𝜌 ⅆ𝜌 . 

                           (2.48) 
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Now, to solve the integral given by Equation (2.48), we make the following 

change of variables 

𝑠 =
2𝜋

𝜆𝑧
𝑟𝜌, 

(2.49)            

𝜆

2𝜋𝑟
ⅆ𝑠 = ⅆ𝜌 . 

                                     (2.50) 

Using Equations (2.49) and (2.50) allows rewriting Equation (2.48) as,  

Ψ(𝑟) = (
𝜆𝑧

2𝜋𝑟
)

2

∫ 𝑠𝐽0(𝑠) ⅆ𝑠
𝑠=

2𝜋

𝜆𝑧
𝑟𝑎

𝑠−
−𝑜

.                              (2.51) 

To calculate the integral in Equation (2.51), we will use the following property,  

∫ 𝑥
𝑏

0
𝐽0(x)ⅆ𝑥 = 𝑥𝐽1(𝑥)|0

𝑏 ,                                        (2.52) 

Using Equation (2.52) allows writing Equation (2.51) as,  

Ψ(𝑟) = 𝑎2
𝐽1 (

2𝜋
𝜆𝑧 𝑟𝑎)

(
2𝜋
𝜆𝑧 𝑟𝑎)

 . 

                                  (2.53) 

Using the definition of the Bessel-sinc, Bsinc(𝑥) function, Bsinc(𝑥) =
𝐽1(𝑥)

𝑥
,  allow 

us to write finally Equation (2.53) as 

Ψ(𝑟) = 𝑎2Bsinc (
2𝜋

𝜆𝑧
𝑟𝑎) .                                   (2.54) 

The following Fig.(2.3) depicts how the Bsinc function given by Equation (2.54) 

evolves at different 𝑧 distances. 
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Fig. 2.3. Bsinc intensity distributions at the plane of observation.  

The continuous line plot is for  𝑧 = 1 m, the dotted line plot is for 𝑧 = 3 m and 

the dashed line plot is for 𝑧 = 6 m;  𝑎 = 5 × 10−3 m  and  𝜆 = 638 × 10−9 m. 

___________________________________________________________________________________________ 

 

By comparing experimental results with the theoretical calculations obtained, it 

results apparently that the Fresnel diffraction integral describes appropriately the 

amplitude distribution of the diffracted fields for different 𝑧  distances of 

propagation. If the index of refraction should change across the optical arrangement 

the Fresnel diffraction integral can also be used to calculate the propagation at the 

plane of observation. In our particular case, the change of the index of refraction 

occurs in the sample under test due to different concentrations. Thus, the amplitude 

distribution at the plane of detection will be sensitive and related to its diffractive 

properties allowing it to detect changes in the refractive indexes. 



17 
 

In the next section, we will emphasize the stability of our optical detection system, 

showing that changes in the semi-width due to the laser cavity will be practically 

undetectable. The radiation traveling inside the optical cavity is described with the 

Hermite-Gaussian solutions for the paraxial wave equation, resulting in Gaussian 

modes beams at the output. In our experiments, we have used only the zero-order 

Gaussian beam of a commercially available He-Ne laser.  

2.4 Optical resonator 

 

An optical resonator essentially consists of two end mirrors separated by a distance 

𝐿  allowing a beam of light to propagate through the resonator cavity as depicted in 

Fig. (2.4). Assuming that the gain medium does not affect the electromagnetic modes 

of the laser resonator, it is possible to consider that there is only free space between 

them [25]. The light inside the cavity propagates, diffracts, bounces off the mirrors 

many times and passes through optical components, so if there are misalignments 

problems, or the curvature of the mirrors or the distance separating them are such 

that there might be some leaks from the resonator after many reflections, the optical 

resonator will be unstable.  In contrast, stable resonators are those where these 

parameters are such that the light propagates in a parallel path to the optical axis 

during successive round trips without escaping. 

 

Fig. 2.4. Stable and unstable resonators 

_______________________________________________________________________________________________ 
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An understanding of laser modes propagating inside resonators can be obtained by 

the paraxial wave equation. In particular, we will show that Hermite-Gaussian 

beams are solutions of these cases and are referred to as modes of free-space 

propagation. Before proceeding further, we find it convenient to introduce some 

mathematical properties of the Hermite polynomials.  

 

2.4.1 Hermite polynomials 

 

Hermite functions are of interest because they are solutions to eigenvalue problems 

like those that arise in the quantum harmonic oscillator [ 26].  

The Hermite polynomials 𝐻𝑛(𝑥) satisfy the differential equation  

𝑦(𝑥)′′ − 2𝑥𝑦(𝑥)′ + 2𝑛𝑦(𝑥) = 0.                                    (2.55) 

We will show, that the differential Equation (2.55) has solutions 𝑦(𝑥) that can be 

obtained by means the generating function, 

𝑔(𝑥, 𝑡) = 𝑒𝑥𝑝(2𝑥𝑡 − 𝑡2) = ∑ 𝐻𝑛(𝑥)∞
𝑛=0  (

𝑡𝑛

𝑛!
) .                       (2.56) 

In Equation (2.56) 𝐻𝑛(𝑥) are the well-known Hermite polynomials. From Equation 

(2.55) we find that the recurrence relations are, 

𝐻𝑛+1(𝑥) = 2𝑥𝐻𝑛(𝑥) − 2n𝐻𝑛−1(𝑥),                              (2.57) 

and,  

𝐻𝑛
′ (𝑥) = 2𝑛𝐻𝑛−1(𝑥).                                                   (2.58) 

From the Rodrigues representation 

𝐻𝑛(𝑥) = (−1)𝑛𝑒𝑥𝑝(−𝑥2)
𝑑𝑛

𝑑𝑥𝑛 𝑒𝑥𝑝(−𝑥2) ,                                  (2.59) 
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we obtain 𝐻0(𝑥) = 1 and 𝐻1(𝑥) = 2𝑥. The recursive Equations (2.57 - 2.58) allows 

the construction of any desired polynomial,  𝐻𝑛(𝑥). 

Now, we will calculate the Fourier transform of the Hermite polynomials. We start 

by considering the following Fourier transform expression, 

𝐹 {𝐻𝑛(𝑥)𝑒𝑥𝑝 (−
𝑥2

2
)},                                          (2.60) 

The transform in Equation (2.60) in integral form is written as,  

∫ 𝐻𝑛(𝑥)𝑒𝑥𝑝 (−
𝑥2

2
) 𝑒𝑥𝑝(−ⅈ𝑥𝜉)ⅆ𝑥

∞

−∞
.                                    (2.61) 

To solve Equation (2.61), we substitute the Hermite polynomials 𝐻𝑛(𝑥) given by 

Equation (2.56) in Equation (2.61) to obtain  

∑ (
𝑡𝑛

𝑛!
)

∞

𝑛=0

∫ 𝐻𝑛(𝑥)𝑒𝑥𝑝 (−
𝑥2

2
) 𝑒𝑥𝑝(−ⅈ𝑥𝜉)ⅆ𝑥

∞

−∞

= ∫ exp(2𝑥𝑡 − 𝑡2)𝑒𝑥𝑝 (−
𝑥2

2
) 𝑒𝑥𝑝(−ⅈ𝑥𝜉)ⅆ𝑥 .

∞

−∞

 

   (2.62)          

We now complete the perfect square in Equation (2.62), and now we define the 

following integral,  

𝐼 = 𝑒𝑥𝑝(−𝑡2) ∫ 𝑒𝑥𝑝 (−
1

2
(𝑥 − 2𝑡)2 − 4𝑡2) 𝑒𝑥𝑝(−ⅈ𝑥𝜉)ⅆ𝑥

∞

−∞
.                      (2.63) 

To solve the integral in Equation (2.63) we will use the following Fourier 

properties 

𝐹{𝑓(𝑥)} = 𝐹(𝑢) ,                                                       (2.64)                                                                                                        

𝐹{𝑓(𝑥 − 𝑥0)} = 𝑒𝑥𝑝(−ⅈ2𝜋𝑥0)𝐹(𝑢) ,                                   (2.65)                            

𝐹{𝑒𝑥𝑝(−𝜋𝑥2)} = 𝑒𝑥𝑝(−𝜋𝑢2) ,                                      (2.66)    
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and     

                                  𝐹{𝑓(𝑎𝑥)} =
1

𝑎
𝐹 (

𝑢

𝑎
)  .                                               (2.67) 

Using Equations (2.64) - (2.67) allows calculating Equation (2.63) as, 

𝐼 = √2𝜋 𝑒𝑥𝑝(𝑡2) 𝑒𝑥𝑝 (−
𝜉

2

2

) 𝑒𝑥𝑝(−ⅈ2𝑡𝜉).                               (2.68) 

To use the result given by Equation (2.68) we now define 𝑡 = ⅈ𝑠, thus, Equation 

(2.68) becomes, 

𝐼 = √2𝜋𝑒𝑥𝑝 (−
𝜉

2

2

) 𝑒𝑥𝑝(2𝜉𝑠 − 𝑠2)

= ∑ (
(ⅈ𝑠)𝑛

𝑛!
)

∞

𝑛=0

∫ 𝐻𝑛(𝑥)𝑒𝑥𝑝 (−
𝑥2

2
) 𝑒𝑥𝑝(−ⅈ𝑥𝜉)ⅆ𝑥

∞

−∞

 . 

  (2.69) 

Using the generator function Equation (2.56) for the Hermite polynomials, 

𝑒𝑥𝑝(2𝜉𝑠 − 𝑠2) = ∑ 𝐻𝑛(𝜉)∞
𝑛=0  (

𝑠𝑛

𝑛!
),                                (2.70) 

Allows rewriting Equation (2.69) as  

𝐼 = √2𝜋𝑒𝑥𝑝 (−
𝜉

2

2

) ∑ 𝐻𝑛(𝜉)

∞

𝑛=0

 (
𝑠𝑛

𝑛!
)

= ∑ ⅈ𝑛

∞

𝑛=0

(
𝑠𝑛

𝑛!
) ∫ 𝐻𝑛(𝑥)𝑒𝑥𝑝 (−

𝑥2

2
) 𝑒𝑥𝑝(−ⅈ𝑥𝜉)ⅆ𝑥

∞

−∞

. 

          (2.71) 

Using Equation (2.71) we obtain, 

𝐼 = (−ⅈ)𝑛√2𝜋𝑒𝑥𝑝 (−
𝜉

2

2

) 𝐻𝑛(𝜉)  = ∫ 𝐻𝑛(𝑥) 𝑒𝑥𝑝 (−
𝑥2

2
) 𝑒𝑥𝑝(−ⅈ𝑥𝜉) ⅆ𝑥

∞

−∞

 . 
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     (2.72) 

In Equation (2.72), by making  𝜎 = (−ⅈ)𝑛√2𝜋 ,  allows writing the Fourier transform 

of the Hermite polynomials as,  

∫ 𝐻𝑛(𝑥) 𝑒𝑥𝑝 (−
𝑥2

2
) 𝑒𝑥𝑝(−ⅈ𝑥𝜉) ⅆ𝑥 =

∞

−∞

𝜎𝐻𝑛(𝜉)𝑒𝑥𝑝 (−
𝜉

2

2

) . 

           (2.73) 

This result will be helpful for the description of the following section.       

 

2.4.2 Modes in a confocal resonator 

 

There are many types of resonators, probably the most used to produce laser 

emission is the confocal resonator [25]. This resonator consists of a pair of concave 

mirrors  𝑀1 , 𝑀2 ,  of an equal radius of curvatures 𝑅 , which are separated by a 

distance equal to the radius of curvature 𝑅, as depicted in Fig.(2.5). We will show 

that in such a structure, the transverse modes are Hermite-Gaussian distributions, 

being the lower mode a pure Gaussian field. Usually, a He-Ne laser is made to 

oscillate in this lower mode.  
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Fig. 2.5. Confocal resonator. 

_______________________________________________________________________________________________ 

 

We will denote as 𝜓(𝑥)  to the amplitude distribution at an initial plane with 𝑥 

coordinate. This field propagates along the confocal resonator until it bounces off 

the front mirror 𝑀2  located at a distance 𝑧 = 𝑅  at a plane of observation with 

coordinate 𝜉. Thus, at the initial plane, the propagation integral that corresponds to 

the field distribution that bounces off the mirror is multiplied by a quadratic phase 

factor due to the reflection, that is, by a phase shift term of the form 𝑒𝑥𝑝 (−
ⅈ4𝜋

𝜆
ℎ(𝜉)), 

where ℎ(𝜉) is the superficial distribution of the mirror 𝑀2 given by 

ℎ(𝜉) =
𝜉2

2𝑅
.                                                               (2.74) 

Thus, the phase shift due to the mirror reflection at the plane with coordinates 𝜉 is,  

 𝑒𝑥𝑝 (−
ⅈ2𝜋

𝜆𝑅
𝜉2).                                                           (2.75) 

The field distribution reflected for the mirror 𝑀2 at the plane in 𝜉, due to Equation 

(2.75) is written as, 

𝜓𝑅(𝜉) = 𝑓(𝜉)𝑒𝑥𝑝 (−
ⅈ2𝜋

𝜆𝑅
𝜉2) .                                        (2.76) 
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In Equation (2.76)  𝑓(𝜉) represents the initial field 𝜓(𝑥) propagated at a distance 

𝑧 = 𝑅. Using the Fresnel diffraction integral 𝑓(𝜉) can be expressed as 

𝑓(𝜉) = ∫
𝑒𝑥𝑝(ⅈ𝑘𝑅)

√ⅈ𝑘𝑅
𝜓(𝑥) 𝑒𝑥𝑝 (

ⅈ𝜋

𝜆𝑅
(𝑥 − 𝜉)2) ⅆ𝑥 .

∞

−∞

 

                                 (2.77) 

Substituting 𝑓(𝜉) in the field reflected 𝜓𝑅(𝜉) by mirror 𝑀2, Equation (2.76) 

becomes, 

𝜓𝑅(𝜉) = ( ∫
𝑒𝑥𝑝(ⅈ𝑘𝑅)

√ⅈ𝑘𝑅
𝜓(𝑥) 𝑒𝑥𝑝 (

ⅈ𝜋

𝜆𝑅
(𝑥 − 𝜉)2) ⅆ𝑥

∞

−∞

) 𝑒𝑥𝑝 (−
ⅈ2𝜋

𝜆𝑅
𝜉2) . 

                                 (2.78) 

The Fresnel diffraction integral given by Equation (2.78) shows an operator acting 

on the initial amplitude distribution. After applying the propagation integral, the 

final amplitude distribution 𝜓𝑅(𝜉) can be obtained.  

Thus, there exist a set of mathematical eigenmodes  𝜓𝑛(𝑥) and a corresponding set 

of eigenvalues 𝜎𝑛  such that each one of these eigenmodes after one round trip 

satisfies the round-trip propagation expression 

𝜓𝑛(𝑥) = 𝜎𝑛𝜓(𝑥) .                                                    (2.79) 

Equation (2.79) is called the resonator condition [27, 28] and establishes that after 

completing a round trip (a period) the field propagated must repeat itself at the 

selected reference plane, that in our case is the plane located at the 𝜉 coordinate. 

Then, Equation (2.78) is written as 

𝜓(𝜉) = { ∫
𝑒𝑥𝑝(ⅈ𝑘𝑅)

√ⅈ𝑘𝑅
𝜓(𝑥) 𝑒𝑥𝑝 (

ⅈ𝜋

𝜆𝑅
(𝑥 − 𝜉)2) ⅆ𝑥

∞

−∞

} 𝑒𝑥𝑝 (−
ⅈ2𝜋

𝜆𝑅
𝜉2) = 𝜎0𝜓(𝜉) . 

     (2.80) 
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We now introduce the parameter 𝜎1 as, 

𝜎1 =
𝑒𝑥𝑝(ⅈ𝑘𝑅)

√ⅈ𝑘𝑅
𝜎0,                                                       (2.81) 

Using the parameter defined in Equation (2.81) and by expanding the square term 

in Equation (2.80) we obtain, 

𝜎1𝜓(𝜉)𝑒𝑥𝑝 (
ⅈ𝜋

𝜆𝑅
𝜉2) = ∫ 𝜓(𝑥) 𝑒𝑥𝑝 (

ⅈ𝜋

𝜆𝑅
𝑥2) exp (−

ⅈ2𝜋

𝜆𝑅
𝑥𝜉) ⅆ𝑥

∞

−∞

. 

                 (2.82) 

The limits in the integral in Equation (2.82) are extended from −∞, ∞ as the size of 

the beam width is small compared with the size of the mirrors. 

In the integral of Equation (2.82), we define the following variables, 

𝜋

𝜆𝑅
𝑥2 =

𝑠2

2
,                                                    (2.83) 

2𝜋

𝜆𝑅
𝑥𝜉 = 𝑠𝑣,                                                  (2.84) 

and, 

√
2𝜋

𝜆𝑅
𝑥 = 𝑠.                                                    (2.85) 

Then, the values of  𝑥 ,  𝜉, and the product 𝑥𝜉  in Equations (2.83 - 2.85) become, 

√
2𝜋

𝜆𝑅
𝜉 = 𝑣,                                                   (2.86) 

𝑥 = √
𝜆𝑅

2𝜋
𝑠,                                                   (2.87) 

𝜉 = √
𝜆𝑅

2𝜋
𝑣,                                                   (2.88) 

𝑥𝜉 =
𝜆𝑅

2𝜋
𝑠𝑣.                                                   (2.89) 
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Substituting the changes of variables given by the Equations (2.83 - 2.89), in 

Equation (2.82) give, 

𝜎2𝜓(𝑣)𝑒𝑥𝑝 (
ⅈ𝑣2

2
) = ∫ 𝜓(𝑠) 𝑒𝑥𝑝 (

ⅈ𝑠2

2
) exp (−ⅈ𝑠𝑣)ⅆ𝑠

∞

−∞

 . 

                   (2.90) 

It is necessary to rewrite the Equation (2.90), for this, let, 

𝑢(𝑠) = 𝜓(𝑠) 𝑒𝑥𝑝 (
ⅈ𝑠2

2
),                                                (2.91) 

and 

𝑢(𝑣) = 𝜓(𝑣) 𝑒𝑥𝑝 (
ⅈ𝑣2

2
).                                                (2.92) 

Using Equations (2.91) and (2.92) allows rewriting Equation (2.90) as, 

𝜎2𝑢(𝑣) = ∫ 𝑢(𝑠) exp(−ⅈ𝑠𝑣)ⅆ𝑠
∞

−∞
 .                                      (2.93) 

Comparing Equation (2.93) with the Fourier Hermite transform given by Equation 

(2.73) gives,  

𝑒𝑥𝑝 (−
𝑣2

2
) 𝜎𝐻𝑛(𝑣) = ∫ 𝐻𝑛(𝑠) 𝑒𝑥𝑝 (−

𝑠2

2
) exp (−ⅈ𝑠𝑣)ⅆ𝑠

∞

−∞

. 

            (2.94) 

Equation (2.94) implies that, 

𝑢(𝑠) = 𝐻𝑛(𝑠) 𝑒𝑥𝑝 (−
𝑠2

2
).                                             (2.95) 

From Equation (2.95) it follows that,  

𝑢(𝑠) = 𝜓(𝑠) 𝑒𝑥𝑝 (
ⅈ𝑠2

2
) = 𝐻𝑛(𝑠) 𝑒𝑥𝑝 (−

𝑠2

2
) .                            (2.96) 

Equation (2.96) indicates that 𝜓(𝑠) must be, 
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𝜓𝑛(𝑠)  = 𝐻𝑛(𝑠) 𝑒𝑥𝑝 (−
𝑠2

2
) 𝑒𝑥𝑝 (−

ⅈ𝑠2

2
) .                                 (2.97) 

Now substituting in 𝜓𝑛(𝑠) the value of  𝑠 given by Equation (2.85), Equation (2.97) 

becomes, 

𝜓𝑛(𝑠)  = 𝐻𝑛 (√
2𝜋

𝜆𝑅
𝑥)  𝑒𝑥𝑝 (−

𝜋𝑥2

𝜆𝑅
) 𝑒𝑥𝑝 (−ⅈ

𝜋𝑥2

𝜆𝑅
) .                            (2.98) 

The solutions given by Equation (2.98) are the modes of propagation in the 

resonator. The result can be generalized to a two-dimensional resonator. In two 

dimensions these Gaussian modes are characterized by different values of m and n 

and are referred to as transverse electromagnetic modes of order (m,n) or TEMmn 

modes, because of their different intensity transverse patterns. Some TEMmn 

intensity modes are depicted in Fig.(2.6). 

 

Fig. 2.6. Transverse modes TEMmn. 

_______________________________________________________________________________________________ 



27 
 

In the special one-dimensional case, 𝑛 = 0, we obtain the zero-order Gaussian mode 

𝜓0(𝑠) as, 

𝜓0(𝑠)  = 𝐻0 (√
2𝜋

𝜆𝑅
𝑥)  𝑒𝑥𝑝 (−

𝜋𝑥2

𝜆𝑅
) 𝑒𝑥𝑝 (−ⅈ

𝜋𝑥2

𝜆𝑅
) . 

                    (2.99) 

In Equation (2.99), 𝐻0 is equal to one, then we can write the zero-order Gaussian 

modes as 

𝜓0(𝑥)  =  𝑒𝑥𝑝 (−
𝜋𝑥2

𝜆𝑅
) 𝑒𝑥𝑝 (−ⅈ

𝜋𝑥2

𝜆𝑅
) . 

                    (2.100) 

To see where the field focuses, we propagate the field 𝜓0,  given by the Equation 

(2.100) up to a distance 𝑧 = 𝑅/2   which represents the middle distance of the 

resonator length, then we have, 

𝜓(𝜉)  = ∫  𝑒𝑥𝑝 (−
𝜋𝑥2

𝜆𝑅
) 𝑒𝑥𝑝 (−ⅈ

𝜋𝑥2

𝜆𝑅
) 𝑒𝑥𝑝 (

ⅈ𝜋

𝜆 (
𝑅
2)

(𝑥 − 𝜉)2) ⅆ𝑥

∞

−∞

 . 

                    (2.101) 

Expanding the square binomial in the integral given in the Equation (2.101), and 

factorizing some terms, we obtain 

𝜓(𝜉)  = 𝑒𝑥𝑝 (
ⅈ2𝜋

𝜆𝑅
𝜉2) ∫  𝑒𝑥𝑝 (−𝜋

(1 − ⅈ)

𝜆𝑅
𝑥2) 𝑒𝑥𝑝 (−ⅈ2𝜋𝑥 (

2𝜉

𝜆𝑅
)) ⅆ𝑥

∞

−∞

. 

                    (2.102) 

Equation (2.102) can be solved using the Fourier transform properties given by 

Equations (2.66 - 2.67). Then the Fourier transform in Equation (2.102) is given as, 

∫  𝑒𝑥𝑝 (−𝜋
(1−ⅈ)

𝜆𝑅
𝑥2) 𝑒𝑥𝑝 (−ⅈ2𝜋𝑥 (

2𝜉

𝜆𝑅
)) ⅆ𝑥

∞

−∞
 =  𝑒𝑥𝑝 (−𝜋

𝜆𝑅

(1−ⅈ)
(

2𝜉

𝜆𝑅
)

2

).     (2.103) 
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Using Equation (2.103) allows writing the solution for 𝜓(𝜉)  given by Equation 

(2.102) as 

𝜓(𝜉)  = 𝑒𝑥𝑝 (
ⅈ2𝜋

𝜆𝑅
𝜉2)  𝑒𝑥𝑝 (−𝜋

(1+ⅈ)

2𝜆𝑅
4𝜉2).                                 (2.104) 

Equation (2. 104) can be simplified as, 

𝜓(𝜉)  = 𝑒𝑥𝑝 (−
𝜉2

𝑟0
2).                                                  (2.105) 

The Equation (2.105) represents a Gaussian function. That is, the propagated field 

𝜓0(𝑠) is focused in the middle of the resonator  𝑧 = 𝑅/2  with a semi-width 𝑟0 given 

by 

𝑟0 = √
𝜆𝑅

2𝜋
  .                                                   (2.106) 

The Fig.(2.7) depicts the normalized intensity of this particular case of a zero-order 

Gaussian beam in a confocal resonator, focused at 𝑧 = 𝑅/2  with a semi-width 𝑟0 

given by the Equation (2.106). This is the case for a He-Ne laser. 

  

Fig. 2.7. Zero-order Gaussian beam in a confocal resonator. 

_______________________________________________________________________________________________ 
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Using the Equation (2.106), we can obtain the change in the semi-width of this zero-

order Gaussian beam as    

ⅆ𝑟0 =
1

2
√

𝜆

2𝜋
  

𝑑𝑅

√𝑅
 .                                                (2.107) 

Equation (2.107) reveals that, for practical purposes, the standing wave pattern 

stays fixed during the reflections inside the resonator. Equivalently, for a 

commercially available He-Ne laser, changes of the beam width can be neglected as 

otherwise, if the value of Equation (2.107) would increase, the resonator could not 

continue attaining the output beam. 

Nevertheless, temperature and minor misalignments could cause small losses in 

power but not any appreciable change in the semi-width of the beam. 

In the next section, we will describe a numerical method to propagate the Gaussian 

beam through the optical system. 

2.5 Fresnel Gaussian Shape Invariant (FGSI) 

 

It is possible to calculate analytically the intensity profile at the observation plane 

by using a numerical method referred to as the Fresnel Gaussian shape invariant 

(FGSI). This method is based on a finite superposition of Gaussian wavelets for 

representing an arbitrary complex wave-front [18-21]. Thus, the process of 

propagation of the illuminating Gaussian beam will be carried out by iterative 

application of the equations of the FGSI method from the initial plane to the lens, 

through the sample under test up to the observation plane. The equations of the 

method are the following. 

The amplitude distribution of each Gaussian wavelet at a given nth-plane is 

represented as 
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𝛹𝑛(𝑥) = 𝑃𝑛𝑒𝑥𝑝(ⅈ𝛼𝑛𝑥)𝑒𝑥𝑝(ⅈ𝛽𝑛𝑥2)𝑒𝑥𝑝 (−
(𝑥 − 𝐴𝑛)2

𝑟𝑛
2

) 𝑒𝑥𝑝(ⅈ𝛾𝑛(𝑥 − 𝐵𝑛)2). 

              (2.108) 

In Equation (2.108) the Gaussian distribution is spatially centered at 𝐴𝑛 and 𝑃𝑛 is a 

complex constant term that represents the amplitude of the Gaussian beam. The 

parameter 𝛼𝑛  represents a tilt of the beam, and 𝛽𝑛  is introduced to allow an 

arbitrary defocusing quadratic phase. Here, 𝛾𝑛  is the factor that represents the 

Gaussian curvature whose quadratic phase is centered at 𝐵𝑛 .  In general, both 

centers do not coincide. 

The amplitude distribution with wavelength 𝜆, represented by Equation (2.108) at 

the initial plane, is propagated a distance 𝑧 , up to an observation plane with 

coordinate 𝑥𝐹 . The iterative equations required to propagate this field by FGSI are 

obtained employing the Fresnel diffraction integral [22]. After performing the 

integral, the amplitude distribution at this plane is given by 

𝛹𝑛+1(𝑥𝐹 , 𝑧) = 𝑃𝑛+1𝑒𝑥𝑝(ⅈ𝛼𝑛+1𝑥𝐹)𝑒𝑥𝑝(ⅈ𝛽𝑛+1𝑥𝐹
2)

× 𝑒𝑥𝑝 (−
(𝑥𝐹 − 𝐴𝑛+1)2

𝑟𝑛+1
2 ) 𝑒𝑥𝑝(ⅈ𝛾𝑛+1(𝑥𝐹 − 𝐵𝑛+1)2)  , 

(2.109) 

where, 

𝑃𝑛+1 = 𝑃𝑛

𝑒𝑥𝑝 (
ⅈ2𝜋𝑧

𝜆 )

√ⅈ𝜆𝑧
√

𝜋𝑟𝑛
2𝜆𝑧

𝜆𝑧 − ⅈ𝑟𝑛
2(𝛽𝑛𝜆𝑧 + 𝛾𝑛𝜆𝑧 + 𝜋)

×

𝑒𝑥𝑝(ⅈ𝛾𝑛𝐵𝑛
2)𝑒𝑥𝑝 (ⅈ

𝜆𝑧𝐴𝑛
2

𝑟𝑛
4(𝛽𝑛𝜆𝑧 + 𝛾𝑛𝜆𝑧 + 𝜋)

) ,

 

                                (2.110) 

and, 

𝛼𝑛+1 = 0,    𝛽𝑛+1 =
𝜋

𝜆𝑧
,    𝛾𝑛+1 =

𝜋2𝑟𝑛
4

𝐷𝑛𝜆𝑧
(𝛽𝑛𝜆𝑧 + 𝛾𝑛𝜆𝑧 + 𝜋) , 

               (2.111) 
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𝑟𝑛+1 =
√𝐷𝑛

𝜋𝑟𝑛
 ,                                                    (2.112) 

𝐴𝑛+1 = 𝐴𝑛 +
𝛼𝑛𝜆𝑧

2𝜋
−

𝛾𝑛𝜆𝑧𝐵𝑛

𝜋
+

(𝛽𝑛 + 𝛾𝑛)𝜆𝑧𝐴𝑛

𝜋
 , 

                          (2.113) 

𝐵𝑛+1 =
𝛼𝑛𝜆𝑧

2𝜋
−

𝛾𝑛𝜆𝑧𝐵𝑛

𝜋
−

𝜆2𝑧2

𝛽𝑛𝜆𝑧 + 𝛾𝑛𝜆𝑧 + 𝜋

𝐴𝑛

𝜋𝑟𝑛
4

 , 

                         (2.114) 

For brevity in Equation (2.5.4) and Equation (2.5.5) the term 𝐷𝑛 is defined as 

𝐷𝑛 = 𝜆2𝑧2 + 𝑟𝑛
4(𝛽𝑛𝜆𝑧 + 𝛾𝑛𝜆𝑧 + 𝜋)2.                            (2.115) 

The set of Equations (2.111-2.112) is iteratively applied at each interface of the 

optical setup. The entrance angle 𝜃 , the wavelength 𝜆 , and the refractive index 𝑛 

have to be updated at each interface according to the corresponding iteration. This 

task will be performed using the following equations 

𝜆 =
𝜆0

𝑛
 ,                                                             (2 .116)           

𝛼𝑛 =
2𝜋

𝜆
𝑡𝑎𝑛(𝜃) + 2𝛾𝑛𝐵𝑛 − 2(𝛽𝑛 + 𝛾𝑛)𝐴𝑛  ,            (2.117)                

𝑃𝑛 = 𝑃𝑛 𝑒𝑥𝑝(−ⅈ𝛼𝑛𝐴𝑛) ,                                        (2.118) 

𝜆0  in Equation (2.116) represents the wavelength of the illuminating beam in free 

space. The appropriate tilt at each corresponding interface is established by the 

above equations. 

At the front surface of the lens in which the beam under propagation changes its 

curvature 𝑅 to allow a convergent or diverging wave-front, the term 𝛽𝑛 and 𝑃𝑛 will 

be replaced by the new relations  

𝛽𝑛 = 𝛽𝑛 −
𝜋 (𝑛2 − 𝑛1)

𝜆 𝑅
, 

                                                     (2.119) 
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𝑃𝑛 = 𝑃𝑛𝑒𝑥𝑝 (ⅈ
𝜋 (𝑛2 − 𝑛1)

𝜆 𝑅
 (𝐴𝑛)2) . 

                                           (2.120) 

In Equations (2.119-2.120)  𝑛2  is the index of refraction of the lens and 𝑛1 is the 

index of refraction of the free space. These equations must be used together to 

maintain the corresponding FGSI continuous at the interface. 

The intensity profile at the observation plane is calculated utilizing FGSI. 

Additionally, this profile is experimentally recorded with high resolution by using a 

homodyne detector specially designed for this task. Both profiles, the analytical and 

the experimental are compared to guarantee the correctness of the results. The 

homodyne detector is described in the next section. 

2.6 Homodyne detector 

 

Our especially dedicated homodyne detector, depicted in Fig.(2.8), consists of a 

photodiode whose sensitive area is much larger than the dimensions of the recorded 

beam placed behind a vibrating knife-edge.  A flexure mode piezoelectric transducer 

(PZT) is used to vibrate the knife-edge at a low frequency (𝜈), transversally to the 

optical axis. The oscillation signal is provided by a lock-in amplifier which also 

receives the output signal photodiode signal. A flexure mode PZT is used because it 

exhibits a low tilt (less than 5μrad for a total displacement of 100µm) and a 

positioning resolution of about 2nm. This resolution is adequate compared with the 

displacement steps required to record the intensity profiles at the plane of 

observation with high resolution. 
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Fig.2.8. Homodyne detector. 

_______________________________________________________________________________________________ 

 

The photodiode is partially blocked by a knife-edge. Thus, the recorded power, 𝑃, 

can analytically be expressed as, 

𝑃 = √
2𝑃0

2

𝜋𝑟0
2 ∫ 𝑒𝑥𝑝 (−2

𝑥2

𝑟0
2)

∞

𝑥(𝑡)

ⅆ𝑥 . 

                            (2.121) 

In Equation (2.121)  𝑃0 represents the beam power, 𝑟0 the semi-width of the laser 

beam at the initial plane, and 𝑥(𝑡) represents the position blocked by the knife-edge 

whose position as a function of time 𝑡 can be expressed as 

𝑥(𝑡) =
√2

𝑟0
(𝑥0 + δ0 cos( 2𝜋𝑣𝑡)) .                                  (2.122) 

 

In the Equation (2.122), 𝑥0 represents the initial position of the edge of the knife 

and δ0~1𝜇 represents a small amplitude. 
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We now make a change of variable in the integral given by Equation (2.121) as, 

𝑢 =
√2

𝑟0
𝑥 .                                                               (2.123) 

 

Using Equation (2.122) allows rewriting Equation (2.121) as, 

𝑃 =
2

√𝜋
√

2𝑃0
2

𝜋𝑟0
2 ∫ 𝑒𝑥𝑝(−𝑢2)

∞

𝑥(𝑡)

ⅆ𝑢 = 𝐵erfc (
√2

𝑟0

(𝑥0 + δ0 cos( 2𝜋𝑣𝑡))) . 

                            (2.124) 

In Equation (2.124), as the value δ0 is small, we calculate a Taylor series expansion 

as, 

𝑃 = 𝐵 (erfc (
√2

𝑟0
𝑥0) +

ⅆ

ⅆ𝑥
(erfc (

√2

𝑟0
𝑥0)

√2

𝑟0
δ0 cos( 2𝜋𝑣𝑡))) . 

                            (2.125) 

 

In Equation (2.125), we have used, 

𝑑

𝑑𝑥
erfc(𝑥) =

2

√𝜋
𝑒𝑥𝑝(−𝑥2) .                                           (2.126) 

 

Now, the power 𝑃, given by the Equation (2.125) becomes a function of 𝑥0. Then, 

Equation (2.125) is rewritten as,  

 

𝑃(𝑥0) = 𝐵 𝑒𝑥𝑝 (−2
𝑥0

2

𝑟0
2) cos(2𝜋𝑣𝑡) .                             (2.127) 

In Equation (2.127) the amplitude 𝐵 includes all the constant terms. 

Equation (2.127) gives the power recorded by the photodiode. An output signal, 

proportional to 𝑃(𝑥0) is then obtained at the output of the photodiode and it is 

amplified by a "lock-in" which filters undesired noise. The intensity profile is 

obtained by displacing the knife-edge to different values  𝑥0 along the region of the 

beam.  The high precision of this detector allows recording appropriately the 

intensity profiles under study.  

In the following section, we present experimental results. 
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3. Application for glucose concentration 

measurements 

 

Measuring glucose concentration with high accuracy and repeatability is highly 

important for monitoring glucose levels in persons with diabetes and other diseases 

as without appropriate detection and treatment could result in serious health 

implications [29]. It is possible to measure glucose concentration by chemical 

testing; however, the main limitation relies on that the chemical substances used 

can react with other constituents besides glucose [30].  

New optical techniques have been studied [31], but in general, the main limitation 

is that the signal obtained from the optical systems, in general, overlaps the signal 

of other constituents due to low signal to noise ratios, thus, requiring additional 

processing and data analysis intending to attain reliable results [30, 31, 32]. Our new 

optical approach overcomes this limitation as illustrated in the following sections. 

 

3.1 Theoretical glucose measurements 

 

According to the sensitivity requirements, the system can be used in one of two 

modes. Both modes use a high-aberrated probe beam to measure the changes in the 

concentration. Fig. (3.1) depicts the low sensitivity optical setup. In its first mode of 

operation, referred here as the low sensitivity mode, the system is intended for 

glucose concentrations in steps of 100 mg/dl or higher. Without loss of generality, 

the low sensitivity mode will be used in this section to demonstrate how a high-

aberrated probe beam improves the sensitivity compared with a previous optical 

technique based on the diffractive characteristics of a Gaussian beam free of 

aberrations [33]. The low sensitivity mode may be useful in several fields of 

industry, as, in the food industry. 
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As mentioned above a one-dimensional description will find to be sufficient for our 

description.  

The illuminating beam is a He-Ne laser with wavelength 𝜆 = 632.8 nm and Gaussian 

amplitude distribution 𝛹(𝑥) , placed at an initial plane with coordinate 𝑥 . At a 

distance 𝑧0 from the initial plane, the vertex of a singlet focusing lens is positioned. 

The observation plane with coordinate 𝑥𝐹 is located at a distance  𝑧1 from the back 

surface of the lens. The amplitude distribution at the observation plane is 

represented as  𝛹𝐹(𝑥𝐹). A sample with width 𝑤 is placed between the lens and the 

observation plane and its exact position becomes irrelevant. Due to the divergence 

of the Gaussian beam the semi-width of the beam increases as the distance of 

propagation increase, thus, to achieve a high-aberrated probe beam it is necessary 

to choose an appropriated  𝑧0  distance to illuminate a large area of the spherical 

front surface of the lens but at the same time avoiding visible truncation of the beam. 

On the other hand, if a Gaussian probe beam free of aberrations should be required, 

then, a small area of the lens should be illuminated. 

 

Fig. 3.1.  Optical setup for measuring changes of concentration for the low sensitivity 

model. The vertex of a singlet focusing lens is placed at a distance 𝑧0 from the waist-

plane with a coordinate𝑥of an illuminating laser Gaussian beam. The observation 

plane with coordinate 𝑥𝐹 is located at a distance 𝑧1 from the back surface of the lens 

of central thick 𝑡 . The sample with width 𝑤  is placed as described in the text. 

_______________________________________________________________________________________________ 
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For comparison purposes, it is necessary to perform the calculations of the 

propagation of the high-aberrated Gaussian beam and also the propagation of the 

Gaussian beam free of aberrations through the experimental setup depicted in 

Fig.(3.1). For this purpose, we use the numerical FGSI method. With the results 

obtained, we will be able to compare the sensitivity of both optical stems when 

changes in the index of refraction of the sample under test occur. 

For the task described above, we now calculate the normalized intensity 

distributions at the observation plane for 𝑧0 = 1 m and 5 m, varying in each case the 

index of refraction of the sample into five different values,  𝑛 = 1.330, 1.333, 1.336, 

1.339 and 1.342. The first value 𝑛 = 1.330 corresponds approximately to the index 

of refraction of pure tri-distilled water, or equivalently, it corresponds to a sample 

with a glucose concentration of 0 mg/dl.   The distance 𝑧1 was fixed at approximately 

26 mm which corresponds to the best focusing conditions of our lens. The 

corresponding normalized intensity profiles at the plane of observation are depicted 

in Fig.(3.2). 
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Fig. 3.2.  Analytical normalized intensity distributions calculated by FGSI. 

Normalized intensity distributions at the observation plane for different indexes of 

refraction in the sample. a) corresponds to  𝑧0= 1 m and   b) to  𝑧0=5 m;  𝑧1~ 26 mm. 
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For the first case the distance 𝑧0 has been set to 1.0 m. In this case, the laser beam is 

not very far from the lens as revealed by Fig.(3.2a) which exhibits an intensity 

Gaussian distribution visually free of aberration. In contrast, for the second case, 

when the distance 𝑧0  is set to 5.0 m, Fig.(3.2b) reveals that the intensity profiles 

exhibit side-lobes at each side of the central peak. This side- lobes correspond to 

spherical aberrations and are the result of illuminating a higher region of the front 

surface of the lens. It can be observed that changing the index of refraction 𝑛 of the 

sample, for the Gaussian free aberration case, does not result in any appreciable 

changes in their corresponding intensity profiles. In contrast, the intensity profiles 

of the aberrated case show notable changes in the heights of the side-lobes on the 

intensity normalized profiles.  

The above result clearly demonstrates the usefulness of the side-lobes that are 

present in the aberrated case. However, in existing systems, some involuntary 

misalignments may occur. To calculate the effects of slight misalignments in 

experimental systems, we performed now similar calculations, but this time 

introducing intentionally some misalignments in our analytical model. The results 

obtained for this physical situation are depicted in Fig. (3.3). In these calculations, 

some misalignments were included for both cases, the aberrated and the free-

aberrated one. For illustrative purposes, we have exaggerated a real situation by 

introducing an exaggerated misalignment to our analytical model. It can be 

appreciated in Fig. (3.3) that even with a severe misalignment of the optical 

components, for the aberrated case, the system maintains its high sensitivity, 

making this system useful even under difficult working conditions. 

 



40 
 

(a) 

(b) 

 

Fig. 3. 3. Analytical normalized intensity distributions calculated by FGSI with some 

misalignment. Normalized intensity distributions at the observation plane for different 

indexes of refraction in the sample when some misalignment is present in the system. (a) 

corresponds to 𝑧0= 1 m and (b) 𝑧0= 5 m; 𝑧1 ≈ 26 mm.  

 

 

-1.0x10
-5 0.0 1.0x10

-5
0.0

0.5

1.0

 

 

 n=1.342

 n=1.339

 n=1.336

 n=1.333

 n=1.330
N

o
rm

a
liz

e
d

 I
n

te
n

s
it
y
 

x
F 
[m]

 

 

-1.0x10
-5 0.0 1.0x10

-5
0.0

0.5

1.0

 

 n=1.342

 n=1.339

 n=1.336

 n=1.333

 n=1.330

x
F
 [m]

N
o

rm
a

liz
e

d
 I

n
te

n
s
it
y
 

 

  



41 
 

Once that we have demonstrated that the heights of the primary side-lobes are 

highly sensitive to changes in the index of refraction, in the following section, we 

present our experimental results. Our experimental results will be compared with 

our analytical model based on the FGSI formulation. 

 

3.2 Experimental glucose measurements 

 

The illuminating source was a He-Ne laser, 𝜆 = 632 nm, with an output power of 

approximately 5 mW. As mentioned above, the power of the laser does not influence 

the measurements and can be chosen freely. The laser output has a beam diameter 

of  
1

𝑒2 =0.8 mm.  For the low sensitivity mode, the plane-convex singlet focusing lens 

used in our set-up has a radius of curvature 𝑅 = 1.552 cm, back focal length 2.79 cm, 

refractive index 1.517, central thickness  𝑡 = 0.318 cm, and clear aperture 1.4 cm. 

The vertex of the lens was placed at a distance  𝑧0= 5 m from the waist-plane of the 

laser, as depicted in Fig. (3.1). A cuvette contains the transparent liquid under 

inspection. The walls of the cuvette consist of glass with a thickness of 0.1= cm and 

it has an internal width 𝑤  = 1 cm. The cuvette was positioned between the 

homodyne detector and the lens. The homodyne profiler described above has to be 

positioned at a distance 𝑧1  from the back surface of the lens as depicted in Fig. (3.1). 

This distance is adjusted by mounting the profiler on a commercially available 

positioning stage. The stage is then moved forth and back to attain a distance 𝑧1 that 

sets the maximum of the primary side-lobes at a desired height of the normalized 

intensity profile recorded. In our case, we set the height at 60% of the maximum of 

the normalized intensity profile when the sample corresponds to a concentration 

𝐶𝑤= 0 mg/dl, as depicted in Fig.(3.4). It can be noticed from the intensity profiles 

that our experimental setup had a small misalignment that, as demonstrated above 

did not affect its sensitivity. 
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To calibrate the system, five different solutions on tri-distilled water were prepared. 

The corresponding glucose concentrations were, 𝐶𝑤= 0 mg/dl, 1C = 100 mg/dl, 𝐶2= 

200 mg/dl, 𝐶3= 300 mg/dl and 𝐶4= 400 mg/dl.  For each measurement, the cuvette 

was filled with the corresponding solution. On replacing solutions, it is necessary to 

take care of maintaining unaltered the position of the optical components.  
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(a) 

(b) 

 

Fig. 3.4. Experimental normalized intensity distributions. 

(a) Experimental normalized intensity distributions at the observation plane for five 

glucose concentrations.  𝐶𝑤  = 0 mg/dl and 100 mg/dl, 200 mg/dl, 300 mg/dl and 400 

mg/dl. As glucose concentration increases the vertical height of the side-lobes increases. 

(b) Amplified view of the region of interest for better visualization. 
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(a) 

(b) 

Fig.(3.4) shows plots of the experimental results for the five concentrations 

described above. In Fig. (3.5). the maxima vertical heights of both primary side-lobes 

versus glucose concentrations are plotted. It can be noticed that the vertical heights 

of the primary side-lobes have a linear dependence with glucose concentration. 

 

Fig. 3.5. Primary side-lobes heights as a function of glucose concentration. 

 Plots of the maxima vertical heights for both primary side-lobes as a function of glucose 

concentration. (a) and (b) correspond to the left and right primary side-lobes respectively. 

Dots correspond to experimental values. Continuum lines correspond to linear fits.  
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From linear fits plotted in Fig.(3.5), the following linear Equations(3.1)-(3.2) for the 

left and right primary side-lobes are obtained as,  

𝑦𝐿 = (1.806 × 10−4)𝐶 + 0.599 ,                                                        (3.1) 

     

𝑦𝑅 = (1.729 × 10−4)𝐶 + 0.586 .                                                         (3.2) 

 

As both side-lobes exhibit a linear behavior, for glucose concentration measurement 

it is sufficient to focus on only one of the primary side-lobes. 

The proposed technique can also be used with turbid samples. Although this subject 

is still under study, as a preliminary result in this direction, we measured the glucose 

concentration of a sample with a 0.2% concentration of evaporated milk in tri-

distilled water. Fig.(3.6) shows that although the probe beam is highly scattered by 

the turbid media, the relative heights of the primary side-lobes can still be recorded 

accurately even under these conditions. This preliminary experiment is highly 

promising and it is presented here only for illustrative purposes. 
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(b) 

(a) 

   

 

Fig. 3.6.  Experimental normalized intensity distributions for a turbid sample.  

(a) Experimental normalized intensity distribution at the observation plane for a turbid 

sample as described in the text.  (b) Photograph of the illuminating beam transmitted by 

the sample. 

 

At this point, we have demonstrated that our low sensitivity model has a linear 

response and high repeatability, making this system feasible for glucose 

concentration measurements for relatively large concentrations. It is possible to 

increase the sensitivity to a range of clinical tests by replacing the lens from the 

optical setup by a lens-shaped container as described in the next section.  
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3.3 Theoretical glucose measurements replacing 

the lens by a singlet-lens-shaped container (SLSC) 

 

Fig.(3.7) depicts the optical setup for our high sensitivity mode system, increasing 

the abovementioned sensitivity. The focusing lens is now replaced by a single-lens-

shaped container (SLSC). Due to the divergence of the Gaussian beam, at 𝑧0= 5m, the 

beam semi-width at the front surface of the SLSC is 𝑟0√1 +
(𝜆𝑧0)2

(𝜋2𝑟0
4)

  = 1.78 mm. The 

SLSC is made of BK7, with a radius of curvature  𝑅 = 1.0 cm and internal width at its 

center of approximately 𝑡 = 3.0 mm. The container is filled with the sample under 

test and for practical purposes, the illuminating beam path trajectory will 

correspond to the refractive index of this special singlet lens, being equal to the 

refractive index (𝑛) of the sample.  The observation plane is placed at a distance 𝑧1 

behind the SLSC and close to its back focal plane. The homodyne detector records 

the intensity profiles of the aberrated beam as in the above case. 

 

Fig. 3.7. High sensitivity mode optical setup using an SLSC. 

Optical setup of our proposal as described in the text. The SLSC is filled with the liquid 

sample. 
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We again use FGSI to calculate the normalized intensity profiles at different 

observation planes located at different distances 𝑧1 placed close to the best focusing 

plane (BFP); in this case, BFP = 2.72 cm for a refractive index 𝑛0 = 1.3317088, 

corresponding to pure tri-distilled water at room temperature [34, 35]. 

 Change in the refractive indexes of the sample can be appreciated as the 

observation plane moves towards the sample or equivalently as 𝑧1 decreases. We 

have recorded the normalized intensity profiles at twenty-one different observation 

planes, each one of them corresponding to an increase of the refraction index at 

equally spaced steps of 3.03x10-5, thus, decreasing the focal length of the SLSC at 

each step. Fig.(3.8) depicts these plots. Plots with higher side-lobes heights 

correspond to observation planes with shorter 𝑧1 values or equivalently, to higher 

𝑛 values. We have carefully chosen these twenty-one distances so that the heights of 

the analytical primary side-lobes coincide with those of our experimental glucose 

concentration measurements presented in the following section.  The dot in Fig.(3.8) 

highlights the maximum vertical height of the left primary side-lobe for 𝑧1= BFP – 

185.9 µm. 
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Fig. 3.8. Analytical normalized intensity profiles calculated by FGSI for the high sensitivity 

mode setup. Normalized intensity profiles calculated employing FGSI at different 

observation planes located at twenty-one different distances   𝑧1 or obtained by changing 

the refractive index in steps of 3.03x10-5. 𝑧0= 5.0 m.  The dot indicates the maximum left 

side-lobe height; 𝑧1= BFP - 185.9 and 𝑛0= 1.3317088. 

 

Similarly, to the method described above for setting the height of the primary side-

lobes that correspond to the sample of the lowest concentration 𝐶0 = 0 mg/dl, we 

now set this height at 0.98 of the normalized intensity profile. We will refer to this 

initial setting as the initial plot and it will be characterized as 𝐼𝑃𝑙𝑜𝑡(𝐶, ℎ), where 𝐶, 

and ℎ  represent concentration in mg/dl and normalized height respectively. 

Therefore, our initial plot is represented as  𝐼𝑃𝑙𝑜𝑡(𝐶0, 0.98).  

A summary of how the system is intended to be used may now be useful. 
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For measuring glucose concentration with our optical technique, first, the reference 

sample, with a concentration of 0 mg/dl is poured in the SLSC; this sample consists 

of pure tri-distilled water ( 𝑛0= 1.33171088). Then, the observation plane is placed 

at an appropriate distance 𝑧1  that places the primary side-lobes at a height of 

approximately 0.98 of its normalized intensity profile. Taking into account that for 

our high mode system, samples with higher concentrations will cause a decrease in 

the heights of the side-lobes. 

At this point, it may result interesting to note the behavior of a Gaussian free aberrated 

system. For this, we have performed experiments under the same conditions but reducing 

the distance between the laser and the SLSC to  𝑧0= 80.0 cm. Fig. (3.9) depicts the resulting 

profiles.  As the Gaussian beam is now free of aberrations, the sensitivity has been 

practically lost as the width of the Gaussian intensity profiles is maintained almost 

equal for each measurement. 

 

Fig. 3.9. Analytical normalized intensity profiles calculated by FGSI for a beam free of 

aberrations for high sensitivity measurements. 

Normalized intensity distributions at planes of observation placed at different 𝑧1 distances 

within the overall range of the above case. 𝑧0= 80.0 cm.  

 

In the following section, we present the experimental results. 
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3.4 Experimental glucose measurements 

performed with a singlet-lens-shaped container 

(SLSC). 

 

Applying the aforementioned method to perform the measurements, the 

experimental normalized intensity profiles corresponding to samples with 

concentrations ranging from 0 to 400 mg/dl in steps of 20 mg/dl are plotted in 

Fig.(3.10). The initial plot was set at 𝐼𝑃𝑙𝑜𝑡(𝐶0 = 0,0.98). 

 

Fig. 3.10. Experimental normalized intensity distributions for the high mode setup. 

Experimental normalized intensity profiles for glucose concentrations ranging from 0 to 

400 mg/dl in steps of 20 mg/dl. The plot with the highest left side-lobe vertical height 

corresponds to the initial plot (highlighted by a dot) for a sample of 0 mg/dl.  
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By comparing the theoretical Fig.(3.8) and the experimental Fig.(3.10), two main 

differences can be appreciated between them. Although these differences become 

irrelevant for glucose concentration measurement some comments are in order. The 

vertical heights of the left and right primary side-lobes are unequal and their 

roundness at low vertical heights is less accentuated. This is caused by undesired 

additional front superficial defects that are present in the SLSC. This is a result due 

to a lack of higher precision equipment for its construction and can be easily 

overcome with more efficient optical glass working tools. 

Our analytical method is robust enough to allow us to simulate the above drawback. 

For this, we introduce in the FGSI equations an appropriate polynomial to 

represents the real front surface of the SLSC. Obviously, we do not have the 

experimental shape of the front surface, then, by a trial-and-error method, we found 

that in our case the required polynomial had a linear and fourth-order terms.  

Fig.(3.11) reveals the accuracy of the method by comparing these corresponding 

analytical normalized intensity profiles.  

At this point, it should be stated that the calculations performed using FGSI to fit a 

suitable aberration polynomial to the front surface of the SLSC, were included 

exclusively to support properly our proposed technique, allowing us to compare the 

experimental and the analytical normalized intensity profiles. In an actual 

measurement, these calculations are not necessary as it is only required to calibrate 

the optical system within a region of interest by the procedure described above 

using appropriate reference samples.  
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Fig. 3.11. Analytical normalized intensity distribution calculated by FGSI with a polynomial 

term.  Analytical normalized intensity profiles obtained by FGSI introducing linear and 

fourth-order terms in the equation that represents the front surface of the SLSC. 

 

To determine the analytical dependence between glucose concentration and the height of 

the primary side-lobes of the normalized intensity profiles, the experimental and analytical 

plots are aligned by placing their central peaks at the origin, as illustrated in Fig.(3.8), 

Fig(3.10), and Fig(3.11).  Secondly, a vertical line that intersects the maximum height of the 

highest left side-lobe, the one that corresponds to 𝐼𝑃𝑙𝑜𝑡(0, 0.98), is traced. Finally, each 

height is determined at the point of intersection of the vertical line with its corresponding 

plot. In this way, a table relating the vertical heights, the sample refractive indexes, and the 

corresponding sample concentrations can be constructed. For brevity, Table 1 shows only 

eight of the twenty-one rows obtained from the plots of Fig.(3.8), Fig(3.10), and Fig(3.11). 
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 Left primary side-lobe 
heights 

Glucose 
concentration 

(mg/dl) 

Refractive 
index 

 
Fig. 

(3.8) 

 
Fig. 

(3.10) 

 
Fig. 

(3.11) 
0 1.3317088 0.98 0.98 0.98 

60 1.3317997 0.82 0.82 0.82 
120 1.3318906 0.69 0.69 0.69 
180 1.3319815 0.58 0.57 0.58 
240 1.3320724 0.49 0.47 0.48 
300 1.3321633 0.41 0.40 0.40 
360 1.3322542 0.35 0.34 0.34 
400 1.3323148 0.31 0.30 0.30 

 

Table 3.1.  Left side-lobe vertical heights obtained from the plots of Fig.(3.8), Fig(3.10), and 

Fig(3.11) for eight rows obtained by using the dashed vertical line with the method 

described in the text.  

 

The data obtained for analytical and experimental plots are shown in Table (3. 1), 

these data confirm that the methodology described above is appropriate to 

determine the heights of the primary side-lobes accurately. Performing the above 

measurements several times we estimate an error of less than 2.0%.   

Fig.(3.12) shows plots of the experimental left side-lobes heights measured with the 

methodology described above as a function of glucose concentration. The solid line 

shows the corresponding fitted curve. 
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Fig. 3.12. Experimental heights as a function of glucose concentration for the second setup. 

Experimental heights of the primary left side-lobes as a function of glucose concentration. 

 

The equation of the fitted curve is written as, 

ℎ(𝐶) = 0.98 𝑒𝑥𝑝(−2.966 × 10−3𝐶) .                                          (3.3) 

In Equation (3.3) ℎ  represents left side-lobe normalized height and 𝐶  represents 

glucose concentration measured in mg/dl. 

Using Equation (3.3) and assuming an uncertainty of the vertical heights of ±0.01 

allows us to estimate the uncertainty of the technique as ± 6.23 mg/dl. This value is 

calculated at the central value of glucose concentration (200 mg/dl). 

For our optical setup, setting the initial plot 𝐼𝑃𝑙𝑜𝑡(𝐶0, 0.98), allows us to generalize 

Equation (3.3) as,  

ℎ(𝐶) = 0.98 𝑒𝑥𝑝(−2.966 × 10−3) × (𝐶 − 𝐶0) ,                             (3.4) 
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where 𝐶0 corresponds to the lowest concentration in the range under measurement. 

In this form accurate measurements, each 20 mg/dl can be performed in any range 

of interest. This is possible by using different initial plots (different initial 

concentrations 𝐶0 ). For example, the precision of glucose concentrations 

measurements corresponding to low vertical heights of the previous experimental 

results, in the range from 300 to 400 mg/dl has an uncertain maximum height, so 

when establishing the initial plot to 𝐼𝑃𝑙𝑜𝑡(300, 0.98) the maximum height value is 

clearer and the data may have fewer errors. Proceeding in this way, similar plots to 

Fig.(3.10) are obtained, but this time the plot with the highest left side-lobe height 

corresponds to a concentration of 300 mg/dl.  Making that the sensitivity of the 

technique can be extended to other fields in addition to clinical tests in which these 

high glucose ranges are out of interest. It is worth mentioning that, by performing 

several measurements in different ranges we have verified the repeatability of the 

proposed technique. 

Although our preliminary experiments were conducted on samples containing only 

glucose [36], free of other substances that may be present in real clinical samples. It 

may result convenient to compare our predicted data measurements along with the 

results from a reference method, with the paired data points plotted on a Clarke 

error grid (CEG), currently used in clinical monitoring analysis [37, 38].  

Following [15], the predicted measurements are plotted in a grid divided into five 

different regions denoted as A, B, C, D, and E.  In region A the predicted measured 

concentrations do not differ by more than 20% of the reference. In the regions A and 

B, differences between the predicted values and the reference values do not 

represent a clinical risk for patients. On the other hand, errors in regions C, D, and E 

are significant and may lead to dangerous clinical decisions. As can be seen in 

Fig.(3.13) all the predicted concentrations obtained with our proposed technique 

for transparent pure tri-distilled water glucose solutions fall in satisfactory region 

A. 
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Fig. 3.13. Clarke Error Grid. Predicted glucose concentrations as a function of the reference 

concentrations. 

 

In these glucose measurements, it was required only a small volume of the sample, 

about 0.3 ml to fill the SLSC container. This volume can be further decreased by 

reducing the front radius of the SLSC and diminishing its central inner thickness. 

This gives the added advantage of extending the applicability of our proposal for 

analyzing small-volume samples which is desirable for measuring many biofluids, 

as is the case of the glucose concentration measurement in aqueous humor or 

artificial aqueous humor [39] to determine the blood glucose concentration as 

described in [39-41].  

Glucose measurement is an important application of this optical technique to 

measure concentrations in liquid samples making it possible to find the index of 

refraction with high sensitivity. 
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For example, for this particular application, it is possible to relate glucose 

concentration with refractive index using the theoretical plots and considering a 

linear relation as in [34, 35], 

𝑛(𝐶) = 1.3317088 + 𝑚𝐶                                                   (3.5) 

In Equation (15)  𝑛 represents the refractive index and 𝑚 is a constant. 

Relating the experimental results with the theoretical plots we obtain 𝑚 = (1.515± 

0.094) x10-6 which is in good agreement with [42]. 

Finally, the proposed technique provides improved stability compared with other 

methods since the illuminating beam only changes the semi-width by going through 

a different medium with a different index of refraction. Furthermore, temperature 

effects can be neglected since the probe beam is not focused inside the sample 

avoiding local heating that may cause vapor or micro-bubbles that alter the 

measurements.  
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4. Conclusions 

 

We have demonstrated that if a Gaussian probe beam is allowed to attain high 

spherical aberrations it becomes highly sensitive on changes of the index of 

refraction of a liquid sample after being transmitted by it. By taking advantage of 

this new concept, we have introduced a new optical technique to measure with high 

accuracy and high repeatability changes of the index of refraction of liquid samples.  

The technique presented here is based on measuring the heights of the primary side-

lobes of the aberrated normalized intensity profile of the Gaussian probe beam after 

being transmitted by the liquid sample focused at a plane of observation.  To 

improve even more the resolution of the measurements, the intensity profiles are 

accurately recorded employing a homodyne detector specially designed for this 

purpose.  

We have demonstrated that the heights of the primary lateral side lobes of the 

normalized intensity profile change linearly on changes of the sample concentration. 

To provide our optical technique with appropriate analytical support, we presented 

an analytical optical model based on the Fresnel Gaussian shape invariant method 

whose detailed description can be found in the literature. Based on our analytical 

results we have demonstrated that the optical technique may be employed in two 

different modes. In a first mode, referred to as the high sensitivity mode, the sample 

under test is poured in a singlet focusing lens-shaped container. In this mode, 

sensitivities in steps as low as 6 mg/dl can be obtained. In the low sensitivity mode, 

the sample under test is poured in a cuvette while a commercially available focusing 

singlet is used to focus the aberrated beam at a plane of observation. In the low 

sensitive mode, the measurements can be recorded in steps of 100mg/dl or larger.  

As the high sensitivity mode falls appropriately in the range of clinical tests, we have 

tabulated our experimental results in a Clarke error grid to demonstrate that the 
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optical technique fits well in the corresponding satisfactory safe region also referred 

to as region A.  

Finally, it may be interesting to highlight that, as in the high sensitivity mode the 

beam is not focused inside the sample, perturbations due to local heating are highly 

reduced, improving the repeatability of the measurements.  

Bibliography 

 

[1] Wu, H., & Khan, M. (2012). THz spectroscopy: An emerging technology for 

pharmaceutical development and pharmaceutical Process Analytical Technology 

(PAT) applications. Journal of Molecular Structure, 1020, 112-120. 

 [2] Dinar, E., Riziq, A. A., Spindler, C., Erlick, C., Kiss, G., & Rudich, Y. (2008). The 

complex refractive index of atmospheric and model humic-like substances (HULIS) 

retrieved by a cavity ring down aerosol spectrometer (CRD-AS). Faraday 

discussions, 137, 279-295. 

[3] Bandyopadhyay, S., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2013). 

Advanced analytical techniques for the measurement of nanomaterials in food and 

agricultural samples: a review. Environmental Engineering Science, 30(3), 118-125. 

[4] Yáñez, E., Cywiak, M., & Franco, S. J. M. (2019). Glucose Concentration 

Measurement of a Transparent Sample by Using a Gaussian Probe Beam with High 

Spherical Aberration. In Progress in Optomechatronic Technologies (pp. 111-115). 

Springer, Singapore. 

[5] Ren, Z., Liu, G., Xiong, Z., & Huang, Z. (2015, July). Experiments of glucose solution 

measurement based on the tunable pulsed laser induced photoacoustic 

spectroscopy method. In Pacific Rim Laser Damage 2015: Optical Materials for High-

Power Lasers (Vol. 9532, p. 95321Q). International Society for Optics and Photonics. 



61 
 

[6] Kottmann, J., Rey, J. M., & Sigrist, M. W. (2011). New photoacoustic cell design for 

studying aqueous solutions and gels. Review of Scientific Instruments, 82(8), 

084903 

[7] Yadav, J., Rani, A., Singh, V., & Murari, B. M. (2015). Prospects and limitations of 

non-invasive blood glucose monitoring using near-infrared spectroscopy. 

Biomedical signal processing and control, 18, 214-227. 

[8] Liakat, S., Bors, K. A., Huang, T. Y., Michel, A. P., Zanghi, E., &Gmachl, C. F. (2013). 

In vitro measurements of physiological glucose concentrations in biological fluids 

using mid-infrared light. Biomedical optics express, 4(7), 1083-1090. 

[9] Vilaboy, M. J., Ergin, A., Tchouassi, A., Greene, R., & Thomas, G. A. (2003, March). 

Optical measurement of glucose concentrations using Raman spectroscopy. In 

Bioengineering Conference, (2003) IEEE 29th Annual, Proceedings of (pp. 329-330). 

IEEE. 

[10] A. K. Amerov, Y. Sun, G. W. Small, and M. A. Arnold, “Kromoscopic measurement 

of glucose in the first overtone region of the near-infrared spectrum,” Proc. SPIE 

4624, 11–20 (2002). 

[11] Ansari, R. R., Boeckle, S., & Rovati, L. L. (2004). New optical scheme for a 

polarimetric-based glucose sensor. Journal of Biomedical Optics, 9(1), 103-116. 

[12] K. V. Larin, M. Motamedi, T. V. Ashitkov, and R. O. Esenaliev, “Specificity of 

noninvasive blood glucose sensing using optical coherence tomography technique: 

a pilot study,” Phys. Med. Biol. 48, 1371–1390 (2003). 

[13] Moschou, E. A., Sharma, B. V., Deo, S. K., & Daunert, S. (2004). Fluorescence 

glucose detection: advances toward the ideal in vivo biosensor. Journal of 

fluorescence, 14(5), 535-547. 

[14] A. Ghazaryan, S. V. Ovsepian, and V. Ntziachristos, “Extended near-infrared 

optoacoustic spectrometry for sensing physiological concentrations of glucose,” 

Front. Endocrinol. 9, 112 (2018). 



62 
 

[15] M. K. Dasa, C. Markos, J. Janting, and O. Bang, “Multispectral photoacoustic 

sensing for accurate glucose monitoring using a supercontinuum laser,” J. Opt. Soc. 

Am. B 36, A61–A65 (2019). 

[16] Al-Mbaideen, A. A., Rahman, T., & Benaissa, M. (2010, October). Determination 

of glucose concentration from near-infrared spectra using principle component 

regression coupled with digital bandpass filter. In Signal Processing Systems (SIPS), 

2010 IEEE Workshop on (pp. 243-248). IEEE. 

[17]  J. Chen and X. Z. Wang, “A new approach to near-infrared spectral data analysis 

using independent component analysis,” J. Chem. Inf. Comput. Sci., vol. 41, (2001), 

pp. 992–1001. 

[18] M. Cywiak, M. Servín, A. Morales, Diffractive and geometric optical systems 

characterization with the Fresnel Gaussian shape invariant, Opt. Express 19 (3) 

(2011) 1892–1904. 

[19] M. Cywiak, A. Morales, J. M. Flores, M. Servín, Fresnel-Gaussian shape invariant 

for optical ray tracing, Opt. Express 17(13 ) (2009) 10564–10572. 

[20] M. Cywiak, M. Servín, and F. Mendoza-Santoyo, “Wave-front propagation by 

Gaussian superposition,” Opt. Commun. 195(5-6), 351–359 (2001). 

[21] M. Cywiak, M. Servín, and A. Morales, “Diffractive and geometric optical systems 

characterization with the Fresnel Gaussian shape invariant,” Opt. Express 19 (3), 

1892-1904 (2011). 

[22] Goodman, J. W. (2005). Introduction to Fourier optics. Roberts and Company 

Publishers. 

[23 ] Stamnes, Jakob J. Waves in Focal Regions: propagation, diffraction and focusing 

of light, sound and water waves. CRC Press, (1986), 336-337. 

[24] Cywiak, M., Cywiak, D., & Yáñez, E. (2017). Finite Gaussian wavelet 

superposition and Fresnel diffraction integral for calculating the propagation of 



63 
 

truncated, non-diffracting and accelerating beams. Optics Communications, 405, 

132-142. 

[25] Milonni, P., & Eberly, J. (1988). Laser resonators. Lasers, John Wiley & Sons, New 

York, 486. 

[26] Arfken, G. B., & Weber, H. J. (1999). Mathematical methods for physicists. 

[27] Siegman, A. E. Lasers University Science Books, Mill Valley, CA, 1986. This book 

contains an in-depth description of the usefulness of viewing Gaussian beams as a 

complex source point on, 637-641 

[28]Thyagarajan, K., & Ghatak, A. (2010). Lasers: fundamentals and applications. 

Springer Science & Business Media. 

[29] Renard, E. (2005). Monitoring glycemic control: the importance of self-monitoring 

of blood glucose. The American journal of medicine, 118(9), 12-19. 

[30] Tuchin, V. V. (Ed.). (2008). Handbook of optical sensing of glucose in biological 

fluids and tissues. CRC press. 

[31] McNichols, R. J., & Cote, G. L. (2000). Optical glucose sensing in biological fluids: 

an overview. Journal of biomedical optics, 5(1), 5-17. 

[32] Khalil, O. S. (1999). Spectroscopic and clinical aspects of noninvasive glucose 

measurements. Clinical chemistry, 45(2), 165-177. 

[33] Cervantes-L, J., Cywiak, M., Olvera-R, O., & Cywiak, D. (2014). Measurement of 

glucose concentration in a thin turbid medium by a transmitted Gaussian beam. Optics 

Communications, 331, 239-243. 

[34] Tuchin, V. V., Maksimova, I. L., Zimnyakov, D. A., Kon, I. L., Mavlyutov, A. H., 

& Mishin, A. A. (1997). Light propagation in tissues with controlled optical properties. 

Journal of biomedical optics, 2(4), 401-418. 

[35] Tuchin, V. V., Maksimova, I. L., Kochubey, V. I., Kon, I. L., Mavlyutov, A. H., 

Mishin, A. A., ... & Zimnyakov, D. A. (1997, August). Optical and osmotic properties of 

human sclera. In Optical Tomography and Spectroscopy of Tissue: Theory, 

Instrumentation, Model, and Human Studies II (Vol. 2979, pp. 658-676). International 

Society for Optics and Photonics. 



64 
 

[36] Yáñez, E., Cywiak, M., & Cywiak, D. (2019). Gaussian beam with high spherical 

aberration focused by a singlet lens-shaped container for glucose measurements. Applied 

Optics, 58(31), 8495-8500. 

[37] Klonoff, D. C. (2012). The need for clinical accuracy guidelines for blood glucose 

monitors. 

[38] Pfützner, A., Mitri, M., Musholt, P. B., Sachsenheimer, D., Borchert, M., Yap, A., 

& Forst, T. (2012). Clinical assessment of the accuracy of blood glucose measurement 

devices. Current medical research and opinion, 28(4), 525-531. 

[39] Lambert, J. L., Pelletier, C. C., & Borchert, M. S. (2005). Glucose determination in 

human aqueous humor with Raman spectroscopy. Journal of Biomedical Optics, 10(3),  

[40] Pohjola, S. (1966). The glucose content of the aqueous humour in man. Acta 

ophthalmologica, Suppl-88. 

[41] Schrader, W. F., Grajewski, R. S., & Meuer, P. (2000, March). The glucose content 

of the aqueous humour compared with capillary blood man. In INVESTIGATIVE 

OPHTHALMOLOGY & VISUAL SCIENCE (Vol. 41, No. 4, pp. S77-S77). 9650 

ROCKVILLE PIKE, BETHESDA, MD 20814-3998 USA: ASSOC RESEARCH 

VISION OPHTHALMOLOGY INC. 

[42] Maier, J. S., Walker, S. A., Fantini, S., Franceschini, M. A., & Gratton, E. (1994). 

Possible correlation between blood glucose concentration and the reduced scattering 

coefficient of tissues in the near infrared. Optics letters, 19(24), 2062-2064. 

 


