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It is well known that spatial phase shifting interferometry (SPSI) may be used to demodulate two-
dimensional (2D) spatial-carrier interferograms. In these cases the application of SPSI is straightforward
because the modulating phase is a monotonic increasing function of space. However, this is not true when
we apply SPSI to demodulate a single-image interferogram containing closed fringes. This is because
using these algorithms, one would obtain a wrongly demodulated monotonic phase all over the 2D space.
We present a technique to overcome this drawback and to allow any SPSI algorithm to be used as a
single-image fringe pattern demodulator containing closed fringes. We make use of the 2D spatial orien-
tation direction of the fringes to steer (orient) the one-dimensional SPSI algorithm in order to correctly
demodulate the nonmonotonic 2D phase all over the interferogram. © 2009 Optical Society of America

OCIS codes: 050.5080, 100.5070, 120.5050, 120.3180.

1. Introduction

In optical metrology, the use of single-image interfer-
ogram techniques is of great interest in applications
where the use of temporal methods is difficult be-
cause of the fast nature of the measured phenomena.
In this case, the Fourier transform method can be
applied to each single-image interferogram [1].
Although the Fourier transform method has many
advantages, it has two main drawbacks. First, the
technique assumes open-fringe interferograms for
which the phase is a monotonically increasing func-
tion of space and therefore cannot be applied to the
general case of single-image closed-fringe interfero-
grams. Second, the processing of interferograms with
nonrectangular areas of interest generates errors at
the borders, which in turn must be corrected.
In direct space, the spatial phase shifting inter-

ferometry (SPSI) methods are a good alternative to
the Fourier transform method. However, as with

the Fourier method, they cannot be applied to the
case of single-image closed-fringe patterns with non-
monotonic two-dimensional (2D) modulating phases.
To demodulate single-image closed-fringe interfero-
grams in direct space, we can apply regularization
techniques [2–4], although they lack the simplicity
and processing speed of spatial phase shifting meth-
ods. These regularization techniques were the first
single-image closed-fringe demodulation methods;
however, they have some disadvantages. These pro-
blems are mainly the regularization parameter tun-
ing process, the nonlinear character of the phase
demodulation, the intensive computing to minimize
the local cost function, and the simultaneous compu-
tation of phase and spatial frequencies. In this direc-
tion, Marroquin et al. [4] were the first to draw
attention to the usefulness of decoupling the direc-
tion and the spatial frequency computation for the
phase demodulation from a single interferogram.
This insight was also implicit in the fringe-following
regularized phase tracking based methods [2].

The importance of the direction information was
explicitly shown by Larkin et al. [5] when they
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demonstrated how the interferogram direction angle
[6] can be applied to the Fourier analysis of single-
image closed-fringe interferograms. This technique
computes the phase of a single pattern by first apply-
ing a frequency filter (the vortex) and then correcting
the obtained phase using the direction angle. Also,
this method can be used with carrier fringe (open-
fringe) interferograms in which only the orientation
angle is necessary [7]. Onodera et al. [8] presented a
2D Hilbert transform based on direct space discreti-
zation of the vortex filter where, again, the direction
is the key to process 2D closed-fringe interferograms.
In this work, we demonstrate how the orientation-

direction information can be used to generalize any
one-dimensional (1D) SPSI method to the general
case of demodulating single-image closed-fringe in-
terferograms with nonmonotonic 2D phase all over
the area of interest. The proposed technique shares
the simplicity and speed of the spatial SPSI methods,
making possible the extension of any SPSI method to
the demodulation of closed-fringe single-image inter-
ferograms. Working in direct space, it can naturally
process irregular areas of interest with minimized
border effects. In this way the proposed method is
a direct space alternative to the Fourier method
for single-image closed-fringe interferograms.

2. Steerable Spatial Phase Shifting

A. One-Dimensional Spatial Phase Shifting Interferometry
and the Sign Problem

When thinking about the use of SPSI methods, the
simplest case is a monochromatic 1D interferometric
signal given by

sðxÞ ¼ bðxÞ þmðxÞ cosðϕ0 þ ω0xÞ; ð1Þ
where b and m are the background and modulation
signals, ω0 is a constant spatial frequency, and ϕ0 is
the modulating phase in which we are interested. In
this case, the modulating phase is a lineally increas-
ing function of the space, and therefore it can be de-
modulated using synchronous SPSI methods. All
synchronous SPSI techniques can be described by
a quadrature filter gðxÞ, tuned at ω0, with a frequency
response GðωÞ ¼ FT½gðxÞ� that fulfills

Gð0Þ ¼ 0; Gðω0Þ ¼ 0; Gð−ω0Þ ≠ 0: ð2Þ
Due to the Hermitian symmetry of the Fourier

transform of a real signal and the fact that the signal
is monotonic, the negative (or positive) frequencies
are superfluous. Equation (2) represents the basic
idea behind any quadrature filter; by eliminating
the negative frequencies of the signal spectrum, it
is possible to obtain a complex representation from
which certain attributes of the signal become more
accessible, for example, the phase, to facilitate the
derivation of demodulation techniques. If we apply
the generic filter described by Eq. (2) to the mono-
chromatic fringe pattern of Eq. (1), we generate a
complex phasor given by

AðxÞ ¼ sðxÞ � gðxÞ ¼ mðxÞGð−ω0Þe−iðϕ0þω0xÞ; ð3Þ

from which it is possible to compute the modulating
phase by an arctangent calculation.

A typical example of a synchronous SPSI method is
the three-step synchronous technique [9], which can
be described by the complex filter

gðxÞ ¼ ½2δðxÞ − δðx − 1Þ − δðxþ 1Þ�ð1 − cosω0Þ
þ i½δðx − 1Þ − δðxþ 1Þ� sinω0; ð4Þ

with frequency response

GðωÞ ¼ 4 sin
�ω − ω0

2

�
sinω: ð5Þ

We can go one step forward in signal complexity
and consider a more general type of interferogram
given by

sðxÞ ¼ bðxÞ þmðxÞ cos½ϕðxÞ þ ω0x�; ð6Þ

for which the phase is no longer constant but fulfills
jdϕ=dxj ≪ jω0j, that is to say, the total phase is not
linear, but monotonically increasing in space, with lo-
cal spatial frequency ωðxÞ ¼ d½ϕðxÞ þ ω0x�=dx > 0. In
this case, we say that sðxÞ is a quasi-monochromatic
interferogram. To demodulate this signal, we can no
longer use synchronous techniques. Instead, we
should use a detuning insensitive SPSI method
tuned at ω0, with a frequency response satisfying

Gð0Þ ¼ 0; Gðω ≈ ω0Þ ¼ 0; Gðω ≈ −ω0Þ ≠ 0: ð7Þ

Again, as the phase is monotonic with ω > 0, the
positive spatial frequencies are superfluous and
can be filtered. In this case, the returned complex
phasor is

AðxÞ ¼ sðxÞ � gðωÞ ¼ mðxÞGðωÞe−iðϕðxÞþω0xÞ

for ω ≈ ω0: ð8Þ

Again, we can demodulate the interferogram phase
from the phasor given by Eq. (8) by an arctangent op-
eration. A typical example of a detuning insensitive
method is the five-step Hariharan method [10]. This
filter is tuned at ω0 ¼ π=2 rad=pixel and can be de-
scribed by the next filter,

gðxÞ ¼ ½2δðxÞ − δðx − 2Þ − δðxþ 2Þ�
þ 2i½δðx − 1Þ − δðxþ 1Þ�; ð9Þ

with frequency response

GðωÞ ¼ −2 sinωðsinω − 1Þ: ð10Þ

This filter fulfills Eq. (7) around ω0 ¼ π=2, from
which it has its detuning insensitive behavior.
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Finally, the more general case of a 1D interfero-
metric signal is

sðxÞ ¼ bðxÞ þmðxÞ cos½ϕðxÞ�: ð11Þ

In this case, the instantaneous spatial frequency,
ωðxÞ ¼ dϕ=dx, is only limited by the sampling theo-
rem, 0 ≤ jωj ≤ π. Therefore the interferogram phase
is no longer monotonic and can behave arbitrarily.
To demodulate this signal, we need a filter that sup-
presses all the positive spatial frequencies as well as
the DC term. This would be a filter with a response
given by

Gðω > 0Þ ¼ 0; Gðω ≤ 0Þ ≠ 0: ð12Þ

In this case, the complex phasor returned is

AðxÞ ¼ mðxÞGðωÞe−iϕðxÞ: ð13Þ

A good example for a filter of this type is the asyn-
chronous five-step method [11]. In this case, the
interferogram is assumed to be locally mono-
chromatic with discrete samples given by
sk ¼ bþm cos½ϕþ ðk − 2Þω�, k ¼ 1;…; 5, and the
phase can be obtained as

tanϕ ¼ signðs2 − s4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðs2 − s4Þ2 − ðs1 − s5Þ2

p
2s3 − ðs1 þ s5Þ

: ð14Þ

This SPSI method is not linear; therefore the fre-
quency response cannot be computed by a Fourier
transform. However, for nonlinear methods, the fre-
quency response can be calculated as the amplitude
output of a signal given by tðxÞ ¼ cosωx. In the case
of the five-step asynchronous SPSI, the frequency
response is

GðωÞ ¼ 4 sin2ðωÞ; ω > 0: ð15Þ

From the former discussion, in general any 1D
SPSI filter will have the form

gðsÞ ¼ f ðsÞ þ ih1ðsÞ; ð16Þ

where f ðsÞ is an even, real high-pass filter that sup-
presses the background term f ðbþm cosωxÞ ¼
−mFðωÞ cosωx and h1ðsÞ an odd real filter that trans-
forms the cosine in a sine, that is, a general Hilbert
operator with h1ðbþm cosωxÞ ¼ −mH1ðωÞ sinωx.
The filter spectrum is

GðωÞ ¼ FðωÞ þ iH1ðωÞ: ð17Þ

Additionally, as the general SPSI method g of
Eq. (16) is a quadrature filter, it is required that
jFðωÞj ¼ jH1ðωÞj for a given range of spatial frequen-
cies. For example, if jFðωÞj ¼ jH1ðωÞj for a single spa-
tial frequency ω0, we speak of synchronous methods,
and if jFðωÞj ¼ jH1ðωÞj for 0 ≤ ω ≤ π, we say that the

method is asynchronous. Therefore, given the sym-
metries of f and h1 and the relation between their
spectra, G is a real filter that nulls a range of spatial
frequencies.

For example, in the case of the asynchronous five-
step method described above,

h1ðsÞ ¼ signðs2 − s4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðs2 − s4Þ2 − ðs1 − s5Þ2

q

¼ 4m sin2 ω sinϕ;
f ðsÞ ¼ 2s3 − ðs1 þ s5Þ ¼ 4m sin2 ω cosϕ; ð18Þ

with jFðωÞj ¼ jH1ðωÞj ¼ 4m sin2 ω, ω > 0.
Summarizing, all SPSI methods, linear or not, gen-

erate a complex phasor from which the phase can be
extracted by an arctangent calculation. The range of
frequencies for which the phasor are well calculated
depends on the type of SPSI method. Moreover, the
election depends on the frequency contents of the
interferogram.

However, in the general case of a nonmonotonic
phase, it is important not to forget an important de-
tail: all the SPSI methods assume that the modulat-
ing phase is monotonic, which means that all the
spatial frequencies have the same sign. As a result,
the recovered phase is also monotonic. In the case of
a nonmonotonic phase, all SPSI methods will demo-
dulate a wrong monotonic phase, losing in this way
the phase sign.

Analytically, we can obtain this result using the
general quadrature transform. This operator can
be expressed as a generalized Hilbert filter multi-
plied by the fringe direction angle. From [12], the
general expression for the Hilbert transform in the
N-dimensional case is

hNðsÞ ¼
∇s
j∇ϕj ¼ −m sinϕ ω

jωj ¼ −m sinϕ · n; ð19Þ

where ω ¼ ð∂ϕ=∂x1;…; ∂ϕ=∂xNÞ is theN-dimensional
spatial frequency vector, and n ¼ ω=jωj is the fringe
direction vector [6]. In the 1D case the general ex-
pression (19) reduces to

h1ðsÞ ¼
ds=dx
dϕ=dx ¼ −m sinϕ ω

jωj
¼ −m sinϕ · signðωÞ: ð20Þ

From Eq. (19), we see that the general expression
for the Hilbert transform is a nonlinear operator.
Also, Eq. (19) states that to obtain the quadrature
term of a interferogram, it is always necessary to cor-
rect the Hilbert transform by the direction vector n,

qNðsÞ ¼ hNðsÞ · n ¼ −m sinϕ; ð21Þ

where qNðsÞ is the N-dimensional quadrature signal
corresponding to m cosϕ. In the 1D case we have
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q1ðsÞ ¼ h1ðsÞ · signðωÞ ¼ −m sinϕ: ð22Þ

Therefore all Hilbert transform implementations
have to deal with the spatial frequency sign. In
the frequency domain, the Hilbert transform can
be efficiently implemented by anN-dimensional Reis
transform [5,12] that has a uniform frequency
response with jHðωÞj ¼ 1. However, in the space do-
main with a limited number of samples, we have only
approximations to this behavior.
From this discussion, in the case of a 1D nonmono-

tonic signal, the complex phasor returned by any
SPSI method must be corrected by the spatial fre-
quency sign in order to compute correctly the phase.
Therefore from Eq. (20), the complex phasor that we
obtain for any SPSI filter is

AðxÞ ¼ mðxÞGðωÞ½cosϕþ i signðωÞ sinϕ�: ð23Þ

B. Two-Dimensional Steerable Spatial Phase Shifting

In the former section, we have shown the importance
of the spatial frequency sign in the demodulation of a
1D signal using any SPSI method. In the case of a 2D
closed-fringe interferogram, the role of the spatial
frequency sign is assumed by the fringe direction an-
gle. From the general expression of the Hilbert trans-
form given by Eq. (19), the components of the Hilbert
transform in the case of a general 2D interferogram
given by

sðx; yÞ ¼ bðx; yÞ þmðx; yÞ cos½ϕðx; yÞ� ð24Þ

are

h2x½sðx; yÞ� ¼
ds=dx
j∇ϕj ¼ −m sinϕ ωx

jωj
¼ −m sinϕ cos β;

h2y½sðx; yÞ� ¼
ds=dy
j∇ϕj ¼ −m sinϕ ωy

jωj
¼ −m sinϕ sin β; ð25Þ

where β is the fringe direction angle, defined as the
angle subtended by the fringe direction vector with
the x axis [6]. From Eq. (25), if we apply any SPSI
filter g along the x coordinate to a 2D interferogram,
we obtain a phasor given by

Axðx; yÞ ¼ mðx; yÞGðωxÞ½cosϕþ i cos β sinϕ�: ð26Þ

Therefore the recovered quadrature term is
modulated by cos β, and if ωx ≈ 0 (cos β ≈ 0), then
the recovered phase is zero independently of ϕ.
The same problem appears if we apply the same
SPSI method in the y direction. In this case the
phasor signal is

Ayðx; yÞ ¼ mðx; yÞGðωyÞ½cosϕþ i sin β sinϕ�; ð27Þ

and the quadrature term is modulated by sin β.
Therefore, for ωy ≈ 0 (sin β ≈ 0), the recovered phase
is zero independently of ϕ.

A closed-fringe interferogram has a nonmonotonic
phase with positive and negative 2D spatial frequen-
cies in x and y. If we apply a 1D SPSI method, even in
the case that we do correct for the direction angle, we
have a wrongly demodulated phase.

The solution for this problem is to compute the 2D
quadrature term incorporating the direction infor-
mation, “steering” in this way the 1D SPSI filter
along the fringe direction. Then, if gðsÞ ¼
f ðsÞ þ ihðsÞ is a 1D SPSI filter, the quadrature term
is obtained using Eq. (21) as

q2ðsÞ ¼ ½h2xðsÞ;h2yðsÞ� · n
¼ h2xðsÞ cos β þ h2yðsÞ sin β
¼ −m½GðωxÞ þGðωyÞ� sinϕ; ð28Þ

where h2x and h2y correspond to the same Hilbert fil-
ter applied in the x and y directions, respectively.
From Eq. (28), the general formula to “steer” any
1D SPSI method is

tanϕ ¼ h2xðsÞ cos β þ h2yðsÞ sin β
f xðsÞ þ f yðsÞ

; ð29Þ

and the frequency response of the method
is GðωÞ ¼ GðωxÞ þGðωyÞ.

For example, if we assume that locally our interfer-
ogram is monochromatic, we can always express it as

sðk; lÞ ¼ bþm cos½ϕþ ðk − 2Þωx þ ðl − 2Þωy�;
k; l ¼ 1;…; 5; ð30Þ

and we can apply the five-step asynchronous method
[11] along rows

h2xðsÞ ¼ signðs2;l − s4;lÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðs2;l − s4;lÞ2 − ðs1;l − s5;lÞ2

q

¼ 4m sin2ωx cos β sinϕ;
f xðsÞ ¼ 2s3;l − ðs1;l þ s5;lÞ ¼ 4m sin2 ωx cosϕ; ð31Þ

and along columns

h2yðsÞ ¼ signðsk;2 − sk;4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðsk;2 − sk;4Þ2 − ðsk;1 − sk;5Þ2

q

¼ 4m sin2ωx sin β sinϕ;
f yðsÞ ¼ 2sk;3 − ðsk;1 þ sk;5Þ ¼ 4m sin2ωy cosϕ: ð32Þ

Finally, the phase is computed using Eq. (29). For
this 2D SPSI method the frequency response
is GðωÞ ¼ 4mðsin2 ωx þ sin2 ωyÞ.

Another example is the five-step Hariharan
method [10] that was designed for ωx;ωy ≈

π=2 rad=sample. In this case, the SPSI filter is given
by Eq. (9) along rows
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h2xðsÞ ¼ 2ðs2;l − s4;lÞ ¼ 4m sin2ωx cos β sinϕ;
f xðsÞ ¼ 2s3;l − ðs1;l þ s5;lÞ ¼ 4m sin2ωx cosϕ; ð33Þ

and along columns

h2yðsÞ ¼ 2ðsk;2 − sk;4Þ ¼ 4m sin2ωy sin β sinϕ;
f yðsÞ ¼ 2sk;3 − ðsk;1 þ sk;5Þ ¼ 4m sin2 ωy cosϕ: ð34Þ

Again, the phase is computed using Eq. (29). For this
method, outside the range ωx;ωy ≈ π=2 the recovered
phase presents periodic detuning errors, and the fre-
quency response is GðωÞ ¼ 4mðsin2 ωx þ sin2 ωyÞ,
ωx;ωy ≈ π=2. It is not surprising that the frequency
response coincides with that of the five-step non-
linear asynchronous method of Eqs. (31) and (32).
In fact, for ω ≈ π=2 ðs1 − s5 ≈ 0Þ, the asynchronous
method becomes the linear Hariharan technique.
Although we have centered our discussion on the

use of 1D SPSI methods, the presented technique
can be generalized to any 1D phase demodulation
technique as, for example, the 1D wavelet transform
[13], the windowed Fourier transform [14], or the 1D
phase lock loop [15].
Finally, we must mention the effect of using the or-

ientation angle instead of the fringe direction for
closed-fringe interferograms. The orientation angle
can be computed directly from the irradiance [7];
however, in the case of closed fringes, it cannot de-
scribe the complete set of fringe directions. This is
because the orientation is defined modulo π (from
the local irradiance, we do not know if a fringe is
directed “left” or “right”); then if θ is the orientation
angle,

θ ¼ β � Kπ; ð35Þ

where K is an integer such that 0 ≤ θ ≤ π. From
Eq. (35),

cos θ ¼ ð−1ÞK cos β; sin θ ¼ ð−1ÞK sin β: ð36Þ

For open-fringe interferograms,K ¼ 0, and the use of
orientation and direction is equivalent; however, in
the case of closed-fringe patterns Kðx; yÞ ¼ f0; 1g, if
we apply the steering Eq. (29) with the orientation
instead of the direction, we get

tanϕθ ¼ ð−1ÞKðx;yÞ tanϕ; ð37Þ

where tanϕθ is the 2D phase recovered by using the
orientation. Therefore from Eq. (37) for a closed-
fringe interferogram when the direction is bigger
than π or less than 0, a sign change appears in the
recovered phase. From the point of view of the spatial
frequencies, to have access only to the orientation is
equivalent to ignoring the sign of the ωy component of
the spatial frequency. As a result, the returned phase
will always be monotonic in the y direction with
ωy > 0 all over 2D space.

3. Experimental Results

In the examples presented in this section, the orien-
tation angle is calculated using the method described
in [7], and the direction angle is computed using the
technique of Villa et al. [6].

The first example is a computer generated circular
fringe pattern that helps to clarify the concepts dis-
cussed in the previous sections. We use a 256 × 256
interferogram given by

s ¼ 128þ 128 cos½0:5πðx2 þ y2Þ=256�;
x; y ¼ −128;…; 128: ð38Þ

This is a circular chirp signal with a nonmono-
tonic phase for which the spatial frequency
ranges −0:5π ≤ ωx;ωy ≤ 0:5π.

Figure 1 shows the test interferogram; in this fig-
ure the radial variation of the spatial frequency of
the closed fringes is clear. We demodulate the phase
of this interferogram by steering the asynchronous
SPSI method given by Eqs. (29), (31), and (32).
Figure 2 shows the h2xðsÞ ≈ sinϕ and f xðsÞ ≈ cosϕ
terms given by Eq. (32). In Fig. 2(a), the h2xðsÞ term
shows clearly the abrupt jump due to the horizontal
spatial frequencies sign as well as the lack of modu-
lation predicted by the sin2 ωx factor of Eq. (32). On
the other hand, in Fig. 2(b) the f xðsÞ term shows its
even character, but also it is present in the sin2 ωx
modulation that distorts the circular fringes in the
central vertical line for which ωx ≈ 0.

Figure 3(a) shows the demodulated phase by
means of Eq. (29) but using only the orientation
angle. As predicted in Eq. (37), there is a sign jump
due to the modulo π character of the orientation.
Figure 3(b) shows the demodulated phase using
the fringe direction angle. In this case, the orienta-
tion problem is solved, and the 1D asynchronous
SPSI is effectively steered to demodulate the 2D
closed-fringe single-image interferogram of Fig. 1.
To demonstrate the capability to steer any 1D SPSI,

Fig. 1. Computer generated closed-fringe interferogram.
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Figs. 4(a) and 4(b) depict the phase demodulated by
the steering of the three-step [Eq. (4)] and five-step
[Eq. (9)] SPSI methods, respectively. Although there
are phase errors, the phase jump locations of the
actual phase map are recovered correctly, making
possible the use of refinement techniques to recover
a better estimation for the demodulated phase [12].
In this example the total processing time including
direction computation was 2:7 s.
The next example is a 552 × 736 experimental

Fizeau interferogram. Figure 5(a) shows the manu-
ally masked interferogram, where it is possible to ob-
serve two saddle points and a central closed fringe.
Figure 5(b) shows the demodulated phase using
the asynchronous SPSI method of Eqs. (29), (31),
and (32). As can be seen, the steering has been

correct even in the presence of the saddle points.
For this example the total computing time was 15:7 s.

The next example is a 240 × 256 shadow moiré to-
pography, closed-fringe interferogram. Figure 6(a)
shows the shadow moiré image where one can ob-
serve the typical lack of contrast of this technique
for the high order fringes and also a vertical scratch
due to a grid flaw. In this case, the drawing of a man-
ual mask will be difficult due to the progressive lack
of fringe modulation. Figure 6(b) shows the demodu-
lated phase using the steered asynchronous SPSI
method of Eqs. (29), (31), and (32). As can be seen,
low modulation areas as well as the scratch zone
have been processed without affecting their neigh-
borhood. Figure 6(c) shows the amplitude of the com-
plex phasor from which we calculated the phase of
Fig. 6(b). This amplitude reflects the quality of the
obtained phase. To show this, Fig. 6(d) depicts the
phase unwrapping of Fig. 6(b) by using a simple

Fig. 2. Phasor terms obtained from the processing of the interfer-
ogram of Fig. 1 by the five-step SPSI asynchronousmethod applied
in the horizontal direction: (a) sine term before the sign correction,
(b) cosine term. Note in both images the fringe amplitude toward
the central vertical line predicted by the sin2 ωx term.

Fig. 3. Demodulated phase from the interferogram shown in
Fig. 1 using the steered five-step SPSI asynchronous technique:
(a) using the orientation, note the incorrect demodulation due
to the nonmonotonic phase, and (b) using the direction angle.
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and fast, quality-map guided method [16]. As can be
seen, the results are very good, and the steered spa-
tial phase-stepping method makes possible the auto-
matic processing of a closed-fringe interferogram,
where the direct application of a SPSI method is
not possible and the manual design of a processing
mask is not an obvious task. In this example the total
processing time was 2:5 s.
Finally we demonstrate the suitability of the pro-

posed technique for noisy fringe patterns. As ex-
plained in Section 3, the method is factorized in
two parts: the orientation-direction calculation and
the 1D SPSI demodulation method. The direction
computation method has demonstrated a good beha-
vior with respect to noise [6,7]; in fact, the direction
information is low frequency by definition and can be
separated very effectively from the noise. Therefore,
if we speak about noise, the proposed technique is as
good as the 1D SPSImethod used. Figure 7(a) depicts
a 281 × 251 ESPI out-of-plane deformation interfer-

ogram. In this case we use the adaptive asynchro-
nous five-sample SPSI method [17]. Figure 7(b)
shows the demodulated phase from the fringe
pattern of Fig. 1. Figure 7(c) shows the 3 × 3 aver-
aging sine-cosine low-pass filtered phase map [16].
Finally, for comparison, Figure 7(d) depicts the ESPI
phase map computed using four temporal phase
stepped images. From Fig. 7(c) it is worth noting
the sign inversion in the left-side lower bump with
respect to the temporal phase stepped image. This
is due to the even character of the cosine function
that, in the case of nonconnected closed fringes, does
not permit the distinction between the situations in
which all the bumps are concave, convex, or any con-
cave–convex combination, because the cosine is the
same for all solutions. Therefore this sign inversion
is not an error but a feature of any single-image
closed-fringe interferogram demodulation technique.
To demonstrate the correctness of the demodulated
phase, Fig. 7(e) shows the cosine of the phase

Fig. 4. Demodulated phase from the interferogram of Fig. 1 using
two steered SPSI methods: (a) the five-step Hariharan and (b) the
standard three-step SPSI method.

Fig. 5. (a) Experimental closed-fringe Fizeau interferogram and
(b) demodulated phase using the steered five-step asynchronous
SPSI method.
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depicted in Fig. 7(c). As can be seen, the results
obtained by the proposed technique are very satisfac-
tory compared with the temporal technique. In this
case the total processing time was 4 s.
From the experimental results presented, we can

see that there is a lack of accuracy in the recovered
phase at the fringe centers, saddle points, and con-
stant phase regions. The reason is that, at these
points, the spatial frequencies are null in both direc-
tions. In this case the orientation direction is not de-
fined, and the intensity gradient is null. Under these
conditions the computation of the quadrature term
(b sinϕ) from the intensity signal (bþm cosϕ) is
not possible. Mathematically the quadrature trans-
form [Eq. (21)] is not defined if both spatial frequen-
cies are null. Qualitatively, if the local spatial
frequency of the interferogram is null, there is no
way to separate the background term from the cosi-
noidal term using a single-image interferogram.
Therefore any demodulation technique will have un-
reliable results at saddle points, fringe centers, and
constant phase regions. This problem can only be
solved using a temporal carrier (or that is the same
using more than one image). For single-image inter-
ferograms, this subject can be alleviated incorporat-
ing interpolation-smoothing operations that permit
the processing of these regions if the low phase gra-
dient region is not big and it is surrounded by reliable
fringe data.

4. Conclusions

We have presented a method to generalize any 1D
SPSI method to the 2D case. We have shown that
in the general case of single-image closed-fringe in-
terferograms, the nonmonotonic behavior of the
phase will make any 1D SPSI method yield an incor-
rect demodulated phase. To solve this problem, we
have shown how the direction information can be
used to steer any 1D SPSI filters in order to process
single-image closed-fringe interferograms. This
makes possible the generalization to the general
2D case of all the results obtained in SPSI, for exam-
ple, harmonic rejection and detuning properties. The
result can be applied to any 1D demodulation tech-
nique as wavelet or phase lock loop techniques.

Finally, the proposed technique is simple to imple-
ment. It has two components, the SPSI technique

Fig. 6. (Color online) (a) Experimental shadow moiré topogra-
phy interferogram, (b) demodulated phase using the steered
five-step asynchronous SPSI method, (c) phasor amplitude used
as quality map for unwrapping the phase depicted in Fig. 6(b),
and (d) unwrapped phase using a quality-guided phase unwrap-
ping method.

Fig. 7. (a) Experimental out-of-plane ESPI interferogram, (b) de-
modulated phase using a noise-rejecting SPSI method [17],
(c) 3 × 3 averaging sine-cosine low-pass filtered phase map,
(d) phase map obtained using four temporal phase-shifted images,
(e) cosine of the phase depicted in Fig. 7(c); the comparison with
Fig. 7(a) shows the correctness of the demodulated phase.
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and the orientation-direction computation. The 1D
SPSI techniques used can be as simple as the linear
methods discussed in this work or as elaborate as a
1D spatial wavelet transform. The orientation calcu-
lation is a straightforward arctangent operation
using the intensity gradient [7], and the direction
computation method is based on a path-following
technique with a linear local computation [6]. There-
fore, unless a complicated demodulator is used, the
2D generalization of any 1D SPSI method can be
done using exclusively linear operations and path-
following techniques.
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