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Easy and straightforward construction of wideband
phase-shifting algorithms for interferometry
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We show a practical way for building wideband phase-shifting algorithms for interferometry. The idea pre-
sented combines first- and second-order quadrature filters to obtain wideband phase-shifting algorithms.
These first- and second-order quadrature filters are analogous to the first- and second-order filters commonly
used in communications engineering, named building blocks. We present a systematic way to develop phase-
shifting algorithms with large detuning robustness or large bandwidth. In general, the approach presented
here gives a powerful frequency analysis and design tool for phase-shifting algorithms robust to detuning for
interferometry. © 2009 Optical Society of America
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In this work, we present an easy and straightforward
technique for designing temporal phase-shifting
(TPS) algorithms with large detuning [1]. It is well-
known that TPS algorithms may be regarded also as
quadrature filters tuned at a single temporal fre-
quency. The tuning frequency is the temporal carrier
of interferograms, which in TPS interferometry par-
lance is the phase step used to obtain the interfero-
grams. Here we have adopted a filter construction
strategy typically followed in communications engi-
neering, which is to build larger order quadrature fil-
ters based upon simpler building blocks, namely,
first- and second-order filters. The main advantage of
adopting this strategy is that these lower order dis-
crete quadrature filters may be optimally located in
the frequency space to obtain a quadrature filter with
large detuning robustness (large bandwidth).

In interferometry, interferometric data are ob-
tained as an image called an interferogram. The tem-
poral sampling of interferometric data at a site �x ,y�,
can be modeled as a periodical signal s :R→R in the
following way:

s�t� = ax,y + bx,y cos��x,y + �0t�, t � I, �1�

where ax,y�R and bx,y�R are the dc and contrast
term at site �x ,y�, respectively. �x,y�R is the un-
known phase in that site, and �0�R is the linear
phase shifting or temporal frequency carrier; t is the
temporal sampling. The problem here is the follow-
ing: given a signal like the one shown in Eq. (1), find
a way to recover the unknown phase �x,y. On this
topic we can find several works that deal with this
problem, to mention some of them we can cite [2–10].
Taking a look at previous works around linear phase-
shifting algorithms, we can see that most of the algo-
rithms were developed intuitively, or systematically
using least squares [2,4,5]. Actually, to our knowl-
edge the only work to describe the phase-shifting al-
gorithms in the Fourier domain is that published by
Freishlad and Koliopoulos [11]. Here, we will show
how to design phase-shifting algorithms in the Fou-

rier domain.
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As we said at the beginning, for the TPS demodu-
lation problem we have adopted a filter construction
strategy based on simple building blocks or filters.
Then, let us start by defining the following first- and
second-order basic building blocks:

h1�t� =
i

2
���t − 1� − ��t + 1��, �2�

h2�t� = 2��t� − ��t − 1� − ��t + 1�, �3�

which are a first- and second-order difference opera-
tor, respectively, where ��t� is the Dirac delta func-
tion, and i=�−1. These filters have as a frequency re-
sponse the following expressions:

H1��� = − sin���, �4�

H2��� = 2 − 2 cos���. �5�

These building blocks, can be used as first- and
second-order quadrature filters, respectively. To show
this, take a look at Fig. 1. There, we show the graph-
ics of these difference operators or building blocks in
the Fourier domain. In Fig. 1(a), we show the graphic
of Eq. (4), and in Fig. 1(c), we show the graphic of Eq.
(5). As these building blocks remove the frequency
component at �=0, we see these building blocks as

Fig. 1. (Color online) (a) shows the graphic of Eq. (4), and
(b) shows the graphic of Eq. (5). (c) and (d) show the graph-

ics of Eqs. (4) and (5), shifted (tuned) at �=�0, respectively.
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high-pass filters. On the other hand, if we shift these
building blocks to �=�0, as shown in Figs. 1(b) and
1(d), these building blocks remove the frequency com-
ponent at �=�0. Therefore, we see the shifted build-
ing blocks of Figs. 1(c) and 1(d) as quadrature filters
for signals s :R→R given as s�t�=b cos��+�0t�,
∀�� ,�0��R. That is, if our signal is given as s�t�
=b cos��+�0t�, ∀�� ,�0��R, using a filter shifted
(tuned) to �=�0, like that given in Figs. 1(b) and 1(d),
one obtains an analytical signal s� :R→C given as
s��t�=C exp�i��+�0t��, where constant C�R has to
be with the quadrature filter response. In this way,
the reader can see the building blocks of Eqs. (4) and
(5) as first- and second-order quadrature filters, re-
spectively; however, in this Letter we indistinctly call
these filters building blocks, because they are used to
build more complex filters, as in communications en-
gineering, to obtain wideband phase-shifting algo-
rithms.

Using the building blocks shown in Eqs. (4) and (5),
we can obtain linear phase-shifting algorithms for in-
terferometry. As we said before, the TSP algorithms
may be regarded as quadrature filters tuned at a
single temporal frequency, that is, a quadrature filter
that obtains as a result an analytical signal given as
s��t�=C exp�i��x,y+�0t��, from a real signal like that
shown in Eq. (1). For example, a five-step phase-
shifting algorithm can be obtained by combining a
first-order building block centered at �=0 to remove
the dc term a from Eq. (1), and a second-order build-
ing block shifted (tuned) at �=�0 in the following
way:

H��� = H1���H2�� − �0� = − sin����2 − 2 cos�� − �0��.

�6�

In Fig. 2, we can see the graphic of this quadrature
filter obtained by using the building blocks of Eqs. (4)
and (5). In Fig. 2(a), we show graphically how the
first- and second-order basic building blocks in the
Fourier domain are located apart, while in Fig. 2(b)
we show the quadrature filter obtained as the prod-
uct of these basic building blocks. There, we can see
that this obtained quadrature filter removes both the
dc term at �=0 and the frequency component at �
=�0, which is the tuning frequency. Now, taking the
inverse Fourier transform of the quadrature filter
shown in Eq. (6) we obtain the following convolution
operator for a five-step phase-shifting algorithm:

Fig. 2. (Color online) (a) shows the first- and second-order
building block filters, and (b) shows the product of these
building blocks. We can see in (b) that the quadrature filter
obtained removes the dc term at �=0 and the frequency

component at �=�0.
h�t� = �2��t� − ��t − 2� − ��t + 2��sin��0�/2 + i�2��t − 1�

− 2��t + 1��/2 − i���t − 2� − ��t + 2��cos��0�/2.

�7�

As we want the mathematical formula of the five-step
phase-shifting algorithm, it is necessary convolve
this operator with our interferometric signal of Eq.
(1) and take its angle at t=0. Making this, we obtain
the following formula to recover the phase from a
temporal interferogram phase-shifted sequence:

�x,y = tan−1�2s�− 1� − 2s�1� − �s�− 2� − s�2��cos��0�

�2s�0� − s�− 2� − s�2��sin��0� � ,

�8�

from which, taking the particular case �0=� /2, one
obtains

�x,y = tan−1� 2s�− 1� − 2s�1�

2s�0� − s�− 2� − s�2�� , �9�

which is the classic Hariharan five-step phase-
shifting algorithm [10]. Thus, we can see that the
quadrature filter approach presented here is consis-
tent with the already developed phase-shifting algo-
rithms as particular cases. However, the approach
presented here is more powerful, since we can design
general phase-shifting algorithms in a more easy and
straightforward way than by using the least-squares
approach (see [4,6]) for any arbitrary phase step
�0�R.

Now, let us show how this powerful construction
tool can generate what we call wideband phase-
shifting algorithms. Again, for illustration purposes,
let us show it first in a graphic picture. Taking a look
at Fig. 3(a), we use a first-order quadrature filter lo-
cated at �=0 and three second-order quadrature fil-
ters located at �0=� /4, �1=� /2, and �2=3�� /4�.
Then, taking the product of these quadrature filters,
we obtain the wideband quadrature filter shown in
Fig. 3(b), whose tuning range is almost between 0
and � rad. Mathematically, the quadrature filter of
Fig. 3(b) is the following:

H��� = H1���H2�� − �0�H2�� − �1�H2�� − �2�, �10�

where H1� � and H2� � are the first- and second-order
quadrature filters from Eqs. (4) and (5). Now, taking
the inverse Fourier transform of Eq. (10), we have
the following:

Fig. 3. (Color online) (a) shows the frequency locations of
the basic building blocks used to construct the wideband
quadrature filter shown in (b). The obtained quadrature fil-

ter is the product of these building blocks.
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h�t� = 1
2��t − 4� − �2�2 + 3���t − 2� + �4�2 + 5���t�

− �2�2 + 3���t + 2� + 1
2��t + 4� − i���2 + 1���t − 3�

− �3�2 + 5���t − 1� + �3�2 + 5���t + 1�
− ��2 + 1���t + 3��. �11�

software used to generate the graphics.
Finally, to obtain the mathematical formula for the
wideband phase-shifting algorithm we convolve this
quadrature filter with the signal of Eq. (1) and take
its angle at t=0. Then, we obtain the following nine-
step wideband phase-shifting algorithm:
�x,y = tan−1� ��2 + 1�s�− 3� − �3�2 + 5�s�− 1� + �3�2 + 5�s�1� − ��2 + 1�s�3�
1
2s�− 4� − �2�2 + 3�s�− 2� + �4�2 + 5�s�0� − �2�2 + 3�s�2� + 1

2s�4�� . �12�
Now, let us test it with a simulated signal whose fre-
quency is between 0 and � rad. In Fig. 4 we show this
phase estimation test. Figure 4(a) shows the ground
true phase used to generate the signal. If we take its
derivative, we can see that its frequency is 0 for t
=0 and � for t=256. Figure 4(b) shows the signal un-
der test whose phase is shown in Fig. 4(a). It is nec-
esary to remark that the presentation of the signal’s
graphic suffers from aliasing owing to the limited
resolution of the software used to generate the graph-
ics. Given this signal, we estimated its phase with
Eq. (12), and in Fig. 4(c) we graph the absolute phase
error of the estimated phase, that is ��x,y�t�− �̂x,y�t��,
where �x,y�t� is the ground true phase and �̂x,y�t� is

Fig. 4. (Color online) (a) is the ground true phase, (b) is
the generated signal, and (c) is the absolute phase error of
estimated phase using the wideband phase-shifting algo-
rithm of Eq. (12). Note: The presentation of graphic (b) suf-
fers from aliasing owing to the limited resolution of the
the estimated phase previously unwrapped. There we
can see that the absolute phase error close to the fre-
quencies 0 and � is almost 0.3 rad, and at least zero
between frequencies � /5 and 4�� /5�. This is expected
if we see the frequency response of the algorithm
used in Fig. 3.

Summing up, the quadrature filter approach pre-
sented here is very useful for both describing phase-
shifting algorithms in the Fourier domain and gener-
ating new phase-shifting algorithms with the desired
bandwidth.
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