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We determine the band structure of two-dimensional photonic crystals that are composed of left-handed ma-
terials and dielectrics, based on the numerical solution of the Helmholtz equation by using integral equations.
It is found that plasmonic resonances appear constituting a band that is independent of the filling fraction.
Wide bandgaps are present where the penetration depth of the electromagnetic field inside the photonic crystal
is quite short compared to purely dielectric photonic crystals. © 2007 Optical Society of America
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1. INTRODUCTION

Photonic crystals that constitute periodic arrays of differ-
ent materials in one, two, and three dimensions with unit
cells whose magnitude is on the order of the wavelength
of the light are the subject of much research in recent
years because of their potential to develop completely op-
tical integrated circuits [1-7].

It has been proved in the past several years that adding
new materials to the structure of photonic crystals results
in novel properties of these systems that were originally
conceived as composed of purely dielectric materials.
Some of the more interesting properties present in these
systems are light confinement [8], waveguiding [5-7],
negative refraction [9], high refraction through the super-
prism effect [10,11], and signal commutation by including
defects of nonlinear materials [12]. Quite recently a light
controlled commuting device has been obtained that has a
response on the order of picoseconds [1].

Other kinds of structured materials that have recently
attracted much interest are the left-handed materials
(LHMs), which owe their name to the fact that the light
vectors E, H, and £ form a left-handed triad for a wave
propagating through these media. LHM were first de-
signed as periodic arrays of metallic capacitors and wires
with a unit cell of dimensions much smaller than the
wavelength. Although fundamental experiments with
LHMs have been developed for the microwave region of
the electromagnetic spectrum [13], promising theoretical
results exist indicating that LHM will be available soon
for the visible region of the spectrum by the use of nano-
technology [14].

In recent theoretical studies it also has been found that
including LHM into the unit cell of one-dimensional pho-
tonic crystals can drastically change their band structure
[15-17], producing interface mode bands that are not
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present in completely dielectric systems [18]. Also a tun-
nel effect appears in the middle of some bandgaps that is
a consequence of the fact that the total optical path sums
zero phase retardation under certain conditions. Brewster
points that produce narrowing and closing of bandgaps
could also appear in both polarizations [19].

In this context, the present work is concerned with de-
termination of the optical response and band structure of
two-dimensional photonic crystals that include LHMs and
dielectrics (LR2DPC) by applying a numerical method
based on Green’s second identity to solve the Helmholtz
equation.

2. THEORY

Assuming a sinusoidal time dependence e~*“* for the elec-
tromagnetic fields, the wave equation can be transformed
to the Helmholtz equation:

VA7) + kIW(7) = 0. (1)

In this equation W;(7) represents the electric field E, in
the case of TE polarization, and the magnetic field H, in
the case of TM polarization, both in the jth medium (Fig.
1). The magnitude of the wave vector is given by

1)
kj= nj(w);7 (2)

where the refractive index nj(w)= + V’Mj(a))aj(w) that in-
volves the material’s properties is given in terms of the
magnetic permeability u;(w) and the electric permittivity
is given by &;(w), both of these functions depending on the
frequency w. The speed of light is indicated by c. The sign
appearing in the refractive index equation must be taken
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Fig. 1. Unit cell of a 2DPC composed of two different materials
with refractive indices n;(w) and ny(w). The two different regions
are limited by the contours I'y, [, ...,I',, whose normal vectors
are given in the figure. Dashed curves represent closed contours
inside each medium.

as negative when considering an LHM and positive when
the medium is a dielectric material.

With LR2DPC, the position vector 7 will be a two-
dimensional vector in the x—y plane, since we are assum-
ing a periodic array of rods of square or circular section
that are infinitely long with their symmetry axis aligned
with the z axis. For brevity we will use the term unit cell
with square or circular inclusion, although it is possible to
consider a transversal section of arbitrary shape.

Let us now consider the equation involving the Green’s
function G;(7,r"),

V2G,(F, ”)+k2G(* r')y=-4m8r-r'), (3)

where 8(7—r1) is the Dirac delta function. In our problem,
which has cylindrical symmetry (electromagnetic field in-
dependent of z), a useful Green’s function can be repre-
sented by

G,(F,7") =imH (k|7 - 7)), (4)

where H, Bl)(g) is a Hankel function of the first kind and or-
der zero [20—22].

By applying the two-dimensional Green’s second inte-
gral theorem to W;(r') and G,(r,r") for each region corre-
sponding to the jth medium, we have [20]

fa(f'-r*)«w) ——35 {G(**/ A7)
S;

9G;(F,F") }
- —\If A7) s’ ()

&nj

In this equation, the surface S; is limited by the corre-
sponding closed contour Cj, and d/dn; is the derivative
along the outward normal to contour C;. The contours
present in the unit cell are Ci=T" +Iy+I'.+I'y+I, and

Cy=T, (see Fig. 1). From Eq. (5) a set of coupled integral

equations for ¥; and 9¥;/dn; can be obtained, evaluating r

J oy
in the vicinity of the contours.

The geometry of the problem is described by represent-
ing the points of the profiles with Cartesian coordinates,
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Fig. 2. Scheme of a finite LR2DPC. The integration contours are
indicated in dashed curves. R, and R, represent the regions en-
closing the incident and transmission media, respectively.

X(s), Y(s), as parametric functions of the arc length s, and
their derivatives X'(s), Y'(s), X"(s), and Y"(s) up to the
second order. These parametric functions are numerically

generated by sampling the profiles I'y,I,...,I",, by the
position vectors,
n(q)_( n(q)» n(q) [X(sn(q))’Y(sn(q))]’ (6)

where g=a,b, ... ,e is used to denote the different integra-
tion paths I'y,I'y,...,I,, and n=1,2,...,N, denotes their
corresponding points resulting from a given partition. We
called N, the number of points taken along the corre-
sponding contour I';. Then, we have a total of N,+N,
+N,+N;+N, sampling points.

The discrete approximations of the two different terms
appearing in Eq. (5) are [20-22]

1 _ 9G; (F r') :
er \P( )———ds'= E mn(q)‘pgztz)’ )
q
1 JRTA 400 N S
ETJ Gj(r,r') ds' = 2 Lr(it)n(q)q)(r{()q)’ ®)
Fq n=1

where qu‘gq): ¥(7)71-k,,, indicates the fields and
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Fig. 3. (Color online) Dielectric function and magnetic perme-
ability of a dispersive LHM as a function of frequency.
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Fig. 4. (Color online) Band structure under TE polarization and
normal incidence (8=0) for a 1IDPC whose unit cell is composed
of two materials, vacuum (n;) and a LHM (n,), with d;=0.3D,
dy=0.7D. Solid curves indicate the results obtained with the pro-
posed method, while dashed curves correspond to results ob-
tained by the characteristic matrix method.
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Fig. 5. (Color online) Band structure under TM polarization.
Same parameters as the previous figure.
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(7'
dY) = w](r)
n(q) an/j i
~nlg)

their corresponding normal derivatives. m indicates the
mth point [observer’s coordinates r=(x,,,y,,)] along the

contour I', with p=a,b, ... ,e. The matrix elements, ngn(q)
and N’(Qn( o are given by
0 iAs Q) 1As @
Lywog= THO (Rjdn(g) (1 = Opng) + THO
As
X kj% Smn(q)s 9)
iAs D
) 1 mn(q)
Ninnigy= 5 B i) 7——(1 = 8g)
mn(q)
1 As .
+ 5 + EDn(q) 5mn(q), (10)
where
dmn(q) = \’/(Xm _)(n(q))2 + (Ym - Yn(q))za (11)

Dmn(q) == Yr,z(q)(Xm _Xn(q)) +Xr,z(q)(Ym - Yn(q))’ (12)

D,y =Xt Y i) = Xt Yntar» (13)
and H (11)(§) is a Hankel function of the first kind and order
one. The function &, represents the Kronecker delta,
and As is the arc length between two consecutive points of
any contour. In Eqgs. (12) and (13), we have defined

X’n(q)EX’(s)|s=Sn(q), X’,;(q)EX”(s)|s=sn(q), and so forth. Al-

though the notation including n(g) in the functions ng (

. n(q)’
NEQ n(g) S€emS to be redundant, it is necessary to indicate
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Fig. 6. (Color online) Band structure of a LR2DPC with a square Bravais lattice and square inclusions under TE polarization. The inset
on the left shows the unit cell in the real space; the right inset shows the first Brillouin zone in the % space.
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Fig. 7. (Color online) Same system as previous figure under TM polarization.

the contour where these functions will be evaluated. The
boundary conditions at the contour I', are

fa

1) _\p@2) (2) _ 1)
\Pn(e) \I,n(e)’ q)n(e) Fq)n(e)’ (14)

where the quantity f; is given by

u(w) for TE polarization
fi= . . (15)
gj(w) for TM polarization
Given the translation symmetry through a LR2DPC,
based on the Floquet theorem, we can state that

W(F +R) = W(7)eKR, (16)

where K is the two-dimensional Bloch vector and I%:Dxf
+Dyj with D, and D, representing the unit cell dimen-
sions. With this periodicity condition it can be shown that

W gy kD, D) O KD, D ) KD,
\I,n(c)_q,n(a)el ’ ch(c) cbn(a)el ’ \Pn(d) ‘Pn(b)l

and CD;I(L)——QDS()Z)) KDy Tt is worth mentioning that the
sign on the normal derivatives is opposite because the
normal to corresponding contours are in the opposite di-
rection (Fig. 1).

We can use the conditions given by Eqs. (14) and the
periodicity conditions to obtain a set of 2N, +2N,+2N, ho-
mogeneous algebraic equations (the periodicity conditions
require that N,=N, and Ny=N).

For the region R; (with u; and &;) we have

n(c) n(a mn(a)

K D, A7(1) (1) (1)
2 ]V(mn(a)-'—elxme )+2( L
n=1

iK.D,7 (1) (1) (1) iK,D, (1)
+ el * men + 2 (Nmn( + el mn(d n(b)

iK,D, 1 (1) (1) (1)
e’ Lmn(d)) (b)+EN

mn(e) n(e)

N,
(1)
+ E (= Lonp) +e
n=1

Fig. 8.

(Color online) Magnetic field intensity distribution at the reduced frequency of w=0.87 located within the first bandgap. The

region outside the LR2DPC corresponds to a near field (10 D). The incident beam goes from the left to the right. In this case the ampli-
tude of the field in the transmission region has been amplified by a factor of an order of 10° to get a visible pattern.
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(1) —
- ELmn(e) (e)_o’ (17)

where, as it was previously stated, m=1,2,...
=a,b,...,e. For the region R, we have

,N,, for p

fo e Ne
—> LY ol + 2 (Smnie) = Nione) Wi, =0, (18)
1n=1

mn(e) * n(e mn(e nle

remembering that in this case m=1, 2,...,N,. So, these
last two equations give a system of 2N, +2N,+2N, equa-
tions.

It is worth mentioning that different equations result
when p=a,b,...,e and m=1,2,...,N,. These equations
determine a square matrix M of range 2N,+2N,+2N,,
whose determinant must be zero. By defining the real
function,

D,(k, ) =1n(|Det(M))), (19)

the singularity points of D,(k,w) will give us the disper-
sion relation w=w(k), to determine the band structure.

3. ELECTROMAGNETIC FIELD
DISTRIBUTION

The integral method is also suitable for calculating the
electromagnetic field distribution in the near- and far-
field regions of the space for a truncated finite photonic
crystal (Fig. 2). Applying the Green’s theorem to the
vacuum incident region with an incident wave (Fig. 2), we
obtain the total field [20—22]

1 IGo(F, )
\I’(F) = \Pinc(ﬂ + f
47 ). any
1

o aqfo(f')}
’ dS,,

o)

- Gy(r,r") (20)

!

onq

where V;,.(r) stands for the incident field and Gy(r,7’) is
Green’s function in the vacuum region.

By considering the boundary conditions on the field and
its normal derivative along the different contours I', (Fig.
2), the system of equations for a finite LR2DPC can be ex-
pressed as

(0) (1) (0) (1) i
E[gmn(l)_Nmn(l)]lp (1)+ ELmn(l) ) = ¥n's (21)
n=1

1
(1) (1) (1) (1) (1)
_ENmn(l) )+2Lmn(1 n(1) ~ E mn(Z) Un(2)
n=1
Ny

(1) (1) (1)
+ E Lmn(2) (2) e E Noanig) i)

W _
+ 2 Ly @i =0, (22)

Nz
o @ 40 _
2 [ mn(2) ~ mn(Z)] n(2) + _E Lmn(Z)ch(Z) - 07 (23)
n=1
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N3
2 [5mn(3)
n=1

(2 (1)
mn(3)]¢ (3)+ ELmL@) n3=0, (24

(1) (2) (1) —
E [ mn(qg-1) ~ mn(q 1) n(g— 1)+_2 Lmn(q 1) n(q—l)_o’

(25)

q
(3) (1> @ P _
E [5mn(q) Nmn(q)] i) T _2 Lmn(q nig) = 0. (26)
n=1

It is assumed in this case (see Fig. 2) that the incidence
medium has the optical properties given by the magnetic
permeability ug and electric permittivity ¢,, the medium
containing the inclusions has the properties given by
m1,€1, the inclusions have the properties ws,e9, and the
transmission medium’s properties are given by wus,es.
Equations (21)—(26) constitute an inhomogeneous system
of ZEZZINP linear equations that can be solved numeri-
cally to determine the fields and their normal derivative
along all the contours. Consequently the electromagnetic
field at any point in the space (given by 7) can be deter-
mined with these contour fields by using Eq. (5) or (20) in
the case that the point in question resides inside the in-
cident region.

4. BAND STRUCTURE

The unit cell we are considering in the following discus-
sion is composed of vacuum and a dispersive LHM whose
optical properties are given by the dielectric function
[18,23]

Wp
Sp(w) =1- }, (27)
and the magnetic permeability
Fo?
pp(@)=1-——. (28)
W — wy

These functions are shown in Fig. 3 with the parameters

=10c¢/D, wy=4c/D, and F=0.56 [18,23]. The region
where this LHM presents a negative refractive index is
within the frequency range wy<w<wpy with wpy
= wo/ \ﬁ

In Fig. 3 and those that follow we will be using the re-
duced units of frequency given by @=wD/2mc and %
=kD/2m, where ¢ stands for the speed of light and D is a
normalization constant that we choose to be the dimen-
sion of the side of a square unit cell (D=D,=D,). In re-
duced units the plasma and the resonance frequencies are
©,=1.592 and wy=0.637, respectively.

As a previous step to calculating the LR2DPC band
structure we briefly considered the calculation of the band
structure of a one-dimensional photonic crystal (LR1DPC)
in order to compare the results with an analytical method
[19,24]. The results are shown in Figs. 4 and 5 for the
band structures (both polarizations) of a LR1DPC.
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Fig. 9. (Color online) Magnitude of the magnetic field H at the

line x=0 and the position indicated by the dashed—dotted line. At
this frequency (wy=0.87) the field strongly decays within one
period.

The band structures of a LR2DPC have similar charac-
teristics to those of dielectric two-dimensional photonic
crystals for different filling fractions. However, some in-
teresting features appear due to the presence of LHMs. In
Figs. 6 and 7 we have the band structures of a LR2DPC
that has a metamaterial square inclusion with a filling
fraction f=0.5. To determine these band structures we
used the partition As=D/20w®,,;,, with w,,;, the minimum
frequency of the interval shown in the corresponding
graph.

A peculiar band, which is independent of the filling
fraction and is due to plasmonic modes at the interface

180

Fig. 10.
amplified ~10° in order to make it visible on the graphic.

270
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LHM vacuum, appears under TE polarization at ®
=0.735 (see Fig. 6). The characteristic frequency where
these modes appear can be calculated in terms of the
asymptotic limit w=w\2/(2-F), which results from the
dispersion relation

> 2 w® EoM1 — EgM1
ky+ GP = 5 pape| —5——— | (29)
¢ Myt

as |k +G| goes to infinity [18,25], where %, represents the
parallel (to I'; in Fig. 2) component of the Bloch wave vec-
tor and G stands for a reciprocal lattice vector. It is evi-
dent to observe that at the limit when uy— u; (at the fre-
quency where the pla§monic modes appears) each value of
G in the vector £ +G contributes with one band within
the first Brillouin zone that is piled up around the fre-
quency mode.

This system also presents a wide bandgap (TM polar-
ization) within the spectral region where the inclusions
have a negative refractive index. The electric field inten-
sity distribution is shown in Fig. 8 for a Gaussian normal
incident beam that is eight periods wide and has a fre-
quency w;=0.87 (in the middle of the bandgap). It is
worth noticing that the decaying length of the field is
quite short in contrast to completely dielectric systems in
spite of having small contrast in the optical properties of
both media air LHM (n5=-0.694) (see Fig. 9). For the cal-
culation of field distribution we considered a partition
step As=D/20w;. The far-field intensity as a function of
the scattering angle is shown in Fig. 10. Energy conser-
vation is a measure of the precision of the algorithm. In

(Color online) Scattered far field. The LR2DPC is in the plane y=0. The transmission intensity of the field (180°-360°) was
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Fig. 11. (Color online) Band structure of a LR2DPC with a square Bravais lattice and circular inclusions of LHM under TE polarization.

this example, adding the reflected and transmitted en-
ergy of the scattered field, we have an error of ~2.5%,
mainly from light that is lost through the lateral con-
tours.

If we now consider a LR2DPC with circular inclusions
of LHM and the same filling fraction f=0.5 of the previous
example, the band structure is shown in Figs. 11 and 12.
In this case we also have a wide bandgap in the region of
high frequencies, and the peculiar band due to plasmonic
modes [15,23,25] appears at the frequency w=0.754 (TE
polarization). The localization of this resonance can be
clearly appreciated in Fig. 13, where we show the com-
parison of the determinants of both LR2DPC (with cylin-
drical and square inclusions) corresponding to the point
M of the band structures in Figs. 6 and 11.

5. CONCLUSIONS

Dispersive left-handed materials (LHMs) of well-known
properties were introduced to the structure of two-
dimensional photonic crystals to study their properties.
The idea of considering these systems was twofold; be-
sides studying the band structure of LR2DPC, we tested
the stability of the proposed integral method when consid-
ering dispersive materials. Some facts that deserve to be
mentioned in this section are the presence of wide band-
gaps where the light has a shallow penetration inside the
crystal and the formation of interface bands. These plas-
monic modes appear because of the presence of dielectric-
LHM interfaces, which state the condition for their
existence.

0.94 F = /
092 F ]
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0.88 F .
0.86 [ P IR
084 | " >
082 | o

C 0.8 E_ / //“" \'___/

o C //

0.78 \/ e
076 F \\_
072 F e o ==
0.7 '_'"—-.m-L: ———
oce & T

207
=

Fig. 12. (Color online) Band structure of LR2DPC under TM polarization. Same parameters as previous figure.
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Fig. 13. (Color online) Comparison of determinants at the point

M for both LR2DPCs with square and cylindrical inclusions, re-
spectively. TE polarization.
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