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Band structure of two-dimensional photonic
crystals that include dispersive left-

handed materials and dielectrics in the unit cell
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We determine the band structure of two-dimensional photonic crystals that are composed of left-handed ma-
terials and dielectrics, based on the numerical solution of the Helmholtz equation by using integral equations.
It is found that plasmonic resonances appear constituting a band that is independent of the filling fraction.
Wide bandgaps are present where the penetration depth of the electromagnetic field inside the photonic crystal
is quite short compared to purely dielectric photonic crystals. © 2007 Optical Society of America

OCIS codes: 290.0290, 240.6690.
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. INTRODUCTION
hotonic crystals that constitute periodic arrays of differ-
nt materials in one, two, and three dimensions with unit
ells whose magnitude is on the order of the wavelength
f the light are the subject of much research in recent
ears because of their potential to develop completely op-
ical integrated circuits [1–7].

It has been proved in the past several years that adding
ew materials to the structure of photonic crystals results

n novel properties of these systems that were originally
onceived as composed of purely dielectric materials.
ome of the more interesting properties present in these
ystems are light confinement [8], waveguiding [5–7],
egative refraction [9], high refraction through the super-
rism effect [10,11], and signal commutation by including
efects of nonlinear materials [12]. Quite recently a light
ontrolled commuting device has been obtained that has a
esponse on the order of picoseconds [1].

Other kinds of structured materials that have recently
ttracted much interest are the left-handed materials
LHMs), which owe their name to the fact that the light
ectors E� , H� , and k� form a left-handed triad for a wave
ropagating through these media. LHM were first de-
igned as periodic arrays of metallic capacitors and wires
ith a unit cell of dimensions much smaller than the
avelength. Although fundamental experiments with
HMs have been developed for the microwave region of
he electromagnetic spectrum [13], promising theoretical
esults exist indicating that LHM will be available soon
or the visible region of the spectrum by the use of nano-
echnology [14].

In recent theoretical studies it also has been found that
ncluding LHM into the unit cell of one-dimensional pho-
onic crystals can drastically change their band structure
15–17], producing interface mode bands that are not
0740-3224/07/123091-8/$15.00 © 2
resent in completely dielectric systems [18]. Also a tun-
el effect appears in the middle of some bandgaps that is
consequence of the fact that the total optical path sums

ero phase retardation under certain conditions. Brewster
oints that produce narrowing and closing of bandgaps
ould also appear in both polarizations [19].

In this context, the present work is concerned with de-
ermination of the optical response and band structure of
wo-dimensional photonic crystals that include LHMs and
ielectrics (LR2DPC) by applying a numerical method
ased on Green’s second identity to solve the Helmholtz
quation.

. THEORY
ssuming a sinusoidal time dependence e−i�t for the elec-

romagnetic fields, the wave equation can be transformed
o the Helmholtz equation:

�2�j�r�� + kj
2�j�r�� = 0. �1�

In this equation �j�r�� represents the electric field Ez in
he case of TE polarization, and the magnetic field Hz in
he case of TM polarization, both in the jth medium (Fig.
). The magnitude of the wave vector is given by

kj = nj���
�

c
, �2�

here the refractive index nj���= ±��j����j��� that in-
olves the material’s properties is given in terms of the
agnetic permeability �j��� and the electric permittivity

s given by �j���, both of these functions depending on the
requency �. The speed of light is indicated by c. The sign
ppearing in the refractive index equation must be taken
007 Optical Society of America
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s negative when considering an LHM and positive when
he medium is a dielectric material.

With LR2DPC, the position vector r� will be a two-
imensional vector in the x–y plane, since we are assum-
ng a periodic array of rods of square or circular section
hat are infinitely long with their symmetry axis aligned
ith the z axis. For brevity we will use the term unit cell
ith square or circular inclusion, although it is possible to

onsider a transversal section of arbitrary shape.
Let us now consider the equation involving the Green’s

unction Gj�r� ,r���,

�2Gj�r�,r��� + kj
2Gj�r�,r��� = − 4���r� − r���, �3�

here ��r� −r�� � is the Dirac delta function. In our problem,
hich has cylindrical symmetry (electromagnetic field in-
ependent of z), a useful Green’s function can be repre-
ented by

Gj�r�,r��� = i�H0
�1��kj�r� − r����, �4�

here H0
�1���� is a Hankel function of the first kind and or-

er zero [20–22].
By applying the two-dimensional Green’s second inte-

ral theorem to �j�r��� and Gj�r� ,r��� for each region corre-
ponding to the jth medium, we have [20]

�
Sj

��r�� − r���j�r���dA� =
1

4�
�

Cj

�Gj�r�,r���
��j�r���

�n�j

−
�Gj�r�,r���

�n�j

�j�r����ds�. �5�

In this equation, the surface Sj is limited by the corre-
ponding closed contour Cj, and � /�nj is the derivative
long the outward normal to contour Cj. The contours
resent in the unit cell are C1=�a+�b+�c+�d+�e and
2=�e (see Fig. 1). From Eq. (5) a set of coupled integral
quations for �j and ��j /�nj can be obtained, evaluating r�
n the vicinity of the contours.

The geometry of the problem is described by represent-
ng the points of the profiles with Cartesian coordinates,

ig. 1. Unit cell of a 2DPC composed of two different materials
ith refractive indices n1��� and n2���. The two different regions
re limited by the contours �a, �b , . . . ,�e, whose normal vectors
re given in the figure. Dashed curves represent closed contours
nside each medium.
a

�s�, Y�s�, as parametric functions of the arc length s, and
heir derivatives X��s�, Y��s�, X��s�, and Y��s� up to the
econd order. These parametric functions are numerically
enerated by sampling the profiles �a ,�b , . . . ,�e, by the
osition vectors,

R� n�q� = �Xn�q�,Yn�q�� = 	X�sn�q��,Y�sn�q��
, �6�

here q=a ,b , . . . ,e is used to denote the different integra-
ion paths �a ,�b , . . . ,�e, and n=1,2, . . . ,Nq denotes their
orresponding points resulting from a given partition. We
alled Nq the number of points taken along the corre-
ponding contour �q. Then, we have a total of Na+Nb
Nc+Nd+Ne sampling points.
The discrete approximations of the two different terms

ppearing in Eq. (5) are [20–22]

1

4�
�

�q

�j�r���
�Gj�r�,r���

�n�
ds� � �

n=1

Nq

Nmn�q�
�j� 	n�q�

�j� , �7�

1

4�
�

�q

Gj�r�,r���
��j�r���

�n�
ds� � �

n=1

Nq

Lmn�q�
�j� 
n�q�

�j� , �8�

here �n�q�
�j� = �	j�r����r��=R� n�q�

indicates the fields and

ig. 2. Scheme of a finite LR2DPC. The integration contours are
ndicated in dashed curves. R0 and Rq represent the regions en-
losing the incident and transmission media, respectively.

ig. 3. (Color online) Dielectric function and magnetic perme-

bility of a dispersive LHM as a function of frequency.
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n�q�
�j� =  �	j�r���

�n�j


r��=R� n�q�

,

heir corresponding normal derivatives. m indicates the
th point [observer’s coordinates r� = �xm ,ym�] along the

ontour �p with p=a ,b , . . . ,e. The matrix elements, Lmn�q�
�j�

nd Nmn�q�
�j� , are given by

Lmn�q�
�j� =

i�s

4
H0

�1��kjdmn�q���1 − �mn�q�� +
i�s

4
H0

�1�

��kj

�s

2e��mn�q�, �9�

Nmn�q�
�j� =

i�s

4
kjH1

�1��kjdmn�q��
Dmn�q�

dmn�q�
�1 − �mn�q��

+ �1

2
+

�s

4�
Dn�q�� ��mn�q�, �10�

here

dmn�q� = ��Xm − Xn�q��2 + �Ym − Yn�q��2, �11�

Dmn�q� = − Yn�q�� �Xm − Xn�q�� + Xn�q�� �Ym − Yn�q��, �12�

Dn�q�� = Xn�q�� Yn�q�� − Xn�q�� Yn�q�� , �13�

nd H1
�1���� is a Hankel function of the first kind and order

ne. The function �mn�q� represents the Kronecker delta,
nd �s is the arc length between two consecutive points of
ny contour. In Eqs. (12) and (13), we have defined

X�n�q��X��s��s=sn�q�
, �Xn�q�� �X��s��s=sn�q�

, and so forth. Al-

hough the notation including n�q� in the functions Lmn�q�
�j� ,

mn�q�
�j� seems to be redundant, it is necessary to indicate

is lattice and square inclusions under TE polarization. The inset
he first Brillouin zone in the k space.
ig. 4. (Color online) Band structure under TE polarization and
ormal incidence �̄=0� for a 1DPC whose unit cell is composed
f two materials, vacuum �n1� and a LHM �n2�, with d1=0.3D,
2=0.7D. Solid curves indicate the results obtained with the pro-
osed method, while dashed curves correspond to results ob-
ained by the characteristic matrix method.
ig. 5. (Color online) Band structure under TM polarization.
ame parameters as the previous figure.
ig. 6. (Color online) Band structure of a LR2DPC with a square Brava
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he contour where these functions will be evaluated. The
oundary conditions at the contour �e are

�n�e�
�1� = �n�e�

�2� , 
n�e�
�2� =

f2

f1

n�e�

�1� , �14�

here the quantity fj is given by

fj = ��j��� for TE polarization

�j��� for TM polarization� . �15�

Given the translation symmetry through a LR2DPC,
ased on the Floquet theorem, we can state that

��r� + R� � = ��r��eiK� ·R� , �16�

here K� is the two-dimensional Bloch vector and R� =Dxî
Dyĵ with Dx and Dy representing the unit cell dimen-
ions. With this periodicity condition it can be shown that

n�c�
�1� =�n�a�

�1� eiKxDx, 
n�c�
�1� =−
n�a�

�1� eiKxDx, �n�d�
�1� =�n�b�

�1� eiKyDy,

Fig. 7. (Color online) Same system

ig. 8. (Color online) Magnetic field intensity distribution at th
egion outside the LR2DPC corresponds to a near field �10 D�. Th
nd 
n�d�
�1� =−
n�b�

�1� eiKyDy. It is worth mentioning that the
ign on the normal derivatives is opposite because the
ormal to corresponding contours are in the opposite di-
ection (Fig. 1).

We can use the conditions given by Eqs. (14) and the
eriodicity conditions to obtain a set of 2Na+2Nb+2Ne ho-
ogeneous algebraic equations (the periodicity conditions

equire that Nc=Na and Nb=Nd).
For the region R1 (with �1 and �1) we have

�
n=1

Na

�Nmn�a�
�1� + eiKxDxNmn�c�

�1� ��n�a�
�1� + �

n=1

Na

�− Lmn�a�
�1�

+ eiKxDxLmn�c�
�1� �
n�a�

�1� + �
n=1

Nb

�Nmn�b�
�1� + eiKyDyNmn�d�

�1� ��n�b�
�1�

+ �
n=1

Nb

�− Lmn�b�
�1� + eiKyDyLmn�d�

�1� �
n�b�
�1� + �

n=1

Ne

Nmn�e�
�1� �n�e�

�1�

vious figure under TM polarization.

ced frequency of �̄=0.87 located within the first bandgap. The
ent beam goes from the left to the right. In this case the ampli-
as pre
e redu
e incid

ude of the field in the transmission region has been amplified by a factor of an order of 109 to get a visible pattern.
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− �
n=1

Ne

Lmn�e�
�1� 
n�e�

�1� = 0, �17�

here, as it was previously stated, m=1,2, . . . ,Np for p
a ,b , . . . ,e. For the region R2 we have

f2

f1
�
n=1

Ne

Lmn�e�
�2� 
n�e�

�1� + �
n=1

Ne

��mn�e� − Nmn�e�
�2� ��n�e�

�1� = 0, �18�

emembering that in this case m=1, 2, . . . ,Ne. So, these
ast two equations give a system of 2Na+2Nc+2Ne equa-
ions.

It is worth mentioning that different equations result
hen p=a ,b , . . . ,e and m=1,2, . . . ,Np. These equations
etermine a square matrix M of range 2Na+2Nb+2Ne,
hose determinant must be zero. By defining the real

unction,

Dt�k,�� = ln��Det�M���, �19�

he singularity points of Dt�k ,�� will give us the disper-
ion relation �=��k�, to determine the band structure.

. ELECTROMAGNETIC FIELD
ISTRIBUTION
he integral method is also suitable for calculating the
lectromagnetic field distribution in the near- and far-
eld regions of the space for a truncated finite photonic
rystal (Fig. 2). Applying the Green’s theorem to the
acuum incident region with an incident wave (Fig. 2), we
btain the total field [20–22]

��r�� = �inc�r�� +
1

4�
�

�1

� �G0�r�,r���

�n1�
�0�r���

− G0�r�,r���
��0�r���

�n1�
�ds�, �20�

here �inc�r�� stands for the incident field and G0�r� ,r��� is
reen’s function in the vacuum region.
By considering the boundary conditions on the field and

ts normal derivative along the different contours �p (Fig.
), the system of equations for a finite LR2DPC can be ex-
ressed as

�
n=1

N1

	�mn�1� − Nmn�1�
�0� 
	n�1�

�1� +
f0

f1
�
n=1

N1

Lmn�1�
�0� 
n�1�

�1� = 	m
inc, �21�

− �
n=1

N1

Nmn�1�
�1� 	n�1�

�1� + �
n=1

N1

Lmn�1�
�1� 
n�1�

�1� − �
n=1

N2

Nmn�2�
�1� 	n�2�

�1�

+ �
n=1

N2

Lmn�2�
�1� 
n�2�

�1� + ¯ − �
n=1

Nq

Nmn�q�
�1� 	n�q�

�1�

+ �
n=1

Nq

Lmn�q�
�1� 
n�q�

�1� = 0, �22�

�
n=1

N2

	�mn�2� − Nmn�2�
�2� 
	n�2�

�1� +
f2

f1
�
n=1

N2

Lmn�2�
�2� 
n�2�

�1� = 0, �23�
�
n=1

N3

	�mn�3� − Nmn�3�
�2� 
	n�3�

�1� +
f2

f1
�
n=1

N3

Lmn�3�
�2� 
n�3�

�1� = 0, �24�

¯

�
n=1

Nq−1

	�mn�q−1� − Nmn�q−1�
�2� 
	n�q−1�

�1� +
f2

f1
�
n=1

Nq−1

Lmn�q−1�
�2� 
n�q−1�

�1� = 0,

�25�

�
n=1

Nq

	�mn�q� − Nmn�q�
�3� 
	n�q�

�1� +
f3

f1
�
n=1

Nq

Lmn�q�
�3� 
n�q�

�1� = 0. �26�

It is assumed in this case (see Fig. 2) that the incidence
edium has the optical properties given by the magnetic

ermeability �0 and electric permittivity �0, the medium
ontaining the inclusions has the properties given by
1,�1, the inclusions have the properties �2,�2, and the

ransmission medium’s properties are given by �3,�3.
quations (21)–(26) constitute an inhomogeneous system
f 2�p=1

q Np linear equations that can be solved numeri-
ally to determine the fields and their normal derivative
long all the contours. Consequently the electromagnetic
eld at any point in the space (given by r�) can be deter-
ined with these contour fields by using Eq. (5) or (20) in

he case that the point in question resides inside the in-
ident region.

. BAND STRUCTURE
he unit cell we are considering in the following discus-
ion is composed of vacuum and a dispersive LHM whose
ptical properties are given by the dielectric function
18,23]

�p��� = 1 −
�p

2

�2 , �27�

nd the magnetic permeability

�p��� = 1 −
F�2

�2 − �0
2 . �28�

hese functions are shown in Fig. 3 with the parameters
p=10c /D, �0=4c /D, and F=0.56 [18,23]. The region
here this LHM presents a negative refractive index is
ithin the frequency range �0����LM with �LM
�0 /�1−F.
In Fig. 3 and those that follow we will be using the re-

uced units of frequency given by �̄=�D /2�c and k̄
kD /2�, where c stands for the speed of light and D is a
ormalization constant that we choose to be the dimen-
ion of the side of a square unit cell �D=Dx=Dy�. In re-
uced units the plasma and the resonance frequencies are

¯ p=1.592 and �̄0=0.637, respectively.
As a previous step to calculating the LR2DPC band

tructure we briefly considered the calculation of the band
tructure of a one-dimensional photonic crystal (LR1DPC)
n order to compare the results with an analytical method
19,24]. The results are shown in Figs. 4 and 5 for the
and structures (both polarizations) of a LR1DPC.
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The band structures of a LR2DPC have similar charac-
eristics to those of dielectric two-dimensional photonic
rystals for different filling fractions. However, some in-
eresting features appear due to the presence of LHMs. In
igs. 6 and 7 we have the band structures of a LR2DPC
hat has a metamaterial square inclusion with a filling
raction f=0.5. To determine these band structures we
sed the partition �s=D /20�̄min, with �̄min the minimum

requency of the interval shown in the corresponding
raph.

A peculiar band, which is independent of the filling
raction and is due to plasmonic modes at the interface

ig. 9. (Color online) Magnitude of the magnetic field H at the
ine x=0 and the position indicated by the dashed–dotted line. At
his frequency ��̄0=0.87� the field strongly decays within one
eriod.

ig. 10. (Color online) Scattered far field. The LR2DPC is in t
9

HM vacuum, appears under TE polarization at �̄
0.735 (see Fig. 6). The characteristic frequency where

hese modes appear can be calculated in terms of the
symptotic limit �=�0�2/ �2−F�, which results from the
ispersion relation

�k� � + G� �2 =
�2

c2 �1�2��2�1 − �2�1

�1
2 + �2

2 � , �29�

s �k� �+G� � goes to infinity [18,25], where k� � represents the
arallel (to �1 in Fig. 2) component of the Bloch wave vec-
or and G� stands for a reciprocal lattice vector. It is evi-
ent to observe that at the limit when �2→�1 (at the fre-
uency where the plasmonic modes appears) each value of

� in the vector k� �+G� contributes with one band within
he first Brillouin zone that is piled up around the fre-
uency mode.
This system also presents a wide bandgap (TM polar-

zation) within the spectral region where the inclusions
ave a negative refractive index. The electric field inten-
ity distribution is shown in Fig. 8 for a Gaussian normal
ncident beam that is eight periods wide and has a fre-
uency �̄1=0.87 (in the middle of the bandgap). It is
orth noticing that the decaying length of the field is
uite short in contrast to completely dielectric systems in
pite of having small contrast in the optical properties of
oth media air LHM �n2=−0.694� (see Fig. 9). For the cal-
ulation of field distribution we considered a partition
tep �s=D /20�̄1. The far-field intensity as a function of
he scattering angle is shown in Fig. 10. Energy conser-
ation is a measure of the precision of the algorithm. In

e y=0. The transmission intensity of the field (180°–360°) was
he plan
mplified �10 in order to make it visible on the graphic.
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his example, adding the reflected and transmitted en-
rgy of the scattered field, we have an error of �2.5%,
ainly from light that is lost through the lateral con-

ours.
If we now consider a LR2DPC with circular inclusions

f LHM and the same filling fraction f=0.5 of the previous
xample, the band structure is shown in Figs. 11 and 12.
n this case we also have a wide bandgap in the region of
igh frequencies, and the peculiar band due to plasmonic
odes [15,23,25] appears at the frequency �̄=0.754 (TE

olarization). The localization of this resonance can be
learly appreciated in Fig. 13, where we show the com-
arison of the determinants of both LR2DPC (with cylin-
rical and square inclusions) corresponding to the point
¯

ig. 11. (Color online) Band structure of a LR2DPC with a squar
of the band structures in Figs. 6 and 11.

Fig. 12. (Color online) Band structure of LR2DPC under T
. CONCLUSIONS
ispersive left-handed materials (LHMs) of well-known
roperties were introduced to the structure of two-
imensional photonic crystals to study their properties.
he idea of considering these systems was twofold; be-
ides studying the band structure of LR2DPC, we tested
he stability of the proposed integral method when consid-
ring dispersive materials. Some facts that deserve to be
entioned in this section are the presence of wide band-

aps where the light has a shallow penetration inside the
rystal and the formation of interface bands. These plas-
onic modes appear because of the presence of dielectric-
HM interfaces, which state the condition for their
xistence.

ais lattice and circular inclusions of LHM under TE polarization.
M polarization. Same parameters as previous figure.
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