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Synchronization of coupled bistable chaotic
systems: experimental study
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We carried out an experimental study of the synchronization of two unidirectionally
coupled Rossler-like electronic circuits with two coexisting chaotic attractors. Different
stages of synchronization are identified on the route from asynchronous motion to
complete synchronization, as the coupling parameter is increased: intermittent
asynchronous jumps between coexisting attractors; intermittent anticipating phase
synchronization; and generalized synchronization in the form of subharmonic entrainment
terminated by complete synchronization. All these regimes are analysed with time-series,
power spectra and phase-space plots of the drive and response oscillators. The
experimental study implicitly confirms the results of numerical simulations.
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1. Introduction

Synchronization of coupled chaotic systems has been intensively investigated (e.g.
Pecora & Caroll 1990; Pikovsky et al. 2001; Boccaletti et al. 2002 and references
therein). At first, the notion of synchronization was understood to be the
coinciding of chaotic trajectories of coupled systems. Actually, this type of
synchronization, which is observed in coupled identical systems, refers to complete
synchronization (Murali & Lakshmanan 1994; Roy & Thornburg 1994; Sugawara
et al. 1994). Later, it was realized that complete synchronization is only a
particular type of synchronization. This type of synchronization has been widely
used for secure communication with chaos (Hayes et al. 1993; Argyris et al. 2005).
In general, synchronization implies a certain relation between functionals of two
processes due to their interactions and can be observed not only in identical
oscillators. To describe synchronization of non-identical systems, Rulkov et al.
(1995) introduced a concept of generalized synchronization, which means the
existence of some functional dependence between trajectories of coupled
subsystems. This type of synchronization also includes the case of subharmonic
entrainment of periodic or chaotic oscillations with the fundamental frequency of

* Author for correspondence (apisarch@foton.cio.mx).

One contribution of 15 to a Theme Issue ‘Experimental chaos I'.

459 This journal is © 2007 The Royal Society



460 A. N. Pisarchik et al.

(@

Re 1.0nF
key =a
100K_LIN
50%

200kQ

100kQ

100kQ

Figure 1. Electronic schemes of (a) drive, (b) response and (c¢) coupler circuits.

a driving system (Kocarev & Parlitz 1996). Rosenblum et al. (1996) identified
another type of chaotic synchronization, phase synchronization, which implies a
phase difference between chaotic oscillations that are locked within 2. Later,
other types of synchronization of coupled chaotic oscillators, such as lag
synchronization and anticipating synchronization, were also identified by
Rosenblum et al. (1997) and Voss (2000). All these types of synchronization
have been detected in various experiments. Anticipating synchronization has
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Figure 1. (Continued.)

recently been observed by Ciszak et al. (2003) in semiconductor lasers, but only in
the presence of a time delay in coupling.

The majority of works on chaotic synchronization have been performed in
monostable systems. However, it is known that many nonlinear systems have
concurrent and coexisting attractors for the same parameter values. The
dynamics of such multistable systems is defined by initial conditions. Recently,
we have demonstrated numerically that the route from asynchronous motion to
complete synchronization in two unidirectionally coupled bistable chaotic
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Figure 1. (Continued.)

systems is characterized by intermittent phase synchronization with anticipation
(Pisarchik et al. 2006). This paper is devoted to the experimental study of
synchronization in coupled bistable systems with coexisting chaotic attractors.
As an example, we explore Rossler-like electronic circuits similar to those used
previously by Carroll & Pecora (1995) in their first experiments on chaotic
synchronization. We demonstrate different stages of chaotic synchronization
depending on the coupling strength and discuss possible mechanisms underlying
the synchronization phenomena.

2. Experimental set-up

We built the two identical electronic circuits shown in figure 1. One of them is
the drive circuit (figure 1a) and another one is the response circuit (figure 1b).
We also constructed the electronic circuit shown in figure 1lc¢ to provide
unidirectional coupling between the drive and response oscillators. The
parameters of all electronic components are indicated in figure la—c. These
circuits are an analogue version of the following model equations:

—azy —fry; —x3
drive £ = £ x YTy 0 |1, (2.1)
g9(zy) 0 — T3

—ay; Bl te(ma—w)] —u
response ¢ = £ Y Y[ys + e(zo — 15)] 0 |and (2.2)
g(yl) 0 —Ys3
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Figure 2. Experimental bifurcation diagram of peak voltage z; with resistance R. as a control
parameter.

( ) 0, if x, <3
9\ xy, ) = . )
w(zy, 1 —3), iz, >3
where x=(zy, =3, z3) and y=(y;, 1o, y3) are the state vectors; &= dz/dt,
y=dy/dt, £=10"s"" is the time factor; «=0.05, 8=0.5, u=15, e€[0, 1] is the
coupling strength; and vy is a variable parameter. The piecewise linear function
equation (2.3) is determined by the diode D at the entrance of the operational
amplifier in the z3 loop. The amplifier is switched on when the voltage exceeds

3 V. The variable parameter y= R/R.—0.02, where R=10kQ and R, is a
control resistance which can be varied between 27 and 200 kQ.

(2.3)

3. Dynamics of one isolated circuit

When the drive and response circuits are not coupled (e=0), each of them
exhibits complex behaviour defined by control resistance R, and the initial
conditions. Let us, first, consider the dynamics of the single circuit shown in
figure 1la. The experimental bifurcation diagram of output voltage z; versus
control resistance R, is shown in figure 2. We record this diagram several times
by increasing and decreasing the control parameter. This procedure is equivalent
to changing the initial conditions. For a large R., the behaviour of the single
oscillator is similar to that of the system discovered by Réssler (1977), with a
multiplicative first-order nonlinearity in the z3 direction. The classical Rossler
oscillator has a single saddle-node point located in the origin (0, 0, 0)7.
Similarly to the classical Rossler oscillator, our piecewise linear electronic
circuit undergoes a cascade of period-doubling bifurcations followed by chaos
when R, is decreased (figure 2). Several periodic windows can also be
distinguished in the diagram. At relatively large R. (R.>36 kQ), only Rossler-
type chaos is observed. The chaotic attractor represents a so-called Rossler
funnel (or an imperfect homoclinic orbit) around a saddle point. In our system,
the lack of differentiability gives rise to coexistence of multiple attractors,
cascades of period-adding bifurcations, period multiplication, homoclinic orbits,
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jumps to chaos and destruction of all periodic orbits. These bifurcations, which
are referred to as grazing bifurcations, are associated with portions of a
trajectory being tangent to surfaces where the system is discontinuous. Such a
complex behaviour appears only for small R, when a second saddle point arises.
The homoclinic orbits become perfect when a condition derived by Shil’nikov
(1994) is fulfilled. Homoclinic dynamics of the system equation (2.1) has been
analysed by Pisarchik & Jaimes-Redtegui (2005).

At relatively low values of the control parameter R, the bifurcation diagram
represents a superposition of two different coexisting chaotic attractors, which
merge in a crisis point at R.=36 kQ. To study the synchronization of multistable
systems, we fixed the control parameter at R.=32 kQ, where our circuits exhibit the
coexistence of two different chaotic attractors. Then, we chose the initial conditions
(by switching on and off the power supply ) for the drive and response circuits, so that
their chaotic states would be different without coupling (¢=0). The experimental
time series for the three output voltages of the uncoupled circuits are shown in
figure 3, and the corresponding phase trajectories are shown in figure 4. It is clear
that the trajectories occupy different regions of the phase space. The natural
frequencies of the two coexisting chaotic attractors are f; =0.82 and f,=1.022 kHz.

4. Synchronization stages

If two oscillators are identical and coupled by one variable, this variable can be
considered as an external chaotic driver which increases the system dimension by
one. In a unidirectionally coupled system with coexisting attractors, the response
system has no effect on the dynamics of the drive system, and hence the drive
system always remains in the same attractor.

For very weak coupling ¢<0.5%, the driving signal has no influence on the
response system and the states are defined only by the initial conditions. The two
oscillators can be considered to be isolated and their trajectories occupy different
regions of the phase space (see figures 3 and 4). However, a stronger coupling can
change the global structure of the phase space of the response system owing to
increasing dimension.

Let the initial states of the drive and response systems be chaotic attractors
with natural frequencies f;=f; and f,=/f;. Synchronization can be characterized
quantitatively as a difference between phases of corresponding variables of
coupled systems (Boccaletti et al. 2002) that can be measured from experimental
time series as A¢ = 27T(tf — tﬁ)fd, where t* and t% are the times of the kth maxima
of the coupled variables for the response and drive oscillators, respectively. While
the coupling strength is increasing, the attractors in the response system can
undergo different metamorphoses depending on the coupling strength.

(a) Asynchronous intermittent jumps

The response system becomes sensitive to the drive as soon as the coupling
exceeds 0.5%, when random intermittent jumps between coexisting attractors
occur. Examples of the experimental time series and the corresponding power
spectra of the drive and response oscillations for different coupling strengths are
shown in figure 5. When the response oscillator switches to the attractor similar
to the drive system (figure 5a), driving frequency f;=f; appears in the power
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Figure 3. Experimental time-series of three variables for two different chaotic regimes in uncoupled
circuits: (a) z(V) and (b) y(V). The time traces of different variables are shown by the arrows.
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Figure 4. Phase-space trajectories of two different chaotic regimes shown by open and closed circles.
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Figure 5. (Opposite.) Time-series (a,c,e,g,i) and the corresponding power spectra (b,d,f,h,7)
demonstrating different synchronization stages for coupling parameters (a,b) ¢=0.006, inter-
mittent jumps between coexisting attractors, (¢,d) ¢=0.24, intermittent 1 : 2 phase synchroniza-
tion, (e,f) e=0.4, 1:2 phase synchronization, (g,h) ¢=0.7, intermittent 1:2-1:1 phase
synchronization and (7,5) €¢=0.75, 1:1 or complete synchronization. The thin and thick lines
correspond, respectively, to the drive and response oscillators.
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Figure 6. Phase difference between drive and response oscillations as a function of time for
£=0.006. (a) A¢ increases almost linearly with time when the two systems stay in different
attractors. (b) Enlarged section demonstrating random fluctuations of A¢ on plateaus.

spectrum of the response system (middle part in figure 5b). Although at this
stage no synchronization is detected, such an intermittent behaviour is a
precursor of synchronization in multistable systems. The driving signal is too
small to increase the system dimension and can be considered as external noise
which just induces random switches between the coexisting attractors.

Figure 6a shows the phase difference A¢ as a function of time. Although this
dependence has a tendency to increase linearly with time, one can distinguish
short horizontal plateaus on which A¢ fluctuates in the 27 range (figure 6b). On
the plateaus, the drive and response systems oscillate in antiphase, as seen in the
middle part of figure 5a.

(b) Intermittent phase synchronization

A further increase in coupling parameter results in phase synchronization,
which occurs only within the windows where the response system stays in the
attractor similar to the attractor of the drive system. This synchronization
regime appears when ¢>0.01. The examples of the time series and phase
difference A¢(t) are shown in figure 7a,b. The fluctuation of A¢ on the plateaus is
no longer random because its distribution is not Gaussian, rather it is Lorenzian.
The duration of the synchronization windows is larger (figure 7b). Now, the
response system is sensitive not only to some individual peaks of the drive
oscillations, which induce switches between the coexisting attractors, but also to
the phase of oscillations while the systems stay in the similar attractors.

It is remarkable that intermittent phase synchronization is always accom-
panied by anticipating synchronization, i.e. A¢ <0 inside the synchronous
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Figure 7. Time-series (a,c) and phase difference (b,d) for coupling parameters (a,b) ¢=0.03,
intermittent anticipating phase synchronization and (¢,d) e=0.12, combined attractor. The thin and
thick lines indicate the time traces corresponding to the drive and response oscillators, respectively.

windows. Anticipating phase synchronization is clearly seen from the time-series
in figure 7a, in which the time trace of the response system anticipates the
driving trace. The averaged anticipation time is decreasing with increasing ¢ and
eventually it approaches 0, as soon as phase synchronization becomes perfect, i.e.
when A¢— 0.

(¢) Combined attractor

For stronger coupling parameters (¢>0.1), the dimension of the response
system is no longer the same as the dimension of the drive system; instead, it
is higher. Owing to the increasing dimension, the global structure of the phase
space of the response system is completely different, and hence synchroniza-
tion is hardly possible. The time-series and the phase dependence at this stage
are shown in figure 7¢,d; A¢ drifts in the vicinity of 0 (figure 7d). Sometimes,
very large phase slips can occur, when A¢ rises up to a half of the averaged
period of the drive oscillations (as seen in figure 7¢) although windows of
perfect phase synchronization (A¢=0) can appear as well. The dynamical
behaviour is very similar to that of coupled non-identical (even structurally
different) systems.

(d) Generalized synchronization

While the coupling strength is further increasing, the attractors in the
response system can undergo a homeomorphism. This phenomenon was
discovered first by Afraimovich et al. (1986) and was later generalized by

Phil. Trans. R. Soc. A (2008)



Synchronization of chaotic systems 469

Rulkov et al. (1995) to a system of coupled non-identical oscillators. In the
case of multistability, identical systems in different attractors can be
considered as different systems. However, generalized synchronization is
possible. Mathematically, this may be formulated as follows. Generalized
synchronization in coupled multistable systems occurs for the attractor A, CR™
of the drive system and a new homeomorphic attractor B; CR" of the response
system (i=1, ..., p and j=1, ..., ¢ being the attractor numbers and m and n
being the dimensions of the drive and response systems, respectively), if an
attracting synchronization set M = {(z,y) € B; XR" : y= H(x)} exists that is
given by some function H : B;— A; CR" and that possesses an open basin
DD M such that lim,,.||ly(t)—H(z(?))||=0 V ((0),y(0))€D. This
definition also includes the case of subharmonic entrainment of periodic or
chaotic oscillations with fundamental frequency f(A4;). For example, the
entrainment with ratio f(B;) : f(4;)=1: ¢ (¢>1) results from ¢ attractors in
the response system.

The increasing coupling parameter above 20% gives rise to a period-doubling
bifurcation for the chaotic attractor similar to the driving attractor that can
lead to intermittent jumps to this new attractor. As a result, slips of period-
doubling oscillations arise in the time-series (figure 5¢), and frequency f;/2
appears in the power spectrum (figure 5d). The period-doubling oscillations are
phase synchronized with the drive in the 1:2 ratio. We refer to this type of
synchronization as intermittent period-doubling phase synchronization. As e is
increased, the period-doubling windows are enlarging and, eventually, the system
becomes perfectly phase synchronized in the period-doubling regime, i.e. period-
doubling phase synchronization takes place as shown in figure 5e. Such a
frequency entrainment is the manifestation of generalized synchronization.
Recently, Pisarchik & Barmenkov (2005) observed a similar locking effect of the
natural frequency to the period-doubling frequency of driving oscillations in a
fibre laser with pump modulation.

(e) Complete synchronization

Although the coupling is increasing above 60%, the period-doubling regime
is transforming into a period-one regime, while phase synchronization is being
conserved. The transition from 1:2 frequency locking to 1:1 frequency
locking is shown in figure 5¢,A with the time-series and power spectra. The
chaotic attractor of the response system is converted into a chaotic attractor
similar to the drive system. The peaks of the natural frequencies in the power
spectrum are broadened. This indicates a final stage on the route to complete
synchronization that eventually occurs for ¢>0.75 owing to the decreasing
dimensions of the response system. Any trajectory of the response system
converges to the same trajectory as the drive system, i.e. y(¢)—x(t)=0 for
t— oo which results in the reducing number of coexisting attractors up to a
single attractor, identical to the attractor of the drive system. This case is
shown in figure 54, 7.

It is worth mentioning that synchronization of coupled systems is closely
related to the problem of nonlinear control, although the goals may sometimes be
different (Kapitaniak 1994). In unidirectionally coupled systems, the drive
system acts as a controller for the response system to attract its trajectory to a
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desired trajectory defined by the controller. The synchronization problem for
coupled multistable systems can be considered as a problem of controlling
multistability or inter-attractor control.

5. Discussion

The synchronization phenomena described above can be interpreted in terms of
periodic orbit structures of the driver and responder subsystems (Barreto et al.
2000). Many papers describe synchronization of coupled chaotic systems in the
framework of an invariant synchronization manifold 3, which can easily be found
in coupled systems with symmetry, such as in our case. The results described
above confirm the existence of I within a plane of symmetry for a wide range of
coupling. The variables of the drive and response systems evolve identically on J
and hence the systems display identical synchrony. However, owing to
multistability in the coupled subsystems, 3 can become extremely complicated
and be destroyed as the coupling parameter is decreased.

In figure 8 we show the evolution of the attractor as the coupling parameter ¢
is decreased. Since the coupled oscillators are identical, the synchronization
manifold J is simply the line z=y. It is invariant and attracting at e=1 and
remains so for ¢>0.75 (figure 8a) until a bubbling bifurcation occurs at critical
value &, =0.74. For £¢<g;, I is no longer invariant. Upon decreasing &, the
trajectory first makes finite size intermittent short-lived excursions away from 3
(figure 8b), i.e. a bubbling transition occurs. Before the bubbling transition takes
place, the chaotic attractor is asymptotically stable. At the bubbling bifurcation,
the orbit within I loses transverse stability and after the bifurcation the
attractor is only an attractor in the weaker sense of being a Milnor (measure)
attractor. Such an emergence of the intermittent bursts of chaotic trajectories
away from the previously constrained attractor is the generic qualitative
manifestation of the bubbling transition in a physical system with an invariant
manifold, and this is often caused by the presence of symmetries in the system.
A similar behaviour has been observed previously in monostable coupled chaotic
systems (Ashwin et al. 1994; Venkataramani et al. 1996). In our case of the
system with two coexisting chaotic attractors, the bubbling bifurcation at which
the orbit in J losses transverse stability is accompanied by a period-doubling
(pitchfork) bifurcation at which a new chaotic attractor X is created outside of 3.
The trajectory spends a long time in the vicinity of J, but makes occasional
excursions to another coexisting attractor. This leads to the attractor smearing
(fattening) that can be seen in figure 8b. As ¢ is further decreased, the chaotic
attractor J itself becomes transverse unstable via a blowout bifurcation (Ott &
Sommerer 1994), while the period-doubling attractor X becomes stable. One can
see in figure 8c that this new 1:2 synchronization manifold has a more
complicated structure; the oscillations display generalized synchrony with a 1:2
frequency ratio.

As the coupling is further reduced, the next desynchronization cycle is
initiated via the next bubbling transition, which appears at critical value
&p2=0.32. The period-doubling orbit loses its transverse stability, making
excursions away from X (figure 8d). Finally, the attractor X itself becomes
transverse unstable in the next blowout bifurcation that leads to the attractor

Phil. Trans. R. Soc. A (2008)



@

Yo

Yo

Yo

Yo

10 1

—10 1

Synchronization of chaotic systems

C)

5% 24%

471

(b)
10 1

12%

3%

0.6%

-10

0 10 -10 0 10
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smearing, as seen in figure 8e. For smaller ¢ (figure 8f,g), the state variables may
still be functionally related, resulting in generalized synchronization. However,
due to the coexistence of attractors with different, not multiple, frequencies, this
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function can be extremely complicated, and the identification of bubbling and
blowout bifurcations is problematic. At very low couplings, no synchronization is
observed (figure 8h).

6. Conclusions

In this work we have studied experimentally the route from asynchronous
behaviour to complete synchronization in unidirectionally coupled oscillators
with coexisting chaotic attractors. We have built two electronic Rossler-like
circuits and shown that the coexistence of attractors results from nonlinearity
due to a piecewise linear dependence in one of the system variables. We have
demonstrated experimentally different synchronization stages on the route from
asynchronous motion to complete synchronization. This scenario includes
intermittent anticipating phase synchronization and period-doubling phase
synchronization. The latter is a particular case of generalized synchronization.
We have demonstrated the bubbling transitions as the emergence of intermittent
bursts of chaotic trajectories away from the previously constrained attractor to a
newly created attractor intermittently synchronized with the drive. Such a
behaviour of multistable coupled systems contains combined features inherent to
both identical and non-identical coupled systems. Furthermore, the coupled
multistable systems also have specific features that are not observed in
monostable coupled systems, for example two-state on—off intermittent phase
synchronization, a shift of the fundamental frequency of one of the chaotic
attractors and period-doubling phase synchronization.

Similar bifurcation scenarios on the route to complete synchronization, as the
coupling parameter was increased, have also been found in the cases of
coexistence of one periodic and one chaotic attractors and two periodic
attractors with different fundamental frequencies. Although the dynamics in
these cases were not so rich as in the case of two coexisting chaotic attractors, the
synchronization features mentioned above are common. We believe that the
results described in this paper are quite general for a wide class of coupled
bistable and multistable systems. The experimental results implicitly confirm the
results of numerical simulations (Pisarchik et al. in press). Synchronization of
bistable chaotic systems may be of interest for communication applications if the
information is encrypted into proper switches between coexisting attractors or
into a qualitative change of a synchronization regime.

This work was supported by Consejo Nacional de Ciencia y Tecnologia de México (project
no. 46973) and PROMEP 103.5/05/2498. A.N.P. acknowledges support from the Spanish Ministry
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