
 
 

 

 

  

Predictive Modeling of Visual Quality 

December 2019 

León, Guanajuato, México 

Ph.D. in Optical Sciences 

Advisor: Dr. Daniel Malacara Hernández 
 

Student: Francisco Javier Gantes Nuñez 

- Versión definitiva. Incluye cambios sugeridos por revisores - 



 
 

 

 

 

 

“Nobody ever figures out what life is all 

about, and it doesn´t matter. Explore the 

world. Nearly everything is really 

interesting if you go into it deeply 

enough.” 
Richard P. Feynman 

 



 
 

Abstract 

 

In this work we investigate two different modeling approaches oriented towards caring for 

vision in humans. Firstly, numerical wavefront reconstruction methods are applied to 

quantify the ocular aberrations from data obtained using Hartmann patterns. Two 

geometries of the Hartmann patterns are considered, square and hexagonal. For each 

unit cell, a polynomial function is proposed instead of the standard approach using a 

single polynomial. This approach improves pupil sampling, yielding a better precision in 

the representation of the aberrations. Secondly, models of human eyes affected by the 

pathologies of age-related macular degeneration (AMD) and glaucoma are presented. 

Novel personalized eye models to predict the quality of vision in AMD are developed. 

These models are presented in order to validate effective techniques to measure the 

progression of retinal edemas in AMD using simple Amsler grids, it is possible to link the 

grid distortions with the size of macular edemas. In addition to the theoretical 

investigations mentioned, a clinical study was done to assess the ocular surface 

temperature in different zones using long-wave infrared thermal imaging. This study 

examined the dynamics of temperature changes in glaucoma and healthy patients. The 

results indicate that subjects with glaucoma cool faster than healthy subjects.   

In general, the work presented in this thesis is focused on the development of methods 

and diagnosis techniques to improve visual quality. 

 

 

 

 

 

  



 
 

Resumen 

 

En este trabajo se investigaron dos enfoques diferentes de modelado orientado al 

cuidado de la visión en humanos.  Primeramente, métodos numéricos de reconstrucción 

de frente de onda son aplicados para cuantificar las aberraciones oculares de datos 

obtenidos de patrones de Hartmann. Dos geometrías de patrones de Hartmann son 

considerados, cuadrado y hexagonal. Para cada celda unitaria, una función polinomial 

es propuesta en lugar del enfoque estándar de utilizar un solo polonomio para la pupila, 

este enfoque mejora el muestreo de la pupila generando una mejor precisión en la 

representación de las aberraciones. Segundo, se presentan modelos del ojo humano 

afectados por las patologías de degeneración macular relacionado con la edad (AMD) y 

glaucoma. Estos modelos son presentados con la finalidad de validar técnicas efectivas 

para medir la progresión de edemas retinianas en AMD mediante el uso de rejillas de 

Amsler. Se encontró que utilizando las distorsiones de las rejillas de Amsler es posible 

vincular el tamaño de los edemas maculares. Adicionalmente a las investigaciones 

teóricas mencionadas, un estudio clínico fue realizado para evaluar la temperatura de la 

superficie ocular en diferentes zonas utilizando imágenes térmicas de infrarrojo lejano. 

Este estudio examinó la dinámica de los cambios de temperatura en pacientes con 

glaucoma y pacientes control. Los resultados indican que los sujetos con glaucoma 

sufren un enfriamiento más rápido que los sujetos sanos. 

En general, este trabajo presentado en esta tesis está enfocado en el desarrollo de 

métodos y técnicas de diagnóstico para mejorar la calidad visual. 
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Preface 
 

The human eye and vision were probably some of the first interests for optics science, in 

order to understand the vision system. It is clear that the study of the human eye started 

before the development of light sources and instruments. But interestingly, nowadays, 

visual optics have been improved with advances from other areas, such as astronomy, 

with the use of wavefront sensing and adaptive optics as an example. 

 The interest to improve the quality of vision is the first attempt to understand the 

human eye. There is evidence that Christopher Scheiner in 1619 published a work 

describing a principle to test the refraction of the human eye [1]. The principle described 

by Scheiner uses a disk perforated with two holes, which reminds similar to the Hartmann 

screen. After Scheiner, Tscherning in 1894 attempted to measure the refractive errors 

using a four-dimensional spherical lens with a grid pattern, with the aim to project it on 

the retina [2]. Finally, in 1900 Hartmann developed his test and although he established 

it in order to evaluate optical surfaces, it has been used to measure ocular aberrations 

[3]. 

 The development of refractive surgery represented an important stimulus in the 

progression of the visual optics field [4]. The main purpose of this procedure is to reduce 

the refractive aberrations of the human eye. There are references that suggest refractive 

corrections by Hermann Boerhaave in 1708, but it was not performed until 1746 by von 

Haller, although the first published evidence is from the 1890s [5]. 

 Hermann von Helmholtz can be considered as one of the first scientists that 

describe the human eye as an imperfect optical instrument. It was not until 1873 with the 

English translation of Popular Lectures on Scientific Subjects published in New York that 

the work of Helmholtz about the eye was known [6], [7]. In this work, Helmholtz described 

the structure of the human eye, spherical aberration, astigmatism, and some pathologies 

of the optic nerve. Furthermore, this scientist was the first one to look at a living retina, 
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which, nowadays, seems to be a normal thing, thanks to the works of Liang and Williams 

[8].  

 In this work, two methods of wavefront reconstruction are proposed using square 

and hexagonal Hartmann patterns. These techniques have the advantage that not only 

one polynomial is obtained to rebuild the wavefront, instead, but several polynomials are 

obtained, one for each cell. The contribution of these methods can be applied to corneal 

topography; allowing more accurate measurements of the cornea. Further, preliminary 

models of the human eye with Age-Related Macular Degeneration (AMD) are presented, 

in order to develop an easy and cost-effective method for screening retinal edemas in 

AMD using Amsler grids. Finally, an ocular surface temperature analysis is presented as 

a procedure that evaluates the temperature dynamics in glaucoma patients using infrared 

thermography. 

This work is divided into six chapters. Chapter 1 is an overview description of the 

human eye, presenting the refractive elements and retina. Chapter 2 describes ocular 

aberrations and some definitions in order to understand them, as well as AMD and 

glaucoma, are mentioned. Chapter 3 and Chapter 4 present the wavefront reconstruction 

methods using square and hexagonal Hartmann patterns and the advantages over other 

methods are discussed. In Chapter 5 the methodology of the eye models to predict and 

screen the development of retinal edemas is presented. Finally, in Chapter 7, the study 

of temperature dynamics of the ocular surface in glaucoma patients is presented, 

considering some controlled factors and using thermography. 
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List of Acronyms 
 

Acronym Term 

AMD Age-Related Macular Degeneration 

ARM Age-Related Maculopathy 

RPE Retinal Pigment Epithelium 

GA Geography Atrophy 

IOP Intraocular Pressure 

OAG Open-Angle Glaucoma 

ACG Angle-Closure Glaucoma 

VERI Visual and Eye Research Institute 

IR Infrared 

OST Ocular Surface Temperature 

CEC Controlled Environmental Chamber 
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Chapter 1 - The Human Eye: 

Overview 
 

The healthy human eye is a sophisticated optical system that is capable of forming images 

on the retina with a good resolution. It belongs to a general group of eyes well-known as 

‘camera-type eyes’, because, in a simple manner, the eye works as a camera lens 

focusing light onto a film.  In the eye, the optical imaging system is formed by the cornea 

and crystalline lens, while the retina is the detection instrument.  Now, the complexity of 

the eye comes when it is analyses as a complete biological organ as the neural 

connections have to be considered. As the cornea and lens are ‘living’ lenses, other 

factors like organic components, start to be important. 

The eye can be explained from an optical system perspective; thus, it can be 

affected by aberrations that reduce the quality of the retinal image. The total aberration 

contribution can be divided between the two components of the optical imaging system: 

the cornea and the crystalline lens. Additionally, deteriorations in the retina, discussed in 

Chapter 6, reduce the image resolution. However, there are additional factors responsible 

for the degradation of retinal images, such as diffraction in the pupil and intraocular 

scattering [9], [10].  

In this chapter, an overview of the human eye is studied in order to introduce some 

elements that contribute to the quality of vision. 

 

1.1 General Anatomy and Physiology 

In a general manner, the human eye can be organized in three layers distinguished in 

Fig. 1-1. Starting from the exterior layer or region, it is formed by the cornea and sclera. 

The main function of the cornea is to refract and transmit the light to the lens and retina 

at last. Whereas, the sclera is a membrane that protects and maintains the eye shape. 
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 In the middle area the iris, ciliary body, and the choroid are situated, where the iris 

controls the pupil size and acts as a diaphragm [11]. The ciliary body's main function is to 

control the shape and hence the power of the lens, its secondary function is producing 

aqueous. The third element, the choroid, is the layer where oxygen and nutrients are 

provided to the outer retinal layer.  

 The third area is the inner layer, composed of the retina, a very complex layered 

structured. The retina formed by neurons, whose function is to capture and process light. 

There are three transparent chambers that are surrounded by the ocular layer considered 

previously, the anterior, posterior and vitreous chamber.  

 

1.2 Optical Structure and Retina 

The eye has two refracting elements: the cornea and the lens. The analysis of the tear 

film and its influence in the refractive power is not considered in this work. There are some 

characteristics to consider related to these elements, like transparency, curvatures and 

refractive index, in order to generate an image with a good quality [11]. On the other hand, 

Figure 1-1.- Schematic illustration of the horizontal section of the right eye. Figure adapted 
from Atchison and Smith. [11] 
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the retina is an element that gets the information from the outer environment and transmits 

it to the brain. 

The main objective of this section is to describe a brief overview of the eye, so, the 

cornea, lens and the retina are presented in order to understand some basic optical 

parameters and functionality. 

 

1.2.1 The Cornea 

The cornea is considered as the most densely innervated tissue of the body and 

furthermore, is avascular. Also, this is the first element where the incident light can be 

transmitted, absorbed or scattered. Light scattering is present only if some small 

irregularities are present in the retina. It is a thin, approximately 0.55 mm, transparent 

layer, with a diameter of about 12 mm. From the 12 mm, 4 mm corresponds to the optic 

zone, which is responsible for most of the refractive function and is located in the center 

of the cornea [12]. 

 The cornea is an almost sphere with an anterior radius of 7.8 mm and 6.5 mm of 

posterior radius, and a refractive index value of 1.3771 [9]. Since the main difference in 

refractive index occurs between the cornea and the air, the largest refractive power of the 

eye is due to the cornea, about 70%.   

 As the cornea is the first and most significant refracting surface of the human eye, 

it is also the main source of high order aberrations and astigmatism. Hence, the methods 

and techniques to measure and correct the aberrations in the cornea are still in research, 

because the quality of the retinal image can be improved if the corneal aberrations are 

corrected. Nevertheless, it is necessary to consider that the cornea and lens work 

together to form a high-quality retinal image, and this is the reason for the complexity of 

analysis of the cornea or lens as individual elements.  

 The pupil, another element that works with the cornea and lens, has a direct 

influence on imaging. It is a variable opening localized in the center of the iris, which is a 

sphincter muscle with a central aperture that regulates the amount of light entering. The 



10 
 

pupil size can vary from 2 mm in bright light to approximately 8 mm in the dark, and as 

was said, it influences the image quality, mainly because if its size is less than 2 mm, the 

effect of diffraction is significant [9].  

 More detailed information on the cornea can be found in many specialized books 

in this area [10], [11]. 

 

1.2.2 The Lens 

After the light has passed through the pupil, the lens is the second refracting surface. The 

lens is a dynamic tissue that changes its shape in order to modify the optical power of the 

whole eye. The capacity of the shape modification is well-known as the basis of the 

mechanism of accommodation, which allows the focusing of images on the retina. 

Suspensory ligaments, known as zonules, are the connections between the lens and 

ciliary body of the eye, and they are responsible for the changes in lens shape when a 

contraction or relaxation is presented. 

 Approximately one-third (20 D) of the total dioptric power is due to the lens, whose 

shape, in a very basic description, is a biconvex lens. The truth is that the crystalline is 

not a simple system. Its biological nature makes a complex system with aspheric surfaces 

and inhomogeneous with a gradient refractive index, with the characteristic that the 

refractive index is larger in the center than in the periphery. Further, the lens is an element 

that through life keeps growing, and this growth produces an age-dependency of the 

features. Several works have been attempting to represent novel shapes and effects of 

the lens, such as the works presented by Gómez-Correa et. al. [13], [14], were using two 

distinct spheroidal hemispheres, a complete description of the lens is made, also 

including the gradient refracting index and age-dependency.   

 Another reason that makes it difficult to analyzes the crystalline lens is its location. 

It is located in the posterior chamber of the eye, where its anterior surface is in contact 

with the central zone of the iris. The lens, in the same manner as the cornea, is a 

transparent avascular element with an average refractive index value of 1.42 and a 

thickness of about 3.6 mm when is in a relaxed state. 
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 For a detailed description of the lens crystalline, see specialized books [10], [11] 

and papers [13], [14] related to this topic. 

 

1.2.3 The Retina 

The retina is a receptive organ with light-sensitive functionality that is responsible for the 

absorption and translation tasks. It is formed by several layers that perform different 

optical functions in order to improve the image formation. At the same time, in the retinal 

layers, there are six classes of neurons: bipolar cells, horizontal cells, amacrine cells, 

ganglion cells and photoreceptors, where its influence in the visual system is to capture 

and process the light, and the last kind of neuronal cell are the Mϋllerian glia [12]. The 

basic organization of these layers shown in Fig. 1-2. 

 

 As can be inferred from Fig. 1-2, the choroid and sclera protect and support the 

retina structure.   

The central area of the retina is called the fovea, where the cone photoreceptors 

are located and the light-photoreceptor interaction is performed, thus, it is in this area 

where the optics become critical. The interaction light-photoreceptor is an important 

Figure 1-2.- Section of the retina showing different layers involved in 
phototransduction. 
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aspect of the visual optics because it is the previous step of the neural response. This 

interaction is named absorption, and this concept can be understood only if the light is 

considered a particle, called a photon, and this process is performed by the 

photoreceptors. In other words, the photoreceptors develop the task of transforming the 

light into an electrical signal interpreted by the neurons. 

Most of the vertebrate’s eyes, including the human eye, have two types of 

photoreceptors in the retina, i.e., rods and cones. The relation between rods and high 

sensitivity to low levels of light is common, contrary to the cones, but, the neural wiring 

has an important meaning with the light levels [11]. The responsible elements of 

absorption in the photoreceptors are pigments. In the rods, the rhodopsin is the pigment 

present, in which peak absorption is about 496 nm and in the cones, there are three types 

of photopsin pigments centered at 419, 531 and 559 nm, or blue, green and red sensitives 

cones [10].  

 The ratio between rods and cones is 20 to 1 approximately and they are distributed 

in the retina. The majority of cones are located in the peripheral retina, when it could be 

inferred that the majority of them should be in the fovea, which is located about 5° wide 

of the optical axis and is the area responsible for sharp central vision. However, there are 

more cones in the fovea than rods. It is important to mention that even when the fovea is 

considered as the ventral vision, it is located off-axis position, contrary to the aberration 

theory, which establishes that the best image position of an optical system is on the optical 

axis. 

There is another region in the retina named the optic disc, where there are no 

cones or rods present, so, it means that this region is ‘blind’. This area is where the 

vascular supply enters and the visual information travels through the optic nerve to the 

brain. The visual phototransduction is the process in which light is transformed into 

electrical signals. In this process, photoreceptors and the optic nerve are involved. The 

optic nerve is the structure that works as a messenger due to this element transmit the 

information received by the photoreceptors.   
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 Once the optical components of the human eye have been described, it is possible 

to find all these values in models known as schematic eyes. There are several schematic 

eyes, which have been made with average values of populations and considering some 

specific characteristics. Moreover, some schematic eyes can be very complex describing 

the refractive surface with aspheric and gradients of refractive index, but all this 

complexity results in elaborate calculations. On the other hand, paraxial schematic eyes 

are simpler and are mostly used, although, for accurate results, a sophisticated schematic 

eye could be the best option. In this work, to analyze the Age-Related Macular 

Degeneration, AMD, the Escudero-Navarro eye model is used [15]. This is a paraxial 

model and the geometrical parameters are described in Table 1.1. Further reviews of 

schematic eyes can be found in some papers and books [10], [11], [16]–[18]. 

 

Table 1.1 - Geometry of the Schematic Wide-Angle Eye Model. 

Surface Type 
Conic 

Constant 
Radius 
(mm) 

Thickness 
(mm) 

Optical 
Medium 

Refractive 
Index 

(543 nm) 

1 Conic -0.26 7.72 0.55 Cornea 1.3777 

2 Spherical 0 6.50 3.05 Aqueous 1.3391 

Stop Plane  0 Infinite 0 Aqueous 1.3391 

4 Conic -3.1316 10.20 4.00 Lens 1.4222 

5 Conic -1 -6.00 16.3203 Vitreous 1.3377 

Image Spherical 0 -12.00 - - - 

 

 

1.4 Conclusions 

In this chapter, a general overview of the elements of the human eye was presented in 

order to understand the following chapters. Analyzing the refractive elements and retina 

of the human eye can be inferred that those components contribute to the quality of vision. 
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In addition, other elements that are out of this work, such as the eyeball and central 

nervous system, are part of the complex optical system that decreases the visual quality.  

As part of understanding the contributions of the elements to the visual quality, an 

interesting question arises; how far can the human vision be improved?   
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Chapter 2 - Ocular Aberrations and 

Other Pathologies 
 

In the previous chapter, a brief description of the human eye structure and functionality 

was presented. As can be understood, the human eye is a very complex system because 

of all the elements that compound it, but because of its sophistication, it has to be 

assumed that it is not a perfect optical imaging system. The reason is that there are 

several factors that cause a degradation of the retinal images, and they are not just 

refractive errors due to the cornea and lens.  

 Besides the optical aberrations, chromatic and monochromatic, diffraction caused 

by the pupil and intraocular scattering, there are other issues responsible for imperfect 

images. In the case of chromatic aberrations, these can be longitudinal, a variation of 

power conditioned to the wavelength, and transverse, image position changes in the 

retina according to the wavelength. This type of aberrations has a considerable presence 

in the human eye, but, the real influence on the image is relatively small. It can be 

explained from the presence of different kinds of pigments in the retina and the ocular 

media, as well as the lens, act as wavelengths filters. The lens is capable of absorbing 

short-wavelength light, mostly blue, mitigating the chromatic aberration. Also, there is a 

yellow macular pigment which is the main filter [9]. 

For the reasons explained, in the following sections definitions related to ocular 

aberrations and two pathologies are presented. AMD and Glaucoma, which are two of 

the most frequent causes of blindness in the world are described [19]. In order to get a 

better idea of the treatment in this chapter, Fig. 2-1 shows a representation of the 

refraction errors and four of the major pathologies. 
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2.1 Ocular Aberrations 

Usually, most ocular aberrations are due to defocus and astigmatism, which are better 

known as refractive errors. Myopia and hyperopia are those defects caused by defocusing 

and usually they are corrected by ordinary ophthalmic lenses. However, those defects 

are not the only source of ocular aberrations [4].  

High order aberrations are defects that also contribute to the visual quality, mainly 

when pupils are bigger in diameter, as during the night. Spherical aberration and coma 

are examples of high order aberrations and produce halos and double vision, 

respectively. 

 A normal vision needs all the elements involved in the visual system to work 

together. The refractive elements, the retina, optic nerve, and central nervous system, to 

name a few, are in charge of developing a good image.  

It is useful to understand the wavefront and wavefront aberration terms before the 

discussion of the representation and measurement.  For this reason, in the following 

sections, an overview of wavefront terms and measurement techniques are presented to 

explain some pathologies. 

Figure 2-1.- Original image and the representation of the four major defects caused by several 
facts such as ocular aberrations and some pathologies. 
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2.1.1 Wavefront Definitions 

In terms of physical optics, the wavefront is associated with the phase of the complex 

field of an electromagnetic wave. Thereby, the planes of a wave that have the same phase 

at a specific time shape a wavefront [20], [21]. In geometrical optics, the envelope of rays 

is interpreted as a wavefront where the phase can be considered constant [22]. This 

definition can be deduced from the theorem of Malus and Dupin, which establishes that 

after a reflexion or refraction, a normal rectilinear ray remains normal [23].   

With the wavefront definition, we can define an aberrated wavefront as the optical 

path difference between a reference sphere and the aberrated wavefront 

  spherereferencewavefrontaberratedyxW ,  (2.1) 

It is normal to use an analytical expression to describe the wavefront irregularities 

produced by aberrations. A polynomial representation is the most used analytical 

expression and can be written as 

  
 


N

i

i

j

jji

ji yxayxW
0 0

,,  
(2.2) 

where N is the degree of the polynomial. However, since most of the optical 

systems have a circular shape, and therefore the pupils do too, it is more natural to write 

the polynomials in polar coordinates. In this case, the expression to get a polar 

representation can be written in two forms  mn cos  and  mn sin or alternatively, 

 mn cos and  mn sin . The expression in polar coordinates can be obtained as follows 

    lyxW n











sin

cos
,  

(2.3) 

where nl ...,,1,0  with the condition that ln  should be even. 

As the Eq. 2.3 has to be a single-valued function, there are two conditions that 

have to be satisfied: 

a) The m  value has to be smaller or equal to n . 

b) The sum mn  has to be even. 
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Now, the selection of the trigonometric functions, cosine or sine and the value of l

, in Eq. 2.3 can be determined as in Table 2.1. 

Table 2.1.- Selection of the trigonometric functions and l value for Eq. 2.3. 

mn  parity Value of l  
Trigonometric 

function 

Even m  cos  

Odd 1m  sin  

 

Therefore, Eq. 2.3 for the wavefront deformation is the following 

   
 











N

n

n

m

n

r lAW
0 0 sin

cos
,   

(2.4) 

 

From Eq. 2.4 the aberration terms up to 3rd power are in Table 2.2 and a graphic 

representation is shown in Fig. 2-2. 

Table 2.2.- Aberrations terms used to represent the wavefront deformations  ,W *.  

N  m  r  l  
Polar 

Coordinates 

Cartesian 

Coordinates 
Name 

0 0 0 0 1 1 Piston 

1 

 

0 1 1  cos  x  Tilt about y  axis 

1 2 1  sin  y  Tilt about x  axis 

 

2 

 

0 3 0 
2  

22 yx   Defocusing 

1 4 2  2cos2
 

22 yx   Astigmatism, axis at 0  or 90  

2 5 2  2sin2
 xy2  Astigmatism, axis at  45  

 

3 

 

0 6 1  cos3
 xyx )( 22   Coma, along x  axis 

1 7 1  sin3
 yyx )( 22   Coma, along y  axis 

2 8 3  3cos3
 xyx )3( 22   

Triangular astigmatism, semi-axes at 

 240,120,0  

3 9 3  3sin3
 yyx )3( 22   

Triangular astigmatism, semi-axes at 

 270,150,30  

*The angle   is measured counter-clockwise, with respect to the x  axis. 
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Where r is given by 

 
m

nn
r 




2

1
 

(2.5) 

the subscript n  is the degree of the polynomial and nm ...,,2,1,0 . 

 

2.1.2 Transverse Aberrations 

From the point of view of geometrical optics, to consider an imaging optical system as 

ideal, it is necessary for the system to produce an image point of a point light source. 

Now, in terms of physical optics, as the light is considered a wave, a point source has to 

emit a spherical wavefront [24]. Consider that, the only way to get an ideal image point is 

when the optical system produces a convergent and perfect spherical wave. 

Figure 2-2.- Wavefront deformations, graphic representation. 
Each column represents an order. 
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With the wavefront definitions and considering a perfect spherical wave, 

aberrations can be interpreted as deviations or irregularities from this ideal spherical 

wave. Understanding the anterior description, it is inferred that the measurements of 

aberrations are obtained by the difference between the aberrated wavefront and a close 

reference sphere.  

Most of the real optical systems, even centered optical systems, may produce 

asymmetrical aberrations. This is due to the fact that some optical surfaces are imperfect 

spheres or surface decentering. Consequently, most of the time is necessary to test 

wavefronts with random deformations.  

  As is habitual, the local wavefront slopes in the x  and y  directions, transverse 

aberrations, are related to the wavefront with the following equations 

 
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TA

x

yxW



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r
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y

yxW




 ,
 

(2.6) 

where wr  is the radius of curvature of the wavefront if the transverse aberrations 

are measured at the radius of curvature. Although also, wr  could be the distance from the 

pupil to the plane where the transverse aberrations are measured.  

The transverse aberrations in polar coordinates are given by 

 










,W
rTA w  

 












,Wr
TA w  

(2.7) 

A larger pupil size implies that irregular aberrations have to be considered in the 

polynomial representation. Thus, the importance of the use of polynomial terms not 

included in the classic aberrations of conventional optical systems.  Equally, in some 

cases there are wavefront deformations that are neighboring the edge of the pupil and, a 

high-order polynomial has to be used. The reason to use a high-order polynomial is with 

the purpose of include high spatial frequencies and also if the wavefront has small and 
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strong irregularities [25], [26]. But, the usage of high-order polynomial signifies a large 

computing time and, in some cases depending on the wavefront retrieval method, 

increased numerical errors. 

 

2.1.3 Hartmann and Shack-Hartmann Sensor Tests, Measuring the 

Aberrations 

The Hartmann [3] and Shack-Hartmann [27] tests are methods that use a screen to 

sample a wavefront. The basic Hartmann set up consist of placing an opaque screen with 

a two-dimensional array of openings into the entrance pupil of the system under test, Fig. 

2-3.   

 

Although there are many different configurations of the Hartmann test, as 

described by Malacara-Hernández et. al. [28], all of them have two basic elements, an 

opaque screen with a two-dimensional array of holes or lenslets and a Hartmann plate. 

However, the use of a screen is not the only option to evaluate the wavefront with the 

Hartmann test. In 1999 Laude et. al. introduced a Hartmann wavefront scanner where an 

aperture can be displaced programmatically over the wavefront  [29]. Also, the use of a 

Figure 2-3.- Classical Hartmann set up. 
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Liquid-crystal television has been reported [30] and this system of the scanner has been 

implemented in an aberrometer as well [31]. 

The purpose of the Hartmann screen is to sample the wavefront slopes at different 

points, sampling points, on the entrance or exit pupil of the optical system under test. 

While the Hartmann plate is a set of defocused images of the object point light source.  

Originally, the Hartmann test was developed as a method to test astronomical 

mirrors [32], but nowadays the Shack-Hartmann wavefront sensor has been adopted by 

visual optics instruments to measure ocular aberrations [7], [33]–[35]. The main difference 

between Hartmann and Shack-Hartmann tests is the replacement of the screen with an 

array of holes with a lenticular screen. However, there are other essential differences 

such as the collimated beam of light used in Shack-Hartmann instead of the convergent 

light beam required in the Hartmann test. Furthermore, Shack-Hartmann Sensor has the 

advantages that it can be used to test a positive or negative power and the spots have a 

light energy density higher than in the Hartmann test. Fig. 2-4 shows a basic set up for 

the Shack-Hartmann Sensor test. 

 

 

Figure 2-4.- Shack-Hartmann Sensor set up. A micro-lenslet subdivides the 
wavefront into zonal areas. 
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2.1.4 Wavefront Retrieval 

As it is well-known, a set of local slopes of the wavefront are measured with the Hartmann 

test, so, the wavefront information is obtained from the image of an array of spots. The 

local slope is obtained from the distance between the optical axis of the lenslet and the 

corresponding spot. The reference Hartmann pattern can be obtained from the 

measurement of a planar wavefront. Henceforth, a displacement is proportional to the 

local slope of the wavefront in the area tested with the sensor. Each spot in the focal 

plane matches up with the corresponding portion of the wavefront sampled by a specific 

lenslet.  

 Since these tests measure wavefront slopes, an integration method is necessary 

to obtain the wavefront deformations. These methods can be classified into two 

categories, i.e., zonal and modal, including the well know trapezoidal integration, the 

Southwell integration algorithm [36] and polynomial fitting. With polynomial fitting, a 

smooth retrieved wavefront is obtained, as a result of filtering high spatial frequencies. 

This is due to the fact that spatial frequencies with a period shorter than the sampling 

point separation of the Hartmann sampling points are filtered out.  

Another example of a wavefront retrieval method is by using Fourier analysis [17] 

but excludes the need for centering the spots using a Fourier transform of the Hartmann 

pattern. This technique also filters out high spatial frequencies, like modal methods. As a 

result of modal methods, they can be appropriate for optical systems or surfaces that are 

smooth enough, so, the polynomial representation has a relatively small order. An 

example of a suitable application of modal methods is testing astronomical 

instrumentation [37]. 

Usually, a high order polynomial is required when the wavefront deformations are 

close to the edge of the pupil for the purpose to fit the data without losing high spatial 

frequencies. Unfortunately, high order polynomial fitting requires large computing time 

and also it can add some non-desirable numerical errors. Hernández-Gómez et. al. [26], 

[38] shown that a polynomial fitting, even if a high degree is used, can show numerical 

errors or to a large computing time for some wavefront profiles with strong and small 

extent irregularities.  
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For the case of zonal methods [36], [39], [40], they do not fit the whole wavefront 

to a polynomial, so they are more appropriate to measure small extent irregularities. 

When eye aberrations are trying to be measured, is common to use a zonal method since 

the human eye is a kind of non-smooth wavefront with high irregularities. In addition, there 

are some exceptional cases when the use of both methods is necessary in order to 

compare results. As an example of wavefront retrieval method, the common trapezoidal 

integration method is a case which its accurate depends if the transverse aberrations are 

almost linear, or, the wavefront curvature is almost constant, which, in most cases, it is 

not true especially in the presence of strong wavefront aberrations. Most of the time, 

trapezoidal integration is a good wavefront retrieval method for astronomical mirrors in its 

final testing stages, but in other cases, as in human eye testing, it is not. 

 

2.2 Age-Related Macular Degeneration 

The rising prevalence of AMD is a significant secondary effect due to the increase in life 

expectancy. In this aspect, visual diseases are a considerable group of interest, besides 

chronic diseases such as heart diseases, cancer, and diabetes. AMD is one example of 

a visual disease with an association with age, it is suffered by people older than 60 years 

[41], though this is not the only factor. AMD is considered a complex disease caused by 

several risk factors among which are age, genetics and the environment [41]–[44]. This 

disease is the leading cause of visual loss and blindness since it affects approximately 

30-50 million people worldwide, but with a projected amount of 288 million by 2040 [45], 

[46]. 

 The main affected zone due to AMD is the macula, where the fovea is located and 

this is responsible for the high acuity vision. As explained previously, photoreceptors and 

the retinal pigment epithelium are situated in this area, which means that the dysfunction 

of these causes the visual loss. Usually, this disease generates a malfunction of the 

physiologically immunosuppressive sub-retinal environment. 

 There are two stages of progress identified in AMD, the early and late phases. In 

early AMD, also called age-related maculopathy (ARM), the presence of soft protrusions 
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called drusen starts to be visible. The drusen are an accumulation of membranous and 

lipoproteinaceous debris located between the retinal pigment epithelium (RPE) and 

Bruch´s membrane. As can be inferred, the existence of drusen deforms the retina, 

producing metamorphosis. They can have a size of less than 63 µm in diameter for hard 

drusen or between 63 and 1000 µm, or even aberrometer, for soft drusen [47]. The 

presence of a few small drusen is not related to AMD, but they can be an indicator of the 

possibility to develop AMD.  

 For the case of late AMD, it is developed when large-sized soft drusen are present 

and AMD is divided into two clinical forms: exudative or neovascular (‘wet’) and 

geography atrophy, GA (‘dry’). In neovascular AMD, a choroidal neovascularisation grows 

in the RPE, seeping fluids like lipids or blood, which produces fibrous scarring well-

identified as retinal edemas. On the other hand, geography atrophy is characterized by 

the degeneration of the photoreceptor layer or loss of RPE, and the lesions can develop 

in scotomas [42], [47], [48]. Figure 2-5 illustrates a graphic representation of late AMD 

affecting the retina. 

As the lesions due to AMD can be of a size, that can be visible in a fundus 

exploration, the development and improvement of some identification techniques have 

been advanced during the time. Fundoscopy, imaging, central visual field testing 

Figure 2-5.- Graphic representation of the retinal affectations in wet 
and dry AMD. 
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(fluorescein angiography, fundus autofluorescence, optical coherence tomography, and 

microperimetry) and electrophysiology are examples of methods of diagnosis. 

  

2.2.1 Amsler Grid Test 

Despite the variety of technological AMD diagnosis methods that have been developed, 

the monitoring of progression is a difficult task. The time consuming, pricey, and in some 

cases, difficult to perform, make necessary the use of a simple tool as the Amsler grid 

[49]–[52]. This instrument is an excellent manner to diagnose AMD, but mainly, it helps 

in the monitoring of the progression of this disease. The grid was introduced in 1947 by 

Marc Amsler, and it is described as a 10 cm by 10 cm square arrangement of white 

horizontal and vertical lines on a black background. The grid contains 400 small squares, 

which means that each of the squares corresponds to 1° to visual angle, thus, it covers 

20° of area. The Amsler grid has to be held about 30 cm away from the subject and they 

are asked to look at the center of the grid, (which generally is marked by a dot) and be 

aware of the squares in their ‘periphery’. They are then asked if the squares have the 

same size and shape. The presence of any deformation in the lines, squares or loss of 

lines, indicates the presence of scotomas, and it means that there is a deformation in the 

retina. Figure 2-6 shows the Amsler grid as a subject may see a scotoma or 

metamorphosis. 

Figure 2-6.- Amsler grid. It is a checkerboard with a square pattern where the patients look at the 
center and described the missing lines or deformed lines. 
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2.3 Glaucoma 

Glaucoma can be described as a chronic disorder that deteriorates the optic nerve. The 

progressive optic nerve damage is associated with increased intraocular pressure (IOP), 

which is dependent on the outflow facility of aqueous humor [53]. Degeneration of the 

optic nerve starts with visual field defects and can lead to blindness. It is becoming an 

increasing pathology, with the prediction suggesting that the number of people worldwide 

will escalate to 79.6 million by next year and the main reason is due to the velocity of the 

aging population [54]. Figure 2-7 shows the effect of the internal pressure in glaucoma 

subjects. 

 

Figure 2-7.- Comparison between a normal and a glaucoma eye. 

 In order to understand this ocular pathology, it is needed to identify the two main 

types of glaucoma that exist; primary open-angle glaucoma (OAG) and angle-closure 

glaucoma (ACG). OAG, the most common form of glaucoma, is characterized by slowly 

progressive atrophy of the optic nerve and it is painless. Also, in OAG the symptoms start 

with the visual loss of peripheral visual function. On the other hand, the ACG decreased 

the vision and usually is an asymptomatic disease. 

  The epidemiology of glaucoma is determined by several risk factors such as older 

age, high IOP, ethnic background, family history and high myopia [53], [55]. With this in 

mind, the available methods to glaucoma diagnosis are focused on the examination of 

the IOP level, optic nerve head, retinal nerve fiber layer, visual fields, and gonioscopy. It 

is important to remark that although IOP is considered as the main risk factor, tonometry, 

a procedure to determine IOP, is not the only method that can be considered to glaucoma 
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diagnosis. There is evidence that some patients with glaucoma can present a normal 

range of IOP [56].  

 As far as treatments are concerned, the only treatment approved is to lower IOP 

[53], [55]. In this matter, the main option to control IOP is drop therapy, laser therapy, and 

surgery. The first one is characterized mainly by the application of topical eye drops, 

although side effects due to the long-term treatment have been reported, such as dry eye 

[57], [58]. Laser therapy, or laser trabeculoplasty, is the option if the drug treatment is not 

working on the success of lower the IOP.  In some cases, when drugs are not enough as 

treatment, as well as laser therapy, incisional surgery is the last option.  

In this context, the relevance of developing new diagnosis methods and screening 

techniques becomes important. 

 

2.4 Conclusions 

The causes for monochromatic aberrations can be due to several factors such as age, 

pupil size, accommodation, retinal eccentricity and some pathologies [9]. For example, 

pupil size has a direct influence on the aberrations of an optical system, and the human 

eye is not excluded from this. Although, the human pupil, as previously mentioned, is a 

system that could change the diameter in order to limit the light input, moreover, the pupil 

diameter decreases during the life span, which can be inferred as a mechanism to 

decrease the impact of aberrations. Besides the pupil, the lens also can compensate for 

small amounts of low-order aberrations, as corneal astigmatism, coma, and spherical 

aberration, which are the main responsible for retinal image degradation.  Furthermore, 

the gradient index of the lens works as a system that optimizes the peripheral optics of 

the human eye.  

As it has been shown, the human eye is not a perfect optical system, moreover, 

due to that it is not a centered optical system, this is not perfectly aligned, but there are 

some compensatory mechanisms. Examples of this are the work that the cornea and lens 

developed together to decrease the aberrations, and the neural mechanism as well. 
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Chapter 3 - Zonal Wavefront 
Reconstruction with Square Cells 
 

The previous chapter established some theory about wavefront retrieval definitions, 

techniques and Hartmann and Shack-Hartmann Sensor tests. In the case of wavefront 

retrieval techniques, they present different advantages and disadvantages. However, the 

main disadvantage occurs when small and strong extent irregularities are presented.  

 In this chapter, a novel zonal method to integrate the transverse aberrations from 

a square array is presented with the advantage that this method permits the detection of 

localized errors that can be described. Additionally, with this technique, a different 

analytical polynomial for each square cell formed by four sampling points from a square 

array is found.  It means that a single one analytical expression for a wavefront is not 

obtained, and it allows that small localized errors can be described since each square cell 

is defined by a polynomial. Moreover, each of the expressions is obtained in an exact 

manner, which is one advantage of this method over the widely used trapezoidal 

integration. 

 

3.1 Wavefront Considerations 

Several Hartmann screen patterns have been developed with the purpose of improving 

the sampling of the wavefronts and consequently, to enhance the wavefront 

reconstruction. Three of the most common Hartmann screen patterns are the triangular, 

square and hexagonal, Fig. 3-1. Each one of these patterns was developed with the aim 

to cover the whole pupil of the optical system, but, sometimes a higher sampling 

wavefront demands more time for data analysis or produces an accumulative error.  
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From the three-screen patterns shown in Fig. 3-1, the simplest one is the square 

pattern, and it has the advantage that in an exact manner, the spherical power and the 

astigmatism components can be calculated. As Fig. 3-1(b) shows, if a wavefront is 

sampled by a square array and is subdivided by squares cells, it means that there are 

eight data numbers (two slopes at each corner) per squares. With eight data available, it 

is possible to obtain a wavefront represented by five aberrations, i.e., the tilts, two 

curvatures, and astigmatism, as shown by Malacara-Hernández [59]. Although, it was 

found that a more accurate solution could be found by using a least-square adjustment 

as the proposed method in this thesis described. 

If a wavefront is sensed using a Shack-Hartmann sensor with a square pattern, 

eight number data are obtained: the four slopes and their directions. However, there is a 

consideration, the eight data are not independent. Malacara-Hernández [60] described 

the case when four sampling points are equidistantly distributed in a circle, the available 

information is enough to find an accurate solution for five aberrations, and the wavefront 

aberrations inside a square cell can be described using the terms in Table 1.2, by 

   2sin2cossincos, 2

5

2

4

2

321 AAAAAW   (3.1) 

Tilt in two directions, defocus and astigmatism, with its axis orientation, can be 

obtained, but, the constant term is not possible to get with this method as Gantes-Nuñez 

et. al. [61] described. It is important to remark that these five coefficients are different for 

each cell. Also, the high spatial frequencies are missed since a single polynomial function 

Figure 3-1.- Three possible Hartmann screen patterns. (a) Triangles. (b) Squares. (c) 
Hexagons. 
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is not defined, but the spatial frequency limitation by the density of sampling points 

remains. 

On the other hand, if spherical and astigmatism terms are separated in Eq. 3.1, 

this expression can be written for use in ophthalmic instruments as 

          22212

5

2

4

2212

5

2

4321 sin2sincos, AAAAAAAW  (3.2) 

where  

4

52tan
A

A
  (3.3) 

 

3.2 Sampling and Identification of Point Distribution in a 

Square Pattern 

A circular pupil is the most common pupil of an optical system mainly because of the 

rotational symmetry, which in some cases, is easier to analyze. A circular pupil can be 

identified as two possible square screen patterns as Fig. 3-2 illustrates, (a) a sampling 

point placed at the center of the pupil and (b) a square cell centered at the center of the 

pupil. 

Figure 3-2.- Square screen patterns placed in a pupil with a diameter D, 
which is divided into cells with size s. (a) A sampling point is centered at 
the center of the pupil and (b) a square cell is centered. 
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Because of symmetry convenience, we take a sampling point as the Cartesian 

coordinate, as Fig. 3-2(a) shows.   

Considering D  the optical system pupil diameter and d as the aperture diameter, 

or lenslet diameter, in which the holes are placed at the vertices of the square cells, we 

can define the size of the cells. If the value   is defined as 0  at the corners of the cells 

and taking the center of these as the origin, the size s  of the cells can be derived from 

Fig. 3-3 by 02s . 

02s  (3.4) 

From Fig. 3-3 it can be understood that the transverse aberrations are measured 

from the light beams passing through the apertures or lenslets positioned at the square 

cell vertices. 

To identify the sampling points in the Hartmann screen, the position of these will 

be represented by a pair of indices  ji, , with the coordinate system origin at the center 

of the pupil as was previously explained. It means that the sampling point at the pupil 

center has indices 0 ji . Then, the coordinates  yx,  for the sampling points in the 

Hartmann screen can be either  

isxi   

jsy j   
(3.5) 

Figure 3-3.- Square cell parameters 
to design the square screen patterns. 
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A condition related to the position and the number of sampling points along a 

horizontal and vertical semi-diameter, N , has to be established in order that these have 

to be inside the circular pupil. Thus, the condition is 

2

22

2







 


dD
yx ji

 (3.6) 

where D  and d  where previously defined as the diameters of the pupil and the 

apertures in the Hartmann screen, respectively. Henceforth, we have 

2

22

2







 


s

dD
ji  (3.7) 

Equation 3.7 has to be considered when a Hartmann screen is designed according 

to ensure that the sampling points are confined in the circular pupil. Now, given a value 

of the parameter j , the i  allowed values can be defined by 

21
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i  (3.8) 

 Before, N was defined as the maximum value of the magnitude of i  at the 

horizontal pupil diameter, 0j , it would be given by 








 


s

dD
Ni

2
 (3.9) 

Once the Hartmann screen was designed and Hartmann plate generated, the next 

step is to measure the transverse aberrations. After transverse aberrations have been 

measured, it is necessary to label the sampling points with the coordinates defined by Eq. 

3.7. Then, the next step is to associate each one of the spots from the Hartmann plate to 

the matching aperture in the Hartmann screen. This process can be visually or 

automatically accomplished. 

It is common to refer the transverse aberrations to the optical axis of the optical 

system as Fig. 3-4(a) illustrates, bearing in mind that a sphere with the center of curvature 

is located at the intersection of the optical axis with the observation plane that has been 

used as a reference sphere. Nevertheless, using this reference sphere generates a 
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wavefront retrieved with a large defocus; in fact, to obtain a wavefront without defocusing, 

the wavefront deformations have to be used a sphere closer to the measured wavefront. 

Using a sphere closer to the measured wavefront, the transverse aberrations may be 

obtained with respect to the corners of a square array in the Hartmann plane as is shown 

in Fig. 3-4(b). From Fig. 3-4(b) is clear that the corners are the ideal positions for the spots 

of a wavefront without aberrations and only defocusing is present. There is a specific case 

where a perfect spherical wavefront is tested and the spots will be located at the corners 

of the square reference only if the square array is modified as Fig. 3-4(c) exemplifies. 

 

 In this work, the reference to measure the transverse aberrations is illustrated in 

Fig. 3-4(b), so, in subsequent paragraphs is explained how can be constructed the array 

of square references.  

 To build the reference grid, the first value to define is the size of the square, which 

can be computed as the average separation between two consecutive spots. The 

separation can be considered in the horizontal or vertical direction from the Hartmann 

pattern. But, to know the separation between two consecutive spots, the spots density in 

the Hartmann patter has to be estimated.  

 For the circular pupil considered in this work, the next equation was used to 

calculate the average spot density as the relation between the total linear spots number 

Figure 3-4.- Transverse aberrations measurements with different 
reference spheres. (a) From the optical axis. (b) Square pattern, 
closer sphere, used as a reference and (c) reference square array in 
presence of spherical aberration. 



35 
 

in the Hartmann pattern, TN , and the maximum value of  , max , whose is the semi-

diameter of a circle containing all of the spots. 

2

max
TN

areaunitperSpots   (3.10) 

 To estimate the size of the circle containing the spots, it is necessary to know the 

distance from the centroid of all spots to the farthest spot from the center of the Hartmann 

pattern. Hence, the spot separation,  , along the x  or y  axis is given by  

max



TN

  (3.11) 

so,  value is the separation between lines to be used to build the reference grid. 

 This reference grid indicates, at the crossings, the ideal coordinates for the spots 

in the absence of aberrations. They will be named reference points in this work. As stated 

before, these points have to be labeled in order to identify their position and apply the 

proposed method. The indices i  and j  can take N  as a maximum value along the 

vertical or horizontal direction. Hence, the reference grid will be made by  1212  NxN  

points. In this case, the reference transverse aberration rxTA  and ryTA  for the reference 

points are given by 

iTArx   

jTAry   
(3.12) 

 Then, the subsequent step is to associate the identified spots in the Hartmann spot 

with the closest reference point. To do that, the following equations can be used 

   
2

2
22 
 ryyrxx TATATATA  

or 

   
2

2
22 

  jTAiTA yx  

(3.13) 

 From Fig. 3-4(b) can be understood that as there could be values in the reference 

grid that are actually not needed; this is due to the fact that a circular pupil is analyzed 
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and there are reference points out of the area defined by the pupil. We defined the value 

  1, ji  to the reference points that have a corresponding sampling point and a value 

  0, ji  to indicate the spots that are not present since there is no sampling point 

assigned to the reference spot. Now, the value  works as an indicator to determine if a 

point is to be taken as a valid point in the wavefront reconstruction method or not, so, it 

will be possible to build a table with the values  ,, ji . 

 After all the spots were identified, the transverse aberrations can be labeled to their 

corresponding  ji,  coordinates, making it possible for the construction of a reference 

table with  
yx TATAji ,,,  values. Then, to consider a valid square cell  ji, , it means there 

have to be four sampling points forming a square, there is a condition that has to be 

considered in this address 

         1,1,1,1,,  jijijijiji   (3.14) 

if a sampling point is not present, the value of   0, ji . 

 

3.3 Wavefront Retrieval in a Square Cell 

The previous section explained some considerations to design a reference grid in order 

to obtain the transverse aberrations values. In addition, in section 3.1 the way to cover 

the circular pupil with a square pattern was described. From the 3.1 section, it can 

understand that after the circular pupil has been covered and from Fig. 3-1(b), in the edge 

of the pupil some triangular cells can be formed, but, as in a previous work was described 

[60], with 3 points only 
1A , 2A  and 3A  coefficients, corresponding to tilts and defocusing 

aberrations, can be determined. With four points is possible to determine the wavefront 

tilt coefficients 1A  and 2A , the defocus term 3A , and the astigmatism terms 4A and 5A due 

to there is enough information. In this work, square cells were considered to cover the 

pupil as much as possible and triangular cells were not used. 
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3.3.1 Aberration Coefficients Calculation 

If Eq. 3.1 is derived with respect to   and  , the transverse aberrations in polar 

coordinates are given by 

 

Now, the relation between the transverse aberrations in polar coordinates and 

Cartesian coordinates is defined by 

  sincos TATATAx   

  cossin TATATAy   
(3.16) 

 

Applying Eq. 3.3 for every Hartmann plate spot and using some trigonometric 

identities, it is possible to use the least-squares fitting described by Malacara-Hernández 

[60] with the purpose of aberration coefficients calculation. Thus, defining an error 

function  for a cell with four sampling points as 
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wr  value is closely constant, nearly equal to the distance from the exit pupil to the 

observation plane. Also, the use of primes is to indicate that these values are measured 

data and not variables. Hence, the partial derivatives of error function have to be 

performed with respect to the coefficients kA , where 5k  for the case of square cell and 

these partial derivatives have to be equaled to zero 
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As a result, substituting Eq. 2.15 in the error function   
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The next step is to obtain the derivatives of these functions with respect to each 

one of the five unknown coefficients 0kA  

 

After some algebraic steps and writing the above expressions in terms of the 

multiple angle, nsin  and ncos , we obtain 
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With the assumption that the sampling points are distributed in a regular angular 

manner, to calculate the matrix elements can be easily proved by using the following 

expressions 
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where 0  correspond to the first sampling point in the square cell, starting 

counterclockwise as Fig. 3-5 illustrates and M is the harmonic component number, where  
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and k is an integer. Then, using the Nyquist-Shannon sampling theorem [62] 
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for all the values of M. 

 

Using these results in Eqs. (3.25-3.29), the aberration coefficients are obtained as  
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where 0  is the distance from the center to the corners of the square cell. 

Then, substituting the coordinates for the four sampling points at the corners of the 

square cell and considering the cell center as the origin, Fig. 3-5 
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Figure 3-5.- Labels of the sampling points within the square cell with 

an angle θ0. 
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With this method, the piston term is lost in the retrieved wavefront, but the 

appropriate piston term can be later recovered. 

As was demonstrated, with a square cell is possible to describe the wavefront 

deformation, in an exact manner, by five aberration terms, i.e., two tilts, the defocus, and 

two primary astigmatism terms. It is important to mention that the transverse aberration 

coefficients are defined by the vertices of a square cell. 

 

3.3.2 Calculation of the Aberration Values Inside Each Square Cell 

Equation 3.1 written in Cartesian coordinates has the form of 
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yxjiAyjiAxjiAyxwkl
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 (3.43) 

 

Using Eq. 3.43 and once the aberration coefficients values were calculated with 

Eqs. (3.38-3.42), the wavefront deformations values,  yxwij , , can be found if this 

equation is evaluated at several points inside each square cell, as Fig. 3-6 illustrates. 
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The piston term 0A is excluded because the origin of the coordinates  yx,  is taken 

at the center of the square cells.  

Now, since the final objective is to construct the whole wavefront, some points 

were defined inside of square cells to do interpolation and make possible to obtain a more 

regular wavefront. These values are defined by  mn,  with m  and 2,1,0,1,2 n , and 

they are related to the x  and y  coordinates by 

4

4

ms
y

ns
x





 (3.44) 

It is important to point out that numbers  mn,  are not the same as those used in 

Tables 2.1 and 2.2.  

After the whole pupil has been covered by square cells, the new points are defined 

by the subscripts  lk, , whose origin is placed at the pupil center. Then, once the  ji,  

values have been assigned to the cells, the points  lk,  can be defined as 

Figure 3-6.- Square cells pattern with points inside them to evaluate the wavefront deformations. 
Also, subscripts (i, j), (m, n) and (k, l) are shown. The (i, j) values are the position of the sampling 
point, represented by black circles, and they are the position of the cell as well; so, the location of 
the cell is represented by the lower-left corner sampling point.  (m, n) coordinates are the positions 
of the inner points for each one of the cells, with the cell center as the origin. For the case of (k, 
l) values, they are coordinates with reference at the pupil center. 
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24  mik  

24  njl  
(3.45) 

In Fig. 3-6 there are some examples of the use of these subscripts and the red 

crosses represent the new points calculated. Consequently, the wavefront values are 

dependent on mnji ,,,  subscripts, ),,,( mnjiw and now is possible to calculate the piston 

term ),(0 jiA , so, the final ),( lkW  can be described as follows 

   
   jiAnmjiw

njmiWlkW

,,,,

24,24,

0


 (3.46) 

In the next section is explained the manner to calculate the piston term for each 

square cell in order to obtain a continuous wavefront.  

 

3.3.3 Contiguous Cells Coupling and Wavefront Representations 

The piston term can be determined if a process of joining contiguous terms, so, to 

calculate this coefficient, the wavefront of the square cells that compose it have to be 

matched at the edges. As can be seen in Fig. 3-6, there are two sampling points shared 

between two adjacent cells, hence, the slopes at the two vertices between the two joined 

cells are the same for both cells. Fig. 3-7 describes the similarities between wavefront 

profiles for the contiguous cells. 

Figure 3-7.- Once the piston term has been optimized, the two 
contiguous cells coincide along the border; continuous 
wavefronts, continuous slopes but discontinuous curvatures. 
Two adjacents wavefronts have the same slopes at the 
border, thus, they have the same heights, but the second 
derivative might be different. 
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 In this work, we will refer to filling the empty cells to the method of finding the proper 

piston term and placing of the wavefront deformation values  nmjiw ,,,  in the cell  ji, . 

 The first step to fill the vacant cells starts with the lowest row of cells from the pupil 

and finishing it with the uppermost row of cells. For the case of Fig. 3-6, the procedure 

starts with the cell  4,2   which is located at the lowest row starting from left to right.  In 

that case, this cell is the first one which means that there are no previous values to level 

it, so, the rest of the cells has to be matched with this cell. The next cell to level will be 

 4,1 , then  4,0   and so on until the cells that are in the lowest row are leveled. 

However, as can be seen in Fig. 3-6, in the next row, 3 , for the first left column there is 

no below cell to be equated with.  

 The previous problem can be handled and solved if the fill and level process is 

developed in two steps; firstly, filling the right half of the pupil and then the left half. The 

filling right half process starts in  4,0   cell, meaning that pupil right half is considered 

from the coordinate 0i  and continues upward. Once the right half of the pupil has been 

leveled, the second step is the filling of the left half, starting in  4,1  cell. 

 Leveling in this manner the pupil guarantees a cell with which the next one could 

be leveled; for the case of going from left to right, an empty cell will always be to the right 

unless the cell is the first one from a row. If the cell is the first one from a row, there will 

be a cell below which can be associated. For the case of the left half, this process is 

developed leveling the cells with the contiguous right cells, which have been filled in the 

previous step. 
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 To illustrate the process, in Fig. 3-8 are exemplified the manner in which a cell is 

leveled considered that a cell below and a cell to the left or right is filled as well. 

 

 For a right cell, the piston term is calculated by taking the average of the 

differences between the points A and D, B and E, B and F, and C and G. The average of 

the differences is considered due to the fact to increase the accuracy even if the 

differences should be equal because the elements are sharing the sampling points. 

Considering the first cell of a row is expected that the points D and E do not exist, thus, 

the value of )1,( ji , Eq. 3.14, for this cell, is zero and the corresponds differences have 

to be multiplied by   value. For the case of the left direction, the values of F and G could 

not exist, and also the values of )1,( ji  is zero. Thus, considering the   value, the 

function to calculate the piston term 0A , for the first step, filling from left to right, is 
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(3.47) 

 

Figure 3-8.- The filling process of (i, j) cells. If the cell (i, j) is on the right, the piston term is 
obtained by the average of the difference between the left and lower cells. In contrast, if the cell 
(i, j) is on the left side, the right and lower cells are used. 
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 The process of filling the left side of the pupil is similar to the preceding described, 

but the method starts with the cells in the column  j,1 . As this process is the second 

step, all the right cells have been filled and leveled, column 0i , and for some cases, 

the cells from the lower cells are filled as well. Using the same procedure in Eq. 3.47, for 

the pupil left half the piston term is given by 
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(3.48) 

 

With the described method to level the cells, the wavefront values in the whole 

pupil have been found, but the piston of the whole pupil is referred to the cell with 

coordinates  min,0 j . It is convenient that the piston value is equal to zero at the center of 

the wavefront, consequently, the final step of this procedure is to make that the cell  0,0  

has a value of zero. This can be done subtracting the original values of the pupil to all 

remaining wavefront values. For pupils that do not have a sampling point at the center of 

the pupil, as in telescope mirror with a central hole, there is no possibility to apply the 

method. 

The first step leveling the right half side of the pupil, the expression to reference 

the piston term to the central cell is 
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where the wavefront deformations  nmjiw ,,,  are added to their piston term values 

previously calculated with Eq. 3.47 and 3.48. Now, for the left side, the expression is given 

by 
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It is important to remark that the duplicated values of the wavefront deformations 

at the border for contiguous cells have been eliminated with these equations. 

The method described to recover the wavefront using an array of square cells is 

better than a polynomial fitting (modal reconstruction). Using the polynomial fitting there 

is the possibility to smooth out many local bumps or valleys, eliminating many real errors, 

if the wavefront is quite irregular or highly aspheric. In this respect, zonal procedures are 

a better option if localized errors or high-order aberrations are present. The typical and 

most used zonal method is trapezoidal integration, so, the results of our proposal are 

compared with this method. 

In order to evaluate the proposed method, a wavefront simulation was built with 

some arbitrary aberration coefficients to a high-order expression in terms of Zernike 

polynomials, Table 3.1, as Fig. 3-9 illustrates. 

Table 3.1.- Orthonormal Zernike circle polynomial terms used for the simulated wavefront 
illustrated in Fig. 3-9(a). 

Aberration name j  n  m    ,jZ  
Value

 310x  

Defocus 4 2 0  123 2   0.040 

Astigmatism at 45  5 2 2  2sin6 2
 0.010 

Astigmatism at 45  or 90  6 2 2  2cos6 2
 0.020 

Triangular astigmatism, 30 , 150 , 270  9 3 3  3sin8 3
 0.030 

Triangular astigmatism, 0 , 120 , 240  10 3 3  3cos8 3
 0.030 

Pentagonal astigmatism, with peaks at Triangular 

astigmatism,  72s  
20 5 5  5cos12 5

 0.100 
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 A simulated wavefront, Fig. 3-9(a), was selected to show the differences between 

the proposed method and the well-known trapezoidal method. Using the Zernike 

polynomials to generate the wavefront simulation, a Hartmann pattern was produced, 

selecting a Hartmann screen with five points in the right half and five in the left. Also, five 

points from the top and five from the bottom were chosen to keep a symmetrical sampling 

pupil. Once the Hartmann pattern was produced, the trapezoidal method was 

implemented to rebuild the wavefront and the result is shown in Fig. 3-9(b). In the same 

way, but using the proposed technique, the wavefront was retrieved and is shown in Fig. 

3-9(c). The whole pupil was covered by sixty-four cells, and inside of each cell were 

interpolated four points to plot the wavefront. It can be noted that the wavefront 

reconstruction with the proposed method is more faithful than the trapezoidal integration 

method. Also, can be said that another advantage is that the local curvatures can be more 

easily estimated. 

Figure 3-9.- Wavefront simulation using the Zernike 
polynomials shown in Table 3.1 and the wavefronts 
reconstruction using trapezoidal integration and the proposed 
method. (a) Wavefront simulation selecting some arbitrary 
wavefront coefficients. (b) Wavefront the trapezoidal 
integration method and (c) wavefront retrieved with the 
proposed method. [62] 
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 3.4 Conclusions 

In this chapter, a method to retrieve the measured wavefront using an array of square 

cells has been described. This method has the advantage that a polynomial is assigned 

to each one of the cells that covered the pupil, which contains tilt, curvature, and 

astigmatism terms. Further, with this procedure, the functions that represent the 

wavefront of two contiguous cells are continuous, as well as their derivatives (slopes). 

However, the second derivatives (curvatures) are not continuous in the borders. 

 For the case of wavefront deformations that strongly departs from a perfect sphere, 

when high-order aberrations exist in the wavefront, for example, it might not be necessary 

to implement a procedure to make the curvatures continuous at contiguous cells. 

Consider that the curvatures of two contiguous cells are different, as is expected for a 

non-spherical wavefront; in this case, an extra wavefront deformation  yxw ji ,'

,  can be 

added to each cell.  This extra wavefront deformation would have to satisfy the following 

conditions, due to the fact that the rest of aberration terms of the wavefront in the square 

cell cannot be modified: 

(a) The slopes and curvatures at the center of this extra wavefront deformation should 

be zero in order to not modify the those of the square cells. If the power terms with 

a value of 1 and 2 in the function  yxw ji ,'

,  are not present, this condition is 

achieved. 

(b) In the borders, the wavefront deformations and slopes should not be modified by 

this extra term. 

(c)  The extra term should not alter the curvature at the center of the cell. 

(d) For contiguous cells, the curvature at the borders should be averaged. 

Finally, although some errors are appreciated in the edges of the pupil, it is possible 

to be eliminated if a similar procedure is applied to the triangular cells formed near the 

edge of the pupil. 
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Chapter 4 - Zonal Wavefront 
Reconstruction with Hexagonal 
Cells 
 

Wavefront retrieval techniques is an interesting research area that has the objective of 

improving the accuracy of these methods, as well as the wavefront sensing [63]–[72]. The 

main reason is due to their applications as in the study of human eye and design of 

freeform surfaces. In the first case, generally, low-aberrations can be measured and 

corrected in clinical practice; but the difficulty to measure or correct high-order 

aberrations, such as spherical aberrations and coma, is the reason to continue exploring 

new measure techniques [73]–[80]. An example of a wavefront reconstruction application 

can be appreciated in the aberrometer which even now their basic principle of work is 

based on the common technique of Shack-Hartmann [81]. Visual personalized 

corrections are the main objective of this kind of equipment. 

 Evaluation of freeform surfaces is another area with maintained research in 

wavefront analysis techniques. The inclusion of this kind of element in optical systems 

due to the fact that the number of elements can be reduced and also the size of the 

system [82]. The problems with freeform surfaces are fabrication and testing, as well as 

the cost of manufacturing [82]–[84]. 

Different geometrical arrays and techniques have been used to sample optical 

system pupils, such as triangular, square and hexagonal patterns. Each one of these 

patterns has advantages and disadvantages, but typically, they are limited by the total 

surface that is covered, especially near the edge of the pupil. In this manner, with the 

hexagonal pattern is possible to cover in a better way the whole pupil. 

 This chapter describes a method to integrate Shack-Hartmann and Hartmann 

patterns in a similar way that the previous chapter, but using hexagonal cells. The 

polynomial representation obtained from each hexagonal cell allows one to increase the 
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number of aberrations coefficients that can be calculated. Further, the hexagonal array 

configuration provides a higher density of spots than in an array of square cells [85]–[87]. 

Thus, with hexagonal cells is possible to cover more area at the edges than with square 

cells, so, the local curvatures and low order aberrations in each cell are more accurately 

obtained than using square cells.   

  

4.1 Design and Implementation of the Hexagonal 

Hartmann Pattern 

In the previous chapter, it was said that the square array is the simplest geometrical array 

to sample an optical pupil from the Hartmann test, but, working with this distribution, only 

five aberration coefficients can be obtained. Instead, although hexagonal array is more 

complicated to analyze, the number of aberrations coefficients is higher than square 

geometry. Using hexagonal cells, an exact analytical expression is generated for each 

cell, as in square cell, but for this case, we obtain twelve data points, two slopes at each 

vertex. Thus, in the hexagonal cell is possible to obtain four aberration coefficients, coma 

aberrations, and triangular astigmatisms, plus those found with the square cell. 

Due to the geometry of hexagonal pattern, there are two possible sampling points’ 

distributions, at the center of the cell or at the vertices of a hexagon; though, with the 

second configuration, there is a higher sampling density. In this work, it is used with the 

configuration where the sampling points at the vertices, so, a hexagonal cell is placed 

with the center at the pupil center as Fig. 3-1 illustrates. Using this set up it is possible to 

infer that if a sampling point were added at the center of the hexagon, the analysis would 

have to be considered a triangular one. Hence, in this work is presented an analysis to 

design the distribution of the openings in the hexagonal array. 
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  To perform the integration process is necessary to identify the hexagonal 

cells, so, the position of each cell within the whole cell array in the circular pupil is 

described by a pair of numbers. The first number is defined as n and indicates the ring 

number, in Fig. 4-1 the rings are colored with a specific color, where n=0 to N. Central cell 

is the ring number zero, n=0. Each one of the rings has n hexagonal cells on each side, 

it means that the total number of cells in a ring is 6n. Then, the second number used to 

identify the location of a cell is defined as m, which indicates the cell number in the ring, 

starting with m=1 on the right side, and the maximum number of cells in the ring is m=6n. 

These pairs of numbers can be observed clearly in Fig. 4-1. 

 Now, to design the Hartmann screen the size of each hexagonal cell has to be 

determined considering the side length, s, or the apothem a, associated by 

sa
2

3
  (4.1) 

 Also, an auxiliary parameter k  is defined in order to identify the side number for 

the hexagonal ring. It starts on the first side at the right and on the upper part of the pupil. 

Once the parameter n and m have been defined, with m beginning at the x axis and 

increasing its value in a counter-clockwise direction, the k  value is given by 

1
1

1
int 














n

m
k  (4.2) 

where int is the non-rounded integer value. 

Figure 4-1.- Hexagonal cell with sampling points at vertices and coordinate 
numbers for a hexagonal cell in a hexagonal array. 
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With the k  parameter definition, a better manner to enumerate the cells can be 

used in order to identify the side in which the cell is placed. Instead of number m, a number 

km'  is utilized, with the main difference that m number starts at the first hexagonal cell of 

the whole hexagonal ring and km'  has its origin at the first cell of the side k . Fig. 4-2 

illustrates the use of this parameter as well as   and k'  which are referred to as the 

angle formed by the cells. 

 

As can be seen in Fig. 4-2, a triangle is formed between the first cell of a k  side, 

a selected cell km'  , and the pupil center. Fig. 4-3 shows an example of a triangle-shaped 

by the anterior elements. 

 

Figure 4-2.- Interpretation of the values θ0 and m, and angles mk’ and θ. 

Figure 4-3.- Triangle shaped by the pupil center, a selected cell and the 
first cell of a ring. 
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In Fig. 4-3 can be observed two new parameters, ρ value is formed by the distance 

between the pupil center to the cell km'  and the ρ0 value is considered from the center of 

the pupil to the cell at the beginning of the line k. 

For the case of the hexagon, the side size is equal to the circumradius, which is 

the distance from the center to any one of its vertex. Following the description of Fig 4-3, 

the ρ0 value can be given by 

   snan 13120   (4.3) 

where s is the side and a is the apothem of the cells. Now, the value of km'  can be obtained 

as follow 

  11'  nkmm k  (4.4) 

With these values defined, the distance from the beginning of the line k for a 

hexagonal ring n to the cell km'  is 

   smam kk 1'31'2   (4.5) 

 

Then, the value of ρ can be found using the trigonometric cosine law and from Fig. 

4-3  

         60cos1'161'313 222222 smnsmsn kk  (4.6) 

or 

        smnmn kk 




  1'11'13

22
  (4.7) 

Now, if the trigonometric sine law is applied to the same triangle we can obtain the 

angle k'  by 

 



2

1'3
'sin k

sm k   (4.8) 

and the   value in radians as well can be given by 
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 1
3

'  kk


  (4.9) 

These equations were developed in order to find the polar coordinates ρ and   for 

a given cell if the values of n and m are specified. 

After the considerations to identify the hexagonal cells in a Hartmann plate and 

size of these, the next step is defining a cell density in the circular pupil. It has been said 

that the central cell could be considered the ring n=0 and each one of the rings has n 

hexagonal cells, so, the total number of cells in one ring is 6n. Because of the previous 

circumstances, in an array with N rings, plus one at the center, the total number of cells, 

Mc, is given by 

    11332161  NNNM c   (4.10) 

Besides the total number of cells, the total number of vertices, Mv, is also important 

to calculate due to the fact that they are equal to the apertures or lenslets in the Hartmann 

screen. Unless N is larger than 6, as Fig. 4-4 illustrates the total number of sampling 

points is given by 

    21612753161  NNMv   (4.11) 

Figure 4-4.- Hexagonal arrays with a different number of rings in 
a circular pupil. 
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A relation between the number of rings N and considering the radius (semi-

diameter) of the pupil as R, can be defined as 

  
2

2

2

2
12

2



















s
aN

s
R  (4.12) 

If the s value is considered as the maximum diameter for the apertures or lenslets 

in the Hartmann screen, using Eq. 4.1 in Eq. 4.12 the radius of the circumscribed circle 

come to be defined as 

       


















2
1123

2
1123

2

212212 s
N

s
N

s
R  (4.13) 

Thus, if D is considered as the pupil diameter, it is given by 

   11123
212
 N

s

D
 (4.14) 

 

On the other hand, if the Hartmann screen was already designed and the 

Hartmann plate is the only available information, it is necessary to build the reference 

Hartmann pattern. To do this, the sampling points M obtained from the Hartmann plate 

give information about the number of apertures or lenslets. Then, using 4.11, it is possible 

to find the N number of rings that the Hartmann pattern has to have as follows 

1
6


M
N  (4.15) 

 

Substituting the N value in Eq. 4.14, the ratio D/s can be obtained and in this 

manner is possible to rebuild the Hartmann screen geometry. As an example, Table 4.1 

describes some hexagonal arrays with their corresponding number of rings, hexagonal 

cells, sampling points and D/s ratio.  
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Table 4.1.- Values of total hexagonal cells, sampling points and D/s ratio generated depending 

on the number ring N. 

Number of rings (N) Hexagonal cells (Mc) Sampling points (Mv) D/s 

1 7 24 6.2915 

2 19 54 9.7178 

3 37 96 13.1655 

4 61 150 16.6205 

5 91 216 20.0788 

6 127 294 23.5389 

7 169+3=172 284+18=302 27 

 

With the values shown in Table 4.1 is possible to generate the transverse 

aberrations produced by the ideal Hartmann screen with defocusing. Consequently, with 

the reference Hartmann screen, the wavefront can be retrieved with respect to a close 

reference sphere. 

 

4.2 Wavefront Retrieval in a Hexagonal Cell 

Wavefront reconstruction using a hexagonal array to cover the pupil allows a 

representation, applying the proposed method, with nine aberration terms and 

considering the terms in Table 2.2 as follows 

 





3sin3cossincos

2sin2cossincos,

3

9

3

8

3

7

3

6

2

5

2

4

2

321

AAAA

AAAAAW




 (4.16) 

 where similar to the case of square cells, the piston term is lost, because as is well 

known, transverse aberrations are obtained from the first derivative and piston term is a 

constant.  
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4.2.1 Aberration Coefficients Calculation 

As described in Chapter 3, the basic principle of operation of the wavefronts retrieval 

proposed methods in this work is to find a polynomial that recovers a local area of the 

total wavefront. Twelve slopes are the available data in a hexagonal array, two for each 

sampling point, and with this information is possible to determine the triangular 

astigmatisms terms, corresponding to the third harmonic component.  

 The procedure to obtain the coefficient terms for Eq. 4.16 is similar to the described 

in the previous chapter but considering the four extra terms. Under those circumstances, 

Eq. 3.15 is expressed as 

 

  

Then, the error function is defined by 
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note that this expression is almost the same that Eq. 3.17 but the upper bound of 

summation in Eq. 4.16 is 6 because now it is a hexagonal cell. 
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Substituting Eq. 4.15 in 4.16 is obtained in the next equation 
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Then, in order to obtain the coefficient aberrations terms in needed to obtain the 

derivatives of this error function with respect of each one of the nine unidentified 

coefficients 0kA  
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The previous equations can be expressed in terms of the multiple angle, nsin  

and ncos , and after some algebraic steps can be given by 
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Now, following the same considerations from Eq. 3.30 to 3.32 in Chapter 3, but 

considering the hexagon, the previous expressions for the aberration terms are 

 

 

Finally, substituting the coordinates for the six points in the correspond hexagonal 

cell and taking the center of the cell as the origin, the aberrations terms in Cartesian 

coordinates are 
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where wr  is nearly constant and approximately equal to the distance from the exit pupil to 

the observation plane. In addition, these equations illustrate that they are dependent on 

the six sampling points. 

 

4.2.2 Aberration Values Within the Hexagonal Cells Calculation 

With the expression described in the previous section and the transverse aberrations 

data, the wavefront can be retrieved. In the same manner that for the square cells, it is 

necessary to create new values wi(x,y) inside the cells in order to obtain a smooth local 

surface in each one. Fig. 4-5 illustrates the proposed number and design of inner points 

to create a better wavefront reconstruction. 

  

 These new values were calculated using the ratio that exists between the side of 

the hexagon cell and the apothem, defined by Eq. 4.1, that Fig. 4-6 shows, as follow 

ii aa 
2

3
32   (4.54) 

32

3

2

3 s
s ii    (4.55) 

Figure 4-5.- Interpolated spots, red crosses, inside the hexagonal 
cells that cover the whole pupil. 
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where ρi is the distance between points that are placed inside the hexagonal cells. This 

distance is created in a manner that sampling points and the inside points are uniformly 

distributed. Using the value of ρi and varying the θ angle from 0° to 360°, is possible to 

obtain the (xi, yi) coordinates in increments of 60° using the coordinate conversion 

expressions 

 

where xc and yc are to the values of the cell center and xi and yi are the values of the new 

coordinates inside the cell. 

Also, in Fig. 4-6 is possible to see that the new inside values are rotated by 30° 

with respect to the hexagonal cell points, and with this characteristic, the wavefront 

retrieval is uniform.  

Once the new values were generated, the wavefront deformation over the whole 

pupil is possible to retrieve using the aberration coefficients and using the next expression 

in Cartesian coordinates 

 cosici xx   

 sinici yy   
(4.56) 

Figure 4-6.- Contiguous cells illustrating the distance 
between two sampling points and the apothem length. 
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The wavefront deformation is expressed in lower case, w, because the expression 

is used to retrieve the local wavefront in each one of the hexagonal cells. Furthermore, 

as can be seen in Eq. 4.57, the piston term A0(x,y) is lost, so, as in the same manner than 

square cells, a procedure is needed to calculate this term and it is described in the next 

section.    

 

4.2.3 Contiguous Cells Joining and Wavefront Representations 

In a similar manner than square cells, the piston term can be obtained if the values of 

adjacent cells are compared. However, in the hexagonal cells due to the geometry and 

just for some specific cells, there are three possible configurations or sharing points 

between cells; two, three and four sampling shared points. Due to the fact that contiguous 

cells have sampling points in common, and in this points the transverse aberrations are 

the same, the heights and the slopes are continuous but might be a curvature 

discontinuity between them. Fig. 4-7 illustrates two neighboring hexagonal cells before 

and after the procedure of finding the piston term. 
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Figure 4-7.- Representation of hexagonal cells before the piston term calculation 
(a) and after (b). 
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It has been explained that the configuration of hexagonal cells selected is 

considering a cell in the center of the pupil. This geometry also allows that this central cell 

will be considered as the reference to start the process of piston term calculation. Then, 

the next cells to be leveled are those that are located in ring number 1 and continue with 

numbers 2, 3, …, N. However, the process to find the piston term for hexagonal 

configuration is not as simple as for the square array.  

For hexagonal array, the method to obtain the piston term is considered in twelve 

steps. One step for each one of the sides and vertices of the hexagon as Fig. 4-8 shows. 

As described in section 4.1 of this chapter, the hexagonal cells are identified by (n, 

m) and for the vertices is used the letter l. From Fig. 4-8 can be seen that to leveled the 

cells, cells of previous rings have to be considered and for some cases, there are two, 

three or four shared sampling points to calculate the piston term. For this reason, there 

have twelve cases to be considered. At this point is important to remark that once the 

value of the piston term for a cell has been found, this value has to be added to the 

thirteen values, considering the inside values, immediately. This is because in most cases 

the next cell is in the same ring. So, after the piston term has been obtained, the value is 

added to the wavefront value by the next expression 

    gA AlmnWlmnW
g 0,,,,

0
  (4.58) 

Figure 4-8.- Sampling points shared between contiguous cells and the twelve 
cases to calculate the piston term. 
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where the subscript g is the case number. The twelve cases are listed in Table 4.2 

with their respective conditions in which they have to be applied. 

Table 4.2.- Cases and conditions to apply the piston term calculation. 

Case Condition Equation  
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After the hexagonal cells have been leveled in the whole pupil, the wavefront 

profile is complete.  

It is clear that this process is not a simple one for a hexagonal array, but this is 

because of the configuration of geometry.  

A Hartmann pattern from a simulated wavefront is used to estimate the proposed 

technique in this chapter. The synthetic wavefront has the characteristics to be a 

polynomial with a high degree, power of 5, in order to evaluate the method with a 

wavefront that has high spatial frequencies. The well-known trapezoidal integration and 

square cell integration methods presented in the previous chapter are used as procedures 

to compare the integration of the hexagonal cell. There is a fact that has to be considered, 

the Hartmann pattern used to make the wavefront reconstruction of trapezoidal and 

square cells methods is a square array pattern. Thus, the number of sampling points is 

not the same for hexagonal cells as Fig. 4-9 illustrates. 

 The wavefront simulated was built with the data shown in Table 4.3. Even when 

the wavefront has local deformations, there are low enough frequencies that can be 

detected by the hexagonal method. 

Figure 4-9.- (a) Hexagonal Hartmann pattern with 96 sampling points and (b) square Hartmann 
pattern with 120 sampling points. 
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Table 4.3.- Orthonormal Zernike circle polynomials Zj(ρ,θ) terms used in the simulated wavefront 

illustrated in Fig. 4-10. 

Aberration name j n M Zj(ρ,θ) 
Value 

(x10-3) 

Defocus 4 2 0  123 2   0.050 

Coma along x axis 7 3 0    cos238 3   0.080 

Primary Spherical Aberration 11 4 0  1665 24    0.100 

Quadrangular Astigmatism at 0° 14 4 4  4cos10 4  0.050 

Secondary Coma along x axis 16 5 1    cos3121012 35   0.030 

Pentagonal Astigmatism, with peaks 

at s(72°)+18° 
33 7 5  5sin12 5  -0.050 

 

 Fig. 4-10 illustrates the original simulated wavefront and the retrieved ones by 

using three different proposed methods.  

Figure 4-10.- (a) Simulated wavefront to be tested and retrieved, (b) 
retrieved wavefront after trapezoidal integration, (c) retrieved wavefront 
using square cell integration and (d) retrieved wavefront after hexagonal 
cell integration [88]. 
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 Fig. 4-10(a) shows that the wavefront retrieved with the hexagonal cells method is 

smoother and continuous than the obtained with trapezoidal and square cells 

reconstruction. It is worth noticing that the wavefront plotted does not have the reference 

mesh in order to show a better figure.  

 In order to prove the accuracy and better reconstruction of hexagonal cells method, 

the Peak-to-Valley values, the difference between the maximum and minimum values of 

the wavefront at zones with values of derivatives in x and y equal to zero. The obtained 

results are shown in Table 4.4. 

Table 4.4.- Peak-to-Valley values obtained with the integration procedures compared. 

Figure Wavefront Value 

3.10(a) Simulated 1.030227 

3.10(b) Trapezoidal integration 0.816400 

3.10(c) Square cell integration 0.874807 

3.10(d) Hexagonal cell integration 1.000288 

 

 Table 4.4 shows that the best result with hexagonal cell integration and the less 

accurate is obtained with a trapezoidal integration method. A perfect integration method 

would have to produce an identical retrieved wavefront [88].  

 

Additionally, in order to prove the effectiveness of the methods proposed in the 

ocular aberrations measurements, two keratoconus corneas were analyzed. Subjects 

data obtained with a Pentacam AXL, Oculus, were used to prove the methods and 

compared with the trapezoidal integration. The graphic results and Zernike terms used 

are described in Table 4.5, Table 4.7 and Table 4.8.  

 

 



76 
 

Table 4.5.- Orthonormal Zernike circle polynomials Zj(ρ,θ) terms obtained from two subjects 

showed in Table 4.7 and 4.8. 

 

In the same manner, as the previous results, an evaluation of the Peak-to-Valley 

value was calculated. The results of this analysis are presented in Table. 4.6. Data 

described in Table 4.6 showed that hexagonal integration is better than trapezoidal and 

square cell integration, due that the Peak-to-Valley value is closer to the simulated 

wavefront. The values are higher than in Table 4.5 because the piston term and defocus 

are higher as well. 

 

Table 4.6.- Peak-to-Valley values obtained with the integration procedures compared. 

Wavefront Subject 1 Subject 2 

Simulated 794.340 1087.656 

Trapezoidal integration 704.3270 886.397 

Square cell integration 798.2325 1197.237 

Hexagonal cell integration 795.4974 1152.435 

 

Aberration Term Subject 1 Subject 2 

Zj(ρ,θ) Value (x10-3) Value (x10-3) 

1 247.180 249.180 

 cos2  2.333 2.535 

 sin2  -1.000 -1.032 

 123 2   138.354 142.180 

 2sin6 2  -1.123 -1.390 

 2cos6 2  0.889 0.879 

   sin238 3   1.130 67.368 

   cos238 3   0.085 -83.550 

 sin8 3  1.132 1.210 
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Table 4.7.- Wavefronts simulated and rebuilt with the methods proposed with data obtained from 
subject 1 using the Pentacam instrument. 

Method X-Y Plane View X-Y-Z Plane View 

Simulated 

  

Trapezoidal 

Integration 

  

Square 

Integration 

  

Hexagonal 

Integration 
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Table 4.8.- Wavefronts simulated and rebuilt with the methods proposed with data obtained from 
subject 2 using the Pentacam instrument. 

Method X-Y Plane View X-Y-Z Plane View 

Simulated 

  

Trapezoidal 

Integration 

  

Square 

Integration 

  

Hexagonal 

Integration 
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 A continuity analysis of the wavefront retrieved function was performed between 

two contiguous cells. This analysis was developed just in the square cell, assuming that 

as the aberration coefficients calculation is the same in hexagonal cells, the continuity will 

exist in this one as well. Continuity of several cells frontier was analyzed but here is 

described just one. Cells (1, 1) and (2, 1) from subject 1 were selected to describe the 

continuity analysis, evaluating the x and y values in Eq. 3.43. Aberrations coefficients 

values are shown in Table 4.9. 

 

Table 4.9.- Aberration coefficients obtained using the square integration method for subject 1. 

Aberration coefficient Cell (1, 1) Cell (2, 1) 

A0 0.001298 0.001708 

A1 -0.28784 -0.48447 

A2 -0.29642 -0.29123 

A3 0.098503 0.098503 

A4 0.000185 0.000185 

A5 0.001298 0.001708 

 

Then, using Eq. 3.43, the wavefront aberration function to these cells are 

  

 

 

The x and y values considering in each one of the cells and wavefront values 

obtained with previous Eqs. are described in Table 4.10 and data are plotted in Fig. 4-11. 
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Table 4.10.- Wavefront and derivatives obtained from the (1,1) and (2,1) cells. 

Cell (1, 1) Cell (2, 1) 

x y w ∂w/∂x ∂w/∂y x y w ∂w/∂x ∂w/∂y 

9 9 10.91072 
 

1.512 
 

1.497 
 

10 9 10.91072 
 

1.520 
 

1.513 
 

9 8 9.51237 1.509 1.300 10 8 9.512369 1.512 1.316 

9 7 8.310656 1.507 1.103 10 7 8.310655 1.513 1.119 

9 6 7.305578 1.504 0.907 10 6 7.305577 1.510 0.922 

9 5 6.497136 1.502 0.710 10 5 6.497135 1.506 0.726 
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Figure 4-11.- (a) Wavefront values data, (b) Partial derivatives in x and (c) Partial derivatives in y. 
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Values in Table 4.10 and Fig. 4-11 is demonstrated that the values at the wavefront 

and derivatives are similar. The small difference may be due to numerical errors because 

of the integration process or term aberration calculation.  

 

4.3 Conclusions 

In this chapter, a novel technique to retrieve the wavefront was presented, which is a 

zonal method that uses the slopes measurements at the vertices of a Hartmann pattern 

with a hexagonal array. One of the advantages is the uniform sampling, that compared 

with the square array, is more regular and cover more area, even in the pupil edges.  

 An important characteristic of this method is that each one of the hexagonal cells 

has his own polynomial expressions, formed by nine terms, tilts, curvature, astigmatism, 

comas, and triangular astigmatism. Moreover, the method allows the detection of local 

small errors that cannot be detected with only one polynomial fitting.  

 To conclude, the accuracy of the presented technique is greater than the obtained 

by other methods. Another possibility is that instead of using the measured slopes at the 

sampling points, the Fried geometry can be used, which measure the slopes inside of the 

cells [89]. 
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Chapter 5 -Eye Models to Predict 
Quality Vision in Age-Related 
Macular Degeneration 
 

The healthy human eye is a sophisticated optical system that is capable of forming images 

on the retina with good resolution. It belongs to a general group of eyes well-known as 

‘camera-type eyes’ because, in a simple manner, the eye works as a camera lens 

focusing light onto a film.  In the eye, the optical imaging system is formed by the cornea 

and crystalline lens, while the retina is the detection instrument.  Now, the complexity of 

the eye comes when is analyzed as a complete biological organ and the neural 

connections have to be considered. Similarly, the cornea and lens are living lenses, so, 

other factors like organic components, start to be important. 

As the eye can be explained from an optical system perspective, it can be affected 

by aberrations that reduce the quality of the retinal image. The total aberration 

contribution, mainly, can be divided between the two components of the optical imaging 

system, i.e., the cornea and the eye lens. Also, deteriorations in the retina, about which 

we will talk later, reduce the image resolution. But, there are additional factors responsible 

for the degradation of retinal images like diffraction in the pupil and intraocular scattering 

[9], [10].  

In this chapter, an overview of the human eye is studied and the AMD is analyzed, 

also, a preview series of eye models with AMD are presented. 

 

5.1 Eye Model with Age-Related Macular Degeneration 

In this section, preliminary results of personalized eye models with AMD are described. 

As previously mentioned, drusen are a particular marker in AMD; its presence in the retina 

deforms the spherical shape of this. Therefore, modeling these deformations in the retina 
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using Zemax, an exact ray-tracing software, is possible to obtain the Amsler grid image 

simulation.  

The first step was to generate a matrix with central deformations, fovea area, 

representing the drusen. To define the central area, the standard Wisconsin Age-Related 

Maculopathy Grading System [90] was used. It is a system that divides the macula into 

three areas as Fig. 5-1 shows, where the innermost circle has a radius of 500 µm, the 

radii of the middle is 1500 µm and the outer has a radius of 3000 µm. The areas covered 

corresponds to the fovea, innermost circle and the rest of macula in the middle and outer 

circles. These images were used to simulate the retinal edemas, modifying the spherical 

shape of the retina and using the schematic eye data shown in Table 5.1. 

With the standard grid defined, a series of matrices with drusen of several sizes 

was built in order to obtain the Amsler grid deformations. The drusen were placed in the 

central area of the standard grid, as the central macular area is the most affected.  Fig. 

5-2 illustrates an example of the schematic eye with deformations in the retina, where the 

drusen size is 300 µm. 

Figure 5-1.- Standard Wisconsin Age-Related Maculopathy grading system. The 
grid is defined by three concentric circles centered at the macula. 

Figure 5-2.- Schematic eye model with drusen 

deformations of 300 µm in the retina. 
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In order to show the manner that the drusen affect the central vision, three retinal 

matrices were generated with drusen sizes of 63 µm, 300 µm, and 800 µm. With these 

matrices were developed the simulations of a preloaded image and the Amsler grid, as 

Table 5.1 describes. 

Table 5.1.- Amsler grid and image simulation from a retina with different size of drusen. 

Drusen 

Size 

(µm) 

Retinal Matrix Amsler Grid Simulation Image Simulation 

63 

   

300 

   

800 

   



85 
 

 From Table 5.1 can be observed that the drusen can be simulated and even at 

small sizes, 63 µm for example, deformities are visible. Now, if the drusen size is larger, 

the effect of the malformations is noticed and agrees with the published review. 

 Once the simulations were developed and the matrices of drusen were working to 

reproduce the Amsler grid effects, a series of cross-sectional retinal fundus images were 

acquired in order to simulate the Amsler grids. A Spectralis Ocular Coherence 

Tomography, by Heidelberg Engineering was used to acquire the fundus retinal images 

with help of a staff member in the Visual and Eye Research Institute (VERI), Anglia Ruskin 

University, Cambridge, UK, place where my internship was held. In the images obtained 

with the OCT, a bar scale is displayed in the left corner, so, with this measure was 

possible to build the drusen in the retinal matrices. 

 Since not enough subjects were recruited, it was possible to obtain just preliminary 

results. Hence, two cases of AMD are described and illustrates in Figs. 5-3 and 5-4 with 

their Amsler grid simulations in order to illustrate the possible application of the 

personalized eye models.  

 

 

 

 

 

 

    

 

 

 

 

(a (b) 

(c) (d) 

Figure 5-3.- Male subject of 85 years old and AMD. (a) Cross-sectional retinal fundus image 
of a patient with late AMD. (b) Image vision simulation of an image. (c) Schematic eye of the 
patient with AMD. (d) Amsler grid simulation. 
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The subject in Fig. 5-3 was a male of 85 years old and as can be seen, he presents 

a severe AMD case, in Fig. 5-3 (a) can appreciate the retinal deformation. The drusen 

size of this patient was about 1200 µm and he was severely sight impaired. 

 

In Fig. 5-4 shows the simulated the Amsler grid, image and eye schematic of a 

male with AMD and 76 years old. Even if the case is not as advanced as Fig. 5-4, the 

central vision of this subject is lost as well.  

 The results described are an approximation to the development of a cost-

effective method to the diagnosis of AMD using a simple Amsler grid. Usually, the Amsler 

grid is used as a quantitative method to evaluate the progression of AMD, but in this 

chapter has been explained that it can be an interesting approach. Furthermore, the use 

(a) (b) 

(c) 

(d) 

Figure 5-4.- Male subject of 76 years old and AMD. (a) Cross-sectional retinal fundus image 
of a patient with late AMD. (b) Image vision simulation of an image. (c) Schematic eye of the 
patient with AMD. (d) Amsler grid simulation. 
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of this grid will be a relevant and useful technique in developing countries that may have 

limited access to expensive technology, such as OCT scans. 

 

5.2 Conclusions 

AMD is one of the main blind causes worldwide. The principal characteristic of late AMD 

is the presence of drusen, which are edemas formed by proteins, blood and other kinds 

of components. The manifestation of these affectations are the main characteristics to 

identify the AMD disease, but instead of an OCT scan, we had proposed a cost-effective 

technique. 

 Moreover, preliminaries studies of AMD characterization were presented in this 

chapter, where the Amsler grid was used as a method to evaluate the progress of AMD. 

As it was described in the results, it is possible to use this grid in order to quantify the size 

of the drusen with a high approximation of the dimensions. It was described promissory 

results with the modeling of eyes with this disease, but more subjects are necessary to 

evaluate this method in order to validate this technique. 
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Chapter 6 - Ocular Surface 
Characterization Using Infrared 
Thermography  
 

The body temperature can be considered as a reference to human health. As is known, 

metabolic activities in the body produce heat and this is the reason to relate the condition 

of the temperature with health. The heat generated has to be released to the body surface 

in order to keep an internal balance. Transportation of the heat is mainly made by the 

vascular system, which is another reason and interest to study the temperature of the 

human body. 

 Since ancient times, an indirect manner to measure the temperature has been 

using the hands. It was not until around 1600 when Galileo developed a rudimentary 

thermometer that he used to quantify variations in the temperature [91]. Nowadays, the 

mercury thermometer, developed by Wunderlich in 1868, is one of the most used 

instrument to measure the temperature, besides there are other options such as 

thermocouples and radiometers. But, the instruments previous mentioned have the 

characteristic that the contact between patient and device is needed. It is where the 

importance of a noncontact method is relevant due to is less invasive and also they can 

cover a bigger area to measure. Infrared thermography is one example of these non-

invasive techniques. 

 A brief description of the infrared thermography and the manner it is used in the 

human eye is presented in this chapter. Also, a study developed about the dynamic of 

temperature in glaucoma patients is presented. 
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6.1 Infrared Thermography and Eye Temperature 

Measurement 

Infrared (IR) thermography is a widely used technique for temperature measurement, 

whose main characteristic is that it is non-invasive. The principle used by this procedure 

is that the objects emit infrared radiation (0.7-100 µm) and in this theory is also consider 

that a good absorber has to be a good emitter. It is where the meaning of a black body is 

important for the physics of thermal radiation, which is an object whose temperature and 

wavelengths of the light emitted are related. Planck, Stefan-Boltzmann and Wien 

displacement laws, as well as the concept of emissivity, are important principles used in 

the IR thermography. Equations 6.1, 6.2, 6.3 and 6.4 are the Planck, Wien displacement, 

Stefan-Boltzman and emissivity laws respectively. 

I is the spectral radiance in Watts per Steradian per square meter, wavelength, and T  

temperature. h is the Planck constant (6.626 x 10-34 Js), k is the Boltzmann constant 

(1.381 x 10-23 J/K), c is the speed of light (2.998 x 108 m/s) and   is the Stefan-Boltzman 

constant (5.67 x 10-8 W/m2K4). For the emissivity equation, Eq. 6.4, this term denotes the 

relation between the amount of radiation emitted by an object, E , and by an ideal black 

body, bE . Using the emissivity equation, Eq. 6.3 can be written as 

 

As usual, the equipment progress for infrared measurements was due to military 

and astronomical applications [92].  These days, the availability of infrared detectors 
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includes thermal and photonic. Examples of thermal detectors are microbolometers, 

pyroelectrics, and Golay cells, while photonics are quantum well infrared photodetector 

and mercury-cadmium-telluride [93].  

There is evidence that in 1934 Hardy was one of the first that work on the 

development of an infrared detector to temperature measurement in the skin [94]. 

However, it was not until the development of better infrared cameras that this technique 

was widely used. Currently, IR thermography is widely used in medicine due to the 

advantages of its non-invasive characteristics. Applications of these techniques are in 

breast cancer, dentistry, and vascular disorders, and of course in ophthalmology [92], 

[93]. In ophthalmology, the work of Mapstone is known as one of the first tries to measure, 

first with a bolometer and after with IR cameras, the cornea temperature [95].  

Something interesting to remark about IR thermography is that this technique is 

not possible to measure the intraocular temperature. The reason is that the ocular tissues 

absorb almost the same wavelengths as water does, and it means that the radiated 

energy by any ocular tissue is absorbed by the previous tissue [92], [93]. Using the 

previous explanation can be understood that the tear film, which besides has high water 

content, absorbs the spectrum radiated by the cornea.  

The fact that the tear film is exposed to the environment makes to think about the 

effect of external factors. Blinking, the temperature of the environment, blood flood to the 

eye and heat transfers from adjacent structures are examples of external factors [92]. In 

order to decrease these effects, different strategies have been used such as a period of 

time to adapt to the room temperature where the ocular surface temperature, OST, is 

going to be measured. Also, controlling the airflow and humidity are other examples of 

this.  

In the following section, a study of the dynamics of OST is presented, which was 

performed using IR thermography, in order to evaluate glaucoma subjects and healthy 

patients. 
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6.2 Ocular Surface Characterization Using Infrared 

Thermography 

A study with the purpose to calculate the dynamics of OST with IR thermography was 

developed. Four zones were analyzed, eyelid, central, ellipse and peripheral, in order to 

explore the differences in vascular and avascular areas. Subjects with glaucoma disease 

and healthy patients are presented in this section. 

 

6.2.1 Methodology 

The study was carried out in the Vision and Eye Research Institute at Anglia Ruskin 

University, Cambridge, UK. 21 glaucoma patients and 19 healthy subjects were recruited 

to develop this study in order to test the dynamics of OST using IR thermography. 

 The previous section explained how the environment can affect the OST 

measured, thus, the tests were made in a controlled environmental chamber (CEC). The 

CEC, PSR-B, WEISS Gallenkamp, has the capacity to control the temperature between 

5 °C and 40 °C and relative humidity between 5 % and 85 %. Also, the laminar flow is 

0.08 m/s controlled by the CEC. This study was performed using a temperature of 23 °C 

and 45 % of relative humidity, and the subjects were inside the CEC for a period of 10 

minutes of adaptation. If the patients had previous surgeries, such as refractive surgery, 

pathological diseases, they were excluded.  

 A video per subject was acquired using a thermal camera (Therm-App Hz, Opgal 

Optronic Industries Ltd., Israel) with a frame rate of 25 Hz. 8 s after the patients opened 

the eye and their eyes were closed by 10 s, were captured in the video. After the video 

was recorded, the thermal images were analyzed using MATLAB, were three factors were 

tested. The temperature at t = 0 s, it is at the time after opening eye, the temperature 

changes over 8 seconds and the cooling rate, slope of the linear function, during three 

different periods. For the temperature at t = 0 s, three areas were tested, 3 mm of the 

eyelid and central cornea and the peripheral zone. Temperature changes were measured 
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in the central and peripheral zones and the cooling rate was evaluated from 0-2 s, from 

2-4 s, and from 4-8 s. Fig. 6-1 shows the zones analyzed. 

 

6.2.2 Results 

The results of this work were published in the “Journal of the Optical Society of America 

A”, where a more detailed explanation of results can be consulted [96]. 

 Figure 6-2 shows the plots of the three zones analyzed, eyelid, central ocular 

surface and peripheral, at t = 0 s. 

Figure 6-1.- Zones where the temperature was 
measured. [97] 

Figure 6-2.- Temperature values measured in control and glaucoma subjects. (a) Eyelid, 
(b) central ocular surface and (c) peripheral ocular surface at t = 0 s. Squares and points 
represent controls and glaucoma, with the main value in green asterisk. [97] 
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 From the statistical analysis was found that subjects with glaucoma have a cooler 

temperature in the eyelid than healthy patients. Also, in the central cornea, the values are 

cooler for glaucoma patients. For the peripheral area, there are no significant differences. 

P = 0.046, P = 0.036 and P = 0.183 were the values found for eyelid, central and 

peripheral area, respectively.   

 The second parameter evaluated was the temperature changes over 8 s in the 

central cornea. Fig. 6-3 shows evolution. 

 During the first second, the glaucoma subjects registered a decrease of 0.49 °C 

and healthy patients just 0.24 °C. After the first second the cooling behavior of glaucoma 

patients was faster than healthy subjects. In order to describe the cooling rate, the cooling 

rate was calculated from 0-2 s, 2-4 s, and 4-8 s. The results are presented in the plots of 

Fig. 6-4. 

Figure 6-3.- Average OST changes in the central cornea zone. Green lines are the periods of 
time analyzed to find the cooling rates. [97] 

Figure 6-4.- Cooling rate (a) from 0 to 2 seconds, (b) from 2 to 4 seconds and (c) from 4 to 8 
seconds. [97] 
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 Table 6.1 shows the values obtained in these periods for glaucoma and healthy 

subjects. 

Table 6.1.- Cooling rate values for the periods of time analyzed. 

Period (s) 
Cooling rate (°C/s) 

Glaucoma Control 

0 – 2  -0.333 -0.122 

2 – 4 -0.133 -0.035 

4 – 8  -0.115 -0.085 

 

For the case of lower temperatures in the glaucomatous eyes, the possible reason 

could be due that the impaired blood supply. The blood supply could be affected not only 

in the optic nerve, it could be that the vascular system is affected also for the blood supply. 

Another possible explanation can be described from the glaucoma medication point of 

view. Several studies have been described side effects of the hypotensive drops, used to 

balance the IOP, and some of them affect blood pressure [97]. There is a third possibility 

due to the dry eye disease, glaucoma subjects suffer this disease and there is evidence 

that subjects with dry eye have lower temperatures of around one degree than healthy 

subjects [98]. 

 

6.3 Conclusions 

In this study was found that on average, the central cornea of patients with glaucoma was 

0.64 °C cooler than in healthy subjects. This parameter suggests that due to the glaucoma 

disease, side effects due to the treatment in these patients such as the eye drops and dry 

eye, the temperature is cooler.  

 Also, the cooling rate is faster for glaucoma patients and the peripheral area 

changes his value although is not significant. Finally, considering that although the central 

cornea does not have a vascular system, the effect of the alteration in the ocular blood 

supply in glaucoma subjects has an effect on the thermal dynamics of the central cornea. 



95 
 

Chapter 7 - Conclusions 

 

The main objective of this work was to establish methods that allow improving the ocular 

aberrations measurements and produce diagnosis techniques to evaluate visual 

pathologies. Firstly, two numerical wavefront reconstruction methods that improve the 

measurements of ocular aberrations were described. Secondly, studies on glaucoma and 

AMD pathologies were presented, in order to develop new techniques to evaluate and 

diagnose these eye diseases. 

 The numerical procedures to make wavefront reconstruction are based on 

the Hartmann and Shack-Hartmann tests. Using two different geometrical configurations 

of the Hartmann plate, square and hexagonal, cells are formed. These procedures are 

zonal methods that use the slope measurements to retrieve the wavefront, with the main 

characteristic that a single analytical expression is not obtained. The main advantage of 

these techniques is that instead of a single polynomial that fits the whole pupil, several 

polynomials are obtained. A polynomial per cell is found, so, it means that small 

irregularities can be identified in small areas. 

In the square pattern, quadrangular cells are formed and at each one of the 

vertices, information of the slope in two directions is obtained. Hence, in each one of the 

square cells, eight data values are found. Even if the eight measurements are not 

independent, the wavefront inside the cells can be assumed to be represented by a 

polynomial expression with five aberration terms. Tilts, defocus and astigmatisms, 

including its axis orientation, aberrations are possible to be obtained. In addition, these 

coefficients are different for each square cell. This is another advantage, as it was said 

since small localized errors that cannot be adjusted by a single polynomial expression 

can be represented with this method. Besides the benefit described in the previous 

sentence, the analytical function founded is obtained in an exact manner. Although the 

piston term is not determined with this method, a procedure to calculate the piston term 

is also presented as a technique that takes advantage of the points shared between cells. 
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It is important to remark that the results obtained with the square cell integration are better 

than those found with the trapezoidal integration. In this manner, the square cell 

integration can replace the trapezoidal integration in order to obtain better results. 

Moreover, the time to perform this technique proposed is less than with the trapezoidal 

since some times with the last methods it is necessary to perform the integration in three 

directions. 

For the case of the hexagonal patterns, the geometry is more complicated than the 

square pattern but it is possible to obtain nine aberration terms instead of five. Moreover, 

a higher sampling density is achieved with this configuration, so, the pupil is more 

uniformly sampled, even at the edge. Similar to the square method, a unique analytical 

expression is obtained for each one of the hexagonal cells shaped. In this hexagonal 

method, as the hexagon has six sides and six vertices as well, twelve data are available 

to calculate the nine aberrations terms. Besides, the coefficients obtained with the first 

method, with the second technique coma and triangular astigmatism can be found. It was 

described that with hexagonal integration is possible to obtain better results than the 

trapezoidal method. In some cases, also the hexagonal technique can be better to 

perform the wavefront retrieval than the square cell integration. The reason is that the 

hexagonal method allows a higher polynomial representation for each one of the cells. 

Furthermore, with the two methods presented, a smoothed wavefront is retrieved and the 

accuracy is higher. 

In addition to the methods described, to perform a better ocular aberrations 

measurement, preliminary results of a technique to model personalized eyes with AMD 

were briefly described. AMD is one of the main causes of vision loss in the world, and this 

technique is an initial work trying to link the size, volume and magnitude of retinal edemas, 

drusen, produced by the late stage of AMD. As in the section of AMD was described, 

visual distortions caused by the deformities in the macula can be simulated in the Amsler 

grid. Hence, the final aim is to obtain an inverse procedure to estimate the characteristics 

of the drusen that generates visual distortion in the retinal image. So, a simple, cost-

effective method to evaluate and measure the progression of AMD through the simple 

Amsler grid test is proposed. Moreover, using the procedure described is possible to 
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obtain personalized eye models, allowing a better diagnosis. In this aspect, the Amsler 

grid test may potentially stop being monitoring and qualitatively test to become a 

quantitative and effective diagnosis technique. 

Continuing with visual pathologies, a study to characterize the OST using IR 

thermography was presented. In this study was found and remarked that the cooling 

behavior of the ocular surface in patients with glaucoma is faster than healthy subjects. 

This study also suggests that in the first second after the opening eye there is no 

difference between glaucoma and healthy subjects. After this time, the ocular surface of 

glaucoma subjects has a considerable decrease in the temperature. As part of the study, 

room temperature and relative humidity were established at 23°C and 45% respectively, 

to evaluate the effects of these parameters in the OST. The hypothesis of the cooler 

temperature in glaucomatous eyes can be explained from several possibilities. The first 

one due to the damaged blood supply to the eye. The second could be explained due to 

the glaucoma medication since the side effects of the drops used have an influence on 

the blood pressure. Finally, dry eye disease is the third reason for the cooler temperature 

in glaucoma subjects. It has to be considered that the full explanation of this can be the 

combination of all three factors since glaucoma is a complex disease.  

Overall, four studies were performed in this work to improve the techniques to 

measure ocular aberrations and methods of pathology diagnosis. Although there are 

more studies needed and work on these topics presented in this work, there is future work 

to do in order to improve them. Certainly, the results show the potential of the works 

developed through this thesis in order to improve the visual quality of the people.   
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