Three-dimensional water mapping of succulent Agave victorice-regince leaves by terahertz imaging

Abhishek K Singh ${ }^{1}$, Arely V. Pérez-López ${ }^{2}$, June Simpson ${ }^{2}$, Goretti G. Hernandez-Cardoso ${ }^{1}$ and Enrique Castro-Camus ${ }^{1 \boxtimes}$
${ }^{1}$ Centro de Investigaciones en Optica, A.C. Loma del Bosque 115, Lomas del Campestre, Leon, Guanajuato 37150, Mexico; ${ }^{2}$ Department of Plant Genetic Engineering, CINVESTAV -Irapuato, Irapuato, Guanajuato, Mexico
Correspondence to: enrique@cio.mx

We present the first three-dimensional water mapping of an agave leaf, employing terahertz time-domain spectroscopic imaging, which demonstrates an unprecedented capability to study the water retention mechanisms within succulent plants. We found that agave leaves are composed of a low-hydration outer tissue layer, defined by the outermost layer of vascular tissue that surrounds a high-hydration tissue, the carbohydrate rich hydrenchyma. The findings are supported by histological images and the correlation between the water content and carbohydrate presence is consistent with recently published findings of a remarkably large hydration shell associated with agave fructans.

Terahertz Imaging: Water content in leaf sections

Given the fact that water is a highly absorptive liquid at terahertz frequencies, the transmitted intensity of the terahertz radiation is a function of the water content of the plant tissue. Since the agave leaves are significantly thicker than the leaves from typical plants, we performed measurements on thin 0.6 mm transverse sections of the agave leaves.

Determination of water content in leaf sections of A. victorice-regince leaves.(a) Approximate positions of sections 1-12 over the length of an A. victorice-regince leaf (b) Tomographic sections showing the water content distribution of an A. victorice-regince leaf. (c) Optical microscopy images of an A. victoric-regince basal (white) leaf section at 8 X . (d,e) Bright light microscopy images of an A. victorice-regince middle (green) leaf section at $\mathbf{8 X}$ and 35 X magnification respectively. The red box in (d), indicates the enlarged region shown in (e).
box area of section 4 in (b)

Terahertz Spectroscopy vs Gravimetry

(a) Average water content for each leaf section of A. victorice-regince, com paring the determination of water by traditional methods (red) and by ter ahertz imaging (blue). (b1) Water mapping of a single section, the pixels in the external 1 mm layer (b2) and the pixels in the internal part (b3) respec tively. (c) Area of each section along the leaf separating the contribution of the external, 1 mm layer (blue) and the internal pixels (red). (d) Water content of the external (blue) and internal (red) pixels. (e) Fraction of water of each section that corresponds to the external (coninaus ble) and in

Carbohydrate Staining

In order to explore the association between carbohydrates and water content in A. victorice-regince leaves, transverse sections of white basal leaf tissue were stained by either PAS (an non-specific stain for carbohydrates) or lugol (a specific stain for starch).

Carbohydrate staining of A. victorice-regince leaf cross sections.(a) Micrograph 8X of a leaf section after PAS staining. The pink coloring correlates graphs of lugol stained sections for starch identification. Pands (d) and (e) contain micrographs, highlighting the vasculature of the leafs. In (f) closeup of a section terahertz image of a single slice is shown, boxes were placed in order to identify areas of higher hydration that correlate with the position of the veins on the micrographs.

Three-dimensional Water Mapping

-Dimensional view of the water distribution in an Agave victorice-regina leaf. The image shows a relatively thin layer of low $(<70 \mathrm{w} \%)$ water conten tissue in the outside, pale blue, surrounding the more succulent part that ap pears in darker colors ($>74 \mathrm{w} \mathrm{\%}$). The representation was generated by su-
 eader or in htp $/ /$ www Reader or in http://www.thz.org.mx/Muestrasirapuato.php featuring details of reconstructed image using THz spectroscopy:

Image Processing

In order to process the terahertz images and estimate the pixel-by-pixel water content, we use Landau-LifhitzLooyenga effective medium theory model expressed as
$\sqrt[3]{\epsilon_{L}(\omega)}=x_{W} \sqrt[3]{\epsilon_{W}(\omega)}+x_{S} \sqrt[3]{\epsilon_{S}(\omega)}+x_{A} \sqrt[3]{\epsilon_{A}(\omega)}, \quad$ (1)
where ϵ_{k} are the dielectric functions of the mixture components and x_{k} are the relative volumetric fractions. The indices refer to leaf (L), water (W), solid/dry tissue (S) and air (A), respectively, and ω is the frequency.

(a) Terahertz time-domain reference signal and the signal transmitted through hydrated agave slice; (b) Frequency domain electric field amplitude of reference signal and signal transmitted through hydrated slice; (c) Exper mental values of the transmission amplitude (blue dots) and fit using the model (red line). (d1-4) Terahertz waveforms measured passing through the inhole while scanning across the edge of the leaf. The signals (d1) and (d4) corresponds positions where pinhole is either completely outside the samp ar completely inside the sample, respectively. The signals (d2) and (d3) and positions where the signal was partially transmitted through the sample a ict the position of the pinhole for each measurement. In order to preven paccurate measurements all pixels that did not comply with full transmis ion through the sample were discarded.

Acknowledgement

The authors acknowledge the financial support of Consejo Nacional de Ciencia y Tecnologia (Grants 255114, 252939, and 294440).

References

1] E Castro-Camus, M Palomar, and AA Covarrubias. Leaf water dynamics f arabidopsis thaliana monitored in-vivo using terahertz time-domin specroscopy. Scientific reports, 3:2910, 2013
[2] Ralf Gente, Norman Born, Nino Voß, Wiebke Sannemann, Jens Léon, Martin Koch, and Enrique Castro-Camus. Determination of leaf water content from Kahertz time-domain spectroscopic data. Journal of Infrared Millimeter and Terahertz Waves, 34(3-4):316-323, 2013.
3] Jose Antonio Morales-Hernández, Abhishek K Singh, Socorro Josefina Villanueva-Rodriguez, and Enrique Castro-Camus. Hydration shells of car bohydrate polymers studied by calorimetry and terahertz spectroscopy. Food Chemistry, 2019.

Funded by

