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Fig. 1. Basic scheme of a FFPI, consisting in a capillary fiber spliced between two SMFs.
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Fig. 4. FFPI interrogation scheme.
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Fig. 5. FFPI’s reflectance spectra.
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Fig 2. Illustration of the fabrication process of 
the FP cavities.

Fig 3. Scheme of the semiautomatic platform 
designed and constructed.
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FFPI sensors were fabricated using the simple and well-known cutting and splicing technique
that consist of splicing a section of CF between two SMFs. Using a semi-automatic platform
(which was designed and assembled) it was possible to fabricate a FFPI with a small cavity of
2.17 µm. Temperature and strain sensing with high sensitivity (27.53 pm/µɛ and 327.3 pm/°C
respectively) were demonstrated. Furthermore, due to the small size of the FFPI cavity, it was
possible to measure strain and temperature by monitoring the optical power of the reflected
signal, a sensitivity of 3.51 nW/µɛ and -60.79 nW/°C was achieved.
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Fig. 6. Image of the strain test experimental setup.

Strain is defined as the relative deformation:
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Fig. 7. Strain response of a FFPI with a cavity length of 2.17 µm 
(a) wavelength displacement of the spectrum (b) linear fitting 

of the wavelength dip.

Wavelength-strain sensitivity: 27.53 pm/µɛ
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Fig. 8. (a) Experimental setup, (b) FFPI fixed into the Teflon mold,
then (c) polymer is poured into the mold and finally, (d) sensor
head is demolded.
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Fig. 12. Optical-power interrogation scheme.
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Fig. 9. (a) Experimental spectra during the curing process.
(b) Calculated spectra for the curing process.

Fig. 10. Embedded sensor was placed 
over a Peltier plate.
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Fig. 11. (a) Experimental spectra of the
sensor reflectance for different
temperatures. (b) Wavelength dip changes
as a function of temperature.
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Fig. 13. Power response vs. strain for two different
sensors.

Fig. 14. (a) Power response vs temperature. 
(b), (c) Temporal response of the embedded 

temperature sensor.

Wavelength-temperature 
sensitivity: 327.3 pm/°C

(b)

Optical-power sensitivities:
➢ Strain 3.51 nW/µɛ     

➢ Temperature -60.79 nW/°C
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