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Centro de Investigaciones en Óptica A.C.
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Chapter 1

Introduction

1.1 Overview, motivation, and challenges

Quantum information science recently emerges as a science that could provide a great
impact in modern society due to the direct application in quantum technologies (QT).The
implementation of QT will provide solutions to many problems and challenges encountered
in quantum computation, communications, simulation, metrology, sensing, and imaging
[1–4]. Such technologies take advantage of the properties and phenomena encountered in
quantum mechanics particularly, in quantum optics.

Quantum simulators have attracted considerably attention in recent years as they have
the potential to solve many problems that are hard to solve with current computers [5].
Quantum simulators aim at mimic other quantum systems but with the ability to manage
the parameters of the system (Fig. 1.1). The dynamics of the simulator is designed to
match the time evolution of the model system to be simulated. In an analog simulator, this
is achieved by matching the dynamics of the simulator with the time evolution governing
the dynamics of the simulated model. In a digital simulator, the propagator describing the
dynamical evolution is constructed from a series of quantum gates [6]. Within the systems
considered for the implementation of a practical and suitable platform for quantum comput-
ing and simulation, quantum photonics has been considered as one of the most promising
candidate, as it can be applied in a large variety on quantum information applications and
can be implemented with current CMOS1 technology, in contrast to other quantum physical
systems such as cold atoms and trapped ions [7, 8].

Furthermore, photons are considered as the ideal carrier of information due to the
high transmission data speed, low decoherence and information losses. Quantum bits,
represented as any physical two-level quantum system, can be encoded in the polarization
state of photons and can be therefore manipulated. Path and other degrees of freedom can
be used to encode quantum information. Photonic quantum technology has been used to
simulate problems in quantum chemistry, biology, and solid-state physics [5, 9].

For instance, integrated optical waveguide lattices were theoretically proposed to inves-
tigate and mimic the atom–field interaction. By a proper transformation of the atom–field
Hamiltonian and the selection of the initial state for the atom–field wavefunction, it was
demonstrated that differential equations that governs this interaction is equivalent to the

1complementary metal-oxide-semiconductor
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1. INTRODUCTION

Quantum photonic
simulator

Excitation Spatial
evolution

NSOM and correlations
measurements

DiscreteContinuous

Figure 1.1: Principle of quantum simulators. The are tree steps in a quantum simulator:
preparation of the input state, time evolution over a time t and carrying out measurements
on the evolved state to extract the physical information of interest. Image taken and adapted
from [?]. Quantum photonic is a technology able to efficiently implement quantum simulator.
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1.1 Overview, motivation, and challenges

Photon pair source

Waveguide lattice circuit

Nanowire superconducting
detector array

Figure 1.2: Schematic of an integrated nanophotonic quantum simulator. Nanofabrica-
tion advances allow the implementation and the integration of single-photon sources, circuits,
and high-efficiency superconductor nanowire detection arrays on a single-chip.

study of “diatomic” waveguide arrays [10]. In the last citation is shown the quantum inter-
action between a two-level atom with a quantized field that can be modelled using photonic
lattices for a direct observation the dynamics of the quantum system.

Integrated photonic circuits can also be used to develop other specific quantum tasks
such as quantum walks [11, 12], coherent transport of quantum states [13], Glauber-Fock
states [14], two-site Bose–Hubbard model [15], Bloch oscillations [16, 17] , and Anderson
localization [18, 19].

The fabrication and miniaturization of photonic circuits is one of the most important
problems for quantum integrated technologies. It has been demonstrated that femtosec-
ond (fs) laser writing allow the fabrication of optical waveguides with a few microns of
size [1,20,21]. However, direct fs laser written waveguides are limited in size by the optical
diffraction limit of the lenses. This limit can be overtaken with the use of electron beam
lithography writing technique [22–24]. Current advances in nanofabrication allow to fore-
see the implementation of quantum simulators with integrated nanophotonics. In general,
integrated nanophotonics serve as an excellent platform for the generation, manipulation,
and detection of photons (Fig. 1.2) [24, 25].

In this Master thesis research work, we focus on the implementation of quantum sys-
tems on integrated nanophotonic waveguide lattices based on silicon nitride waveguides.
With the use of such nanophotonic quantum simulators, tight-binding Hamiltonians mimic
a spin chain for perfect transfer of quantum states [13]. We will also mimic Glauber-Fock
states in photonic waveguide lattices [14] and the motion of a particle confined in a pe-
riodic potential known as Bloch oscillations [26]. We have employed theoretical as well
as numerical methods based on finite difference and modal methods implemented by the
freely-available MIT Photonic Bands (MPB) and Metric. With Metric, we design and sim-
ulate the propagation of light through photonic waveguide arrays that mimic a particular

3



1. INTRODUCTION

quantum system. We engineer the interaction between optical mode in waveguide lattices
based on the coupled mode theory.
Although the objective of the thesis is the simulation of physical systems with numerical
methods, we additionally fabricated the quantum photonic simulator with an array of silicon
nitride nanophotonic waveguides.

This work is developed within the framework of a recent collaboration established be-
tween the Université de Technologie de Troyes, France and Centro de Investigaciones en
Óptica A.C., Mexico. One of the specific goal of the collaboration is to coupled micro- and
nano-photonic circuits to develop the next-generation of high fiber coupling efficiency with
integrated quantum nanophotonic circuits.

1.2 Scientific objectives

Our primary aim is to design and fabricate integrated nanophotonic waveguide lattices that
constitute the building block for the development of quantum photonic simulators. These
quantum nanophotonic simulators allow investigation of many interesting phenomena in
other quantum systems. Specifically, we plan to develop an integrated nanophotonic circuit
based on nanophotonic waveguide lattices on silicon nitride platform that imitates quantum
system encountered in solid-state physics.
To achieve this purpose, we fixed the following specific objectives:

1.2.1 Specific objectives

• To theoretically study the dynamics of common quantum systems and to translate
them into photonic coupled waveguide systems.

• We plan to employ the coupled mode theory for the study and implementation of the
photonic coupled waveguide array.

• We will use numerical simulations based on finite difference and modal methods to
investigate the dispersion relations of waveguides and the propagation of light along
the waveguide lattices. This numerical methods are already implemented in freely-
available software MIT photonic band (MBP) for eigenmode calculations and Metric
for the simulation of electromagnetic light propagation.

• We plan to fabricate the nanophotonic circuits with electron beam lithography and
reactive ion etching processes.

1.3 Scope and organization of the thesis

The scope of the manuscript was to provide the design and electromagnetic modeling of
quantum simulators based on nanophotonic waveguide lattices. The photonic lattice con-
sist of an array of coupled silicon nitride photonic waveguides.

4



1.3 Scope and organization of the thesis

This thesis manuscript is divided into four chapters.
In the Chapter 2, we describe the theoretical formulation for optical waveguides, a brief
review on quantum mechanics, the coupled mode theory and the Hamiltonian formulation
for photonic lattices as follows:

• Mathematical description of optical waveguides using Maxwell’s equations to find the
effective index of the waveguides and the spatial distribution of the mode for planar
and ridge waveguide.

• Coupled mode theory as a description for the physical system formed with two optical
waveguides in order to define the coupling constant, length of coupling due to this
parameters have importance for the design of integrated photonic circuits.

• A revision of the most important concepts in quantum mechanics used in the definition
of states and evolution for optical waveguide arrays

• Hamiltonian Formulation for optical waveguide arrays where the dynamics of the
system is related with the propagation along the waveguide arrays

We describe, in Chapter 3, silicon nitride as a dielectric material used for the develop-
ment and implementation of optical waveguides. We show the simulation of two coupled
waveguides and the calculation to determine the coupling coefficient. Once determined
the function for the coupling constant, it is possible to design basic integrated devices as
directional couplers, CNOT gate and the optical lattices involved in this thesis. The corre-
spondent simulations for every systems are shown in every subsection respectively.

Followed this, in Chapter 4 we present the most representative techniques used recently
in the manufacture process of optical waveguides for micro and nano platforms. We also
discuss the advantages and disadvantages of every technique and we describe the full pro-
cess to manufacture the devices previously designed and simulated.

Finally, we present the conclusions of the present work, some interesting points in the
development of this kind of devices and future work for this project.

5





Chapter 2

Fundamentals of optical waveguides and
quantum systems

2.1 Introduction

This chapter introduces the theoretical fundamental concepts in quantum optics and op-
tical waveguides that are relevant to this research work. It begins with the description of
Maxwell’s equation in dielectric media. The theoretical formulation of the wave equation
as a linear transformation, especially as an operator (i.e. as an eigenvalue problem) is
presented. The fundamental properties of optical modes and coupled mode theory are also
presented in this chapter. The analytical solution of the wave equation in planar and ridge
optical waveguides is presented in appendix A.

We also introduced the theoretical elements of the physical systems that we proposed
to simulate and implement with photonic waveguide lattices. The elements of quantum
optics such as Fock and coherent states encountered in quantum mechanical systems are
presented. The last point presented in this chapter is the tight-binding approximation that
is used in our quantum simulator. The Hamiltonian formulation for optical waveguide
arrays is shown at the end of the chapter. In summary, this chapter presents the theoretical
framework to be considered in subsequent chapters.

2.2 Maxwell’s equations in dielectric media

Macroscopic Maxwell equations are used to describe the propagation of electromagnetic
fields in dielectric and metallic media. The macroscopic Maxwell’s equations are given
by [27, 28]:

∇ · D̃(r, t) = ρ, (2.1)

∇ · B̃(r, t) = 0, (2.2)

∇× Ẽ(r, t) =
∂

∂t
B̃(r, t), (2.3)

∇× H̃(r, t) = ~J +
∂

∂t
D̃(r, t), (2.4)

7



2. FUNDAMENTALS OF OPTICAL WAVEGUIDES AND QUANTUM SYSTEMS

where D̃(r, t) is the displacement field, Ẽ(r, t) the macroscopic electric field, H̃(r, t) the
macroscopic magnetic field, and B̃(r, t) the magnetic induction field. For a dielectric
material, the absence of free charges or currents impose ρ = 0 and ~J = 0. The displacement
field is related to the electric field, while the induction magnetic field to the magnetic field
with the following constitutive equations:

D̃(r, t) = ε0ε(r)Ẽ(r, t), (2.5)

H̃(r, t) =
1

µoµ(r)
B̃(r, t), (2.6)

where ε0 is the permittivity and µo the permeability of vacuum. ε is the dielectric
function of the material, generally this function depends of the position and frequency.

Rewriting the Maxwell’s equations and using vectorial identities, we obtain the wave
equation for the electric and magnetic fields in dielectric media:

∇2Ẽ(r, t)− µ0ε0n
2 ∂

2

∂t2
Ẽ(r, t) +∇

(
∇ε(r)

ε(r)
· Ẽ(r, t)

)
= 0, (2.7)

where ε = n2 and c is the speed of light, defined as c = (µoε0)−1/2 [27, 28]. The equation
(2.7) is the general wave equation in the electric field form. For the magnetic field, we
obtain:

∇2H̃(r, t)− µ0ε0
∂2

∂t2
H̃(r, t) +

1

ε(r)
∇ε(r)×(∇× H̃(r, t)) = 0. (2.8)

Because Maxwell’s equations are linear, time and space dependency can be separated
by expanding the fields into a set of harmonic modes. We can therefore write the fields
as a spatial pattern times a complex exponential as:

Ẽ(r, t) = E (r) e−iωt (2.9)

H̃(r, t) = H (r) e−iωt. (2.10)

The last equation mean, we do not know the spatial distribution of the fields in the
media, but it is possible to solve the temporal part using separation of variables.
Taking into consideration harmonic modes and using equations (2.4) and (2.3), we obtain
the following equation for the magnetic field:

∇×
(

1

ε(r)
∇×H(r)

)
=
(ω
c

)2
H(r). (2.11)

Equation (2.11) is known as the master equation. A series of operations act over
the magnetic field and if H(r) is an allowed mode, the result is a scalar multiplied by the
original function H(r).

8



2.2 Maxwell’s equations in dielectric media

2.2.1 Electromagnetism as an eigenvalue problem

The left hand side term in the equation (2.11) can be seen as an operator acting on the
mode profile H(r), so we can rewrite it as [29]:

Θ̂H(r) =
(ω
c

)2
H(r), (2.12)

where the operator Θ̂ is defined by:

Θ̂H(r) = ∇×
(

1

ε(r)
∇×H(r)

)
. (2.13)

We observe that the action of the operator is: first to take the curl to the vector, then
divide by ε(r) and finally take the curl to the result. This treatment can be also applied for
the electric field, in this case we have used the magnetic field due to mathematical conve-
nience. The eigenvectors H(r) are the spatial patterns of the modes and the eigenvalues
(ω/c)2 are proportional to the square of the frequency of those modes. The operator Θ̂
is a linear operator and Hermitian, which implies specific properties that we will present in
the following sections.

2.2.1.1 Fundamental properties of eigenmodes

The operator Θ̂ and the vectors fulfills important properties, which are of great utility is the
description of the modes. We can observe that the operator Θ̂ is a linear operator, that is, if
we find the solutions H1(r) and H2(r) for the master equation, then, a linear combination
of both solutions is also a solution for the master equation, that is, αH1(r) + βH2(r),
where, α and β, are constants related with the probabilities amplitude of each mode.

The operator Θ̂ also is an Hermitian Operator, this is an important characteristic, where
Θ̂ satisfies the following properties.

• The eigenvalues of Θ̂ are positive real values, in such a way that, ω > 0.

• Θ̂ = Θ̂†, that is, the operator is equal to the transposed conjugate.

In addition to Hermicity, Θ̂ forces any two harmonic modes with difference frequencies
ω1 and ω2 to have inner product of zero, that it:

(ω2
1 − ω2

2) 〈H1(r),H2(r)〉 = 0. (2.14)

If ω1 6= ω2, then 〈H1(r),H2(r)〉 = 0 and the modes are orthogonal. However if ω1 = ω2,
then the modes are degenerate and not necessarily orthogonal.
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2. FUNDAMENTALS OF OPTICAL WAVEGUIDES AND QUANTUM SYSTEMS

2.2.2 Coupled mode theory

The electromagnetic field in a waveguide forms a complete system of orthogonal functions.
This means, any field can be represented as a superposition of modal electromagnetic fields
[28]. We consider electromagnetic fields with different supported modes, for the spatial part
we have the equations (2.15) and (2.16), represented mathematically as follows [29, 30]:

E (x, y, z) =
∑
ν

aν(z)Eν (x, y) e−iβνz (2.15)

E (x, y, z) =
∑
µ

aµ(z)Eµ (x, y) e−iβµz. (2.16)

Using equations (2.4), (2.3) and equations (2.15) and (2.16), we obtain the coupled
equation for waveguides supporting different modes described by:

daµ(z)

dz
= ±i

∑
κµν (z) aν (z) e−i(βν−βµ)z, (2.17)

where κµν(z) is denoted as the coupling constant for the ν and µ modes.

The equation (2.17) describes the energy exchanges between the fields propagation
along of the coupled waveguides, this is considered as a new electromagnetic system with
a new restrictions. To obtain the energy exchange between optical waveguides is necessary
that the waveguides are closer to each other in such a way the evanescent waves overlap
between them [31]. Considering the coupling coefficient independent of the propagation
distance, it means, κµν 6= κµν(z) and assuming that the waveguides just can carry the
fundamental mode, the optical waveguides have the same characteristics (refractive index,
size of the waveguide, morphology), such that, βν = βµ.

We can assume that the energy exchange only occur between neighbor waveguides, for
which we obtain the following coupled mode equations [32, 33]:

dan
dz

= ±iκn(an+1 (z) + an−1 (z)), (2.18)

where n represents the n-th waveguide. Here thus, the first waveguide only interact with
the second waveguide and in the same way, the n-th waveguide only interacts with the
(n − 1)-th waveguide. Equation (2.18) is a system of first order differential equations
coupled, for which n > 2 becomes difficult to solve analytically. The calculation of the
coupling constant is difficult to obtain.

To solve the two coupled mode equation, we first need to write the coupled system
of differential equations for two waveguides, in the equations (2.19) and (2.20), A(z) and
B(z) represents the complex amplitude for the first and second waveguides respectively.

i
dA (z)

dz
+ κ B (z) = 0 (2.19)
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2.2 Maxwell’s equations in dielectric media

i
dB (z)

dz
+ κ A (z) = 0. (2.20)

The last system of differential equation can be solved analytically with proper initial
conditions, A(0) = 1 and B(0) = 0. We found the solutions:

A (z) = cos (κz) (2.21)

and
B (z) = i sin (κz) . (2.22)

With the last description is possible to measure the coupling constant using the equation
(2.23), where IA = |A(z)|2 and IB = |B(z)|2, represents the intensity in the waveguide A
and B respectively. z is the direction of propagation. The coupling coefficient κ is given
by:

κ =
1

z
tan−1

√
IB
IA
. (2.23)

The distance at which the first waveguide transferred all the energy to the second
waveguide is called the coupling length (lc) and is defined as:

lc =
π

2κ
. (2.24)

In order to obtain 50:50 of energy in a system of two coupled waveguide, the coupling
length has to be:

l50/50 =
π

4κ
. (2.25)

In the same way, we can find the length for different ratios. In the next chapters we show
the design for different devices, the two coupled parallel system is known as a directional
coupler.

2.2.3 Numerical methods: WMM mode solver and eigenmode expansion

There are many different software used for modeling physical systems based in optical and
optoelectronics devices, they can be commercial or free use and each one proves advan-
tages or disadvantages. Every software uses a different method in order to solve the system.

In the development of this thesis we used two freely-available software for simulating
optical waveguides: VEIMS Mode Solver and Wave Matching Method (WMM) in order to
obtain the propagation constant (β), the effective refractive index (neff) and the width of
optical waveguides with a height constant for single mode optical waveguides; and Metric
for light propagation in coupled waveguide arrays.
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2.2.3.1 WMM Mode Solver

VEIMS mode solver and WMM are two different tools used in the design of the optical
waveguides, it can used to find all the eigenmodes allowed in a multilayer system, for a
selected mode it shows the effective refractive index and in consequence, the propagation
constant. This software also allows to plot of the desired mode.The accuracy of this method
relies on the number of spectral terms considered in the calculation which relapse in com-
puting time.

The vectorial effective index method (VEIM) can be viewed as some bridge between
two popular approaches, namely the Film Mode Matching (FMM) on the one hand and the
effective index method (EIM) on the other [34].

This mode solver is a free software that can be used in any operating system where the
main programming language is C++, but it can be implemented only with an interface for
easy use.

2.2.3.2 Eigenmode expansion on Metric

The Metric program collection combines a series of semianalytical tools for the simulation
and design of structures or devices from integrated optics / photonics. The programs are
meant for frequency domain modeling of configurations in two spatial dimensions, with
piecewise constant, isotropic, lossless, and preferably rectangular permittivity distributions.

Optical electromagnetic fields are represented by series of eigenmodes associated with
1-D, piecewise constant refractive index profiles. Accordingly, a reasonably robust and
general mode solver for dielectric multilayer slab waveguides is found at the center of the
tool collection. Apart from standard guided mode analysis, the mode solver routines in-
clude facilities for the generation of orthonormal modal basis sets on finite 1-D intervals,
where the mode spectrum is discretized by Dirichlet- or Neumann boundary conditions [35].

Metric is a free software that can be used in any operating system where the main
programming language is C++ as well, it does not have an interface such that a few
knowledge of programming language is required. Metric works in the frequency domain
for modeling structures in two spatial dimensions with rectangular structures for medium
isotropic and lossless. This tool allows solve a large integrated photonics circuits with
rectangular shapes, which is a considerable disadvantage but it can solve with low com-
puting times and resources that make it useful in comparison with other numerical methods.

Metric do not include tools for visualizing the numerical output data. This output data
is stored in Matlab Scripts which can be manipulated easy for the user. For more details
of these softwares you can visit the following link: https://www.siio.eu
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2.3 Basics of quantum optics and quantum logic gates

Taking into account that the electromagnetic field is conformed of single quanta particles
called photons we need to introduce the concepts for this treatment. In this section we are
going to describe the fundamental concepts for quantum optics used for the realization of
our quantum simulators and the introduction to the quantum phenomena which relies on
the design for the devices.

The most important in a physical system is to find the dynamics and the evolution in
time of it, this can be achieved in the Schrödinger equation for a given state |Ψ〉 as:

i~
∂ |Ψ(r, t)〉

∂t
= Ĥ |Ψ(r, t)〉 . (2.26)

The time evolution for any operator Θ̂ independent of time can be described in the
Heisenberg picture as:

i~
dΘ̂

dt
= [Θ̂, Ĥ] (2.27)

Equations (2.26) and (2.27) are going to be of very use in the description of optical
arrays of waveguides.

2.3.1 Quantization of the free electromagnetic field

Considering an electromagnetic field confined in a cavity along the z-axis with perfect walls
in the points z = 0 and z = L, such the electric field vanish in the boundaries taking the
form of a standing wave. With this consideration we can rewrite the Maxwell’s equations
when there is no sources and currents in the cavity as follows [36]:

∇ · Ẽ(r, t) = 0 (2.28)

∇ · B̃(r, t) = 0 (2.29)

∇× Ẽ(r, t) = − ∂

∂t
B̃(r, t) (2.30)

∇× B̃(r, t) = µ0ε0
∂

∂t
Ẽ(r, t) (2.31)

The electric field that satisfy the boundary condition is given by:

Ex(z, t) =

(
2ω2

V ε0

) 1
2

q(t) sin(kz), (2.32)

and the magnetic induction field by:
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2. FUNDAMENTALS OF OPTICAL WAVEGUIDES AND QUANTUM SYSTEMS

By(z, t) =
(µ0ε0

k

)( 2ω2

V ε0

) 1
2

q̇(t) cos(kz), (2.33)

where q(t) is the canonical position, q̇(t) = p(t) is the canonical momentum of a particle
with mass unitary and V is the effective volume of the cavity. The total energy of the
electromagnetic field can be calculated with the Hamiltonian:

H =
1

2

∫
d3r

[
ε0E

2(r, t) +
1

µ0
B2(r, t)

]
=

1

2

∫
dV

[
ε0E

2
x(z, t) +

1

µ0
B2
y(z, t)

] (2.34)

Substituting Eqs. (2.32) and (2.33) in the equation (2.34), we obtain the Hamiltonian
for a classical harmonic oscillator of unit mass described by:

H =
1

2
(p2 + ω2q2). (2.35)

Taking the advantage of the variables p and q represent the canonical position and
momentum respectively, we can use the rule of correspondence to replace them as operators
satisfying the following commutation rule:

[q̂, p̂] = i~. (2.36)

Introducing the annihilation and creation operators in terms of the canonical position
and momentum operator, we have the following relations:

â =
1√
2~ω

(ωq̂ + ip̂)

â† =
1√
2~ω

(ωq̂ − ip̂).
(2.37)

This two operators satisfy the commutation relation:

[â, â†] = 1 (2.38)

Using last assumption, the electric and magnetic fields takes the forms of operators as
well, they can be written in terms of the annihilation and creation operators as:

Êx(z, t) = E0(â+ â†) sin(kz)

B̂y(z, t) = B0
1

i
(â− â†) cos(kz)

(2.39)

where E0 = (~ω/ε0V )1/2 and B0 = (µ0/k)(ε0~ω3/V )1/2 represent the electric and
magnetic field “per photon”. Finally the hamiltonian can be written in terms of the ladder
operators as:

Ĥ =
1

2
(p̂2 + w2q̂2) = ~ω

(
ââ† +

1

2

)
. (2.40)
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2.3 Basics of quantum optics and quantum logic gates

2.3.2 Quantization of the electromagnetic field in optical waveguides

For the consideration of the quantum mechanical description of light is necessary the Hamil-
tonian formulation in a optical waveguide [37]. Restarting from the Maxwell’s equations we
can calculate the total energy for the electromagnetic field with the real parts of the fields
Er = 1

2(E(r) + c.c.) and Br = 1
2(B(r) + c.c.):

H =
1

2

∫
d3r

(
ε0ε(r)Er(r) ·Er(r) +

1

µ0
Br(r) ·Br(r)

)
(2.41)

As described in equation (2.9), the spatial part of the electric field can be described
by E(r) = E (x, y) eiβz and using equation (2.3), we obtain the magnetic induction field.
With weakly guided modes (β|E|), the Hamiltonian can be rewritten as:

H =
1

8

∫
d3r(E(x, y)eiβz + c.c.)2

(
ε0ε(r) +

β2

µ0ω2

)
(2.42)

Considering isotropic medium, we can rewrite the dielectric function as a constant and
the electric field can be decomposed in its real and imaginary parts:

E(x, y) = ωq(x, y) + ip(x, y). (2.43)

Substituting equation (2.43) in (2.42) and taking into account the last consideration,
we obtain:

H =
1

8

(
ε0ε+

β2

µ0ω2

)∫
d3r[(ωq(x, y) + ip(x, y))eiβz + c.c.]2. (2.44)

The terms rapidly oscillating in the z-direction vanish, which implies
∫
e±i2βzdz = 0,

approximating the propagation constant β2 ≈ ω2ε
c2

and the length of the waveguide as L,
we have the following expression:

H =
1

2
(ε0εL)

∫∫
[ω2q2(x, y) + p2(x, y)]dxdy. (2.45)

Rewriting Q2 = (ε0εL)
∫∫

q2(x, y)dxdy and P 2 = (ε0εL)
∫∫

p2(x, y)dxdy, where Q
and P represent the conjugates variables, position and momentum, respectively. With this
transformation we obtain the Hamiltonian of the classical harmonic oscillator.

H =
1

2
(ω2Q2 + P 2). (2.46)

Finally, with the same treatment for the quantization of the classical oscillator, we can
rewrite the Hamiltonian using the operators of position and momentum or the annihilation
and creation operators showed in the equation (2.47).

Ĥ = ~ω
(
â†â+

1

2

)
. (2.47)

In the next subsections many important relations and properties for this operators will
be described.
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2.3.3 Fock and coherent states

The number states, also called Fock states |n〉, are a semi-infinite set of eigenstates of the
Hamiltonian operator, where n represents the number of photons in the system yielding to:

Ĥ |n〉 = ~ω
(
n̂+

1

2

)
|n〉 = ~ω

(
n̂+

1

2

)
|n〉 , (2.48)

where we have replaced the number operator n̂ = â†â. These operators satisfy the bosonic
commutation relation given by:

[â, â†] = 1. (2.49)

The creation and annihilation operators have an operation in the basis of Fock states
represented as the generation or destruction of photons:

â† |n〉 =
√
n+ 1 |n+ 1〉

â |n〉 =
√
n |n− 1〉 .

(2.50)

The operator n̂ is an Hermitian operator, while the destruction and creation operators
are not Hermitian but allow a easy treatment in the mathematical analysis in quantum
mechanics, quantum optics, and electromagnetism as seen in subsection 2.2.1.

The quantized electromagnetic field can be described using coherent states (|α〉), which
were first proposed by Glauber [38]. A coherent beam of light has associated a field amplitud
α with a phase well-defined but with a number of photons undetermined. These states
perform an overcomplete basis, where the state |α〉 can be expanded in terms of the Fock
states |n〉 defined by:

|α〉 = e−
|α|2
2

∞∑
n=0

αn√
n!
|n〉 , (2.51)

where α is a complex number and the coherent states are expanded into the basis of Fock
states. We can observe these states do not form an orthogonal base. Another remarkable
properties of these kind of states are:

â |α〉 = α |α〉
〈α| â† = α∗ 〈α|
〈α|α〉 = 1

〈α|â†â|α〉 = |α|2.

(2.52)

Another definition for these states involves the displacement of the vacuum state. The
displacement operator for a variable α is defined as:

D̂(α) = eαâ
†−α∗â, (2.53)

where the coherent state is given by:
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|α〉 = D̂(α) |0〉 . (2.54)

Another form to represent the displacement operator, which facilities the operations, is:

D̂(α) = e−
|α|2
2 e−α

∗âeαâ
†
. (2.55)

The displacement operator is a unitary operator, however this operator is not Hermitian.

Fock states and coherent states are descriptions of the electromagnetic field that we
are going to use in the quantum simulator of Glauber-Fock states.

2.3.4 Two-photon interference

The Hong Ou Mandel effect (HOM) is a pure quantum effect that occurs when two indis-
tinguishable photons arrives at the same time in a beam splitter (BS) promoting quantum
interference, it was first demonstrated in 1987 [36, 39]. Considering a BS with R and
T corresponding with the reflectivity and transmitivity of the BS respectively, the matrix
associated is [36, 40]:

BS =

(
T R
R −T

)
. (2.56)

Remembering â†j for j=1,2,3,4 as the creation operators for the input and the output
modes in the BS; these operators satisfy the rules of bosonic commutation:[

â†i , â
†
j

]
= 0

[âi, âj ] = 0[
âi, â

†
j

]
= δij .

(2.57)

The input and outputs relation in function of the BS are described by:

â†3 = T â†1 +Râ†2

â†2 = −Râ†1 + T â†2.
(2.58)

Now, considering a 50:50 beam splitter, we have R=T= 1√
2

. If we have two indistin-

guishable photons, each one in one of the input modes at the BS we have the initial state
|Ψin

12〉 = |1〉1 |1〉2 in the basis of Fock states. Using the equation (2.58), we obtain the
following output state:

|Ψout
34 〉 =

1√
2

(|2〉3 |0〉4 + |0〉3 |2〉4). (2.59)

For this output state, the state with one photon on each output mode is suppressed
due to bosonic coalescence of photons leading to the Hong Ou Mandel Effect. In the figure
2.1 is shown a schematic representation of the HOM effect in a directional coupler.

17



2. FUNDAMENTALS OF OPTICAL WAVEGUIDES AND QUANTUM SYSTEMS

(a) One possibility is to obtain both photons in
the output mode â†3.

(b) The second possibility is to obtain both pho-
tons in the output mode â†4.

Figure 2.1: Schematic representation of the Hong Ou Mandel Effect. Two indistinguish-
able photons arrives at the same time in a directional coupler.

2.3.5 Hadamard and CNOT quantum logic gates

The directional coupler is considered one of the main elements in order to develop a task in
a quantum photonic circuit. This device is used to divide the optical power in two beams,
exploiting the coupling between them with an analogous to the beam splitter in free space.

z x 
y 

Figure 2.2: Schematic representation of directional coupler. Directional coupled based
on ridge waveguides, main element in quantum integrated technologies.

The device is shown in the Fig. 2.2, it consist of two input and output ports separated
where no exist energy exchange by evanescent field, then a bend waveguides connect the
input ports with central region where two straight waveguides are fixed a certain distance
and separation length to obtain energy exchange and finally another bend waveguides con-
nect with the output ports.

Considering the directional coupler as a beam splitter, we can write the following equa-
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tions for the power in each arm of the device:

R = P0 cos2(κz)

T = P0 sin2(κz),
(2.60)

where P0 is the total power at the input ports, R represents the reflected port and T repre-
sents the transmitted port, this definition depends of which one is the input port as a bulk
beam splitter.

In quantum computing sciences, the directional coupler acts as a Hadamard quantum
logical gate for a single photon at the input of the BS. Then, the unitary matrix associated
is the same for a 50:50 beam splitter is:

H = BS50:50 =
1√
2

(
1 1
1 −1

)
. (2.61)

Another important quantum logical gate for quantum computing tasks is the CNOT
gate and is the most common two-qubits gate. This quantum logical gate has been demon-
strated in free space, fiber optics and integrated photonics, it consist acting over two qubits,
the first one called Control Qubit and the second one is called Target Qubit. This gate
flips the target qubit (T) depending on the state of the control qubit (C).
In the computational basis |00〉 , |01〉 , |10〉 , |11〉, where the first qubit is related with the
control qubit and the second qubit is related with the target qubit.

The transformation associated when the CNOT gate acts is:

|00〉 → |00〉
|01〉 → |01〉
|10〉 → |11〉
|11〉 → |10〉

(2.62)

Writing the last states as a column vector we obtain:

|00〉 =


1
0
0
0

 ; |01〉 =


0
1
0
0

 ; |10〉 =


0
0
1
0

 ; |11〉 =


0
0
0
1

 (2.63)

Then, the unitary matrix associated with this logical gate is described in the equation
(2.64):

ÛCNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0.

 (2.64)
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There exists different ways to implement the gate, it means, the qubits can be related
with the path [41], or the polarization [42]. In the figure 2.3 is shown a schematic repre-
sentation of the integrated CNOT gate implemented by path.

z 
x y 

Figure 2.3: Schematic representation of a CNOT quantum logical gate based on integrated
photonic circuits.

This gate consist of three directional couplers with reflectivity of 1/3 located at the
center and two 50:50 directional couplers. The gate works as follow: the two 1/2 direc-
tional couplers located at the target ports (T0 and T1) forms a balanced Mach-Zehnder
interferometer, if we consider no inputs in the control waveguide (or a photon in the con-
trol state zero C0 ), the photons injected in the target ports exit from the same port as the
input port. Now, for the control in state one (photon in the C1 waveguide), the control
and target interfere nonclassically at the central 1/3 splitter.

For this value of reflectivity the state evolves to |10〉 → −1/3 |10〉, causing a π-phase
difference in the interferometer, so that the target is flipped.

2.4 Dynamics of quantum systems

In this section we are going to describe three quantum systems, these systems are going to
be simulated due to their analogies in the Hamiltonian formulation with the Hamiltonian
related to photonic lattices described in the following section.

2.4.1 The Heisenberg spin chain

In quantum technologies a theoretical advances have demonstrated that if coherence can
be maintained across many qubits, the transfer of quantum states can be obtained with
high performance. The first proposal was to evaluate the state transfer in a spin chain with
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a Heisenberg Hamiltonian related [13, 43].

The main idea is the transmission of an initial state from one place to another keeping
their properties without losing information, this system has been demonstrated in photonic
lattices platform exploiting the similarities with the spin chain system where the coupling
can be engineered to achieve the desired task.

The Hamiltonian related to a spin chain of coupled qubits is described by:

Ĥ =
1

2

N−1∑
n=1

Jn(XnXn+1 + YnYn+1). (2.65)

where Xn and Yn represents the Pauli matrices acting on the n-th, N is the total num-
ber of sites or qubits involved in the system and Jn is the coupling strength between one
to the next site or qubit.

In the following sections and chapter the Hamiltonian comparison and the conditions
for the perfect transfer of the quantum state are given.

2.4.2 Glauber-Fock states

Displaced Fock States (DFS) are a generalization of coherent states and have so much
importance in quantum optics. These states arise from the displacement of the eigen-
states of the harmonic oscillator (|n〉) and belong to a more general class of states. A
few points that make this states attractive are that can be used for a direct measurement
of the Wigner function, or they constitute the eigenstates for Jaymes-Cumming model for
coherently driven atoms [?, 44].

A physical system of coupled waveguides allows a direct observation of a classical ana-
logue of DF engineering the coupling constant as s square root of the number of waveguide.
This system is known as Glauber-Fock photonic lattice where an excited waveguide repre-
sents a Fock state and the spatial evolution in the optical array corresponds to the probability
amplitudes of the DFS in the number basis [45].

One important observation is that we can obtain the same equation of coupled mode
theory for waveguides with the same propagation constant if we make the following treat-
ment:

an(z) = 〈n|D̂(iρz)|k〉 . (2.66)

where ρ represents a positive constant, in this context is related with the coupling
constant and z represents the propagation distance. Then, calculating the first derivative
for the last equation:

d

dz
an(z) = 〈n| d

dz

(
D̂(iρz)

)
|k〉 , (2.67)
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where we use the properties of coherent states and Fock states previously presented yielding
to the coupled equation:

i
dan(z)

dz
+ ρ(
√
nan−(z) +

√
n+ 1an+1(z)) = 0. (2.68)

Compare to equation (2.18), we find the coupling constant must be κn = ρ
√
n = κ1

√
n

in order to achieve the desired evolution in the system.

2.4.3 Bloch oscillations in solid-state physics

Bloch oscillations are a physical phenomenon when a particle submitted to a periodic poten-
tial describes a periodic motion, originally was studied in the context of solid state physics
for the study of the dynamics of electrons in crystals. This phenomenon has been of so
much interest due to exposes the wave nature of matter [16, 17].

This phenomenon has already been demonstrated in atom lattices, photonic lattices and
electronic systems [17, 46, 47]. There are many advantages in the election of a platform
to observe it. Photonic lattices is considered one of the most relevant platforms due to
the versatility to engineer the artificial potentials modifying the properties of the optical
waveguides [48].

There are different descriptions for the Hamiltonian associated, in photonic lattices the
propagation constant play the role of the potential [26].

Ĥ =
~c
n

N∑
j=1

[
βjn̂j − κ(â†j+1âj + â†j âj−1)

]
. (2.69)

where βj is the propagation constant of every waveguide, n̂j = â†j âj is the number op-

erator, κ is the coupling constant and â†j and âj are the creation and annihilation operators
respectively which represent the mode in the j − th waveguide.

One principal requirement to achieve Bloch oscillations is the coupling strength between
waveguides. which has to be constant.

In the following section and chapters we describe the full conditions and parameters to
obtain Bloch oscillations in our photonic lattices.

2.5 Photonic waveguide lattices

The Hamiltonian related to three different quantum systems was described in section 2.4. In
the following section is described the Hamiltonian for coupled waveguides and its properties
Hamiltonian.
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2.5 Photonic waveguide lattices

2.5.1 Hamiltonian formulation for photonic waveguide lattices

The total Hamiltonian related for an optical waveguide array will be the sum of the Hamil-
tonian of each waveguide.

Generally the optical waveguides can be different between them if we change the physical
shape, it means, the modes allowed and the propagation constant (βk). For this case and
using equation (2.47), we can rewrite the following total Hamiltonian:

Ĥ = ~
N∑
k=1

ωk

(
â†kâk +

1

2

)
. (2.70)

Taking in consideration the approximation β2
k ≈

ω2
k
c2
ε, where all the waveguides have

the same dielectric constant and n =
√
ε, yields to:

Ĥ =
~c
n

N∑
k=1

βk

(
â†kâk +

1

2

)
. (2.71)

However, this Hamiltonian describes arrays of isolated waveguides, in another words,
the waveguides are not close enough to evanescent wave coupling. In the tight-binding
model, we consider the neighbor waveguide as a perturbation such that enables the coupling
between waveguides allowing the energy exchange [26, 31, 49]. With this assume we can
rewrite the Hamiltonian as:

Ĥ =
~c
n

N∑
k=1

[
βk

(
â†kâk +

1

2

)
+

N∑
l=1

κk,lâ
†
kâl

]
, (2.72)

where κk,l is the coupling constant between the k-th and l-th waveguide.
The annihilation and creation operators maintain the following rules for the different

modes:

[âk, â
†
l ] = δk,l (2.73)

and

[âk, âl] = [â†k, â
†
l ] = 0. (2.74)

The number of photons in the waveguides is now tracked in Fock state basis |n1, ..., nN 〉
as:

â†k |n1, ..., nk, ..., nN 〉 =
√
nk + 1 |n1, ..., nk+1, ..., nN 〉

âk |n1, ..., nk, ..., nN 〉 =
√
nk |n1, ..., nk−1, ..., nN 〉 .

(2.75)

The last Hamiltonian considers coupling between all the waveguides yielding a difficult
calculation. In the following chapters, we restrict this Hamiltonian for a particular cases in
order to solve it.
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2. FUNDAMENTALS OF OPTICAL WAVEGUIDES AND QUANTUM SYSTEMS

2.5.2 Time evolution in photonic lattices

The evolution of the system is best described in the Heisenberg picture, where the states
remain invariant, but the operators evolves in time. Using Heisenberg equation (2.27),

i~
dâ†m
dt

= i
~c
n

dâ†m
dz

= [â†m, H], (2.76)

where we have replaced the phase velocity along the waveguide as dz
dt = c

n and used the

chain rule dâ†m
dt = dâ†m

dz
dz
dt .

Substituting the Hamiltonian (2.72) into equation (2.76), evaluating the commutator
and using the commutation properties for the annihilation and creation operators, we obtain:

i
d

dz
â†m(z) + βmâ

†
m(z) +

N∑
k=1

κk,mâ
†
k(z) = 0. (2.77)

There are two cases that we are going to restrict: in the first case we consider that all
the waveguides have the same dimensions and in the second case, waveguides with different
dimensions.

For the first case, the modes have similar propagation constant βm = β0 + γm, where
β0 is an average value and γm is a detunning. We introduce a new operator defined as
b̂†m = â†me−iβ0z to reduce the form of the differential equation. The detunning is absorbed
into the coupling matrix as κ̃k,m = γkδk,m + κk,m.

i
d

dz
b̂†m(z) +

N∑
k=1

κ̃k,mb̂
†
k(z) = 0. (2.78)

Equation (2.78) involves the coupling between all the waveguides, in order to reduce
the complexity of the physical system, we consider that the m-th waveguide just interacts
with the neighbor waveguides (m+ 1)-th and (m− 1)-th, yielding to:

i
d

dz
b̂†m(z) + κ̃m+1b̂

†
m+1(z) + κ̃mb̂

†
m−1(z) = 0, (2.79)

where κ̃m+1 is the coupling constant between the waveguide m− th and (m+1)− th while
κ̃m is the coupling constant between the waveguide m − th and (m − 1) − th. Equation
(2.79) is used for the quantum coherent transport of states and Glauber-Fock state systems.

For the second case, we consider that all waveguides have different propagation con-
stant. This consideration is achieved with the variation of the dimensions but, the waveg-
uides just interact with their neighbor waveguides as in the previous case.
We write therefore the equation of motion as:

i
d

dz
â†m(z) + βmâ

†
m(z) + κmâ

†
k−1(z) + κm+1â

†
k+1(z) = 0. (2.80)
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2.6 Conclusion

Finally, equations (2.79) and (2.80) are the equations of motion used for the three
quantum photonic simulators in this work. In the following chapter, we mentioned the
equation of motion of every system.

2.6 Conclusion

In the present chapter, we provided the background needed and the basis for the transforma-
tion of quantum system into array of coupled waveguides. We presented the fundamentals
of optical waveguides and the time evolution of quantum system in physics, particularly in
solid-states physics, quantum optics, and quantum information (i.e. quantum logic gates).
The macroscopic Maxwell’s equations for a isotropic and lossless medium were also pre-
sented as these equations govern the propagation of light in photonic waveguides and
devices. The fundamental properties of eigenmodes were presented in the section electro-
magnetic as a linear operation.
The numerical tools used for the electromagnetic simulation of coupled waveguide were
presented. a brief review of their advantages and disadvantages was presented.

We shown the total Hamiltonian of coupled waveguides, which was used for the design
of quantum photonic simulators.

In conclusion, the time evolution of the presented quantum can be indeed mapped into
a spatial evolution along the direction of propagation in photonic waveguide lattices.
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Chapter 3

Implementation of physical systems with
quantum photonic waveguide lattices

3.1 Introduction

In this chapter is described the operation of the integrated photonic circuits, previously to
the process of fabrication. Specially we show the unitary operator for the CNOT gate and
finally we show the Hamiltonian for every lattice of waveguides and the coupled differential
equation, respectively. For every device, we show the simulations performed on Metric
software for the propagation along the integrated device.

3.2 Silicon nitride photonic waveguides

The first step for the design of more complex circuits is the design of single mode optical
waveguides. For this step we have used VEIMS and WMM solver. We considered the
refractive index of silicon nitride as nSi3N4 = 2.1, the refractive index of the cover as the
air ncover = nair = 1 and the refractive index of the substrate as nsubstrate = 1.5.
For these values of the refractive index of the waveguide, we have fixed the height of the
waveguide as h = 300 nm due to the samples had that film value, we looked for single
mode optical waveguide for two different wavelengths: 1550 nm and 800 nm. We found
that for λ = 800 nm the width of the waveguide must be w = 500 nm and for λ = 1550 nm
the width of the waveguide must be w = 1µm in order to propagate just the fundamental
mode related with the TE0,0 mode. These values are very important to be considered in
the mask layout design and the manufacture process.
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3. SIMULATION OF QUANTUM SYSTEMS WITH PHOTONIC WAVEGUIDE
LATTICES

(a) Spatial field distribution for λ = 800 nm, w
= 500 nm.

(b) Spatial field distribution for λ = 1550 nm, w
= 1000 nm.

Figure 3.1: Calculation of the mode profile for two different wavelength in ridge waveguide
for the TE0,0 mode for a constant height of h = 300 nm.

In the figure 3.1, we show the spatial mode supported for both wavelengths considered.
At the same time we can observe the electromagnetic field concentrated at the center of
the waveguide. In the boundaries we can observe a certain part of the electromagnetic field
corresponding to the evanescent field.

Previously to the design of another integrated optical devices, we reduced the ridge
waveguide to a planar waveguide using the effective index method and finding the following
results:

• For λ = 800 nm we have obtained a planar waveguide and based on the figure A.4
for the region I and III we obtained an effective index approximated to the cover, it
means, Neff1 = Neff3 = 1, while for region II we have found Neff2 = 1.91515.

• For λ = 1550 nm, we obtained a planar waveguide and based on the figure A.4 for the
region I and III we obtained an effective index approximated to the cover, it means,
Neff1 = Neff3 = 1, while for region II we have found Neff2 = 1.7190

These values and the width of the waveguides for every wavelength are going to be
considered in the simulations developed in Metric.

3.3 Directional coupler for two photon quantum interference

Due to the high refractive index of the Si3N4, in the curved region there is no exist coupling
by evanescent field with the neighbor waveguide. For this reason we consider only energy
exchange for the central region where the straight waveguides are located.

Considering the last assumption, many simulations were developed for two coupled
waveguides, where the coupling length was obtained as function of separation distance,
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3.3 Directional coupler for two photon quantum interference

after that and using the equation (2.24), the coupling constant κ was recovered and fitted
as a exponential function.

In figure 3.2 are shown different pairs of coupled waveguides for λ = 800 nm , neff =
1.91515 and 500 nm of width in order to determine the coupling constant.

Figure 3.2: Simulation of two coupled waveguides with λ = 800 nm , neff = 1.91515 w=500
nm varying the separation length for a) s = 50 nm, b) s =75 nm, s=100 nm and d) s = 150
nm.

We can observe if we increase the separation length we need a higher length propagation
to find the coupling length. To determine the coupling constant we have simulated until
300 nm.
The last procedure was realized also for λ = 1550 nm, w = 1000 nm with neff = 1.7190
(Fig. 3.3).

Figure 3.3: Simulation of two coupled waveguides with λ = 1550 nm, neff = 1.7190 w =
1000 nm varying the separation length for a) s = 50 nm, b) s = 75 nm, s = 100 nm and d)
s = 150 nm.
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We observed the coupling length for λ = 1550 nm is less in comparison with λ = 800
nm, which means the evanescent field is greater.

The coupling constant was fitted to an exponential function of the form:

κ(s) = κoe
−bs. (3.1)

In the figure 3.4 is shown the plot for the coupling constant vs the separation dis-
tance for λ = 800 nm. The exponential function fitted for the coupling constant is
κ(s) = 0.3508 exp−0.01195s.
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Figure 3.4: The coupling constant in function of the separation distance and fitted to an
exponential function. This calculation was developed for λ = 800 nm.

The same procedure was realized for λ = 1550 nm, for this case, the function fitted for
the coupling constant is κ(s) = 0.1835 exp−0.005089s. In the figure 3.5 is shown the plot
for the coupling constant vs the separation distance and the fitted function.
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3.4 Integrated quantum logical gates

Separation (nm)

0 200 400 600 800 1000C
o

u
p

lin
g

 C
o

n
s
ta

n
t 

(µ
m

-1
)

0

0.05

0.1

0.15

Figure 3.5: The coupling constant in function of the separation distance and fitted to an
exponential function. This calculation was developed for λ = 1550 nm.

For both cases we observe the coupling constant for two coupled waveguides separated
by a distance of 3 µm is almost zero, which is important for the fabrication process.

With the coupling constant known and fitted for every value of separation we can cal-
culate the optimal length to achieve 50:50 directional couplers or any design for directional
couplers for a given reflectance or transmittance value.

3.4 Integrated quantum logical gates

In the following subsection are described the parameters used for the design of the CNOT
gate, due to the directional coupler acts as a Hadamard gate only using the fitted function
we have find the optical distance to create directional couplers with a 50:50 relation for the
transmision and reflection ports.

3.4.1 Integrated photonic CNOT gate

For the design of the directional couplers we have selected a fixed separation distance of s
= 100 nm. We found the length for 1/2 directional coupler of l1/2 = 7.385 µm.

For the directional coupler with splitting ratio of 1/3, based on the equations 2.60 we
have selected |R|2 = 1

3 we have find a length of l1/3 = 8.9784 µm, All the device was
design to work for the wavelength of λ = 800 nm.
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3.5 Integrated nanophotonic waveguide lattices

We mentioned above the potential applications of optical waveguide arrays. In the design
of the optical waveguide arrays, we used the fitted function for the coupling constant in
order to obtain the distance distribution needed for the quantum simulator.

x 

z 
y 

Figure 3.6: Schematic representation of optical photonic lattices based on ridge waveguide.

In the figure 3.6 is shown a 1-D array based on ridge waveguides.

Then, we are going to show the Hamiltonian related with every system, their differential
equation and the distance distribution used to achieve the desired system, and the values
utilized with their respective simulations on Metric Software.

3.5.1 Quantum coherent transport of states in integrated photonics

Remembering the Hamiltonian associated to obtain the quantum coherent transport of
states we have:

H =
1

2

N−1∑
n=1

Jn(XnXn+1 + YnYn+1). (3.2)

Then, the coupled differential equation that satisfies the coupling between neighbor
waveguides is described by:

i
dan(z)

dz
= κn+1an+1(z) + κnan−1(z), (3.3)

where |an(z)|2 is the probability amplitude to find the photon in the n-th waveguide and z
corresponds to the distance of propagation along of the waveguide. For the perfect coherent
transport the coupling constant requires a distribution described as:
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3.5 Integrated nanophotonic waveguide lattices

κn =
π
√
n(N − n)

2zf
, (3.4)

where zf is the total length of propagation for the quantum coherent transport of the initial
state.

Considering the fitted function for the coupling constant, we rewrite as:

κn(s) = κ1e
−(sn−s1)/k, (3.5)

where k is a constant, sn is the distance between the n− th and the (n+1)− th waveguide
and s1 is a reference distance that can be varied in order to achieve the perfect transfer.
Substituting equations (3.5) and (2.51), it is possible to find the distance distribution for
the spin photonic lattice

sn = s1 − k ln

√
n(N − n)

N − 1
. (3.6)

For the simulation in metric for the wavelength λ = 800 nm, we used 19 waveguides s1 =
250 nm yielding to the following distance distribution. We observe the distance distribution
is symmetric with respect to the central waveguide corresponding to the waveguide number
10.
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Figure 3.7: Distance distribution for quantum coherent transport of states for the wavelength
λ = 800 nm.

For this distance distribution we find a total length of propagation zf = 376.83 µm.
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In the figure 3.8 is shown the simulation of the photonic lattice where we have varied the
input state. We have observed the state is perfect transferred to the waveguide N −n+ 1.
at the propagation length zf , when the light is injected into the n-th waveguide.

a) 

b) 

c) 

d) 

e) 

f) 

g) 
a) 

h) 

i) 

j) 

Figure 3.8: Evolution of light in a photonic lattice with 19 waveguides coupled varying the
input waveguide for λ = 800 nm: a) 1, b) 2, c) 3, d) 4, e) 5, f) 6, g) 7, h) 8, i) 9 and j) 10.

In order to observe the dynamics in the photonic lattice and corroborate the quantum
coherent transport of both states in the waveguides array, we simulated two photons in the
system; in the figure 3.9 is shown two simulations for two different inputs.
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3.5 Integrated nanophotonic waveguide lattices

Figure 3.9: Simulation of a photonic lattice with 19 coupled waveguides with two inputs are
in the waveguides: a) 1 and 19, b) 2 and 18.

In both cases we observed the output is independent of the number of inputs obtaining
the both photons at the calculated length zf in the output ports related. We also observed
an interference pattern in the central region which is different depending of the input ports.

For the wavelength λ = 1550 nm, we repeated the same procedure in order to achieve
the coherent transport of the initial state with 19 waveguides and varying the distance s1

to find the optimal value for the desired dynamics. We have obtained s1 = 600 nm with a
total length of propagation for this device zf = 769.47 µm.
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Figure 3.10: Distance distribution for quantum coherent transport of states for the wavelength
λ = 1550 nm.

In the figure 3.10 the distances distribution is shown for the same case, the distance sn
is the distance between the n-th and the (n+ 1)-th waveguide.
The simulation were developed providing the same dynamics as for λ = 800 nm, but with
an increase in the total length of propagation.
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Figure 3.11: Evolution of light in a photonic lattice with 19 waveguides coupled varying the
input waveguide for λ = 1550 nm : a) 1, b) 2, c) 3, d) 4, e) 5, f) 6, g) 7, h) 8, i) 9, j) 10, k)
1 and 19, l) 2 and 18.

In the figure 3.11 is shown the dynamics in the photonic lattice for λ = 1550 nm.
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3.5 Integrated nanophotonic waveguide lattices

It is possible to rewrite the action of the photonic lattice as an unitary matrix that the
size of the matrix depends of the number of inputs and outputs. For this case we can
rewrite as an unitary square matrix with size of 19 x 19 as:

Û =


0 . . . 0 0 1
0 . . . 0 1 0
0 . . . 1 0 0
... . .

. ...
...

...
1 . . . 0 0 0

 (3.7)

In the last matrix all the elements are 0 except the elements located in the secondary
diagonal where all the elements has the value of 1.

3.5.2 Glauber-Fock states in integrated photonics

The Hamiltonian related for this system can be written as the same for the photonic lattices
where all the waveguides have the same propagation constant:

Ĥ =
~c
n

N∑
j=1

[
κn(â†j+1âj + â†j âj−1)

]
. (3.8)

This leads to the following differential coupled equation which is the same previously
found with coupled mode theory

i
dan(z)

dz
= κ1

√
n+ 1an+1(z) + κ1

√
nan−1(z), (3.9)

In order to achieve the desired physical system, we need to fulfill the coupling constant
distribution described by:

κn = κ1

√
n. (3.10)

where this distance distribution can be found substituting equation (3.10) and (3.5) yielding
to the following equation:

sn = s1 − k ln
√
n. (3.11)

For this simulation it is necessary an array of optical waveguides semi-infinite, physically
it is not possible, so that, we used 21 coupled waveguides just to observe the first orders
of the Glauber-Fock photonic lattices.

In the figure 3.12 is shown the distance distribution for this system, we observe according
to the increase in the n-th waveguide the distance separation sn between the waveguide n
and n+ 1 decreases such while the coupling constant between those waveguides increase.
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Figure 3.12: Distance distribution for Glauber-Fock states for the wavelength λ = 800 nm.

In the figure 3.13 is shown the the light evolution in the Glauber photonic lattice for
7 different input ports. Only for this system is considered the first site is represented by
k = n− 1 where n represents the waveguide excited such the displacement is representede
by the state |k〉.

Figure 3.13: Evolution of light in a photonic lattice with 21 waveguides coupled varying the
input waveguide for λ = 800 nm: a) k=0, b) k=1, c) k=2, d) k=3, e) k=4, f) k=5 and g)k=6
representing the displacement of the Fock states |0〉 , |1〉 , |2〉 , |3〉 , |4〉 , |5〉 , |6〉, respectively.
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3.5 Integrated nanophotonic waveguide lattices

We can observe depending on the site the lines separated in the pattern evolution of
light increase by one.
Using the last distance distribution and a distance of propagation zf = 150 µm the device
was designed for the manufacture process.

3.5.3 Bloch oscillations in integrated photonics

The Hamiltonian associated with this physical system is described by the equation [16, 17,
26]:

Ĥ =
~c
n

N∑
j=1

[
βkâ

†
j âj − C(â†j+1âj + â†j âj−1)

]
. (3.12)

which leads to the following coupled equation of motion:

i
dan(z)

dz
= κ(an+1(z) + an−1(z))− βnan(z), (3.13)

In order to obtain Bloch oscillations in our system of coupled waveguides we are going
to consider βn = β0 + δβn. This change of the propagation constant can be achieved
in different ways: changing the refractive index of every single waveguide, changing the
dimensions of the waveguides or the wavelength for every excited waveguide.
Due to the restrictions for our samples we only can change the width of every waveguide
such that makes a change in the propagation constant for the same wavelength.

Firstly, we have calculated the propagation constant using WMM solver starting from
300 nm to 635 nm where all the waveguides supports only fundamental TE and TM modes.

In the figure 3.14 is shown the propagation constant as a function of the width.
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Figure 3.14: Propagation constant as a function of the width.
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Using the points calculated with WMM solver we have fitted a function of the form
β(w) = awb + c yielding to:

β(w) = −0.3316w−1.913 + 15.06 (3.14)

Then, we have selected an linear increasing for δβ shown in the image 3.15 for 25
waveguides:
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Figure 3.15: Linear increasing as a function of the n− th waveguide.

We have selected an initial value for the propagation constant β0 = 13.8151 which
correspond to a width of w = 500 nm.

Finally, we can calculate the width of the waveguide in order to obtain a linear increasing
for the coupling constant with the equation:

wn = e
ln

(
βn(w)−c

a

)
b (3.15)

which leads to the following width distribution shown in the figure 3.16.
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Figure 3.16: Width distribution as a function of the n − th waveguide to achieve Bloch
Oscillations in a photonic lattice.

Now, taking into account that the coupling constant must be equal for all the waveguides
and remembering that the energy exchange must be only with neighbor waveguides, we have
selected a distance constant of 250 nm for all the waveguides due to the width of all the
waveguide is around of 500 nm.

In the figure 3.17 is shown the light evolution in the optical photonic lattices where the
Bloch oscillations appear.

Figure 3.17: Evolution of light in a photonic lattice with 25 waveguides coupled varying the
input waveguide for λ = 800 nm where Bloch oscillations are present.

We observe the light evolves and realize a coherent transport around 980 nm and then
the pattern repeats but it does not appear at the double of the first distance.

Using the last values of distance and width we have designed the the mask in order to
manufacture de photonic lattice.

3.6 Conclusion

In the present chapter, we presented the design of the photonic quantum simulators based
on the time evolution of some quantum systems. Firstly, we designed single mode optical
waveguides for the wavelengths 800 nm and 1550 nm with the use of the WMM solver.
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Then, using metric solver, we simulated pairs of waveguides with varying separation dis-
tance in order to find the function for the coupling constant for both wavelengths 800 nm
and 1550 nm. Using the coupling constant function, we designed Hadamard and CNOT
gates, two of the most important quantum logical gates.

For the quantum coherent transport of states for the wavelength of λ = 800 nm and
λ = 1550 nm we have observed the correspondient evolution of light as we predicted but
when we injected two photons appeared interesting interference phenomena which needs a
more detailed research.

For the quantum simulator of Glauber-Fock states we have observed that a large num-
ber of waveguides is necessary in order to develop the desired system, however using a small
number of waveguides allows the confirmation of the light evolution in the photonic lattice.

For the quantum simulator of Bloch oscillations we can select the increasing of the prop-
agation constant or the initial propagation constant, such that, the width of the waveguides
can be decreased and a large number of waveguides can be allowed to achieve Bloch oscil-
lations.

Finally, we have obtained the desired distance distribution and width distribution for
the three quantum systems and we simulated the evolution of light in the optical photonic
lattices to develop the quantum simulators. Moreover, Metric and WMM solver are powerful
tools that allow the design of systems with high complexity.
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Chapter 4

Micro- and nano-fabrication of quantum
integrated photonic circuits

4.1 Introduction

In the previous chapters, we detailed the basics and simulations for the design of the in-
tegrated photonic quantum simulators that are going to be fabricated. Finally, one of the
most important steps for the development of integrated photonic circuits is the nanofabri-
cation process, this chapter starts explaining two different techniques for the fabrication of
photonic chips and the rest is dedicated to describe the full process of electron-beam lithog-
raphy, starting from the preparation of the sample, the pattern design using nanolithography
toolbox software and the process to transfer the full pattern to the silicon nitride material.
Lastly, we discuss the nanofabrication process and discuss the most relevant points for this
chapter.

4.2 Micro- and nano-fabrication techniques

In the following subsections, we describe only two of the common techniques for the fabri-
cation of optical waveguides due to Centro de Investigaciones en Óptica A.C. and Université
de Technologie de Troyes, Francia, have the installations and capabilities to fabrication of
them and a brief comparison between the advantages and disadvantages.

4.2.1 Femtosecond laser direct writing

The last years has been demonstrated that the technique of femtosecond laser write is
suitable for the manufacture of three dimensional photonic structures within a glass or a
crystal [20]. The femtosecond laser micromachining consist in focus a pulsed laser using
an objective microscope inside of a transparent material in order to modify the properties
of this material due to the high energy focused, it relies on the nonlinear absorption of the
material to create an increase of the refractive index in the focal zone and if the sample is
translated it is possible to create localized optical buried waveguides.

In the figure 4.1 is shown the representation for the fabrication process of photonic
circuits using this technique. Generally, the sample is translated by a xyz micro-positioner,
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Figure 4.1: Schematic representation of the femtosecond laser writing technique for optical
buried waveguides.

allowing so, the fabrication of three dimensional structures in only one step process and
enabling the creation of complex circuits.

This technique provides a few potential capabilities in the creation of photonic circuits
but also has disadvantages in comparison with another techniques; firstly, the waveguides
get a low refractive index contrast, it means, it is easy to create waveguides supporting
more modes than the fundamental mode.
Also related with the low refractive index increase, the photonic circuits needs footprints
with size in the order of a few centimeters to achieve a task, so, the scalability of the
creation chips using this technique is limited by this problem and finally, using this technique
we can not manufacture nanophotonic circuits due to the diffraction limit provided by
the wavelength of the laser and the numerical aperture of the objective microscope (CIO
capabilities).

4.2.2 Electron beam lithography

Electron beam lithography (EBL) is a nanofabrication for many applications in electronics
and photonics. EBL is used for the fabrication of single electron devices, electrical con-
nections, ultra-high density storage media and photonic waveguides. The basic principle of
EBL is the transfer of a pattern using an electron beam focused at the surface of a e-beam
resist. This resist reacts to the electron yielding to a change of physical and chemical
properties. At the end, the exposed pattern in the resist is transferred to the material using
common techniques like lift-off or reactive ion etching [22].

In this work, as was before mentioned, the photonic integrated circuits were fabricated
with the use of this technique at UTT in France.
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4.3 Silicon nitride nanophotonic platform for integrated quan-
tum devices

Silicon nitride (Si3N4) waveguides have been used since 1970 as ultra-low loss planar waveg-
uides. It is compatible with other platforms based on silicon technologies [50].

Si3N4 is a material that has enabled a large field for the fabrication of integrated devices
as another platforms like silicon-on-insulator [23] and SiO2 [51]. This material was used
traditionally in the fabrication of CMOS platform circuits [52]. It is considered because
low propagation losses and high refractive index allowing high confinement, which means
a high scalability in the integration of this kind of circuits in a range for a few nanometers
devices. Another remarkable points for Si3N4 that makes it an interesting material are the
following: it can be used for the creation of photon heralded sources using spiral waveguides
or ring resonators due to the high non linearity allowing the integration of the generation of
photons [41]; it can be adaptable with active elements enabling to perform re-configurable
circuits, it means, manipulation of photons; detection at the end of the photonic circuit
can be achieved because it allows compatibility with integrated detectors like nanowires.
Finally this platform must be compatible with current technology, in this case for couple
and uncouple light to the photonic device it is viable to use fiber or gratings [3].

All this properties makes Si3N4 a suitable material for the fabrication of complex pho-
tonics circuits with potential applications in biosensing or quantum optics experiments, and
more importantly, they are a suitable platform for quantum computing technologies which
are of great interest in the recent years.
Nowadays, Si3N4 is used as platform for photonic technologies applied in lasers, biosensing,
optical filters, optical signal processors, delay lines, optical frequency combs generation,
supercontinuum generation, microfluidic and more applications [52].

For this reasons, we selected Si3N4 material for the design of our photonic integrated
circuits.

4.3.1 Optical properties of silicon nitride (Si3N4)

The principal property of Si3N4 is the high refractive index of 2.1 in the near infrared. Also
has low losses in the near and mid infrared. Those properties make it an interesting a
suitable material for development of technology across the telecom band [53].

This material possesses a high third order nonlinearity, for the present work, we restricted
only to the linear refractive index for the design and fabrication of our photonic circuits.

4.3.2 EBL: pattern transfer into e-beam resist

As we described above, the process of electron beam lithography, in the figure 4.2 is shown
the schematic representation of the full process of manufacture.
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Figure 4.2: Schematic representation of the full process of electron beam lithography for the
nanofabrication of nanostructures: a) The sample with a thin film of Si3N4, b) Deposition of
the ebeam resist with spin coating technique. c) Pattern exposure to the electron beam. d)
Development of the sample to remove the exposed resist and e) reactive ion etching process
for the transfer of the pattern to the Si3N4 thin film.

The samples consist of a coverslip with a thickness of 170 µm with a thin film of Si3N4

with a thickness of 300 nm. Then the ebeam resist is deposited with the use of spin-coating
technique. The resist reacts to the electron beam then, the pattern is generated and placed,
such that the electron beam is focused on the top surface of the resist for the writing process.

After exposure, the sample is developed to remove the unexposed resist and finally, the
pattern is transferred to the Si3N4 with the use of reactive ion etching technique.

4.3.2.1 Pattern generation, GDSII file

In order to create the nanophotonic circuits we need to generate a pattern that will be
transferred to the sample along the full process of fabrication described below.

For the generation of the pattern for each device, I wrote Matlab scripts that generates
the script for the use in the CNST Nanolithography Toolbox [54]. This tool is freely avail-
able and offers many basic structures for the creation of photonic circuits with different
level of complexity, depending of the requirements of every user. It can be used to create
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pattern layouts for nanoelectromechanical systems and nanophotonic devices. In addition,
it is used for the creation of pattern for micro-devices. This software generates a GDSII
file, which is used by the EBL system to transfer the pattern into the resist.

Once the device is completely designed another problem arises: How the light is going
to be injected into the photonic circuits?. The first proposal to inject light into the pho-
tonic circuit was to inject the light using fiber to connect with the input waveguides with
dimensions of 3 µm by 300 nm and then connect them with the nanophotonic circuit of
interest with tappers with an adiabatic transition of light. Following the last consideration,
all the circuits were designed with tapers and inputs waveguides with the dimensions be-
fore mentioned. All the devices have input ports that are designed with a separation to
each other of 50 µm, so that allows to collect light in the photonic circuit selectively and
decreasing the coupling in the curved zones.

We designed in 5 samples the following circuits: straight waveguides, directional cou-
plers, CNOT Gates, and the photonic lattices of waveguides for the quantum simulators
of quantum coherent transport of states, Glauber-Fock States and Bloch oscillations. In
figure 4.3, we present the layouts we generated. In the same figure, f) layout is shown the
central region for the quantum simulator of Bloch oscillations as a comparative with the
previous designs.
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(a) Directional coupler. (b) CNOT gate.

(c) Coherent quantum transport of states. (d) Glauber-Fock sates.

(e) Bloch oscillations. (f) Central zone of Bloch oscillations lattice

Figure 4.3: GDSII designs for integrated photonic circuits. All the patterns have dimensions
around a few microns.

These are the shapes imported to the software that controls the electron beam lithog-
raphy.

4.3.2.2 Preparation of the sample

Previously to the e-beam lithography process is necessary to prepare the sample. The
following steps are required to obtain the best quality of the sample for the process.

• Cleaning: The samples were cleaned using isopropanol alcohol and acetone to remove
dust particles, then the sample were dried with a nitrogen gun.
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• Resist deposition: Using spin-coating technique, we deposited two layers with a
constant velocity of 4000 rpm during 60 s. In both cases, this process involves a
quick deposit to avoid the chemicals fluids dry. The first layer was the adhesion
promoter AR300-80, we deposited a few drops in the center of the sample to obtain
a homogeneous layer. The second layer was the positive e-beam resist AR-P 6200.09
during 60 s where the last process was repeated.

• Annealing process: After the deposition of the e-beam resist, the sample was an-
nealed in a oven for 30 min at a temperature of 150 ◦C.

• Deposition of the conductive layer: Finally the last step is the deposition a film
of conductive layer using spin-coating technique. The parameters of duration and
velocity where the same last described. Due to Si3N4 is a dielectric material it can not
distribute the charge leading to charge accumulation in the surface, this conductive
layer helps to dissipate the charge.

All these layers deposited previously to electron beam lithography process are of so much
importance, since if in some step the layer was not correctly deposited, the full process has
to be done again.

4.3.2.3 Exposition parameters and development

When the sample is finally prepared, we introduced the sample into the electron beam
microscope (eLINE Raith). The following parameters were used for the exposure:

Parameter Value

Electron High Tension 20 kV
Aperture 10 µm

Beam Current 25 pA
Working Distance 8 mm

Area Dose 50 µC/ cm2

Table 4.1: Exposure parameters in the electron beam lithography process.

We focused the electron beam on top surface of the resist surface in order to obtain a
20-nm-wide spot size. Furthermore, we corrected all possibles sources of aberrations related
to the electron beam.
The e-beam can write over a surface of 100 µm by 100 µ with any sample displacement.
Because our waveguides are grater that this write field, the sample is displaced with a
motorized stage. To minimize errors in the displacement of the stage, a correction step
is necessary, correction step that is called stitching. The stitching correction is of great
importance to obtain continuity in all the optical devices.

After exposition, the sample is developed as follows:
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• The sample is submerged in deionized water during 15 s to remove the conductive
layer.

• Then, the sample is submerged in the developer AR600 S46 during 60 s. This
developer removes all the resist exposed to the electron beam and exposes the pattern
in the sample.

• After the development, the sample is submerged in isopropyl alcohol that removes
the developer and stops the process of development.

• Finally, the sample is dried with a nitrogen gun.

Previously to the reactive ion etching process the samples were observed with an optical
microscope to corroborate the writing process and development were realized correctly. In
the figure 4.4 are shown optical microscope images of directional couplers after development
process.

(a) Directional couplers with different separation
distances and coupling lengths .

(b) Directional coupler.

(c) Central region of a directional coupler.

Figure 4.4: Optical microscope images in dark field configuration after the process of devel-
opment for directional couplers.

In the figure 4.5 are shown images of the CNOT gate after development process.
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(a) CNOT gate. (b) Magnification of the CNOT gate.

Figure 4.5: Optical microscope images in dark field configuration after the process of devel-
opment for CNOT gate.

In the figure 4.6 are shown images of the full photonic quantum simulator for quantum
coherent transport of states and the central region where the optical waveguides are coupled.

(a) Full image of the photonic circuit. (b) Central zone of the photonic lattice where
the waveguides are coupled.

Figure 4.6: Optical microscope images in dark field configuration after the process of devel-
opment for quantum coherent transport of states simulator.

In the figure 4.7 are shown images of the full photonic Glauber-Fock simulator and the
central region where the optical waveguides are coupled, we can observe a small disconti-
nuity due to the stitching correction.
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(a) Full image of the photonic circuit. (b) Central zone of the photonic lattice where
the waveguides are coupled.

Figure 4.7: Optical microscope images in dark field configuration after the process of devel-
opment for Glauber-Fock photonic simulator.

In the figure 4.8 are shown images of the full photonic circuit for Bloch oscillations sim-
ulator, in the same way we observe a small discontinuity due to a failed stitching correction.

(a) Full image of the photonic circuit. (b) Central zone of the photonic lattice where
the waveguides are coupled.

Figure 4.8: Optical microscope images in dark field configuration after the process of devel-
opment for Bloch oscillations simulator.

After development process to remove the resist, reactive ion etching is done in order
to transfer the pattern into the silicon nitride. This process si described in the following
subsection.

4.3.3 Reactive ion etching (RIE): pattern transfer into Si3N4

Reactive ion etching (RIE) is a type of plasma etch technology used in the fabrication of
large scalable devices. A radio-frequency (RF) signal is applied so that an electric field
ionizes the gas molecules and generates a plasma. The d.c. voltage extracts ions from the
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plasma and energizes them and in the same way helps to the directionality of etching. For
this reason the resist and Si3N4 starts to etch at different etch rates. Here, the etching
process removes both materials the resist and the silicon nitride (Fig. 4.2). Because the
etch rate of the resist is lower than that of the silicon nitride, the resist acts as a mask for
the transfer of the pattern to the Si3N4 [55].
In Table 4.2, we present the parameters used for the RIE process.

Parameter Value

Gas CHF3, 20 sccm
Pressure 5 m Torr

RIE power 100 W
Etch time 19 min

Table 4.2: Reactive ion etching parameters.

To remove the resist left at the end of the silicon nitride etching, we used oxygen plasma
(O2), with a flow of 10 sccm and pressure of 20 mTorr. The power of RF signal was selected
to 10 W. Etch time was 1 min.

In the Fig. 4.9 are shown images of the CNOT gate after RIE process.

(a) CNOT gate. (b) Magnification of the CNOT gate.

Figure 4.9: Optical microscope images in dark field configuration after RIE process for the
CNOT gate.

In the Fig. 4.10 are shown images of the full photonic quantum simulator for quantum
coherent states and the central region where the optical waveguides are coupled.
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(a) Full image of the photonic circuit. (b) Central zone of the photonic lattice where
the waveguides are coupled.

Figure 4.10: Optical microscope images in dark field configuration after RIE process for
quantum coherent transport of states simulator.

In the Fig. 4.11 are shown images of the full photonic Glauber-Fock simulator and the
central region.

(a) Full image of the photonic circuit. (b) Central zone of the photonic lattice where
the waveguides are coupled.

Figure 4.11: Optical microscope images in dark field configuration after RIE for Glauber-Fock
photonic simulator.

In the figure 4.12 are shown images of the full photonic circuit for Bloch oscillations
simulator and the central region where the optical waveguides are coupled.
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(a) Full image of the photonic circuit. (b) Central zone of the photonic lattice where
the waveguides are coupled.

Figure 4.12: Optical microscope images in dark field configuration after RIE process for Bloch
oscillations simulator.

The last images shows the final result of the full process for nanofabrication of integrated
photonic circuits. However, the optical microscope is limited by diffraction, which limits
the measure of the integrated circuits. We observed the nanofabricated structures with
scanning electron microscope (SEM) for higher resolution.

4.4 Nanofabrication results

In the present section, we show the principal result of this thesis related to the nanofabri-
cation process. We present a few images of the principal integrated photonic circuits.

For SEM observation purposes, we spin-coated the sample with a conductive layer. The
first sample was used to fabricate the devices and measure the width of them for a future
correction. The width difference of the devices is around of 20 nm related with the spot
size of the electron beam.

In the figure 4.13 are shown images of a directional coupler designed for the wavelength
of 1550 nm, where the width expected was 1µm with a separation of 100 nm.
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(a) Full image of directional coupler. (b) Central zone of the directional coupler where
the waeguides are closer to each other.

Figure 4.13: SEM images for the directional coupler for the wavelength of 1550 nm, designed
with a separation of 100 nm.

In the Fig. 4.14 are shown images of the quantum simulator for quantum coherent
transport, for the full device and the central zone where the optical waveguides are coupled.

(a) Full image of the device. (b) Central zone of the photonic lattice where
the waveguides are coupled.

Figure 4.14: SEM images for the photonic lattice for quantum coherent transport of states
for the wavelength of 1550 nm.

In the figure 4.15 are shown images of the CNOT gate previously designed with different
magnification. We observe there is not exist discontinuities due to the stitching correction.
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100 µm 

(a) Full image of CNOT gate.

100 µm 

20 µm 
20 µm 

(b) CNOT gate where only the central direc-
tional couplers are shown.

Figure 4.15: SEM images for the CNOT gate designed for the wavelength of 800 nm with
different magnification.

For all the optical devices SEM can be used in order to corroborate the fabrication
process but long times of exposure of th devices relies on damage. For this reason we can
not expose the circuits for long times or high magnification values.
These images have served to the characterization process. We just observed the photonic
circuits have an increase of the width while the final length of them has maintained.

4.5 Conclusion

The process for the fabrication of nanophotonic circuits with the use of electron beam
lithography technique was described. The process starts from the design of the mask
layout particularly, we used the CNST nanolithography software. Then, the pattern is
transferred to the resist with electron beam writing. Finally, the pattern is transferred to
the Si3N4 thin-film with reactive ion etching process. We measured the width of the fab-
ricated waveguides with scanning electron microscopy. Due to technology tolerances, we
obtained a width increase of around of 20 nm, which we consider in subsequent process
(i.e. decrease the layout).

Finally, making a comparison with femtosecond laser writing technique, we found elec-
tron beam lithography technique a suitable process for the fabrication of large-scalable
nanophotonic circuits and more importantly, due to the optical properties of Si3N4, which
is a material with so much optical properties that can be exploited in quantum technologies.
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Chapter 5

Conclusion

In the present thesis, photonic quantum simulators were investigated theoretically, numeri-
cally, and experimentally with the development of a fabrication process. The main goal was
to enable the photonic quantum simulators based on Si3N4 photonic platform, taking ad-
vantage of the optical properties of this material. The Heisenberg spin chain, Glauber-Fock
states and Bloch oscillations were simulated in this platform, which allows the develop-
ment of photonic nanowaveguides lattices. The principal advantage of this platform is the
reduction of the footprint of about less than one millimeter, in contrast to femtosecond
laser direct writing waveguides where the footprint is in the scale of centimeters. This
compactness provides the key for the implementation of high-density photonic circuits.

We developed a theoretical and numerical study of the most important parameters that
involves propagation of light in optical waveguides to simulate complex physical systems in
solid-state physics, quantum computation and quantum optics.

WMM solver and Metric are powerful tools based on eigenmode expansion that al-
lows the simulation of integrated photonic circuits with low computational requirements
and time in comparison with other methods based on finite difference and finite element.
This method reduces significantly the total time required for the development of integrated
photonic circuits. In the same way, the evolution of light in optical lattices of waveguides
was performed on this software in order to corroborate the desired dynamics in the optical
arrays, previous to any fabrication process. In general, the use of Metric software allows the
design of systems based on photonic waveguides to perform tasks for quantum technologies.

The research of the quantum simulator was developed considering just one photon at
the input ports and just for the quantum coherent transport of states simulator we injected
two photons: when two photons are considered in the photonic lattice, an interference pat-
tern appears. This interference and the correlation function were not investigated in this
work but can be studied in the future with possible applications.

For the quantum simulator of Bloch oscillations, we did not vary the input ports to
observe the evolution of light, however this can be investigated in the future with the vari-
ation of the input ports. Furthermore, we can increase the propagation constant or modify
the function of the propagation constant related to the potential energy as in solid-state
physics.
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Here, we considered and investigated the influence of two important parameters: the prop-
agation constant (related to the dimensions of the waveguides) and coupling coefficient
(related to the separation distance between the waveguides). With only these two param-
eters, we may implement and engineer other quantum system based on photonic quantum
simulators.

Taking advantage of the large integration in a single chip of multiple integrated pho-
tonic circuits, we investigated and fabricated two fundamental gates for quantum computing
science: directional couplers (Hadamard gate) and CNOT gates, both based on quantum
interference of two indistinguishable photons.

Finally, we fabricated integrated nanophotonic circuits with the use of electron beam
lithography. We chose silicon nitride (Si3N4) photonic platform due to its scalability in the
integration process of many components on a single photonic chip. The high third-order
susceptibility allows to foresee the implementation of integrated sources based nonlinear
processes such as four-wave mixing. We foresee quantum photonic circuits with integrated
generation and manipulation of single photons.

The integrated photonic circuits, fabricated during this Master thesis, constitute the
first nanophotonic devices fabricated within the framework of an international collaboration
between CIO in Mexico and UTT in France. The full characterization and implementation
of this photonic circuits could allow a great impact in technology development in Mexico.

5.1 Perspectives

The following points are of interest for improvement and development of integrated photonic
circuits in the future.

• Use of another techniques in order to inject light in the integrated photonic circuits
like Bragg gratings with a high coupling efficiency.

• Due to silicon nitride material possess a third order non-linear susceptibility, it is
possible to integrate photon pairs-sources in order to perform the generation and
manipulation of photons in a single chip.

In the figure 5.1 is shown a photon source that generates indistinguishable photons
which contemplates a recent thesis of a student working in CICESE under a similar
project of research with Université de Technologie de Troyes.

• Using this platform for fabrication is suitable the design of integrated photonic circuits
with high complexity to develop a certain problem as boson sampling, quantum walks,
disorder in photonic lattices, Anderson localization.

• Research how affects the interaction with the first and second neighbor in optical
waveguide arrays and study of the dynamics.
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100 µm 

Figure 5.1: SEM images of an integrated photon pair source based on spontaneous four wave
mixing on silicon nitride photonic platform. As a perspective, we plan to include the source
and the photonic waveguide lattice in a single device.

• Research the correlation function and the pattern intereference due to the excitation
with two photons in optical waveguide arrays.

• Research and simulation of the coupling constant between waveguides fabricated
with laser writing and waveguides fabricated with electron beam technique for the
performing of micro-nano waveguides connection.

• Integration of nanowires in order to perform the step of detection in the same chip.
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Appendix A

Appendix

A.1 Appendix

In this appendix are described the process for the reduction of the ridge waveguide to planar
waveguide and the mathematical description for the planar waveguide in order to find the
solution for the TE mode and the correspondent effective index.

A.1.1 Planar waveguides

For this kind of waveguides also known as Slab waveguides we consider a Cartesian co-
ordinates system and a medium with a profile of step-index for the refractive index, the
electromagnetic waves oscillating only in one direction, for this case x−axis. Generally, the
electric field and magnetic field are orthogonal to the direction of propagation (z − axis)
in the form:

Ẽ(r, t) = ~E (x, y) ei(ωt−βz) (A.1)

H̃(r, t) = ~H (x, y) ei(ωt−βz) (A.2)

For the equation A.1 and A.2, i denotes the imaginary unity, ω is the frequency of the
wave and the propagation constant represented with β.

Substituting equations A.1 and A.2 in the equations 2.7 and 2.8 and considering the re-
fractive index constant, we find the wave equation for the electric field A.3 and the wave
equation A.4 for the magnetic field:

∇2
T
~E (x, y) + (k2

0n
2 − β2) ~E (x, y) = 0 (A.3)

∇2
T
~H (x, y) + (k2

0n
2 − β2) ~H (x, y) = 0 (A.4)

Where ∇2
T = ∂2

∂x2
+ ∂2

∂y2
, correspond to the transversal laplacian operator and k0 is the

wavenumber in vacuum.

In order to solve the wave equation for the slab waveguide we assume the electric field
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oscillates in the x − direction, and considering the orthogonality of the fields, it means,
~E(x, y) = Ey(x) for the electric field and ~H(x, y) = Hy(x) for the magnetic field.

Figure A.1: Schematic image of a planar waveguide.

Taking into considerations the last assumptions and using the equation A.3 and A.4 we
obtain the wave equation A.5 for the TE mode and the equation A.6 for the TM mode
respectively.

d2Ey
dx2

+
(
k2n2 − β2

)
Ey = 0 (A.5)

d2Hy

dx2
+
(
k2n2 − β2

)
Hy = 0 (A.6)

In order to find the solution for a slab waveguide, we are going to solve only the TE modes.

• TE modes Considering the electric field oscillating in the core and exponentially
decaying in the cladding, we propose the solutions described in the equation A.7,
where the distribution of the refracive index is shown in the image A.2:

Ey =


A cos (κa− ϕ) e−σ(x−a)

A cos (κx− ϕ)

A cos (κa+ ϕ) eξ(x+a)

 (A.7)

The electromagnetic field with the exponential decaying out of the core is receives
the name of evanescent waves, this waves depends of the refractive index of the sub-
strate, the refractive index of cladding and the size of the waveguides

64



A.1 Appendix

Figure A.2: Refractive index profile for a planar waveguide.

Where the constant used in the equation A.7 are defined with the following relations
shown in the equation A.8: 

κ2 = k2n2
1 − β2 = u2

a2

σ2 = β2 − k2n2
0 = w´2

a2

ξ2 = β2 − k2n2
0 = w2

a2

 (A.8)

In order to establish continuity in all the optical waveguide we need to achieve that
the function described for the equation A.7 and the first order derivative be equal in
the boundaries a and −a. Under a few steps of algebra we can find the following
relations:

u =
mπ

2
+

1

2
tan−1

(
w´

u

)
+

1

2
tan−1

(w
u

)
(A.9)

ϕ =
mπ

2
− 1

2
tan−1

(
w´

u

)
+

1

2
tan−1

(w
u

)
(A.10)

The equation A.9 and A.10 make up a coupled system of equations and satisfy the
following identities:

u2 + w2 = k2a2
(
n2

1 − n2
0

)
= ν2 (A.11)

w´2 = γν2 + w2 (A.12)

γ =
n2
s − n2

0

n2
1 − n2

s

(A.13)
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The parameter γ is related with the symmetry of the waveguide.

It is possible to make a transformation for the equation A.9 and A.10 to obtain
a new equation. Defining the effective index through the equation A.14 as the re-
fractive index that experiences a certain wavelength in the optical waveguide in the
following way:

neff =
β

k
(A.14)

Rewriting the normalized propagation constant with the equation A.15, we obtain:

b =
n2
eff − n2

s

n2
1 − n2

s

(A.15)

Finally, we can rewrite the equation shown in the equation A.16. This equation is
normally called Dispersion Equation or Trascendental Equation of Guided Modes can
be solved numerically with the refractive index of the core, the wavelength and the
size of the waveguide.

2ν
√

1− b = mπ + tan−1

(√
b

1− b

)
+ tan−1

(√
b+ γ

1− b

)
(A.16)

Solving the equation A.16 for a known value of ν it is possible to find the normalized
propagation constant and then, find the effective refractive index in the waveguide.

The parameter m represent the order of the mode in the optical waveguide, when
m = 0, it is known as fundamental mode.

When we find the effective refractive index, all the parameters are known for the
equation A.7, just rest to determine the amplitude of the electric field which is pro-
vided by the intensity of the electric field.

It is possible to follow the same procedure for the TM modes to obtain the dispersion
equation for the guided modes.

A.1.2 Silicon Nitride Photonic Waveguides

The Silicon Nitride (Si3N4) is a material that has enabled a large field for the manufacture
of integrated devices as another platforms like Silicon on Insulator [23], or SiO2 [51]. This
material was used traditionally in manufacture of CMOS platform circuits [52]. is considered
because low propagation losses and high refractive index allowing high confinement, which
means a high scalability in the integration of this kind of circuits in a range for a few
nanometers devices.
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Figure A.3: Schematic representation of a Si3N4 ridge waveguide.

Another remarkable points for Si3N4 that make it as an interesting material are the
following: it can be used for the creation of photon heralded sources using spiral waveguides
or ring resonators due to the high non linearity allowing the integration of the generation of
photons [41]; it can be adaptable with active elements enabling to perform re-configurable
circuits, it means, manipulation of photons; detection at the end of the photonic circuit
can be achieved because it allows compatibility with integrated detectors like nano-wires.

Finally this platform must be compatible with actual technology, in this case for couple
and uncouple light to the photonic device it is viable to use fiber or gratings [3].

All this properties makes Si3N4 a suitable material for the manufacture of complex
photonics circuits with potential applications in biosensing or quantum optics experiments,
and more importantly, they are a suitable platform for quantum computing technologies
which are of great interest in the recent years.

A.1.3 Effective Index Method

For the simulation of a three dimensional structure in a software becomes in long times
and many resources for computational data, it is possible to reduce the complexity of this
problem if we simulates only a two dimensional structure, it means, we can propagate light
in the original direction of propagation in a slab waveguide with the same width [27].

In the figure A.4 is shown a ridge waveguide that can be divided in three region in the
vertical direction, for all the regions we can calculate the effective refrative index, region I
and III are the same, such that region are going to have the same effective refractive index
while in region II can we solve as a slab waveguide.

67



A. APPENDIX

(a) XY-Plane of a ridge waveguide. (b) Slab waveguide reduced.

Figure A.4: Effective index method used for the reduction of a ridge waveguide to a slab
waveguide.

Using last assumption enables a more easy treatment of photonic waveguides reducing
resources and time in the computing step for simulation.
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