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Loma del Bosque 115, León, Guanajuato, 37150, México
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Abstract

In this manuscript, we present a method for the determination of defects in the crystalline
morphology of buried surfaces using SHG. This is done by calculating the second order non-
linear susceptibility using DFT, length gauge and the cut function for surface responses. We
analyzed the change in the SHG response of GaAs 110 crystalline slabs due to systematically
induced defects. We found that SHG can be used to obtain the position of periodical defects
like the displacement of a atom in the periodic crystalline cell, also, SHG can be used to detect
dislocation of sections in the slab and misfits between stacked slabs. Finally, we give a scheme
for the experimental determination of this defects by using the values of nonlinear susceptibility
measurements.
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1 Introduction

Outline

Ferroelectric materials are essential components in a wide spectrum of applications like RF
devices, tunable microwave circuits and nonvolatile memories like Solid State Drives [1]. With the
development of deposition techniques for thin films a new range of applications has arise due to size
minimization and several kinds of nonlinear effects. However with the minimization of the size of
this components, new problems have arisen, specially in interfaces between substrates and different
deposited materials, like the integration of ferroelectrics with silicon for optoelectronic devices [2].
These films composed of slabs of different materials are known as buried surfaces. This interfaces
usually present atom scale defects that can alter the nonlinear optical response of this materials. To
overcome the challenges in the fabrication of buried surfaces, an analysis of the interface defects like
displacements and mismatched interfaces has to be made. For this, Second Harmonic Generation
(SHG) is a suitable candidate because of its properties, as it will be expained in this thesis.

SHG has been widely used to characterize several kinds of materials as it is a non-invasive tech-
nique, has high sensibility to symmetry changes and its good cost-efficiency relation. Some applica-
tions include the study of solid-solid, vacuum-solid and liquid-liquid interfaces [3–6]. Moreover, it
can also be used for measuring defects in surfaces of both centrosymmetric and non-centrosymmetric
media [7–9]. In recent years, there has been investigation towards the development of SHG tomog-
raphy in vivo via fluorescence and optical coherence tomography [10–12]. On the other hand, even
though the macroscopical description of non-linear optics is well developed [13], SHG and surface
SHG calculations can be limited due to the lack of our understanding of low scale systems and
interactions that generate non-linear responses; therefore, there is an inability to obtain accurate
and experimentally-consistent calculations. In order to improve this weak points, several research
have been done to improve the SHG range of action from first principles calculations [14–17]. A
common source of error is the inability to efficiently calculate the gap for semi-conductors, this can
be fixed by including a scissors operator that moves conduction bands rigidly to get a separation in
agreement with experiment or with a previous GW calculation [18–20], providing an improvement
over the calculation of linear optical responses; also the value for gap can be fully calculated with
a full GW calculation, which introduces corrections over the full symmetry path and to the wave
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1. Introduction

functions energies, yet this can be more expensive than another kind of improvements. The optical
responses can be enhanced by including the non-local part of the pseudo-potentials used for the
DFT-LDA calculations [21–23]. Another point for improvement is the introduction of the Many
Body contribution; this is necessary to calculate well the second order susceptibility regarding its
non-linear properties; specifically the “length gauge” and its equivalent, the “velocity gauge”, both
correct the scissors operator for the calculation of the second order non-linear susceptibility [24,25].
In the same way, several works accomplished advances in including bulk, intra-band and inter-band
transitions, 1ω and 2ω resonance effects [26,27]. In addition, to be able to extend SHG calculations
to effectively simulate surface effects from first principles and correctly analyze the symmetry break-
ing effects considering interfaces and surface misfits, the cut function was introduced in Ref. [28].
This function might be used to extract the contribution of given parts of the crystalline super-cell.
Recent works include the calculation of SHG in nano composites [29], an analysis of the effect of the
nonresonant approximation commonly used in abinitio calculations for SHG [30], the inclusion of
nonlocal operators for the SHG calculation [31], second-harmonic microscopy of strain fields around
through-silicon-vias [32], the direct implementation of nonlocal operators and the cut function for
semiconductor surfaces [33] and the implementation of the three layer model for calculation of the
SHG response in surfaces at the border of bulk materials [34–36].

Even though ferroelectric materials have a natural SHG signal due the noncentrosymmetry of
its crystalline structure, their efficient calculation is still theoretically and numerically challenging
and under debate, yet a test model with another material can be used to prove if SHG is sensible
to the defects that the deposition of films of ferroelectric materials have presented.

Finally, the objective of this work is to prove that SHG can be used to detect crystalline defects
in buried surfaces of noncentrosymmetric materials, this can be done by implementing a structured
library of crystalline defects that can be used to compare with the SHG response of experimental
measurements.

This thesis is divided as follows: There is a review of some concepts that will be useful to explain
the methodology in chapter 2. In chapter 3 we will describe the method for the study of the system
and its defects. Results and their analysis will be presented in chapter 4. Finally, in chapter 5 are
the final remarks and conclusions of the work.
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2 Theoretical Framework

Outline

2.1 Cut function formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 SHG response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Cut function formalism

In order to analyze the optical properties of buried surfaces, it is convenient to introduce a method
to calculate the contribution of the different sections of the material to these optical properties. We
can think of a buried material as a superposition of layers of the same material, which are misaligned
or have periodical defects due to the different process that can arise during the deposition of the
material. This buried material will be represented as a slab, this is a crystalline surface with a
finite size in z direction, and an infinite size in the x and y directions This is shown in figure 2.1,
each layer will contain all the atoms of the slab inside a δz interval. The construction of this
infinite slab is done by using the Bloch Theorem and working in the reciprocal space. A reciprocal
space is a periodic set of points in this space, and contains the points that compose the Fourier
transform of a periodic spatial lattice. So the cell in the figure 2.1 will be repeated in the three
Cartesian coordinates. Also, if the vacuum space included in the z direction is large enough, there
will not be interactions between atoms in different slabs, so the interactions and optical responses
will correspond to the ones of a single layer [37].

A convenient way to calculate the contribution to the optical properties of different sections of
the crystalline slab of a given material is to introduce a “cut function”, C(z), which is usually taken
to be unity over one half of the slab and zero over the other half [31, 38]. In this case C(z) will
give the contribution of the side of the slab for which C(z) = 1. As was done for the linear optical
response [37], we can generalize this simple choice for C(z) by a top-hat cut function C`(z) that
selects a given layer,

C`(z) = Θ(z − z` + ∆b
`)Θ(z` − z + ∆f

` ), (2.1)

where Θ is the Heaviside function. Here, ∆f/b
` is the distance that the `-th layer extends towards

3



2. Theoretical Framework

Figure 2.1: (color on line) A sketch of the super-cell. The atomic slab corre-
sponds to the circles representing the atoms of the system.

the front (f) or back (b) from its z` position. We take z` to be at the center of an atom that belongs
to layer `, so the previous equation would give the `-th atomic-layer contribution to the nonlinear
optical response. ∆f

` + ∆b
` is the thickness of layer ` (see Fig. 2.1).

To introduce the cut function C(z) in the calculation of nonlinear optical susceptibility χabc, we
start from the operator for the electron current, j(r) = e

2

(
vΣ|r〉〈r|+ |r〉〈r|vΣ

)
, that leads to

j(2)(r, t) = Tr(j(r)ρ(2)(t)) =
∫
dk3

8π3

∑
nm

ρ(2)
nm(k; t)jmn(k; r), (2.2)

where
jmn(k; r) = e

2
(
〈mk|vΣ|r〉〈r|nk〉+ 〈mk|r〉〈r|vΣ|nk〉

)
. (2.3)

We have used the one electron density operator ρ, with which we can calculate the expectation
value of a single-particle observable O as 〈O〉 = Tr(ρO), with O the associated quantum mechanical
operator and Tr the trace. We have introduced vΣ

nm(k)/iωΣ
nm(k) = rnm(k), this corresponds to the

4



2.1. Cut function formalism

matrix elements of the position operator in reciprocal space, which can be written using the one
electron velocity operator with the scissors correction vΣ, needed to have the correct value of the
energy band gap due to the DFT-LDA underestimation of this value.

Integrating the microscopic current j(r, t) over the entire slab gives the averaged microscopic
current density, J(t). If we want the contribution from only one region of the unit cell towards the
total current, we can integrate j(r, t) over the desired region. Then the contribution to the current
density from the chosen region of the slab is given by

1
A

∫
d3r C(z) J(2)(r, t) ≡ J (2)(t),

where J (2)(t) is the 2nd order current induced in the region specified by C(z). For the case of
SHG, the perturbation theory with the electric field as perturbation has to be taken at least to 2nd
order [13]. Therefore we define

eVΣ
mn(k) ≡

∫
d3r C(z) jmn(k; r), (2.4)

to write the Fourier transform of equation (2.2) as

J (2)(2ω) = e

A

∫
dk3

8π3

∑
mn

VΣ
mn(k)ρ(2)

nm(k; 2ω), (2.5)

that gives the induced microscopic current of the chosen region, to order 2 in the external pertur-
bation. From Eqs. (2.4) and (2.3) we obtain

VΣ
mn(k) = 1

2

∫
d3r C(z)

[
〈mk|vΣ|r〉〈r|nk〉+ 〈mk|r〉〈r|vΣ|nk〉

]
= 1

2

∫
d3r C(z)

[
ψnk(r)vΣ∗ψ∗mk(r) + ψ∗mk(r)vΣψnk(r)

]
=
∫

d3r ψ∗mk(r)
[
C(z)vΣ + vΣC(z)

2

]
ψnk(r)

=
∫

d3r ψ∗mk(r)VΣψnk(r),

where, we used the hermitian property of vΣ and defined

VΣ = C(z)v
Σ + vΣC(z)

2 .

We see that the replacement
V→ V = C(z)V + VC(z)

2 , (2.6)

is all that is needed to change any occurrence of the one electron velocity operator V to the new
velocity operator V that implicitly takes into account the contribution of the region of the slab
given by C(z). We note that this modified operator is hermitian as it should [39]. and if we take
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2. Theoretical Framework

C(z) = 1 through out, the layered matrix elements VΣ
nm become standard bulk-like VΣ

nm matrix
elements.

Finally, we could also calculate the nonlinear surface susceptibility as

χ(−2ω;ω, ω) =
∑
{`}

χ`(−2ω;ω, ω), (2.7)

where ` would denote a particular layer chosen through C`(z) of equation (2.1) and {`} is meant
to be a chosen set of layers. For instance, one can take a single layer encompassing half of the slab,
or take each atomic layer individually to the middle of the slab. For the first case there is a single
summand in equation (2.7). For the second case there is a sum from ` = 1, denoting the first layer
right at the surface, to ` = N , denoting the layer at the middle of the slab.

2.2 SHG response

The SHG intensity for a given incidence of the electrical field depends of the elements of the χabc

tensor. Mathematically this is a third rank tensor with 2ω dependence and complex values. From
now on we will refer to it as χabc(2ω). The nonlinear second order susceptibility can be written in
terms of the resonant contribution of transitions at frequency ω and 2ω [31]:

χabc(2ω) = χabc
e,ω (2ω) + χabc

e,2ω(2ω) + χabc
i,ω (2ω) + χabc

i,2ω(2ω). (2.8)

In the last equation the subindex e denotes the contribution from intraband transitions and i from
interband transitions.

For the numerical calculation of the SHG response the nonlinear susceptibility tensor components
are given by [31]:

Im[χabc
e,ω ] = π|e|3

2h̄2

∫
dk3

8π3

∑
vc

∑
q 6=(v,c)

1
ωΣ
cv

[
Im[VΣ,a

qc {rb
cvr

c
vq}]

(2ωΣ
cv − ωΣ

cq)
−

Im[VΣ,a
vq {rc

qcr
b
cv}]

(2ωΣ
cv − ωΣ

qv)

]
δ(ωΣ

cv − ω), (2.9a)

Im[χabc
i,ω ] = π|e|3

2h̄2

∫
dk3

8π3

∑
cv

1
(ωΣ
cv)2

Re
[{
rb
cv

(
VΣ,a
vc

)
;kc

}]
+

Re
[
VΣ,a
vc

{
rb
cv∆c

cv

}]
ωΣ
cv

 δ(ωΣ
cv − ω),

(2.9b)

Im[χabc
e,2ω] = −π|e|

3

2h̄2

∫
dk3

8π3

∑
vc

4
ωΣ
cv

∑
v′ 6=v

Im[VΣ,a
vc {rb

cv′rc
v′v}]

2ωΣ
cv′ − ωΣ

cv

−
∑
c′ 6=c

Im[VΣ,a
vc {rc

cc′rb
c′v}]

2ωΣ
c′v − ωΣ

cv

 δ(ωΣ
cv − 2ω),

(2.9c)

Im[χabc
i,2ω] = π|e|3

2h̄2

∫
dk3

8π3

∑
vc

4
(ωΣ
cv)2

Re
[
VΣ,a
vc

{(
rb
cv

)
;kc

}]
−

2Re
[
VΣ,a
vc

{
rb
cv∆c

cv

}]
ωΣ
cv

 δ(ωΣ
cv − 2ω),

(2.9d)
For this set of equations Im[χabc

i,ω ] is the imaginary part of the nonlinear optical susceptibility
for the SHG at a frequency ω and due to interband transitions, whilst χabc

e,2ω is the contribution
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2.2. SHG response

to the SHG from intraband transitions. The constant e is the fundamental charge and the
∫
dk3

corresponds to an integration on the first Brillouin zone. The factors h̄ωσcv are the energy difference
between the c and v state of the system after the scissors correction. The factor VΣ,a

vc are the matrix
elements of the electron velocity operator for the a Cartesian index, with the cut function applied
for a given layer and with the scissors correction, this is a rigid correction to the band structure
gap due to the DFT underestimation of this value, this value is usually taken from an experimental
measurement or a GW calculation. The factors rb

cv are the matrix elements of the position operator
for the b-th Cartesian index.

The real part of each contribution can be obtained through a Kramers-Kronig transformation [40]
and to fulfill the required intrinsic permutation symmetry, the {} notation symmetrizes the bc
Cartesian indices, i.e. {ubsc} = (ubsc + ucsb)/2, and thus χabc = χacb.
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3.1 System of study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Induced defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

In this chapter we will show the scheme for the calculation of the SHG response. Then we will
explain about the defects and misfits that will be induced in the crystalline lattice.

The SHG response was calculated using the TINIBA [41] code. TINIBA was developed at the
Centro de Investigaciones en Optica, A.C., it is a suite of scripts that works with the ABINIT
[42] package to run and calculate optical properties of crystalline semiconductors by parallelizing
the computation of the different quantities involved in the procedure. It is written primarily in
FORTRAN with Bash wrapper scripts. TINIBA can calculate the SHG response using the length
formalism and the expressions in (2.9), but SHG has a higher sensitivity to the crystalline cell
deformations due to its noncentrosymmetry dependence. For the calculation of the SHG response
in (2.8), the self-consistent ground state and the Kohn-Sham states were calculated in the DFT-LDA
framework using the plane-wave ABINIT code [42]. We used Troullier-Martins pseudopotentials [43]
that are fully separable nonlocal pseudopotentials in the Kleinman-Bylander form [44].

The vacuum size in the figure 2.1 is equivalent to one quarter the size of the slab, avoiding the
effects produced by possible wave-function tunneling from the contiguous surfaces of the full crystal
formed by the repeated super-cell scheme [37].

Spin-orbit, local field, and electron-hole attraction [45] effects on the SHG process are all ne-
glected. Although these are important factors in the optical response of a semiconductor, their
efficient calculation is still theoretically and numerically challenging and under debate. This merits
further study but is beyond the scope of this thesis. For a given slab size, we find the converged
spectra to obtain the relevant parameters. The most important of these are: an energy cut-off of
10 Ha for the layered slabs, an equal number of conduction and valence bands, and a set of 630
k-points. The k-points are used for the linear analytic tetrahedron method for evaluating the 3D
Brillouin Zone (BZ) integrals where special care was taken to examine the double resonances of
Eq. (2.9) [24] that arises due to the high density of states of the resonances. Note that the Brillouin
zone for the slab geometry collapses to a 2D-zone, with only one k-point along the z-axis for thin

9



3. Methodology

slabs. All spectra were calculated with a Gaussian smearing of 0.15 eV. This value has the best
concordance with experimental measurements [31].

3.1 System of study

Due to the theoretical and computational complications for the first principles calculations in ferro-
electric materials, we chose Gallium Arsenide 2D slabs with their main surface in the (110) direction.
This 2D material can be fabricated using several experimental techniques such as clevage of bulk
GaAs [46–48].

This GaAs(110) slab is useful for nonlinear optics experiments because like ferroelectric mate-
rials, it is a noncentrosymmetric material. It will have a natural SHG response and this will be
useful to measure SHG differences when the noncentrosymmetry of the material is altered. From
now on we will refer to the natural material response as the relaxed case response. Bulk GaAs has
a Zinc-Blende structure, it is formed by two face centered cube structures with one displaced to 1/4
from the other in the main diagonal. The atoms are tetrahedrally coordinated with 108◦ bonds.

Figure 3.1: GaAs slab cell in the (a) x, (b) y and (c) z direction.

For the construction of the periodic cell we used 11 layers of material, each layer containing a Ga
and a As atom. This is shown in figure 3.2. The material has been relaxed to minimize the system
energy because of the finite size of the slab in the z direction. A vacuum in the z direction was
included and due to the periodicity of the cell the vacuum will separate the different slabs. Also,
the vacuum in the z direction needs to be large enough so that the wavefunctions of the different
slabs can not overlap [31].

3.2 Induced defects

For the GaAs(110) slabs we will add two kinds of defects. The first one consist in a small dis-
placement of a Ga or As atom in the cell. As a result of the periodicity in the cell, this defect will

10



3.2. Induced defects
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Figure 3.2: Periodic Cell for the GaAs slab with all the atoms in their relaxed
position. Each layer contains a Ga and a As atom and each has a label at its left.

become periodic. The atom will be moved above and bellow its equilibrium position, giving us a
measure of the change in the SHG response for each one of its positions. The second kind of defect
is called misfit, this is a dislocation that we will create by displacing the lower half of the slab in
the x direction. This defect will emulate the mismatch that could arise in the interface of buried
materials when one of the films in under a strain induced relaxation like the buried ferroelectric
surfaces in reference [2].

For the periodical displacement of an atom in the cell, the displacement will be induced for all
the atoms in the lower half of the slab cell, namely, Ga and As atoms contained between layers
1 to 6, having each calculation only one atom of the displaced in the periodic cell. The range of
displacement is defined as 10% of the width of the current layer. For this system this distance is less
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Figure 3.3: Scheme for the periodical displacement of an atom: each colored circle cor-
responds to a relaxed atomic position whilst blue colored circles are the displacements
for the selected atom.

than 1Bohr and it has been divided into six steps. A schematic representation of these displacements
is shown in figure 3.3 for the central atom of the crystal. In this figure the relaxed slab cell has
been repeated three times in the x direction and the lower part of the next slab can be seen above
z = 30.

For the calculation of the second kind of defect, the misfit, all the atoms in that lower half were
displaced in the negative x direction a 5% of the average atomic distance in that direction, this
displacement was divided into six steps. A scheme of the misfit is shown in figure 3.4.

The displacement induced in the figure 3.4 will give us the SHG response corresponding to the
stack of two slabs of GaAs(110) with a mismatch produced by a noncontinuous deposition, strain
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Figure 3.4: Half slab misfit scheme: all the atoms of the lower half of the slab have
been displaced towards −x direction.

or staking in vacuum.
To get an ordered calculation of this defects a Bash / C++ console application was developed;

this script uses the files required for the relaxed case calculation as an input, and automatically
generates the cases for each displacement of the selected atoms or misfits. After the input generation,
all the cases can be run in parallel using TINIBA via the application scripts.
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All calculation in this thesis were accomplished using the CIO supercomputer MEDUSA, during
6 months of calculations using 12 nodes, each with 12 cores at 3.46 GHz. Visualization of the unitary
cells and slabs were done using Avogadro and Gnuplot.

In this chapter we will present the results of the calculation for the SHG responses and the
method for the analysis of the induced defects in the GaAs(110) slabs. For the nonlinear suscepti-
bility χabc(2ω) we will have 27 components: 9 will be zero due to the SHG permutation properties.
Some of the other 18 components will be near equal to zero due to the system properties and some
will have higher intensity. The tensor components that represent the P polarization will involve a
z component, they will represent perpendicular incidence of the electric field and will not be used
because of the difficulty to simulate the field screening at the surface of the material. A scheme for
the P and S polarization of the electric field is shown in figure 4.1.

To select the components to work with, previous calculations were ran for all the possible
nonzero tensor components that can represent the S polarization incidence. The xxx, xyy and yxy
components were chosen due to its high intensity. The previous calculations also showed that the
higher intensity components had a higher variation in the amplitude of the SHG signal due to the
defects.

4.1 χabc(2ω) surface calculation

For the selected tensor components we converged the calculations for the relaxed case and found
that most of the peaks that could arise into optical activity were in range of [0, 4] eV. From equation
(2.7), the calculated intensity |χabc(2ω)| of the selected components is shown in figure 4.2.
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Figure 4.1: Incidence diagram for the P and S polarization of the electric field.
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Figure 4.2: Strongest components of |χabc(2ω)| for the GaAs110 surface response;
h̄ω represents the one photon energy.

The SHG response of the material will depend on the value of the components of |χabc(2ω)| at
twice the energy of the incident field. For a Ti:sapphire laser with a energy peak at 1.55 eV the
efficiency of the SHG will be related to the |χabc(2ω)| values at 3.1 eV.

The intensity of the SHG signal will change in different way for each displacement, tensor
component and frequency of the incident field. There are also regions in the spectrum that have a
higher amplitude in the signal, which can be useful for experimental comparisons. To facilitate the
analysis, we will represent in which regions of the spectrum, the SHG signal for each displacement
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4.2. χabc(2ω) layered calculation

will deviate the most. A wider variation for a given frequency will allow us to know by comparison
which atom of the periodic cell has been displaced and its location. For this we will introduce the
Dabc(2ω) function:

Dabc(2ω) = (|χabc
displ(2ω)|)2 − (|χabc

relax(2ω)|)2. (4.1)

In equation (4.1) D(2ω) represents the difference between the squares of the measured component
of the material in the relaxed case and the material with the induced displacement. This choice was
not arbitrarily, during the analysis we used differences between the components, squared differences,
and the difference of the squared components was the quantity that allowed to identify easier the
different defects.

By using the values of the nonlinear susceptibility we would be able to distinguish which atom
of the crystalline slab has been displaced; lets suppose that for the GaAs110 slab, the center atom
zoomed in the figure 3.3 has been displaced −1.9 × 10−1 Bohr in the z direction, we would have a
notorious difference with the nonlinear response of the relaxed case, this difference is shown in 4.3
(a), these squared subtractions are always different for each atom and for each displacement, as can
be seen in figure 4.3 (b) for the 15-th As atom, which is below the 11-th As atom in figure 3.3 and
has been displaced 1.9× 10−1 Bohr upward.

4.2 χabc(2ω) layered calculation

By using the cut function formalism we calculated the response for each layer of the slab for all
displacement cases. This layered responses allow us to analyse only the SHG signal contribution
that comes from a given layer.

The higher variations in the |χabc(2ω)| spectra came from the either the layer in which the atom
was displaced or in the adjacent layer in the direction of atomic displacement. This behaviour was
found in the three tensor components that were analyzed. Two examples are shown in figure 4.4:
the layer 6 in (a) has the highest response and it contains the 11-th atom which has been displaced.
However, if there is a displaced atom in another layer, the higher peak in Dabc(2ω) will come from
that layer due to the noncentrosymmetry breaking. This is shown in (b), where the highest intensity
comes from the layer 4 that contains the 15-th atom which has been displaced from its equilibrium
position. We mention that odd layers were omitted in this figure to improve visualization. As a
drawback, to do this layer analysis, we need to determine the SHG response in a wide range of the
spectra. This is because the frequency of the higher peak changes with each layer. Thus, to find the
higher peak among layers, the experimentalist will have to measure |χabc(2ω)| in the whole optical
frequency range.

4.3 Induced variance and energy point analysis

Usually the nonlinear susceptibility is measured experimentally using a Ti:sapphire laser, this is a
femtosecond laser with a high intensity and an energy peak at 1.55 eV, so the SHG response will
be centered at 3.1 eV. We can also see from figure 4.2 that the higher response for the components
spectra is located around 1.2 eV. Is convenient to introduce a method to estimate the variation of
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Figure 4.3: Difference between the squared components of |χabc(2ω)| for the minimum
displacements of the (a) 11-th and (b) 15-th atom.

the SHG response from case to case. we will introduce a statistical variance for the changes in the
nonlinear response due to the displacements of an atom in the periodic cell:

σabc(2ω) =
∑N
i=1( ¯|χabc

relax(2ω)| − |χabc
i−displ(2ω)|)2

N
. (4.2)
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Figure 4.4: Layered SHG difference for the (a) 11-th atom displaced in layer 6 and
the (b) 15-th atom displaced in layer 4. The higher variation comes from the layer with
the displaced atom.

Where |χabc
i−displ(2ω)| is the intensity of the SHG response for the i-th displacement of the given

atom, |χabc
relax(2ω)| is the relaxed case SHG intensity and N the number of displacements calculated

for the atom. σabc(2ω) will be a measurement of the dispersion in the intensity of a |χabc| tensor
component for the displacements of an atom and for a given frequency of the incident field. The
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4. Calculation results and analysis

main objective is to separate the displacements using its difference with the relaxed case. If the
intensities have a wider scatter, they will be easier to identify. Thus, the variance will give us a
measure of the easiness to identify the atom position for each frequency.
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Figure 4.5: σabc(2ω) for the 19-th atom as a function of the output signal energy.

In the figure 4.5 σabc(3.1 eV) has a low amplitude. This means that the values of the SHG
intensity are not widely scattered for this frequency of the SHG. On the other hand, as a result of
the high sensitivity of SHG to changes in the noncentrosymmetry, 3.1 eV can still be used to identify
the displaced atom in the periodic cell and its displacement, as will be shown in figure4.7.

The figures from 4.7 to 4.9 can be read as follows:

• Each colored line represents an atom of the periodic crystalline cell that has been displaced.

• Each dot of the atom line correspond to a displacement for the current atom. The first point
from left to right will correspond to z = z−3∆z. The central point is the value for the relaxed
case, which is easily identificable as Dabc(3.1 eV) = 0. Whilst the last point of the line is the
value for the displacement of the atom to z = z + 3∆z.

• The behaviour for the 11-th atom is always symmetrical for the displacements. This is because
it is located in the central layer of the slab.

By taking the results of the measurements for different rotations of the material for S-polarization
incidence, the experimentalist can acquire the xxx, xyy and yyx components and do a comparative
analysis using the figure 4.7 as follows:

1. The atom and its displacement can be found by comparing the measurements with the results
of the figure 4.7 for the tensor components.
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Figure 4.6: Schematic diagram of the representation in figure 4.7.

2. For almost all the atom displacements, the measurements of Dabc(2ω) are different, so with
this three values the defect can be found.

3. If the value is degenerated, like in the case of the displacements of the 11 -th atom (which are
the same for z = z + ∆z and z = z −∆z), the value of the response for the central layers at
3.1 eV needs to be used, this will give an insight if the atom is displaced upwards or downwards
its equilibrium position.

4. The absolute value of the nonlinear susceptibility can also be used to break the degeneracy of
the possible atoms and positions. Furthermore, the analysis can be simplified using a tunable
laser: if the values of the |χxyy(2ω)| can be measured in different frequencies, a straightforward
algorithm can be implemented to search for the best coincidence between the displaced atoms
and their displacements. However, we will focus on this analysis for only a 3.1 eV signal.

Two examples of this process are shown in the figures 4.8 and 4.9, we have two probe cases and
the measurements for Dabc(3.1 eV) from (4.1) for the three selected tensor components. In the two
probe cases we marked with black squares all the coincidences for each measurement, and only with
a vertical line the ones that match for all three tensor components.

In figure 4.8, for the Ga atom in the 4-th layer labeled as 16, we induced a displacement to the first
step below its equilibrium position, −∆z, after the analysis of the coincidences for measurements
shown as a red line, no other atom nor displacement matches the measurement for the three tensor
components. For the second probe case the induced defect corresponds to the +3∆z step of the 19-th
atom, this is the As atom in the 2-th layer. The measurements for the three components are shown
as a horizontal green line. Only the values for the selected case matched all the three components.
This means that the we have found which has been displaced and its displacement. If there were
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4. Calculation results and analysis

two or more atoms and displacements with the same values for the three tensor components, we
would not be able to know which has been displaced with this method, yet the intensity of the
layered response can be checked. Also, we run a script to know if there are repeated values for
the three components of |χabc(3.1 eV)| in different cases, and we found that there were no repeated
values, so each displacement of all the atoms had unique values for the three components, and if
needed, more components can be included in the calculation.

The same analysis can be used to search for defects like mismatched buried surfaces, as the
lower half slab displacement shown in figure 4.10, the Dabc(3.1 eV) value for each of the three
components of the |χabc(2ω)| do not cross at the same point at the time, so the experimentalist do
not need any information about layer contribution, thus the value of the displacement can be easily
obtained by comparison; while this may be true for our calculated values, in case of a degeneracy
of the three components (if the three calculated components have the same value of Dabc(2ω) for
different displacements, the absolute value of the tensor can be used to compare instead of squared
differences. Doing the same analysis we did the displacement of a single atom in the periodic cell
in figures 4.8 and 4.9, we can find the magnitude of the displacement between the cells of two
mismatched half slabs, as the misfit case explained in section 3.2. For the figure 4.11, we are
comparing the hypothetical measurement results of the tensor components for a displacement of
−3.5∆x we can see that the only coincidence for the proposed values of the measurement is at a
displacement of −3.5∆x.

Finally, by means of the previous analysis the viability of using the SHG to analyze the mor-
phology of the crystals with ordered defects is shown, especially in the case of misfits. Furthermore
this proposed technique for the analysis of slab displacements can be experimentally corroborated
creating thin slabs of material by molecular beam epitaxy and staking the slabs together.
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Figure 4.7: Difference of the squared SHG response for each atom and its dis-
placements. The |χxyy(2ω)| component is represented in the section (a) of the panel,
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Figure 4.8: Measurement example for a displacement in the 16-th (red horizontal
line) atom. Coincidences are marked as black boxes.
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Figure 4.9: Measurement example for a displacement in the 19-th (green horizontal
line) atom. Coincidences are marked as black boxes.
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Figure 4.10: Difference of the nonlinear susceptibility of the displaced lower half with
the relaxed case. For the calculated displacements the three lines did not crossed at
the same point.

5 4 3 2 1 0
Displacement of the lower half slab ( x)

0.10

0.08

0.06

0.04

0.02

0.00

D
a
b

c
(3

.1
e
V

))
(1

0
6

×
p
m

2
/V

)2

xyy

yyx

xxx
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5 Final Remarks

We have presented the results of the GaAs(110) surface as a test model to prove the viability of the
SHG as an optical probe of the morphology of buried surfaces. As a result of the calculations and
the analysis, has been shown that SHG can be used to directly measure the defect caused by the
displacement of one of the atoms of the periodic cell. For the case of displacements of the atoms in
the central layer, the symmetric behaviour of the SHG signal makes dificult to meassure the position,
then, the information about the layered response may be necessary to measure its displacement.
SHG can also be used to measure the displacement of the staked slabs of noncentrosymmetric
material. The characterization of this defects shows greater potential as they are directly applicable
to measurement of the dislocation in buried films with slabs under strain as in [2].

Furthermore, this work can lay ground for more research: the resolution of the method can
be explored, also we expect that in some time experimentalist will be able to obtain the optical
contribution of selected parts of the crystal, as is done here with the cut function for layers.

In conclusion, during the development of this project we achieved the following goals:

• We developed scripts to schematically induce cristalline defects to a given material simulating
a buried surface defects. This scripts can be run in parallel for the calculation of the SHG
response and for processing output of TINIBA.

• The nonlinear susceptibility for the SHG of GaAs (110) surfaces was calculated using the cut
function formalism and the contribution of nonlinear operators.

• The SHG can be used to directly measure periodic defects on crystalline slabs and mismatches
between stacked slabs.

• The SHG capability to measure this defects depends of the value of σabc(2ω) for the SHG
frequency. Nevertheless it can be used even in low sensitivity zones for the GaAs(110), like in
the 3.1 eV SHG emission for the Ti:sapphire SHG incident field.

• In order to use the method proposed in chapter 4, the three components of the tensor need to
be measured. The selection of the components will depend of the material, because the ones
with the most intense response will change due to the crystal structure of the material.

• This method strongly depends on the cut function to isolate the contribution to the optical
response of sections of the buried surfaces of the material.
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5. Final Remarks

• This method can be expanded experimentally for ferroelectric materials. Even though calcu-
lations for ferroelectrics can not be done currently, a scheme for comparison, like the one in
the figure 4.7 can be constructed through the ordered fabrication and measurement of this
kind of organized defects.
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