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“If nature were not beautiful, it would not be worth
knowing, and if nature were not worth knowing, life

would not be worth living.”
Henri Poincare





Abstract

This thesis presents a general description of a program that automatizes the calculation of
the quasiparticle energies of crystalline systems, by using the GW approximation. In this con-
text, G is a Green’s function that describes the dynamic of an electron. W is the dynamical
screen interaction between electrons in a homogeneous and polarizable medium. The automa-
tion of the program consists in computing important functions that are needed to calculate the
quasiparticle energies. These functions are the charge density, wave functions, the polarizability
and the self-energy. All these functions can be computed by the software Abinit. However,
the computation of those functions are not automatized by Abinit. The program developed in
this thesis allows one to compute the eigen-energies of the system by using Density Functional
Theory, and the Local Density Approximation for exchange-correlation potential Vxc. The pro-
gram calculates quasiparticle energies and the optical band of semiconductors. The program also
calculates the quasiparticle energies, Fermi energy and spectral function of metals. We calcu-
lated the linear dielectric function with the quasiparticle energies, by using the Random Phase
Approximation for polarizability. The results show that the linear dielectric function computed
with the quasiparticle energies is in agreement with experiments for semiconductors. The results
also show that the optical band gap computed with GW approximation is more precise respect
to experiments, in comparison with the optical band gap predicted by the Density Functional
theory.
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1.1 Generalities

Nowadays, computational calculations are one of the most important tools in scientific researches.
Together with experiments and theory, computational modelings and numerical calculations rep-
resent a great part of the common day work in science, technology and education [1, 2]. Scientific
research at computational level is very important due to two main reasons: first, experiments have
limitations under certain circumstances (techniques, samples, etc); second, microscopic processes
like phase transition mechanism and in general the understanding of physics are not experimentally
measured. In the frame of material sciences ab initio programs for calculation of physical properties
requires in many cases of computer equipment with high computing capacity. Due to that, programs
based on molecular mechanics, as CHARMM and GROMACS, govern the calculation of physical
properties of systems with many molecules or atoms but with low accuracy respect to real energy
of the system [3, 4]. However, ab initio calculations are increasingly important because of the high
computing capability that nowadays exist [5]. Furthermore, with methods of automation is possible
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1. Introduction

to increase the efficiency of the calculations.

The Density Functional Theory (DFT) is one of the most first principles methods, used to
compute general physical properties of systems, based on the ground state. DFT in terms of the
Kohn-Sham equation has predicted, with high accuracy, structural properties of crystalline solids
and molecules, ground state energies and internal forces [6–8] . Other kind of phenomena that like
lattice vibrations and electronic excited states have been computed by DFT, but with low accuracy
respect to experiments [9]. These predictions come from the fact that Kohn-Sham equations do
not allow us to obtain the exact solution of the many body Schrödinger equation. The Kohn-Sham
wave functions are not the wave functions of each particle of the system; these do not have physical
analog. In addition, Kohn-Sham equation does not consider neither new configurations of energy,
due to the presence of more electrons or excitonic effects due to holes produced in excitation cases.
Thus, electron affinity and ionization potential are understimated. This leads to the well-known
band gap problem of solid state physics in the frame of DFT with errors close to 40% respect to
experimental results. [10–15].

The difficulty mentioned above is largely overcome by the Many Body Perturbation Theory
(MBPT). In this context electron-electron and electron-photon interactions, responsible of the main
aspects of band structure in solids, are included in the formalism of Green’s functions used in the
MBPT. Here, the probability amplitude for the propagation of an added or removed electron in
a many body system, is given by Green’s function propagator [16–20]. Specifically, the electron-
electron interaction is treated as an interaction between a charge particle and a whole rest of charge
in the system. This assumption leads to the concept of quasiparticle, where one part of the energy
of the quasiparticle is “screened” by the interaction with the rest of the total charge. Considerations
about a general perturbation leads to the formulation of the five Hedin’s coupled equations [21].
These five equations contain the complete information, about energy of the system including the
perturbation. Hedin’s equations focus on the calculation of a non-local, non-hermitian and time
dependent self-energy operator Σ. This is calculated from Dyson’s equation, that relates Σ with
the the Green’s function. The Vertex function Γ and polarization function -which determines the
screened function W of the system- are present in Hedin’s equations and they must be computed
by performing a complete iterative calculation [18, 20,21].

In order to verify the results of MBPT with physical properties of solids connection with DFT is
necessary. Källén-Lehmann representation, of a one particle Green’s function propagator in terms
of wave functions, allows one to obtain a quasiparticle equation, that is similar to Kohn-Sham equa-
tion, except for an additional term that includes the Σ self-energy operator. In such a case, both
the Kohn-Sham and Hedin’s equation are solved iteratively with a Self Consistent Field method
(SCF) [18,20]. However, experimental results have demonstrated that a SCF solution of the Hedin’s
equation is not necessary for most systems [22]. Using Kohn-Sham wave functions, as a starting
point in the Källen-Lehman representation, a quasiparticle equation is obtained. By using the
Adler-Wiser expression for polarizability in the screeening function W and taking Γ = 1 for the
vertex function, it is possible to simplify the procedure and obtain good results for the quasiparticle
energies [23, 24]. This approximation for the solution of the Hedin’s equations is known as GW
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1.1. Generalities

approximation, and presents an error below 10% with respect to the experimental results [10, 11].

However, from a computational point of view the GW approximation requires a computer equip-
ment of high efficiency. For this reason, in order to calculate the band structure of certain materials
the GW approximation is often used only at the Gamma point; and the conduction bands calculated
with the Kohn-Sham equations are displaced rigidly with the new value of the energy obtained from
GW approximation [12, 18]. This correction to the band structure is known commonly as scissor
correction and it have given good results for different systems. But the problem with this approach
is that bad results are obtained for other kind of semiconductors, and energy bands of metals do
not match with experimental results [22, 25]. Furthermore, a more precise calculation of the po-
larizability -that is related to a sum over states of each k point in the Irreducible Brillouin Zone
(IBZ)- is achieved with a number of well-converged k points and with quasiparticle energies instead
of Kohn-Sham energies [8, 20].

Although programs like Yambo, QUANTUM EXPRESSO and Abinit [26–32] allow to calculate
the GW approximation on metals and semiconductors, the procedure for doing the computation of
the GW quasiparticle energies are frequently designed to compute only on one k point [5]. Since
the work developed on this thesis contain a great part of calculation in the Abinit program, we par-
ticularly refer to this software. With Abinit is possible to compute the quasiparticle energies over a
different k points, but good results are obtained only if a previous converged test have been carried
out with another important parameters, as total energy of the system and number of energy bands.
When GW approximation is used on a crystalline system, the quasiparticle energy and polarizability
are calculated more directly in the reciprocal space. Taking into account the Block’s theorem is pos-
sible to define a cut-off energy of a reciprocal vector sphere that is related to the Fourier expansion
of the wave function. Hence, it is necessary to converge several parameters like cut-off energy for
polarizability and self-energy operator, number of bands in the sum over states and cut-off energy
of the first Kohn-Sham calculation of the wave function and energy of the ground state [8, 18, 20].
In this context Abinit is able to perform a convergence study over each parameter but with the ex-
ception (and recommendation) that each parameter should be converged separately: which requires
more work and time. These several steps to achieve a well-converged result of the quasiparticle en-
ergy is time consuming and cumbersome. For this reason it is necessary to implement an automated
algorithm that allows a complete calculation of the GW energies on enough k points within the IBZ.

The principal objective of this thesis is to design an program that automates all the steps
involved in the computation of quasiparticle energies. This automation must includes convergence
tests, generation of k-points, computation of the dynamical screening and self-energy. The algorithm
must calculate the GW correction over the energy bands of enough k-points in order to evaluate
the dielectric function of semiconductors and metals with quasiparticle energies.
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1. Introduction

1.2 Density functional theory

1.2.1 Kohn-Sham equation

DFT is the principal method used to calculate physical properties based on ground state energy.
This method allows one to evaluate, with high accuracy, structural properties of crystalline systems,
total energy and charge density of ground state. DFT is an alternative variational procedure to
Schrödinger equation, where the functional of the electronic energy is minimized respect to charge
density. The principal advantage of the theory is to avoid the calculation of the 3N variable function
presented in the multi-particle Scrödinger equation for a system with N particles: still for systems
with a few atoms or molecules, the solution of the exact Schrödinger equation is extremely expensive
at the computational level. Therefore, instead of resolving the Scrödinger equation DFT focuses
on the charge density that minimizes the energy. The main ideas of the theory are enunciated in
two theorems that were proposed by Pierre Hohenberg and Walter Kohn in 1964 [33]. One of the
theorems states that the energy is a functional of charge density given by the relation

E[ρ] = F [ρ] +
∫
ρ(r)v(r), (1.1)

where ρ(r) is the charge density, v(r) is the external potential and F [ρ(r)] represents the universal
functional, that contains the kinetic energy and the interactions between electrons in the system.
Equation 1.1 also states that the external potential depends of charge density. The other theorem
establishes that the charge density of the ground state minimizes the energy of the system, turning
the situation in a variational problem. Shortly after the publication of the basis of DFT, Kohn
and Lu Jeu Sham proposed a way of expressing the different functionals. Representing the kinetic
energy functional, T , and the charge density, ρ(r), in term of wave functions φn(r) as:

T =
N∑
n=1

∫
drφ∗n(r)(−1

2∇
2)φn(r), (1.2)

ρ(r) =
N∑
n=1
|φ(r)|2, (1.3)

and using the Born-Oppenheimer approximation, which does not take into account the kinetic
energy of nuclei, and applying the variational principle, Kohn and Sham obtained the following
equation:

(
− h̄

2m∇
2 + Veff (r)

)
φn(r) = Enφn(r). (1.4)

The equation 1.4 is known as a Kohn-Sham equation and is solved in a self consistent field
method (SCF) that minimizes the energy functional [34]. The first term in the first factor is the
kinetic energy of the n-th electron and Veff (r) is the effective potential given by

Veff (r) =
∫
dr′ ρ(r’)
|r-r’| + δExc(r’)

δρ(r) + V (r). (1.5)
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1.2. Density functional theory

Where the first term of equation 1.5is the energy due to the Coulomb interaction, the second one is
the exchange-correlation potential Vxc in terms of Exc, and the third term is the external potential.
The accuracy of the ground state energy is highly dependent of the exchange-correlation energy
functional. One of the challenge of DFT is to find an expression for Exc and this determines the
type of approximation used in the DFT frame. The most common approximation used for Exc is
known as local density approximation (LDA) and is given by

ELDAxc =
∫
drρ(r)εxc(r), (1.6)

where εxc is the exchange-correlation energy of a uniform electron gas [35]. In this work the ap-
proximation taken for the exchange-correlation energy is the LDA approximation. The LDA ap-
proximation for the exchange-correlation potential is constructed, by considering the dynamic of
the electron in the crystal, as a fermion gas. The LDA is local because the value of the energy only
depends of the point where the energy is evaluated [6, 35]. For this reason the eigen-energies, wave
functions and linear dielectric function calculated with Kohn-Sham equation, that is, Kohn-Sham
eigen-energies, Kohn-Sham wave functions and linear dielectric function ε are sometimes referred as
ELDAnk , φLDAnk and εLDA.

The wave functions φn(r) in 1.4 are not the real solutions for the wave functions of each electron,
these wave functions do not have real physical meaning. However, the eigen-energies obtained
for φn(r) can be taken as a good approximation to the energy bands of crystalline and molecular
systems. In solid state physics, the Kohn-Sham equation is re-written in terms of the wave functions
φnk(r). In this context, equation 1.4 is solved for each electron and for each k-point in the IBZ of
the reciprocal space. Here the use of Block’s theorem for periodic systems allows to express the wave
functions as an expansion of plane waves multiplied by a periodic function, and a Fourier transform
of this periodic function is used to take advantage of the symmetry properties of crystalline systems:

φnk(r) = eikrunk(r), (1.7)

unk(r) =
∑
G
unk(G)eiGr, (1.8)

where unk(G) are the Fourier coefficients given by

unk(G) = 1
Ω

∫
Ω
unk(r)e−iGrdr. (1.9)

G vectors are k-vectors in reciprocal space, Ω is the volume of the unitary cell in the the IBZ and
unk(G) decreases exponentially with kinetic energy (k + G)2/2. This last factor is known as the
energy cut of the system, and determines the number of plane waves required in the expansion of
the wave functions.

From a computational point of view, the Kohn-Sham equation are represented in a matrix
equation of the form
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1. Introduction

F̂KSµν Ĉ = ŜĈÊ, (1.10)

where the F̂KSµν contains the information about energy functionals given in the equations 1.2 and
1.5, Ĉ represents the Fourier coefficients of the Fourier transform of the wave functions in the re-
ciprocal space, Ŝ is the overlap matrix, and Ê contains the eigen-energies of the wave functions
φnk(r) for each k-point in the IBZ. Typically, the procedure to achieve convergences in energy with
a SCF method starts with a proposal wave function unk(G), then a Fast Fourier Transform (FFT)
is done to optimize the matrix transformation required to obtained the wave function in the real
space. Next, the density is calculated in real space and a FFT takes the density to reciprocal space.
After that, the functionals are evaluated, the total ground state energy is calculated and new wave
functions are found. With these new wave functions the procedure starts again and the energy
found is compared with that of the previous iteration. This procedure is repeated until a desired
convergence is obtained.

1.2.2 Band Gap problem in DFT

It is well known that the accuracy of DFT to predict the Band Gap of semiconductors is around
40% to 50% below comparison with experimental results [10–12]. This is a consequence that Kohn-
Sham equations does not take into account the changes in band energies, due to the presence of
other charges, or due to the rearrangement of valence bands when a valence electron is excited to
a conduction band. By definition, the energy band gap is the difference between the ionization
potential and electron affinity, or mathematically

Egap = [EN+1 − EN ]− [EN − EN−1], (1.11)

where EN+1 is the total energy of the system when an additional charge is present, and EN−1 is
the total energy of the system when a charge is absent. Equation 1.11 gives the exact band gap of
the system while the band gap obtained from Kohn-Sham equation only takes into account band
energies with the same number of electrons. Comparing the equation 1.11 with Kohn-Sham band
gap results in:

Egap = EKSgap + ∆xc, (1.12)

where ∆xc is an additional energy necessary to acquire the exact band gap.

1.3 Many body perturbation theory

1.3.1 Dyson’s equation

Many Body Perturbation Theory was developed as a method to understand the nature of the
propagation of particles in space, when they are involved in some kind of interaction with other
particles. In systems with many particles is necessary to have into account, in addition to the energy
related to interaction with other particles, the energy of the interaction of particle with itself. This
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1.3. Many body perturbation theory

kind of dynamical problem was the basis of quantum electrodynamics and then, to quantum field
theory (QFT). Although the theory was developed in the context of quantum electrodynamics by
Schwinger, Tomonaga and Feynman [36–38], the methods developed by Dyson and Hedin for systems
with many particles, were also used in the field of condensed matter, giving good results [21,39]. A
good method to resolve the many body perturbation problem developed by Feynman was proposed
by Dyson and Schwinger. They suggested to resolve the equation of quantized fields with Green’s
functions [40, 41]. Specifically, the function that describes the propagation of one electron between
the space-time points (r’, t′) and (r, t), in the N-th state of energy is a Green’s function given by

G(r, t; r′, t′) = −i 〈N |T [Ψ(r, t)Ψ†(r′, t′)]N〉 , (1.13)

where T is the time-ordering operator and Ψ(r, t) and Ψ†(r, t) are field operators of the form

Ψ(r, t) =
∑
k

u(r, t)ak, (1.14a)

Ψ†(r, t) =
∑
k

u(r, t)a†k, (1.14b)

being ak and a†k the creator and annihilator operator respectively. The Green’s function 1.13 is also
known as zero-order Green’s function. The fields operator Ψ and Ψ† are responsible of the creation
and annihilation of one electron in a N-state energy in a space-time interval. In a system with
an interaction hamiltonian Hint the Green’s function 1.13 is modified to include an time evolution
operator S(∞) given by [40]

S(∞) = S(t, t0) = T [exp(−i
∫ ∞
−∞

dt′Hint)], (1.15)

and the Green’s function becomes

G(r, t; r’, t′) = 〈N |T [Ψ(r, t)Ψ†(r’, t′)S(∞)]N〉
〈S(∞)〉 . (1.16)

Expanding in series the S(∞) operator given in the equation 1.15, and replacing in the equation
1.16 and considering Hint as Coulomb interaction, an infinite series of terms that include several
products of field operators are obtained. Using Wick’s theorem is possible to represent those field
operator products in terms of pair of products of the form

〈T [Ô1Ô2...Ôn]〉 = ±
∑
p

〈T [Ô1Ô2]〉 〈T [Ô4Ô2]〉 ... 〈T [Ôn−1Ôn]〉 , (1.17)

which results in an infinite series of products of zero-order Green’s functions. However, these infinite
terms that comes from the denominator of the equation 1.16, are canceled out with another infinite
series terms of the numerator, that also includes only products of zero-order Green’s functions.
This procedure in which an infinite amount of terms is canceled out with another one is known as
renormalization. Usually, expression 1.16 is renormalized using the method of Feynman diagrams.
There, the terms that contain only zero-order Green’s functions are disconnected diagrams in the
sense that the particle does not interact with another ones. Consequently, the full dynamic of the
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1. Introduction

propagation of the particle is described only by connected diagrams, which represents interactions
with the rest of fields and particles. If we adopt the notation 1 = (r1; t1), the expansion of the Green’s
function of the equation 1.16, by using equations 1.15 and 1.16, leads to an iterative equation of
the form:

G(1, 2) = G0(1, 2) +
∫
d3d4G0(1, 3)Σ(3, 4)G(4, 2), (1.18)

or in a simpler form

G = G0 +G0ΣG, (1.19)

which is known as the Dyson’s equation. Equation 1.18 shows that the many body perturbation
problem, for the special case of electrons interacting among them, leads to an iterative equation,
where the Σ factor is the self-energy operator and this is determined by Green and Coulomb func-
tions.

1.3.2 Hedin’s equations

The Scrödinger equation written in terms of Green’s functions is given by

(i ∂
∂t
− Ĥ)G(r, t; r′, t′) + i

∫
dr′′Vc(r, r′′) 〈N |Ψ̂†(r′′, t)Ψ̂(r′′, t)Ψ̂(r, t)Ψ̂†(r, t)|N〉

= δ(r− r′)δ(t− t′), (1.20)

where Vc is the Coulomb interaction, G is the Green’s function of equation 1.19, and Ψ and Ψ†
are the field operators of equations 1.14. Using Dyson’s equation 1.19 in equation 1.20, and on
performing the corresponding calculations a system of five couple equation is obtained. These
equations are known as Hedin’s equations and are solved in an iterative way [21]. The five coupled
equations are

G(1, 2) = G0(1, 2) +
∫
d3d4G0(1, 3)Σ(3, 4)G(4, 2), (1.21a)

Γ(1, 2, 3) = δ(1, 3)δ(1, 2) +
∫
d4d5d6d7 δΣ(1, 2)

δG(4, 5)G(4, 6)G(7, 5)Γ(6, 7, 3), (1.21b)

χ(1, 2) = −i
∫
d3d4G(1, 3)G(4, 1)Γ(3, 4, 2), (1.21c)

W (1, 2) = Vc(1, 2) +
∫
d3d4Vc(2, 4)χ(4, 3)W (1, 3), (1.21d)

Σ(1, 2) = i

∫
d3d4G(1, 3)W (1, 4)Γ(4, 2, 3). (1.21e)
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1.3. Many body perturbation theory

Equation 1.21a is the Dyson’s equation, Γ in 1.21b is the vertex function of the coupling between
the electron and a photon, χ in 1.21c is the linear polarizability, W in 1.21d is the dynamic screened
Coulomb interaction between the electron and the rest of charges of the system, and Σ in 1.21e
is the self-energy needed to compute the Green’s function. Hence, the complete description of the
dynamic of one-electron motion between the points (r′, t′) and (r, t) is determined by the equation
1.20, with Green’s function G given by the equation 1.21a, which must be resolved iteratively by
means the Hedin’s equations 1.21. Schematically, the Hedin’s equations can be represented by
means of the Hedin pentagon as shown in the figure 1.1.

Figure 1.1: Hedin’s pentagon

Usually, the first step for solving Hedin’s equations, is to approximate the Green’s function of
the right hand side of equation1.21a as:

G = G0 +G0ΣG0, (1.22)

however, other consideration can be taken into account regarding with Γ or χ functions, and the
equations are solved under a convergence criterion.

1.3.3 GW approximation

Hedin’s equations has the particularity, from a numerical point of view, of being extremely difficult
to compute due to the complex functions that are involved in the integral equations 1.21. For that
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1. Introduction

reason, approximations are done in order to resolve the Hedin’s equations in a reasonable numerical
way. The most common used approximation is the GW approximation. This approach considers
the Γ function in the following form

Γ(1, 2, 3) = δ(1, 2)δ(1, 3), (1.23)

which reduces the five coupled equations to four equations. In this context the remaining equations
can be solved in an iterative procedure or can be solved in a one-shot computation starting from
a given zero-order Green’s function just as in the equation 1.22. Thus, the cyclic procedure of the
Hedin pentagon of figure 1.1 can be visualized just as it appears in the figure 1.2.

Figure 1.2: GW approximation in Hedin’s pentagon
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1.3. Many body perturbation theory

Hence, the equations for Σ and χ becomes

Σ(1, 2) = iG(1, 2)W (1, 2), (1.24a)

χ(1, 2) = −iG(1, 2)G(2, 1). (1.24b)

The GW approximation takes its name from the form of the equation 1.24a, while the expression
for χ in 1.24b is the RPA or independent particle approach for the polarizability of an electronic
system in terms of Green’s functions.

1.3.4 Connection with DFT

In order to do numerical calculations to compare with experiments a connection with DFT is
necessary.Considering the Dyson’s equation 1.18, the equation of motion of the one-particle Green’s
function in 1.20 can also be written as

[i ∂
∂t
−H0]G(1, 2)−

∫
d3Σ(1, 3)G(3, 2) = δ(1, 2), (1.25)

where H0 contains the kinetic energy, the Hartree potential and the external potential of the system.
Equation 1.25 is known as the quasiparticle equation and comparing it with the Kohn-Sham equation
1.4 and with the equation 1.5 we have

Σ(r, t; r′, t′; ε) = Vxc(r, ρ(r))δ(r− r′)δ(t− t′). (1.26)

Thus, the self-energy Σ is the exchange-correlation potential from the point of view of DFT and
the dependence of Σ respect to ω, that is with quasiparticle energy, comes from the dependence of
Σ respect to the Green’s function as in equation 1.24a. To take advantage of the Kohn-Sham wave
functions, the Källen-Lehmann representation is used in order to connect the Green’s function with
wave functions of DFT:

G(r, r′, ω) =
∑
nk

φ(r)φ∗(r′)
ω − Enk + iδsgn(Enk − µ) , (1.27)

where µ is the chemical potential. The equation 1.27 allows to rewrite the quasiparticle equation
1.25 of the form

(−∇
2

2 + Vext(r) + VH(r))φnk(r) +
∫
drΣ(r, r′;EQPnk )φnk(r′) = EQPnk φ(r). (1.28)

Good results have been obtained for the case which wave functions φnk and energies εnk are ap-
proximated to Kohn-Sham wave functions and Kohn-Sham eigen-energies [42]. As a consequence of
this last the quasiparticle energy (the real energy of the electron) is

EQPnk = EKSnk + 〈φKSnk |Σ(r, r′, EQPnk )− Vxc(r)|φKSnk 〉 . (1.29)

Then, to calculate the quasiparticle energy for each band energy is necessary to compute the Σ
self-energy using the GW approximation with equations 1.24a and 1.24a. The expression 1.29 also
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1. Introduction

states that the band gap correction to DFT formalism, from the point of view of MBPT, is a
correction that the potential Vxc does over the Σ operator.

1.4 RPA approximation for polarizability

The calculation of χ and W using equations 1.21d and 1.24b is performed by using the RPA. This
is also known as the independent particle approximation (IPA) [7]. In this frame the polarizability
of a crystalline system in reciprocal space is given by the equation

χG,G′(q, ω) = 2
∑
n,n′,k

(fn,k − fn′,k+q)
〈φn′,k+q|e−i(q+G)r|φn′,k〉 〈φn,k|ei(q+G)r|φn′,k+q〉

EKSn,k − EKSn′,k+q − ω − iδ
, (1.30)

which is the Adler-Wiser expression for polarizability [43]; and the linear dielectric function is

εRPAG,G′(q, ω) = δG,G′ − VG(q)χG,G′(q, ω). (1.31)

where G and G’ are vector in reciprocal space from the plane wave expansion and q are the k-point
vectors in reciprocal space. The energies and the wave functions of the equation 1.30 are the eigen-
energies and the eigen-states of the Kohn-Sham equation. These wave functions and energies are
taken as a first approximation to compute the linear dielectric function using equations 1.30 and
1.31. Instead of taking the Kohn-Sham eigen-energies in the Adler-Wiser expression, one of the
objectives of this thesis is to calculate the linear dielectric function of semiconductors and metals
with the eigen-energies calculated with the GW approximation, that is, calculating the quasiparticle
energies from equation 1.29. Once we get the energies EQPnk the dielectric function is computed with
equations 1.30 and 1.31, then, it is not necessary to compute the quasiparticle eigen-states because
φnk(r)KS ≈ φnk(r)QP as shown in [42,44].

1.5 The GW approximation inside Abinit code

Abinit is a high efficiency code focused in physical properties from first principles. It has imple-
mented several methods to improve time efficiency and precision of the calculations [28, 29]. The
Abinit software allows one the calculation the quasiparticle energies of crystalline systems within
the GW approximation. In this context the procedure to obtain the quasiparticles energies is given
by four main steps. In the first two steps the density function and Kohn-Sham wave functions are
calculated. In the third one, the inverse dielectric function and the dynamic screening function are
computed. Finally the self-energy Σ is calculated and the quasiparticle energies are computed for
each electron and each k-point in the IBZ using equation 1.29. Schematically the general procedure
to get the quasiparticle energies is shown in the figure 1.3.

As it was just mentioned in the generalities section, some of the difficulties for calculating the quasi-
particle energies are the convergence tests that are necessary to do to get high accuracy results. This
convergence test must be done over different parameters and for each one of the four main steps
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1.5. The GW approximation inside Abinit code

Figure 1.3: General steps in a calculation of the quasiparticle energies

mentioned above. Since a FFT is performed to calculate the Fourier coefficients, a convergence test
for the number of plane waves is done in order to get the wave functions, the polarizability and
the self-energy. In addition, the expressions implemented by Abinit for Σ and χ requires again a
convergence test respect with number of band energies.

The first step consists in the calculation of the density with a SCF procedure under a specific
convergence criterion. The wave functions computed in the second step are obtained by means of
the charge density obtained in the first step, with a non self consistent field using the equation
1.10. The third step generates the polarizability trough equation 1.30 and the dynamical screening
is computed with the following equation:
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1. Introduction

WG,G′(q, ω) = ε
−1(RPA)
G,G′ (q, ω)VG′(q), (1.32)

where VG′(q) is the Coulomb potential in reciprocal space given by

VG′(q) =
∑
G′

∫ ∫
drdr′ρ(r)ρ(r′)e

i(q+G′)(r−r′)

|q + G′|2 . (1.33)

The fourth step consists in calculating the self-energy Σ. Equation 1.29 relates the self-energy
with exchange-correlation potential. A good approximation for the self-energy is to consider the
relation Σxc = Σx + Σc with

〈φn,k|Σx|φn,k〉 = −4π
Ω

occ∑
v

IBZ∑
q

∑
G

|Mn,n′

G (k,q)|2

|q + G|2 (1.34a)

〈φn,k|Σc|φn,k〉 = i

2πΩ

IBZ∑
q

∑
G,G′

∞∑
m=1

[Mm,n
G′ (k,q)]∗Mm,n′

G′ (k,q)VGG′(q)Jn,k-q
GG′ (q, ω) (1.34b)

where the sum in equation 1.34b is over occupied bands occ. Mm,n
G′ (k,q) contains the momentum

matrix element of the system given by

Mm,n
G′ (k,q) = 〈φn′,k+q|e−i(q+G)r|φn′,k〉 . (1.35)

This factor corresponds to the braket over plane waves that appears in the right hand side of
equation 1.30 and is given by

Mm,n
G (k,q) = 〈φm,k+q|e−i(q+G)r|φn,k〉 (1.36)

The expressions 1.34a and 1.34b show different summations. In 1.34a is necessary to converge the
number of plane waves (G vectors) for each q-point vector and occupied bands. In 1.34b is necessary
to converge the number of plane waves over an infinite number of bands for each q-point vector.

1.6 Outline

This thesis is divided into 4 chapters including this introduction. Chapter two explains the steps for
the computation of quasiparticle energies and dielectric function. Furthermore, chapter two specifies
the convergence tests, the generation of k-points, the edition of the files used and the utility of the
automated program. In the third chapter different results are shown: dielectric function of some
semiconductors and metals and spectral function of metallic systems. Chapter four contains the
conclusions of the thesis, open questions and future work. An appendix is also presented with
examples of a convergence test.
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2.6 Calculation of linear dielectric function with TINIBA . . . . . . . . . . . . . . . . 24

2.1 The automated program

Abinit is a program that allows to compute the different functions and energies that are required in
this work. Important functions and quantities, as the total energy, structural properties, wave func-
tions, the ionization potential, band width of metals, the thermal and the electrical conductivity,
the critic temperature of superconductors, and chemical energy bonds of molecules can also be com-
puted Abinit [27,28,30]. But this procedure demands the calculation, step by step, of all parameters
needed. All important functions like charge density, wave functions, screening and self energy, and
important numerical values like total energy and quasiparticle energies are calculated with a good
accuracy if a convergence test is done previously for different parameters. These convergence studies
are done separately for each function and require time and work. Furthermore, the computation of
the quasiparticle energies for a large number of k-points that are needed for a precise calculation
of the dielectric function requires the previous generation of the k-points and a previous edition of
the input files involved in the Abinit runs. All this procedure is required for a specific system and
if it is necessary to compute another system the total procedure mentioned here must be done again.

As it was mentioned in the introduction, the main objective of this thesis is to develop a pro-
gram that automatizes a complete calculation of the quasiparticle energies in order to compute
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2. Computational methodology

the dielectric function of metals and semiconductors. The program designed in this work includes
convergence tests of parameters that are important in the computation of charge density, wave
functions, screening and self-energy. The program also includes the generation of desired k-points
for the computation of the screening and self-energy. And finally, the program generates an output
file, with all quasiparticle energies for a specified number of bands and k-points. This file is used
for the computation of the dielectric function with the TINIBA program [45].

The program has been designed focusing in the major efficiency, and the least possible work for
the user, that is, the program is friendly user. The program automatizes the different procedures
that are needed to get good results and is clear and simple for the user. The script is ran with
the executable GW.sh. Before the script is ran, the user must know which are the basic parameters
(primitive vectors, the atomic number, lattice parameter and the number of atom per cell) of the
system that will be evaluated. When this script is ran, the screen shows a guide for starting a
calculation and a list of crystalline systems available in the program, see figure 2.1. The guide
indicates to the user that only has to introduce the tolerance criterion for the convergence studies,
the number of cores for automatized parallelization, the grid for generation of k-points, the first
conduction band, the nomenclature system, the Bravais lattice and another grid for optional inter-
polation. After the execution of the script the user must specify the principal parameters of the
system. The general procedure can be summarized in the following steps

• Run the GW.sh script to start the automated program.

• Select the tolerance criterion tol for the convergence studies.

• Select the number of cores for the parallelization of the calculation.

• Select the dimension of the grid for generating the k-points mesh. The grid will have the
same dimensions in all direction of the reciprocal space. Only one number is required.

• Select the number of bands n_bands.

• Specify the system sys with nomenclature symbols.

• Specify the kind of Bravais lattice (FCC, BCC, HL).

• Select an optional grid2 to interpolate energies acquired with the k-points mesh of the pa-
rameter grid.

• Specify the principal parameters of the system (lattice constant, basis vectors, position of the
atoms and nuclear charge )

When the user correctly specifies the arguments of the GW.sh script, the program starts to
compute the complete procedure. The time of the calculation depends strongly of the size of the
grid. When the script finishes a list of files that contains k-points list, quasiparticle energies and
plots with energy bands are generated in a directory with the name Sys-grid-n_kpt; where n_kpt
is the number of k-points generated by Abinit in the IBZ after the application of all symmetry

16



2.2. Functioning of the Abinit code

Figure 2.1: The guide for using GW.sh

matrices. Below is specified the functioning and the different steps of the program: convergence
tests, computation of screening and self-energy, and finally the quasiparticle energies. All the
algorithm of the program includes principally scripts in bash, python and gnuplot language.

2.2 Functioning of the Abinit code

Abinit requires a main file with extension .files, which specifies the names of other files that contains
the input file with extension .in of a specific run, the name of the output file with extension .out
where the results are shown, the names of the extensions of other files with important information
of the results, and the names of the pseudopotentials that are used for a specific system. To run
Abinit with the defined file .files is necessary that the input file contains the correct information
about the system that will be evaluated. A basic input file contains information about the atoms,
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lattice parameters, basis vectors in reciprocal space, number of k-points and energy cut of the sys-
tem. In this work different input files are defined in order to compute different functions such as
charge density, wave functions, screening and self-energy. For the calculation of the ground charge
density is necessary to put, apart of the basic parameters, the energy cut (ecut). For wave functions
is necessary to specify the number of bands (nband) that will be calculated. For screening and
self-energy, number of bands and energy cut must be defined.

For the calculation of the different functions (charge density, wave functions, screening and self-
energy) the Abinit output files contain relevant information that is used by the automation program
made in this work. For ground charge density, the output files gives the total energy of the system
and the charge density; for wave functions, the output files contains the coefficients of the wave
functions of the expansion 1.8. For screening one of the output files is the dynamic screening matrix
and for Self-energy, the output files contains the quasiparticle energies of specific bands defined in
the input file.

Since several Abinit runs are done in the automated program, different input files are defined
in order to compute convergence of parameters, charge density, wave functions, screening and self-
energy. However, all these input files require the same basic information about the system that is
evaluated. For this reason, a file with that basic information is edited by the user at the beginning of
the run of the automation program. This file contains the lattice parameters, the type and number
of atoms, position of the atoms, and basis vectors. As an example the basic parameters of the Si
are shown in the following text:

#l a t t i c e parameters and b a s i c v e c t o r s
a c e l l 3∗10.217
rprim 0 .0 0 .5 0 .5

0 .5 0 .0 0 . 5
0 .5 0 .5 0 . 0

#D e f i n i t i o n o f the atom type
ntypat 1
znuc l 14

#D e f i n i t i o n o f the atoms
natom 2
typat 1 1

#p o s i t i o n s o f the atoms
xred

0 .0 0 .0 0 . 0
1/4 1/4 1/4

This text file is added to all input files that the program uses in the automated program. In the
context of the present work, if the system that will be evaluated has been calculated before, the
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last text with the basic information will be saved in the data base of the program. Thus, the user
does not have to edit anything. Other file with the pseudopotentials is also added to the file .files
of each run. The code asks for the name of the pseudopotentials before of an calculation and those
are saved in the data base of the program. However, if the pseudontentials have already been saved
before, the user does not have to write them down. All that operations that add text files as those
one containing basic parameters and pseudopotentials are executed in the code of the automated
program with bash commands like sed or awk. These commands allows to put text files in a desired
place of other files. In this thesis the sed and awk commands are used to put the basic parameters
file in the input files and the pseudopotentials file in the file .files.

2.3 Convergence of principal parameters

As it was explained in the introduction chapter, the calculation of the quasiparticle energies requires
of previous convergence studies over certain parameters. One of these parameters is the energy
cut for ground state energy, dynamical screening W , and the self-energy Σ; the other one is the
number of bands for dynamical screening and for the self-energy. The energy cut is related to
the Fourier’s components of the discrete Fourier transform involved in the representation of charge
density, wave functions, dynamical screeening and the self-energy in the reciprocal space. The
different summations over the G vectors that appear in equations 1.9, 1.30 and 1.34 define the
energy cut in the form

Ecut = |k + G|2

2 (2.1)

where k are the k vectors within the IBZ and G are the vectors in reciprocal space of the plane-
waves expansion. The convergence for the number of bands comes from the summations over states
in equations 1.30 and 1.34.

The convergence test of the energy cut of the ground state consists in changing the value of the
energy cut, until the total energy of the crystalline system reaches a stable value. With the charge
density computed in this step is possible to obtained the Kohn-Sham wave functions that are needed
to calculate the dynamical screening and the self-energy. The convergence test of the energy cut
of the dynamical screening, and the self-energy is done with the convergence of the quasiparticle
energy for a specific k-point (for instance the Γ point), and a specific energy band. In this context
the convergence of the energy cut for dynamical screening requires the calculation of the quasipar-
ticle energy, by means of the calculation of the self-energy as in equations 1.34 and 1.29. Thus,
the polarizability 1.30 is computed in order to calculate the dynamical screening for each value of
energy cu,t and after that, the quasiparticle energy is computed with equations 1.29 and 1.34. A
converged value of this energy is the stop point of the convergence test for dynamical screening. The
energy cut of the self-energy uses the screening computed in the previous convergence test, and also
reaches a stable value of the quasiparticle energy for a specific k-point and band. The convergence
over number of bands is also achieved with the same protocol used for the convergence of energy
cut: the dynamical screening and the self-energy are computed by changing the number of bands
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until the quasiparticle energy is converged.

In the Abinit code the calculation of the quasiparticle energies can be done in a one-shot run
that is divided in four steps. The first step computes the charge density with SFC method for a
specific energy cut. The second one computes the Kohn-Sham wave functions with the charge den-
sity calculated in the previous step. The third step calculates the dynamical screening taking the
wave functions of the second step. And the fourth step computes the quasiparticle energy using the
dynamical screening and wave functions of previous steps. Good results for quasiparticle energies
are achieved if the energy cut and number of bands are converged. In this work the calculation of the
quasiparticle energies for different k-points is done with separate calculation of the four steps. The
different parameters are inherited in order to obtain better results of each one of the convergence test.

An example of convergence of one of the parameters, the energy cut (ecut), is illustrated in the
figure 2.2. An initial value of the parameter is introduced in the Abinit input file; the total energy
of the system found is saved for evaluating the tolerance criterion. The ecut is augmented in a
certain integer step and the total energy is evaluated again. This new total energy is compared
with the previous one to verify if the tolerance criterion is accomplished. In case that the criterion
is not achieved the ecut is augmented and a new Abinit run starts. The bucle will finish when the
total energy converges under the tolerance criterion selected.

Others parameters are converged in the same way. Number of bands and ecut for screening and
self-energy are increased until the tolerance criteria are obtained. In this case, wave functions are
used for calculating the screening and this is used to compute the self-energy and the quasiparti-
cle energy. The tolerance criterion is evaluated, based on energy of a specific point and a specific
band. Figure 2.3 illustrates schematically the convergence study for number of bands (nband) of
self-energy. All these convergence tests were coded with a bash script. An example of one script is
shown in the appendix for the convergence of the energy cut.

The edition of the files used for the Abinit runs is done with the sed command. This allows
to change the value of the ecut or nband parameters for convergence. The grep command is used
for extracting the values of total energy and quasipaticle energy of output files in order to eval-
uate convergence criterion. The operations to evaluate the tolerance criterion are written in bash
language.

2.4 Calculation of the screening, self-energy and quasiparticle
energies

Once all parameters are converged the calculation of the screening and self-energy for computing
the quasiparticle energies can be done. In this case the GW correction is applied to all bands of all
k-points generated by a homogeneous grid in the IBZ. The number of k-points must be enough for
a converged calculation of the dielectric function. The screening and self-energy are calculated with
the converged values of energy cut and number of bands of the previous section. This computation
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Figure 2.2: Convergence of the variable energy cut (ecut)

is done with the same number of k-points for both screening and self-energy. Dielectric function of
most semiconductors materials achieves convergence with a grid of 20×20×20 that is equivalent to
256 k-points. However, for metallic materials is necessary to choose a more dense k-point grid. The
list of k-points is generated with Abinit and later these k-points in the IBZ are included in the input
files of screening and self-energy. The computation of screening is done and the file with matrix
element of screening are used for calculating the self-energy and so the quasiparticle energies. The
bands and the number of bands chosen for the calculation depends principally of the bands involved
in the optical absorption, for instance the Si requires 12 bands for a complete description of the
band gap and dielectric function.

The energy for each k-point and each band are concatenated in a text file by extracting the
relevant information of quasiparticle energies from the Abinit output files. A fragment of the code
where the quasiparticle energies are extracted of the output files is shown in the appendix. A
python script where the quasiparticle energies are organized in another text file is also shown in
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2. Computational methodology

Figure 2.3: Convergence of the number of bands for self-energy

the appendix. After the manipulation of the files that contain the important information, a file
with name bndGW-n_kpt-Sys is created to contain the values of the quasiparticle energies for all
k-points and band energies. Also, in the code of the automated program the energy bands are
calculated for the same k-points that are included in a text file with name bndDFT-n_kpt-Sys.
Thus, it is possible to plot both DFT-LDA energies and GW quasiparticle energies for comparisons.
bndDFT-n_kpt-Sys and bndGW-n_kpt-Sys are added to the directory with name Sys-grid-n_kpt
that are created automatically when the GW.sh script are executed. Besides, at the end of the
calculation there is a directory that includes: a text file with the values of the converged parameters,
a text file with band gap information, a file with the list of k-points used, different plots of band
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2.5. Band structure of semiconductors and spectral function of metals

energies of the k-points, band structure with an average correction and band structure with scissor
correction. In the case of metallic systems a file with information about Fermi energy and a plot
with spectral function of the system are added to the directory of the results.

2.5 Band structure of semiconductors and spectral function of
metals

2.5.1 Band Structure

The calculation of the GW correction for high symmetry k-points is not possible in Abinit because
these points present a special difficulty. These high symmetry points are present in different regions
of the Brillouin Zone. For this reason the application of the symmetry matrices of the system is
not be able to reduce to a minimum the high symmetry k-points. The method that Abinit uses for
the generation of k-points is the Monkhorst-Pack method [46]. This procedure generates k-points
in the middle of the IBZ and does not produce k-points in the limits. However the calculation of
the quasiparticle energies of several k-points for semiconductors allows to compute an average value
of the correction on energy for each energy band taking into account all k-points. A calculation of
the average correction to energy with the GW approximation over each band, allows to compute
the electronic band structure of semiconductors. The expression for the calculation of the average
of the correction on energy is given by

En =
∑IBZ
k (EGWnk − ELDAnk )

Nk
, (2.2)

where En is the average value of the energy corrections in the nth band, EGWn is the quasiparticle
energy computed with the GW approximation and ELDAn is the energy computed with LDA ap-
proximation for the same band n. Nk is the total number of k-points used for the calculation of the
energy bands. Thus, the band structure of the system is calculated using LDA approximation and
these energy bands are corrected with the values of the energies computed with the expression 2.2.

2.5.2 Spectral function

The quasiparticle energies also provide a good calculation of the spectral function of metals. This
function provides information about electronic transition and collective excitations like plasma ex-
citations. Spectral function also provides a good comparison with experiments via photo emission
spectroscopy (PES). Using the self-energy operator Σ(ω) in the frequency space and the LDA eigen-
energies the quasiparticle and plasmon satellites peaks can be computed with the expression [47]

〈φnk|A(ω)|φn′k〉 = |Im 〈φnk|Σ(ω)|φn′k〉 |
[ω − En(k)− Re 〈φnk|Σ(ω)|φn′k〉]2 + [Im 〈φnk|Σ(ω)|φn′k〉]2

, (2.3)

where Σ(ω) is the self-energy and En(k) are the eigen-energies of the system. In Abinit the numerical
calculation of the spectral function A(ω) is done with the equation 2.3; taking En(k) energies as the
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2. Computational methodology

quasiparticle energies EQPn (k) calculated with the GW approximation, and taking wave functions
φnk as the Kohn-Sham wave functions. An output file with extension SIG that contains the value
of A(ω) in a given interval of frequencies is generated when the GW approximation is used to get
quasiparticle energies of metals.

2.6 Calculation of linear dielectric function with TINIBA
In this thesis the calculation of the linear dielectric function using quasiparticle energies is not au-
tomatized. However, this calculation is done using the TINIBA code. This code is used by the group
of Propiedades ópticas de interfases, superficies y metamateriales of the Centro de Investigaciones
en Óptica, for the different researches related to optical properties of matter from a computational
point of view. This open source code is available online and is registered in the Instituto Nacional de
Derechos de Autor (INDAUTORMéxico) with the register number 03-2009-120114033400-01 [45].
TINIBA is a program focused in the calculation of optical properties of bulk and surface systems.
Important functions like linear and non-linear dielectric function, spin injection and current injec-
tion can be computed by TINIBA. The quasiparticle energies calculated in the previous section
allow to compute the linear dielectric function with RPA approximation using the equation 1.30.
The computation of the linear dielectric function is done with the TINIBA code and only requires
the calculation of wave functions and momentum matrix elements Mn,n′

G (k,q) which can also be
computed by TINIBA. This part of the calculation is not automatized but it can be done easily
with TINIBA code following the basic steps of a tutorial available online. In this work the lin-
ear dielectric function of different semiconductors was calculated with Kohn-Sham eigen-energies
in LDA approximation and with the quasiparticle energies obtained with the GW approximation
using the automated program. The complete procedure of this thesis is summarized in the figure
2.4: starting with convergence parameters (ecut, ecuteps, ecutsig, nband, etc.), continuing with the
calculation of screening W , self-energy Σ and quasiparticle energies and finally with the calculation
of the linear dielectric function.
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2.6. Calculation of linear dielectric function with TINIBA

Figure 2.4: Summary of the total procedure for the calculation of linear dielectric
function with quasiparticle energies
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In this chapter are shown the results of the automated program, that allowed to compute energy
bands and quasiparticle energies of three semiconductors and three metals. In this chapter are also
shown the results of optical band gaps for semiconductors, Fermi energies and the spectral function
of metals. Finally, we shown the results of the linear dielectric function, computed with TINIBA,
for the same semiconductors and metals.

3.1 Energy bands

In the Abinit code is not possible to compute the quasiparticle energies for high symmetry points.
This is due to the fact that high symmetry points can belong to different regions of the Brillouin
Zone; thus the symmetry operations (symmetry matrices that are applied over k vectors) are inef-
ficient at the moment of distinguishing points of one IBZ of another one. Hence Abinit does not
allow the calculation of the GW correction for those k-points. However, the results obtained for
quasiparticle energies of k-points within IBZ of semiconductors allow to conclude that the energies
computed with LDA approximation of a specific band are corrected in an average numerical value
for most k-points. This results of the average of energies are used as an approximation to correct
rigidly the value of each energy band of the electronic band structure. Specifically, an average value
of the GW correction is obtained using the quasiparticle energies of several k-points within IBZ
of a specific energy band; and the result of that average value is used to correct the same energy
band of the electronic band structure computed with LDA approximation. The average values were
computed in this work with a basic python script using the expression 2.2.
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3. Results

3.1.1 k-points inside of the IBZ

The method implemented in Abinit for the generation of the k-points is the Monkhorst-Pack
method [46]. This method generates an homogeneous grid of k-points in the Brillouin Zone. In
this work the size of the grid generated by the Monkhorst-Pack was of 20 × 20 × 20 for the full
Brillouin Zone, which is equivalent to 8000 k-points. The application of the symmetry operations
reduces to 256 the number of k-points in the IBZ. This quantity of k-points are enough to compute
the linear dielectric function of semiconductors with a high convergence.

The results obtained for energy bands of k-points within the IBZ of the semiconductors Si, GaAs
and Ge are shown in the figures 3.1 3.2 3.3. The continuous lines represent the results obtained
with LDA approximation, black points represent the GW correction to energy of the same k-points.
Blue continuous lines represents the LDA eigen-energies of conduction bands and red continuous
lines represents the valence bands of same crystalline system. The plots show that the correction
on energy have a certain average value for some energy bands. Thus, it is possible to observe that
for Si the conduction bands do not present an appreciable correction on energy while the valence
bands are corrected by the values shown in the figure 3.1. It is also possible to observe that the
correction on energy of the first valence band is different of the correction on energy of the other
bands. This difference on the correction on energy can be notably appreciated between the first and
fourth valence band. Another point to note is that the fourth band has been corrected by a higher
average value than the other valence bands. Finally, the results allow to conclude that k-points
near of G point have the minimum correction with respect to other points of the same energy band;
all the energies of the first k-point in the plots belongs to G point and the next ones are points
near of G point. Similar results were obtained for Ge and GaAs. In these systems all the valence
bands have been corrected. Furthermore, as in the Si system each energy band was corrected by
different values; it can observed that the correction of the fourth band is greater than the correction
of the other valence bands. On the other hand the conduction bands remain practically equal.
For all these semiconductor were found that the energy of the valence bands decreases with the
GW approximation being the correction higher for the last valence band. The calculation of the
quasiparticle energies for all these systems required an average computational time consuming of
six days using 64 cores for each system.

In the case of metallic systems we can observe that the behavior of the correction on energy for
each k-point is totally different respect to the semiconductor systems. For Cu, Au and Ag in the
figures 3.5 3.6 3.4 it is possible to appreciate the correction on energy of these systems. Unlike the
results obtained for semiconductors, the correction on energy for each k-point varies substantially
for each k-point: some energies increase and others decrease. The results show that for the same
band energy, there are energies that do not present corrections while other points present corrections
on energy that even exceed the energies calculated with LDA for other energy bands. Furthermore,
the energies of the conduction bands are corrected. Hence, for metallic systems all bands are
corrected. These results prevent to correct the band structure of metals using the expression 2.2
because the correction on energies for each energy band does not have a certain average value like
semiconductors. However, the quasiparticle energies obtained are enough to compute the linear
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3.1. Energy bands

Figure 3.1: Energy bands of Si for a 256 k-point inside of the IBZ. Red lines:
valence bands. Blue lines: conduction bands. Black points: quasiparticle ener-
gies.

Figure 3.2: Energy bands of GaAs for a 256 k-point inside of the IBZ. Red
lines: valence bands. Blue lines: conduction bands. Black points: quasiparticle
energies.
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3. Results

Figure 3.3: Energy bands of Ge for a 256 k-point inside of the IBZ. Red lines:
valence bands. Blue lines: conduction bands. Black points: quasiparticle ener-
gies.

dielectric function of metals. Furthermore, in all these cases the Fermi energy (black line for Fermi
energy computed with LDA and red line for Fermi energy computed with GW approximation)
changes around 2 eV for Ag an Au, and 4 eV for Cu. In the case of metals, the computation time
was around three days.
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3.1. Energy bands

Figure 3.4: Energy bands of Ag for a 256 k-point inside of the IBZ. Red lines:
valence bands. Blue lines: conduction bands. Black points: quasiparticle ener-
gies.

Figure 3.5: Energy bands of Cu for a 256 k-point inside of the IBZ. Red lines:
valence bands. Blue lines: conduction bands. Black points: quasiparticle ener-
gies.
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Figure 3.6: Energy bands of Au for a 256 k-point inside of the IBZ. Red lines:
valence bands. Blue lines: conduction bands. Black points: quasiparticle ener-
gies.

3.1.2 Band structure

A calculation of the average correction on energy with quasiparticle energies over each band, allows
to do an approximation of the electronic band structure of semiconductors. Although it is better to
calculate directly the quasiparticle energies of the high symmetry k-points, in the previous chapter
was mentioned that Abinit does not allow to compute them. However, this approximation is good
due to the linear average correction of each band with the GW approximation. In this case the
average of the correction on energy is calculated with the expression 2.2. Displacing rigidly each
band of energy calculated with LDA approximation (for high symmetry k-points) by the average
value given by 2.2 the plots 3.7 3.8 3.9 are obtained.

The results allow to get for semiconductors a more accurate optical band gap than the computed
with LDA for the systems evaluated [13,14]. It is also possible to observe the same results commented
in the case of quasiparticle energies of k-points inside of the IBZ: valence bands presents correction
on energy while conduction bands do not; the fourth valence band present a higher correction on
energy than the first valence band.
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3.1. Energy bands

Figure 3.7: Electronic band structure of Si with LDA and GW approximation.
Red lines: valence bands. Blue lines: conduction bands. Black points: quasi-
particle energies.

Figure 3.8: Electronic band structure of GaAs with LDA and GW approxima-
tion. Red lines: valence bands. Blue lines: conduction bands. Black points:
quasiparticle energies.
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Figure 3.9: Electronic band structure of Ge with LDA and GW approxima-
tion. Red lines: valence bands. Blue lines: conduction bands. Black points:
quasiparticle energies.

34



3.2. Spectral function

3.2 Spectral function

In the case of metallic systems, the calculation of the quasiparticle energies provide a good accuracy
for the calculation of the spectral function A(ω) with the expression 2.3. For each k-point there is
a spectral function. The results of the spectral function of Au, Cu and Ag are shown in the figures
3.10 3.11 3.12. This calculation were done for the Gamma point.

Figure 3.10: Spectral function of Ag computed with quasiparticle energies

The results show quasiparticle peaks for energies near of -15 eV for Au, Cu and Ag. This energy
corresponds to the energy of the bottom of the first valence band as it can be observed from energy
bands of figures 3.4 , 3.5 and 3.6. Plasmon satellite peaks are also included. Plasmon eneries
of -27 eV, -31 eV and -23 eV were found for Ag, Cu and Au respectively. In all these cases the
quasiparticle peak has a greater value of A(ω) than the plasmon peak, due to the fact that the
electronic transitions present the major contribution to external perturbation, in comparison with
the resonance between electromagnetic incident waves and plasmons. In the case of Cu another peak
is found between the plasmon energy and quasiparticle energy because the plasmons oscillations
can absorb energy of the quasiparticle excitations and contribute with some additional peaks.
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Figure 3.11: Spectral function of Cu computed with quasiparticle energies

Figure 3.12: Spectral function of Au computed with quasiparticle energies
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3.3. Optical band gap and Fermi energy

3.3 Optical band gap and Fermi energy

The quasiparticle energies computed with the GW approximation allow to acquire a more accurate
band gap and Fermi energy than the band gap and Fermi energies obtained with the LDA approx-
imation. The results obtained for electronic affinity and ionization potential from MBPT and GW
approximation gives an optical band gap with an error below 10% respect to experiments [42,48,49].
Fermi energies acquired with quasiparticle energies also present different results in comparison with
results computed with LDA eigen-energies [50,51]. Experimental Fermi energy results are not shown
because the zero energy reference may be different between different experiments. The tables 3.1
and 3.2 summarizes the optical band gap values and Fermi energies computed with quasiparticle
energies.

Optical band gap (eV)
System LDA GW EGW − ELDA EXP [48]

Si 2.530 3.205 0.676 3.40
GaAs 0.725 1.315 0.590 1.42

Ge 0.356 0.997 0.641 0.89

Table 3.1: Energies of the optical band gap calculated in the point k(0,0,0),
with LDA and GW approximations

Fermi energy (eV)
System LDA GW

Ag -7.55 -6.44
Cu -6.56 -2.38
Au -6.36 -4.49

Table 3.2: Energies of the Fermi level calculated with LDA and GW approxi-
mations

3.4 Dielectric function

The results obtained for the imaginary part of the linear dielectric function ε2 of the Si, GaAs and Ge
are shown in the figures 3.13 3.14 3.15. The plots show the results obtained with LDA approxima-
tion, GW approximation and experimental results [52,53]. It is possible to observe that the position
of the peaks E1 and E2 computed with LDA are totally different of the position of the same peaks
computed with GW approximation. In the last case, the linear dielectric function computed with
quasiparticle energies is more similar to the experimental results. It can also be appreciated that
the range of absorption of the ε2 calculated with quasiparticle energies is near to the experimental
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one. The results obtained with LDA approximation do not coincides with experiments neither in
absorption range nor in intensity. The optical band gap (where ε2 acquires values different of zero)
computed with GW approximation also is in a good agreement with experiments [52,53]. This result
coincides with the values calculated with GW approximation for optical band gaps shown in the
table 3.1. Two principal peaks E1 and E2 can be observed in the plots. The peak E1 is related to
electronic transition between the fourth valence band and the first conduction band. This explains
the correspondence between the optical band gap energy and the energy of the peak E1. The peak
E2 is given by the electronic transitions between valence and conduction bands that correspond to
the energy of the peak E2.

Figure 3.13: Imaginary part of the linear dielectric function of Si computed with
quasiparticle energies and LDA energies

In the case of Si, one peak of absorption near of 4.5 eV were obtained with the GW approxi-
mation. This peak is aproximated in frequency and intensity with experiments while the peak of
absorption with LDA approximation are present in a frequency is near of 3.7 eV. The results also
show a peak near of 3 eV with the GW calculation but that peak dose not achieve the intensity that
appeared in the experimental results. This peak of absorption in the experiments is consequence
of the excitonic effects which the GW approximation does not have into account. A better cal-
culation of the linear dielectric function with excitonic effects must include a two-particle Green’s
function. Thus, the interaction between holes and electrons allow to obtained a linear dielectric
function with a better approximation regarding with experiments. However, the results obtained in
this work contains relevant information about optical band gaps, intensity of the quasiparticle peak
of absorption and absorption range of frequency.
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3.4. Dielectric function

Figure 3.14: Imaginary part of the linear dielectric function of GaAs computed
with quasiparticle energies and LDA energies

Figure 3.15: Imaginary part of the linear dielectric function of Ge computed
with quasiparticle energies and LDA energies
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For GaAs and Ge similar results were obtained. The imaginary part of the linear dielectric
function computed with LDA approximation is very different from that computed with GW ap-
proximation. In the case of GaAs there are two peaks near of 3 eV and 4.5 eV. For Ge there are
two peaks near of 2.5 eV and 4 eV. It is also possible to observe a peak of absorption in the LDA
approximation near of 0.7 eV. This peak disappears in the GW approximation. Again, a complete
description of the imaginary part requires the calculation of the eigen-energies with excitonic effects
to achieve the intensity of the first peak.

In the case of metallic systems different results are obtained. The results are shown in the
figures 3.16, 3.17 and 3.18. In this case the imaginary part of the linear dielectric function of
Ag, Cu and Au, computed with quasiparticle energies, does not approximate to the experimental
results in comparison with the results obtained with LDA energies. The results obtained with
LDA are better than those obtained with GW approximation respect to experiments [54, 55]. It is
possible to observe from experimental results that the energy transitions begin around 4 eV. With
LDA approximation electronic transitions start around 2 eV and with GW approximation start
near of 0 eV. This last result is not compatible with experimental results. As it was mentioned
in the case of the energy bands for metals, the GW correction for metals is not trivial. Energy
bands are not corrected rigidly as in the case of semiconductor systems. For this reason, the GW
correction for metals requires of a more detail work. One of the alternative that was taken into
account was the type of smearing for integration. The calculation of the different physical properties
requires an integration over k-points. This integration requires of a smearing function around Fermi
energy because at this energy there is a discontinuity. Different smearing function were used for
the calculation of the quasiparticle energies. Gaussian, Fermi-Dirac and polinomial approximation
(known as cold smearing) were used. With these energies the linear dielectric function of Ag was
computed. Although it is possible to observe different results in figure 3.16, those results are not
approximated to experimental results. One of the possibilities to achieve better results is to use
another smearing functions, or to work directly with the pseudopotentials. It is possible that core
electrons contribute significantly to valence energy bands. In this case the pseudopotentials must
be changed but that work escapes of the principal objective of this thesis. In conclusion, better
results for metals could achieve but with a more detail investigation.
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Figure 3.16: Imaginary part of the linear dielectric function of Ag computed
with quasiparicle energies

Figure 3.17: Imaginary part of the linear dielectric function of Cu computed
with quasiparicle energies
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Figure 3.18: Imaginary part of the linear dielectric function of Au computed
with quasiparicle energies
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4 Conclusions

• The program developed in this thesis calculates, without technical problems, the eigen-energies
with LDA approximation and quasiparticle energies with GW approximation for semiconduc-
tors. The program also computed the optical band gap of semiconductors.

• The program calculates the quasiparticle energies and LDA energies of metals, but the type
of smearing used provides different results. The program also computes the Fermi level and
spectral function of metals.

• The automated program is able to calculate the quasiparticle energies, optical band gap,
Fermi level and spectral function of other crystalline systems for future optical researches of
semiconductors and metals.

• The optical band gap calculated with GW approximation is better than the results obtained
with LDA approximation respect to experimental results.

• The electronic band structure of the semiconductors calculated with GW approximation is
better than the results obtained with LDA approximation.

• The linear dielectric function calculated with quasiparticle energies is better than the calcu-
lated with LDA approximation respect to experiments.

• A better calculation of the liner dielectric function for semiconductors demands the use of the
Bethe-Salpeter equation where excitonic effects are present.

• The linear dielectric function of metals computed with quasiparticle energies does not approxi-
mated to experimental results. The GW study of metals requires of a more detail investigation.
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A Bash script for the convergence of
the energy cut

#t h e s e parameters are i n h e r i t e d by another s c r i p t
t o l=$1
co r e s=$2
brav=$3
ecutfound=0
i e c u t =3.0
i n t =1.0

#Program to compute the p r i n c i p a l ecut
cd ecut2 / #d i r e c t o r y where the convergence t e s t i s e v a l u a t e d

#e r a s i n g f i l e s o f p r e v i o u s c a l c u l a t i o n s
rm −f ecut2 . in ecut2 . out mecut2 . in mecut2 . out ecut dat
cp pre ecut2 . in ecut2 . in

#adding g l o b a l parameters to input f i l e
sed − i ’/#g e n e r a l p a r a m e t e r s / r general param . cd l ’ ecut2 . in

#s e l e c t i n g the type o f Bravais l a t t i c e
i f [ $brav = ”FCC” ]
then
sed − i ’/ s h i f t k / r FCCshift ’ ecut2 . in
sed − i ’ s / n s h i f t k / n s h i f t k 4/g ’ ecut2 . in

f i

i f [ $brav = ”BCC” ]
then
sed − i ’/ s h i f t k / r BCCshift ’ ecut2 . in
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sed − i ’ s / n s h i f t k / n s h i f t k 3/g ’ ecut2 . in
f i

i f [ $brav = ”HL” ]
then
sed − i ’/ s h i f t k / r HLshift ’ ecut2 . in
sed − i ’ s / n s h i f t k / n s h i f t k 2/g ’ ecut2 . in

f i

#c a l c u l a t i n g the i n i t i a l e t o t a l
#adding an i n i t i a l ecut to the input f i l e
sed −e ’ s / ecut / ecut ’ $ i ecut ’ / ’ ecut2 . in > mecut2 . in

#run a b i n i t
mpirun −np $core s a b i n i t < ecut2 . f i l e s

#e d i t i o n o f the output f i l e f o r e x t r a c t i n g t o t a l energy
sed −e ’ s /( e t o t a l )/ et / ’ −e ’ s /E+/∗10ˆ/ ’ ecut2 . out > mecut2 . out
grep e t o t a l ∗ mecut2 . out > ecut dat

#s av i ng t o t a l energy
ECUTARRAY1=( ‘cat ” ecut dat ” ‘ )
i e c u t=$ (echo ” s c a l e =6; $ i e c u t+$ in t ” | bc )

#Here s t a r t s the t o l e r a n c e c r i t e r i o n e v a l u a t i o n
while [ $ecutfound −eq 0 ]

do
rm −f mecut2 . in mecut2 . out ecut dat

#changing the v a l u e o f ecut
sed −e ’ s / ecut / ecut ’ $ i ecut ’ / ’ ecut2 . in > mecut2 . in

#run a b i n i t
mpirun −np $core s a b i n i t < ecut2 . f i l e s

#e d i t i o n o f the output f i l e
sed −e ’ s /( e t o t a l )/ et / ’ −e ’ s /E+/∗10ˆ/ ’ ecut2 . out > mecut2 . out
grep e t o t a l ∗ mecut2 . out > ecut dat

#s av i ng the t o t a l energy
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ECUTARRAY2=( ‘cat ” ecut dat ” ‘ )
r e s t a=$ ( echo ” s c a l e =6; ${ECUTARRAY2[1]#−} − ${ECUTARRAY1[1]#−}” | bc )
r e s t a=${ r e s t a#−}

#e v a l u a t i n g the t o l e r a n c e c r i t e r i o n
i f [ 1 −eq $ ( echo ” $ r e s t a < $ t o l ” | bc ) ]
then e t o t a l f i n a l=${ECUTARRAY1[ 1 ] }

ecutfound=1 #t o l e r a n c e ach ieved
e c u t f i n a l=$ i e c u t

f i

i e c u t=$ ( echo ” s c a l e =6; $ i e c u t+$ in t ” | bc )
ECUTARRAY1[1 ]= ${ECUTARRAY2[ 1 ] }

done

echo Fin i shed ! ! the converged ecut i s $ e c u t f i n a l with t o t a l energy $ e t o t a l f i n a l

cd . . /

#e r a s i n g p r e v i o u s f i l e wi th the in format ion o f o t her converged ecut
i f [ −f ” ecutenergy ” ]
then

rm ” ecutenergy ”
f i

#s av i ng the converged ecut in a t e x t f i l e
echo $ e c u t f i n a l>>energycut
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B Script for extracting and ordering
the quasiparticle energies

B.1 Bash script for extracting the quasiparticle energies of the
output files

#adding g e n e r a l parameters to a b i n i t input f i l e
sed − i ’/#g e n e r a l parameters / r general param . cd l ’ f i n a l g w . in
sed −e ’ s /ngkpt/ngkpt ’ $gr id ’ ’ $gr id ’ ’ $gr id ’ /g ’ − i f i na l gw . in
sed − i ’ s /nkptgw/nkptgw ’ $n kpt ’ /g ’ f i na l gw . in

#adding k−p o i n t s and the s p e c i f i c bands
sed − i ’/\<kptgw\>/ r kp SCR ’ f ina l gw . in
sed − i ’/bdgw/ r bandsGW’ f ina l gw . in

#message t h a t appears in screen to inform t h a t the c a l c u l a t i o n have s t a r t e d
echo
echo −e ”\e [ 1 ; 3 6mCALCULATING GW CORRECTION\e [ 0m ”
echo

#a b i n i t c a l c u l a t i o n
mpirun −np $core s a b i n i t < GW x. f i l e s > log GW

cp f ina l gw . out f ina lgw−$gr id−$n kpt−$sys −. out
rm −f GWinformation−$n kpt−$sys

#e x t r a c t i n g the r e l e v a n t in format ion o f the output f i l e and sav ing in a t e x t f i l e wi th name ”GWinformation”
grep −A $n bands ”Band E0” f ina lgw−$gr id−$n kpt−$sys −. out > GWinformation

#e r a s i n g undes i red c h a r a c t e r s
sed − i ’/Band/d ’ . / GWinformation
sed − i ’/−−/d ’ . / GWinformation
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B. Script for extracting and ordering the quasiparticle energies

cp GWinformation GWinformation−$n kpt−$sys 2> /dev/ n u l l

B.2 Python script to order the quasiparticle energies

import numpy as np
import sys

#number o f k−p o i n t s and bands
n kpt=int ( sys . argv [ 1 ] )
n bands=int ( sys . argv [ 2 ] )

GWinfo=np . l oadtx t ( ’ GWinformation ’ ) #from the a b i n i t output f i l e
DFTinfo=np . l oadtx t ( ’bndDFT ’ ) #LDA eigen−e n e r g i e s
DFTwGW=np . l oadtx t ( ’ DFTbndener ’ )

#matrix t h a t w i l l conta in the q u a s i p a r t i c l e e n e r g i e s
GW=np . z e r o s ( ( n kpt , n bands +1))
d i f f=np . l i n s p a c e (0 , 0 , n bands )
GWbnds=np . l i n s p a c e (1 , n kpt , n kpt )

GW[ : , 0 ] =GWbnds

#adding q u a s i p a r t i c l e e n e r g i e s
j=0
for i in range (0 , n kpt ) :
GW[ i , 1 : n bands+1]=GWinfo [ j : j+n bands , 9 ]
j=j+n bands

#p r i n t i

#o rde r ing e n e r g i e s
for l in range (0 , n kpt ) :
GW[ l , 1 : n bands ]=sorted (GW[ l , 1 : n bands ] )

#save q u a s i p a r t i c l e e n e r g i e s in a t e x f i l e
np . savetxt ( ’bndGW’ ,GW, ”%.3 f ” )

#c a l c u l a t i n g the energy c o r r e c t i o n s
for i in range (0 , n bands ) :
a=DFTinfo [ : , i +1]
b=GW[ : , i +1]
r e s=b−a ;
d i f f [ i ]=np . mean( r e s )

DFTwGW[ : , i +1]=DFTwGW[ : , i +1]+ d i f f [ i ]
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B.2. Python script to order the quasiparticle energies

#s av i ng the energy c o r r e c t i o n s
np . savetxt ( ’DFTwGW’ ,DFTwGW, ”%.3 f ” ) #to p l o t the k−p o i n t over the path
np . savetxt ( ’ d i f f ’ , d i f f , ”%.3 f ” )
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2009-120114033400-01.

55



Bibliography

[46] J. Monkhorst and D. Pack. Special points for brillouin-zone integrations. Phys. Rev. B,
13:5188–5192, Jun 1976.
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