
 

 



Contents

Abstract 3

Introduction 3

1 Introduction 2

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 State of the art 7

2.1 Sense and Avoid systems . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Theory Fundamentals 15

3.1 Quad-rotor model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Reference frames . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.2 Euler Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.3 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.4 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2



3.2 Stereo Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Epipolar geometry . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.2 Stereo correspondence . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Robotic Operating System . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Methodology 43

4.1 System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Platform setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Nvidia Jetson TX2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 OpenCV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5 Stereo camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5.1 Stereo Correspondence . . . . . . . . . . . . . . . . . . . . . . 48

4.6 1D-LiDAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.7 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.8 Depth map estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.9 Obstacle detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Experiments 57

5.1 ROS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Variance measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3 Depth map ameliorate . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.4 Obstacle detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.5 Fusion Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Conclusions 65

3



Acknowledgments

I would like to thank to the most important person in my life, Ruth, for encouraging me

to start this goal and cheering me up during many challenging times. I express thanks

to my parents Tere and Marcelino, who that always have been there for supporting me,

to my brothers Uli, Jorge, Sandra and Lalo. Thanks to Mr. Gabriel and Celso for being

my second family, specially to Mrs. Lety who was very proud of my achievements. I

also thank to Dani for all the generous support and friendship provided.

I am very thankful with my advisor Gerardo Flores who guide me to achieve this

objective, also thanks to Dr. Luis Valentin and Dr. Carlos Paredes for accepting the

revision of my thesis and their valuable suggestions.

I would like to thank my friends Lau, Memo, Axel, Luis, Andres, Alex and Gesem

for helping me so many times.

Last and not least, thanks to all the researchers and engineers from CIO who taught

me so many wonderful scientific, professional and personal lessons.

4



Abstract

This thesis presents a vision-based methodology which makes use of a stereo camera

rig and a one-dimension LiDAR to estimate free obstacle areas for quadcopter nav-

igation. The presented approach fuses information provided by a depth map from a

stereo camera rig, and the sensing distance of the 1D-LiDAR. Once the depth map is

filtered with a Weighted Least Squares filter (WLS), the information is fused through

a Kalman filter algorithm. To determine if there is a free space large enough for the

quadcopter to pass through, this approach marks an area inside the disparity map by

using the Kalman Filter output information. The whole process is implemented in an

embedded computer Jetson TX2 and coded in the Robotic Operating System (ROS).

Experiments demonstrate the effectiveness of this obstacle detection approach.



Publications

”Depth map estimation methodology for free obstacle navigation”, S. Trejo, K. Mar-

tinez, G. Flores. Accepted article in the International Conference on Unmanned Air-

craft Systems 2019 (ICUAS’19).

1



CHAPTER 1

Introduction

Unmanned Aerial Vehicles (UAV) have been used in many military fields for years,

like search and rescue operations, disaster relief, monitoring and tracking and border

patrol [1]. In the last years UAVs have been gaining popularity on civil and commer-

cial applications such as agriculture, energy, mining, construction, news media and film

production. New regulations of the authorities of many countries are restricting the use

of UAVs; among the first issues is the safety, it requires a sensor-based detection and

avoidance system to be implemented soon [2]. This means that each UAV must have a

sense and avoid system in order to have permission to flight. However these last appli-

cations demand smaller and agile UAVs to fly at low altitude including inside buildings

or around them, exposing these devices to a number of static and dynamic obstacles.

In this sense, artificial intelligence and automation is focusing in provide the UAVs a

sense and avoid (SAA) technology, which is becoming one of the trendy topics of re-

search in UAVs. There are a number of terminologies to refer this systems where detect

2



Figure 1.1: Diagram of the taxonomy of sense and avoid [3]

and sense are used to detection and identification of any object from sensory data, and

the term avoid represents an avoidance operation from the intruder object. Most re-

searchers call these operations as Sense and Avoid (SAA or S&A) [3], however NASA

call them as detect and avoid (DAA), and Federal Aviation Administration (FAA) call

them detect, sense, and avoid (DSA) [4]. In this thesis the term SAA is used, because

it is the most used term.

In Figure 1.1 is shown a general diagram of a SAA system, where the concept of

sense and avoid involves three discrete steps: sense, detect and avoid. The sense stage

consists of one or more sensors which perceives the environment surrounding the UAV,

with continuous and high updating rates. If the type of sensor is a camera the data will

be images, while if a RADAR is used, the data may be the distance and speed of an

obstacle. When data comes from two or more sensors, the information can be fused

to obtain a better estimation. Detect step consists of a computer with the capability to

receive and process all the data coming from the sensors, and then analyse and detect

any risk of collision with an obstacle. Particle filters can be used as collision detectors

that can estimate the trajectory of an object. Finally, the avoid step consists of a program

that regenerates a new path of flight for the UAV if the obstacle is detected and should

execute the new path with enough anticipation in order to avoid the collision.

The objective of this thesis is to provide an UAV with these three mentioned pro-

cedures. For that purpose, the sense step consists of a stereo camera and a 1D-LiDAR,

3



where the stereo camera data is used to generate a depth map and the 1D-LiDAR is used

to measure the distance in front of the UAV. According to the references, the depth map

generated by means of stereo correspondence always has an percentage of error in each

pixel value, however there are some depth values that does not have a numerical value.

The 1D-LiDAR, for its part, also presents some measuring error, e.g. through trans-

parent materials or reflecting surfaces. The detect stage involves the use of Kalman

Filter to ameliorate the distance measure in front of the UAV and detect free-obstacle

navigation areas with the depth map. The last stage is the avoidance, which decides the

best flight trajectory and sends the command to UAV controller to exert the avoidance

maneuver.

1.1 Problem Statement

After the study of the state of the art of SAA systems, one of the best methods of obsta-

cle sensing is performed by stereo camera, however all of them have several limitations

and problems during sensing and detecting obstacles. One of them is explained below.

Problem

There are several methods for depth map computation presented in the literature, how-

ever, many of them generate a disparity map with a great quantity of noise, this noise

could interfere with the depth reading. To deal with this problem the most popular

solution is the use of expensive computation, which slows down the disparity map gen-

eration, and then affecting the efficiency of the obstacle detection. On the other hand,

faster algorithms generate a high percentage of bad matching pixels, creating regions in

the depth map without real values. It is necessary to find an algorithm with intermediate

performance.

To obtain a precise measurement it is possible to fuse depth and the depth measure-

4



ment from a second sensor. With that in mind, one of the most popular solution is the

use of 3D-LiDAR, however this type of sensors are expensive and heavy, making them

an option not suitable for small UAVs. Other option are the RGB-D sensors, but they

do not work properly under daylight environment.

Solution

For the the detection stage of the system is necessary to ameliorate the depth map using

only: a) a stereo camera rig with disparity estimation algorithms free of noise; and b)

a simple and low-cost 1D-LiDAR sensor of one dimension. With that aim, the SAA

system must determine if there is or not a obstacle in the UAV navigation path. For

this purpose, it is calculated a window considering real quadrotor dimensions. Such a

window is depicted in the scene captured by the stereo camera rig, a picture of this idea

can be seen at Figure 1.2 where the rectangle represents the UAV size to a distance from

the camera equal to 2 meters. As it is shown in the Figure 1.2, when there is not any

obstacle in the window the rectangle that represents the window area becomes green,

indicating that it is a free obstacle path. When an obstacle is present in the window, the

rectangle becomes red. The 1D-LiDAR is pointing at the rectangle centroid measuring

the depth in that direction. The proposed solution is to fuse the depth measurement in

the centroid of the rectangle coming from the stereo camera and depth measurement of

the 1D-LIDAR in a KF.

5



(a) Without obstacle. (b) With obstacle.

Figure 1.2: The (a) image shows a free area where the UAV is able to navigate. Fig-
ure (b) represents an obstacle inside the rectangle, which does not allow the UAV to
navigate. Observe that the rectangle represents the size of the quadrotor in which the
navigation path must be free, therefore the goal is to determine if this area is blocked
or not by a potential obstacle.

6



CHAPTER 2

State of the art

This section addresses the state of the art based on the three stages of a SAA systems.

Camera, LiDAR and Stereo Matching are subsections of Sensing stage.

2.1 Sense and Avoid systems

The taxonomy of SAA is presented in Figure 2.1, which consists of three types of ar-

chitectures. This classification is based on the physical location of information sources

and the center of processing or decision, i.e. the on-board implementation, and the

ground-based or off-board implementation. There are mixed implementations of these

two architectures. [5].

Sensors can be generally classified into two groups: cooperative and non-cooperative.

The most widely cooperative method has been used for decades by manned aircraft

technology, called Traffic Alert and Collision Avoidance System (TCAS) [6]. An UAV

7



Figure 2.1: Basic taxonomy of SAA systems [3]

equipped with TCAS can communicate with other UAVs equiped with TCAS and then

avoid collisions using the information providing from a ground-based radar device.

A more recent method is the Automatic Dependent Surveillance (ADS-B) [7] which

broadcasts the identification, position (latitude and longitude), altitude and velocity of

the aircraft to other UAS near the area; the information comes from on-board GPS

devices. The non-cooperative technologies do not need other aerial vehicles to be

equipped with the same devices. Non-cooperative sensors examples are the acoustic

systems and infrared sensor (Figure 2.2), radar, light detection and ranging (LiDAR)

and electro-optical (EO) systems (Figure 2.3). These sensors can be classified into two

groups: passive sensors and active sensors. The active sensors emit a type of energy

signal towards the objects and then detects the reflected signal with a receptor; the

passive sensors, for their part, do not emit any kind of energy.

The cameras can be categorized according to operating wavelength, e.g. Ultra Vio-

let, Infrared and visible spectrum, each one of which have special properties. There are

some variations of cameras that are capable of measure depth Figure 2.4, commonly

8



(a) Long Range IR Distance
Sensor by Sharp [8].

(b) UM30 Ultrasonic Sen-
sor by Sick [9].

(c) SF02 Laser Rangefinder
by Lightware [10].

Figure 2.2: Examples of one-dimensional sensors (a),(b) and (c), all of them active type
sensors.

using the human-visible spectrum of the light, like the stereo camera which measure

depth using two displaced images and the mathematical model of the cameras arrange-

ment.

The Time of Flight (or Arrival) cameras (TOF) is a active type camera that works

by measuring the round trip time of an artificial light signal provided by laser or LED.

There are some other special cameras, like the multispectral and hyperspectral cameras

that serves for examination and measurement purposes. Event-based cameras are novel,

bio-inspired visual sensors, where each pixel output is asynchronous and independent

when local intensity changes, called ”events”, and recently, this type of camera has

been used by D. Falanga et al. in their work [11] for fast-moving obstacle detection.

The LiDAR is an active light-based sensor that measures distance using laser pulses.

A Laser Range Finder (LRF) is a single device that measures distance in 1D. If the LRF

is rotated by a servo motor, the type of sensor is 2D-LiDAR. If more than one LRF

is attached to the rotating axis at a different angle with respect to the axis, then this

arrangement corresponds to a 3D-LiDAR. There is a solid-state type of LiDAR that do

not have any moving part, and works by a laser beam steering system that are projected

to the environment and then an array structure of cell that detects the laser beam and

9



(a) (b) (c) (d)

(e)

Figure 2.3: Examples of two-dimensional sensors (a) Mini Module Camera Shield
with OV2640 by ArduCAM [12], b) EchoFlight airborne radar by Echodyne [13], c)
2D LiDAR sensor TiM561 by Sick [14], d) mmWave Radar AWR1443 by Texas In-
struments [15], and e) Dynamic Vision Sensor by Inivation [16]

obtain the depth measurement.

When the sensor of the SAA system is a stereo camera, the first issue to solve is

to choose an algorithm of stereo matching, which is crucial to obtain a good dispar-

ity map. In the website Middlebury Stereo Evaluation - Version 2 [20] there is a list

of more than 150 stereo matching algorithms ranked according to the average percent

of bad pixels, obtained from the relation between the computed disparity map and the

ground truth. However, the best reference and to compare stereo matching algorithms

is the version 3 website of the aforementioned evaluation site [21] which is based on

the paper of D. Scharstein [22] where several parameters of stereo matching are de-

fined with the purpose of comparison. In this list we find the latest stereo matching

algorithms and the most accurate are predominantly performed by neural networks or

superpixels methods or a mixture of them. Among the more accurate methods is [23],

which proposes an algorithm based on superpixels labeling of an image and then apply-

ing a bilayer matching cost where a neural network compare similarity between layers.

10



(a) BlasterX
Senz3D by Creative
Labs [17].

(b) ZED camera by Stereolabs [18]. (c) Intel Realsense D435 by In-
tel [19].

Figure 2.4: Examples of three-dimensional sensors, (a) a time-of-flight camera, of ac-
tive type, (b) is of passive type, and (c) is a hybrid of both stereo and time-of-flight
camera.

This kind of approach reduces the disparity map noise but the computation time in-

creases significantly. Meanwhile H. Hirschmller [24] proposes the Semi-Global Block

Matching (SGBM) method, that works with less precission but faster, so this method

was adopted in this thesis to generate the disparity map.

Sensor fusion proposes a great opportunity to defeat the physical limitations of the

sensing systems. It works by combining the information from a variety of different

sensors to give a robust and complete description of the rapidly changing environment.

Each sensor has different features, depending of the approach, they can be strengths

or weaknesses, as stated by J. A. Jackson et al. [25], so the sensor fusion provides

the possibility of combine different technologies in order to obtain an improved esti-

mated measurement. Since this extra processing increases the latency of sensing, it is

important to use the optimal one for each situation. S. Ramasamy and R. Sabatini in

their work [26] show a simulation studio of sensor fusion combining a number of non-

cooperative sensors. The algorithm uses Kalman filter tracking to every sensor, then

it is combined and compared to observation, where it can verify the robustness of the

algorithm to solve issues, like limited information or loss of information.

K.R. Sharma et al. in their publication [27] fuse with a KF three distance sensors

in order to obtain the distance and orientation with respect to a wall. K. Park et al.

in their work [28] presents a high-precision depth map using a high cost 3D-LiDAR,

11



however, cost of implementation is considerably higher than the approach presented in

this paper. G. Fasano et al. in their work [29] implements sensor fusion to improve the

collision detection using the information of radar and electro-optical sensors, reducing

the false detection, increasing the detection range and reducing the computational cost.

Similarly, J. Kim and Y. K. Kwag [30] fuses the data of synthetic aperture radar and

electro-optical sensor, resulting in a reduction of false alarm between 14% and 22%

in target detection per imaging area compared to the case of a single sensor. Another

experiment done in the work [31] R. Rambabu et al. with infrared and ultrasonic sensor

reduced the reading noise that delivered an accurate range estimation. H. R. Song et al.

proposes in their work [32] the fusion of RGBD and 2D-LiDAR for tracking purposes.

Roopa et al. [33] fuse images using Kalman Filter (KF) to get more information about

the localization of a target, this approach is applied to different cameras and different

localization.

The main goal of the collision detection algorithm is to decide if a collision will

happen using the information from cooperative or non cooperative sensors, and it must

be efficient in order to make the path planning accurate. Efficiency in obstacle de-

tection requires fast updating rate and low false alarm detection [34]. J. J. Ruz et al.

in [35] and the work of B. Vanek [36] discussed Markov decision process (MDP) as a

handy in situations where there is uncertainty and is optimal for collision avoidance al-

gorithms like numerical optimization technique and dynamic programming technique,

however the disadvantage is that it is computationally slow. In the work [37] Strobel

and Schwarzbach uses a worst case approach, and the algorithm estimates all the pos-

sible trajectories of a intruder using the current trajectory, position and speed to detect

collisions when the trajectory of the UAV meets with the obstacles trajectory, the prob-

lem is that it consumes long time to calculate the possible trajectories of the intruders,

but it is more accurate than most algorithms. The work of A. Zarandy et al. [38] con-

siders the actual trajectories to predict the future trajectory, then calculate the minimum

12



distance between the UAV and the intruder, if this distance is less than a predetermined

threshold value, the UAV must must execute an avoidance maneuver. There are also

detection algorithms that depends according to the type of sensor, for instance A. Sta-

noev et al. [39] establish a threshold in the depth map where the close objects are white

and labeled as obstacles and the farther ones are black and then ignored; if the robot

moves quickly, the threshold decreases. In some cases it is necessary to differentiate

obstacles over a flat surface, in this case it is useful to implement V-disparity maps [40]

which is a function of the disparity map, that accumulates the disparities of the horizon-

tal line into the v-disparity function, where the abscissa corresponds to the number of

disparities. This approach can be used in vehicle navigation on a road. B. Lopez [41]

proposes a perception and planning approach that significantly reduces the computa-

tion time using instantaneous perception for obstacle avoidance. Aman [42] proposes a

methodology to fuse ultrasonic sensor measurement and depth map from time-of-flight

camera sensor. M. ki et al. [43] propose a framework which implements a stereo cam-

era and a 2D-LiDAR on an UAV, however the sensor is the only obstacle detector, and

the camera is just used for monitoring.

When an obstacle is confirmed by the collision detection algorithm, the obstacle

avoidance algorithms must create a new path of flight to avoid collision. This al-

gorithm must be supported by path planning. Some examples of implementation of

mixed integer linear programming, is described in the publication [44] of Zuqiang et

al. and in the paper [45] of A. L. Smith, which consists in divide the problem of path

planning in parts, taking in count as main constrains the minimum time and minimum

fuel consumption. A dynamic programming algorithm is implemented by N. E. Smith

et al. in [46], and E. J. Forsmo et al. in [47] which consists in divide the path into

sections, considering the minimum time as constraint, these sections are connected by

nodes and then finds the shortest path among the possible ones that reach to the next

node, and then repeating this process it is possible to find the shortest path between an

13



initial node to a final node. There is an optimization of particle swarm, discussed by C.

Lopez-Franco et al. [48] which works by a finite number of iterations, which reaches to

an optimal solution. This works fine in environments where it is important to consider

the terrain and obstacles in the ground. A widely used method is the potential field

approach, discussed in [49] by F. Rehmatullah and J. Kelly, which consists in consid-

ering the entire space as potential field, by assigning equal charges to the UAV and

the potential obstacles, causing repulsion forces according to the position and velocity

of the UAV and objects. However this algorithm must know the complete state of the

intruders to work efficiently. In the work of B. Du and S. Liu [50], and the work of

C. Fu [51] the avoidance is performed by fuzzy logic controllers, which works using

linguistic variables as inputs and outputs. In [52] T. Liao developed a searching algo-

rithm called A*, and like dynamic programming, uses as constraint a cost function and

distance constraint. This algorithm provides different paths that passes through some

nodes, between the starting point and the final point. It works well in environment with

static obstacles, but not good enough with dynamic obstacles.

14



CHAPTER 3

Theory Fundamentals

In this section it is briefly described the basic concepts of the Quadrotor Model, Stereo

Matching which in turn is divided in some topics to make it easy to review the concepts

needed for the methodology,and finally followed by Kalman Filter.

3.1 Quad-rotor model

By definition [53] an UAV or unmanned aircraft is just a part of a Unmanned Aircraft

System (UAS), which comprises:

• Control Station (CS), where is located the system operators and their interfaces

with the rest of the system.

• Aircraft carrying the payload.

• System communication between the CS and the aircraft.

15



Figure 3.1: Left-Down: inertial frame and its axis ii, ji and ki. Up-right: vehicle frame
and its axis iv, jv and kv. [54]

• Support equipment like maintenance and transport items.

It must not be confused with radio-controlled model aircrafts or with drones. A

model aircraft it is used for sport and it must be within sight of the operator. A drone

usually is launched with a pre-programmed mission to accomplish and can fly out of

sight of the operator, after the mission is carried out it returns to the base, but it does

not have any intelligent behaviour. An UAS can have some degree of automatic intelli-

gence.

3.1.1 Reference frames

In this section it is defined three reference frames: the inertial frame, vehicle frame and

body frames.

The Inertial frame Fi has its frame origin fixed to a home location on the Earth.

The name of the axes are north, east and down, which have the unit axis ii, ji and ki

respectively. The down axis is pointing at the center of the Earth, as can be seen in the

Figure 3.1.

16



Figure 3.2: Body frame, the ii-axis is also known as roll axis, ji-axis as pitch axis and
ki-axis as yaw axis [54].

The Vehicle frame Fv is a frame whose origin is located in the center of mass of the

vehicle, however, its axis points are aligned with the inertial frame, see Figure 3.1.

The body frame Fb has its origin in the center of mass of the vehicle, but the axis

are located after a sequence of rotation in the angles ψ , θ and φ . The ib-axis points

out the nose of the airframe, jb-axis points out the right wing and kb-axis points out the

belly, see Figure 3.2.

A quadrotor or quadcopter is a rotary-wing type UAV of four engines attached in

the extremities of the device and usually holds in the middle a controller and a battery.

The Figure 3.3 shows six types of quadcopters.

3.1.2 Euler Angles

As the name says, they were introduced by Leonard Euler to describe the orientation of

a rigid body in a 3-dimensional Euclidean space. They are typically denoted by

φ ∈ [−π,π]

θ ∈ [π

2 ,
π

2 ]

ψ ∈ [−π,π]

(3.1)

17



Figure 3.3: Type of quadcopters. The green propellers spin in Clockwise direction
(CW), while the blue propellers spin in Counter-Clockwise direction (CCW) [55]

18



These angles can be applied in a sequence to move any body in any orientation. These

angles are applied by the rotation matrices

Rx(φ) =


1 0 0

0 c(φ) −s(φ)

0 s(φ) c(φ)



Ry(θ) =


c(θ) 0 s(θ)

0 1 0

−s(θ) 0 c(θ)



Rz(ψ) =


c(ψ) −s(ψ) 0

s(ψ) c(ψ) 0

0 0 1



(3.2)

where the functions c(φ) = cos(φ), s(φ) = sin(φ) also applies to the angles θ and

ψ . The rotation of the body reference system with respect to the inertial reference is

defined with the rotation matrix Rzyx(φ ,θ ,ψ) ∈ SO(3)

Rzyx(φ ,θ ,ψ) = Rz(ψ)Ry(θ)Rx(φ)

=


c(θ)c(ψ) s(φ)s(θ)c(ψ)− c(φ)s(ψ) c(φ)s(θ)c(ψ)+ s(φ)s(ψ)

c(θ)s(ψ) s(φ)s(θ)s(ψ)+ c(φ)c(ψ) c(φ)s(θ)s(ψ)− s(φ)c(ψ)

−s(θ) s(φ)c(θ) c(φ)c(θ)

 (3.3)

3.1.3 Kinematics

Let [pn, pe, pd, ]
T be the vector that is composed of the linear and angular positions in

the inertial frame, and [u,v,w, p,q,r]T is the vector of the linear and angular velocities

19



of the body frame.

ξ =


pn

pe

pd

 η =


φ

θ

ψ



v =


u

v

w

 ω =


p

q

r


The values of (u,v,w) are the projection of the inertial velocity components. Also, the

translational position of the MAV is commonly referred from the inertial frame. The

relation of the translational velocity and position is done by
ṗn

ṗe

ṗd

= Rv
b


u

v

w




ṗn

ṗe

ṗd

=


c(θ)c(ψ) s(φ)s(θ)c(ψ)− c(φ)s(ψ) c(φ)s(θ)c(ψ)+ s(φ)s(ψ)

c(θ)s(ψ) s(φ)s(θ)s(ψ)+ c(φ)c(ψ) c(φ)s(θ)s(ψ)− s(φ)c(ψ)

−s(θ) s(φ)c(θ) c(φ)c(θ)




u

v

w


(3.4)

The angular rates (p,q,r) are not the simple derivative of the angular rates (φ ,θ ,ψ)

because they are in two different reference frames. The angular rates are defined in the

body frame Fb. The angular positions are defined in three different frames when each

rotation transformation was applied to the vehicle frame to take it to the body frame.

The angular rates in body frame is expressed in terms of the derivatives of the angular

20



positions as follows
p

q

r

=


φ̇

0

0

+R(φ)


0

θ̇

0

+R(φ)R(θ)


0

0

ψ̇

=


1 0 −s(θ)

0 c(φ) −c(θ)s(φ)

0 −s(φ) c(θ)c(φ)




φ̇

θ̇

ψ̇


Inverting the expression


φ̇

θ̇

ψ̇

=


1 s(φ)t(θ) c(φ)t(θ)

0 c(φ) −s(φ)

0 s(φ)/c(θ) c(φ)/c(θ)




p

q

r

 (3.5)

where t(θ) = tan(θ).

3.1.4 Dynamics

Now using the Newton’s second law it is going to be derived the translational and

rotational dynamic models. For this the motion of the body must be referenced to the

inertial frame, which in this case is the ground. It is defined the vector Vg
b = (u,v,w)T

as the velocity of the body frame with respect to the ground (inertial) frame. Applying

the Newton’s second law it is obtained that

f = m
dVb

dti
(3.6)

where m is the mass of the body, the d
dti

is the time derivative with respect to the inertial

frame and f is the sum of all the forces actuating on the body, such as gravity, aerody-

namic forces and the forces exerted by the propellers. It is important to take in count

that the aerodynamic forces depends on the speed of the surrounding air, in the case of

the wind is not present, however the wind is almost always present in some degree, so

the velocity of the aircraft relative to the surrounding air is the airspeed vector, denoted

21



Va, the ground speed vector Vg is the velocity vector of the airframe with respect to

the inertial frame, and Vw is the vector velocity of the wind, with respect to the inertial

frame. So the relationship between these three vector is

Va = Vg−Vw

It is necessary to express the derivative of Vg of (3.6) as a function of the derivative in

the body frame and the angular velocity, for this it is necessary to use the derivative of a

momentum vector. Let’s say that the vector p is moving in body frame but not rotating

with respect to the inertial frame, i.e.

p = pxib + py jb + pzkb

where ib, jb and kb are the unit vector of p. Then, deriving the vector p in the inertial

frame is
d

dti
p = ṗxib + ṗy jb + ṗzkb + px

d
dti

ib + py
d

dti
jb + pz

d
dti

kb (3.7)

where the first three terms are the change of p seen from the rotating body frame itself.

The next three terms are the change in p seen from the inertial frame. The derivative of

the components ib, jb and kb are

i̇b = ωb/i× ib

j̇b = ωb/i× jb

k̇b = ωb/i× kb

where ωb/i is the angular velocity of the body with respect to the inertial frame. Then

rewriting the terms

px i̇b + py j̇b + pzk̇b = px(ωb/i× ib)+ py(ωb/i× jb)+ pz(ωb/i× kb) = ωb/i×p (3.8)

22



With the Equation (3.7) and Equation (3.8) it can be obtained

d
dti

p =
d

dtb
p+ωb/i×p (3.9)

If it is assume that the mass is constant in the equation p = mVg, the mass can be

removed from Equation (3.9) and obtain

d
dti

Vg =
d

dtb
Vg +ωb/i×Vg (3.10)

Now substituting the Equation (3.10) in Equation (3.6) the equation results

f = m
(

d
dtb

Vg +ωb/i×Vg

)
(3.11)

Due to the fact that V̇g is expressed in the body frame the following is defined as

V̇g = (u,v,w)T

ωg = (p,q,r)T

f = ( fx, fy, fz)
T

d
dti

Vg = (u̇, v̇, ẇ)T

Rearranging and then expanding the cross product of Equation (3.11)

d
dtb

Vg =
f
m
−ωb/i×Vg


u̇

v̇

ẇ

=


rv−qw

pw− ru

qu− pv

+ 1
m


fx

fy

fz

 (3.12)

23



In this way the Equation (3.12) is the translational motion model of the quadcopter. It

remains the rotational motion model, and using the Newton’s second law

dh
dti

= m (3.13)

where h is the angular momentum, and m is the sum of all moments applied on the

body. Using the expanded Equation (3.7) to substitute the derivative of angular mo-

mentum
d

dti
hg =

d
dtb

hg +ωb/i×hg = m (3.14)

The angular momentum for a rigid body is defined as

h = Jωb/i (3.15)

where J is the inertia matrix whose components are given by

J =


Jx −Jxy −Jxz

−Jyx Jy −Jyz

−Jzx −Jzy Jz

 (3.16)

Jx =
∫
(y2 + z2)dm

Jy =
∫
(x2 + z2)dm

Jz =
∫
(x2 + y2)dm

Jxy = Jyx =
∫

xydm

Jxz = Jzx =
∫

xzdm

Jyz = Jzy =
∫

yzdm

However, the body of a quadcopter is usually symmetric around the plane spanned by

ib and kb, and the plane spanned by jb and kb, since the angular momentums cancelled

24



in each side of the planes, so the inertia elements Jxy = Jyz = Jxz = 0, in this way, the

inertial matrix in Equation (3.16) is

J =


Jx 0 0

0 Jy 0

0 0 Jz


Substituting the definition of the angular momentum Equation (3.15) in Equation (3.17)

results

J
d

dtb
ωb/i +ωb/i×Jωb/i = m (3.17)

On the other hand

d
dtb

ωb/i = ω̇b/i =


ṗ

q̇

ṙ

 (3.18)

Solving for ω̇b/i in Equation (3.17)

ω̇b/i = J−1 [−ωb/i× (Jωb/i)+m
]

(3.19)

Where J−1 is

J−1 =


1
Jx

0 0

0 1
Jy

0

0 0 1
Jz


and m = (l,m,n)T is the moment vector. Then rewriting the Equation (3.19) in compo-

nent form
ṗ

q̇

ṙ

=


1
Jx

0 0

0 1
Jy

0

0 0 1
Jz





0 r −q

−r 0 p

q −p 0




Jx 0 0

0 Jy 0

0 0 Jz




p

q

r

+


l

m

n




25



=


(

Jy−Jz
Jx

)
qr+ l

Jx(
Jz−Jx

Jx

)
pr+ m

Jy(
Jx−Jy

Jz

)
pq+ n

Jz

 (3.20)

In this manner the set of equation that models the quadcopter is complete, in [54] the

derivation of the formulas are more explained in details. In summary Equations (3.4),

(3.5), (3.12) and (3.20)
ṗn

ṗe

ṗd

=


c(θ)c(ψ) s(φ)s(θ)c(ψ)− c(φ)s(ψ) c(φ)s(θ)c(ψ)+ s(φ)s(ψ)

c(θ)s(ψ) s(φ)s(θ)s(ψ)+ c(φ)c(ψ) c(φ)s(θ)s(ψ)− s(φ)c(ψ)

−s(θ) s(φ)c(θ) c(φ)c(θ)




u

v

w

(3.4)


φ̇

θ̇

ψ̇

=


1 s(φ)t(θ) c(φ)t(θ)

0 c(φ) −s(φ)

0 s(φ)/c(θ) c(φ)/c(θ)




p

q

r

(3.5)


u̇

v̇

ẇ

=


rv−qw

pw− ru

qu− pv

+ 1
m


fx

fy

fz

(3.12)


ṗ

q̇

ṙ

=


(

Jy−Jz
Jx

)
qr(

Jz−Jx
Jx

)
pr(

Jx−Jy
Jz

)
pq

+


l
Jx

m
Jy

n
Jz

(3.20)

3.2 Stereo Matching

Stereo matching or stereo correspondence, in its analytical approach, is an active re-

search topic which requires a solid background of epipolar geometry before go in depth.

After this subsection the next subsection addresses about stereo matching, that depend-

26



ing on the approach it is supported in different mathematical fields.

3.2.1 Epipolar geometry

Epipolar geometry is basically the projective geometry that involves two views. Almost

all the analytical stereo matching algorithms is based on epipolar geometry, which is of

course the approach used for this work.

Pinhole camera

Almost all the work done about stereo vision has been done considering the simplest

camera model, the pinhole camera. This kind of model shows a good approximation

to the real construction of a modern camera with lenses due to the similarity with the

CCD sensors.

Basically what a camera does is to project the rays of light coming from the 3D

points to an internal plane of the camera, named the image plane. The Figure 3.4

shows the geometrical configuration of the pinhole camera where the distance between

the camera center and the image plane is the focal distance f . Observe that the point in

the 3D world X = (x,y,z)T is mapped to the point x = (u,v)T in the image plane by a

line joining the center of the projection to the point X. This mapping is represented as

(x,y,z)T 7→ ( f x/z, f y/z)T (3.21)

This mapping can be performed by x = PX where P is a 3× 4 matrix which can be

expressed with

P = K[R|t] (3.22)

where K is a 3×3 matrix called camera calibration matrix, and it contains the internal

parameters of the camera; the R|t matrix is a 3× 4 rotation matrix, where R and t

27



pin

Figure 3.4: Pinhole camera model [56].

represents the orientation and translation (respectively) of the camera coordinate frame

with respect to a world frame coordinate. The R in detail is

R =


f α γ cx

0 f β cy

0 0 f

 (3.23)

where (cx,cy)
T is the center of the principal point, f is the focal length, α and β are

the pixel physical dimensions, and γ is the angle between the axes.

Epipolar geometry

The epipolar geometry is the intrinsic projective geometry of two views. It depends

only on the internal parameters of the cameras and their relative position. This kind

of geometry is useful to search for a corresponding points either as a single moving

camera or two fixed cameras. The system configuration that is going to use in this

thesis is for two fixed cameras, also named, stereo camera. When the left and right

cameras of the stereo rig simultaneously captures an image of a X point, this point is

mapped as x in the left camera and x′ in the right camera. These points creates a plane

π , called epipolar plane. According the pinhole model of camera, such a plane must

28



Figure 3.5: Epipolar geometry [56].

include the left and right centers of the camera, as shown in Figure 3.5, where also

can be observed that any point in the line that joints the point X to the center of the left

camera, projects to exactly the same point x in the left image plane, however in the right

image the point x′ do not. This means that if we do not know the location of the point

X, it can correspond to any point in the line l′ in the right camera plane. The line l′ is

the right epipolar line, and it also is the intersection of the epipolar plane with the right

image plane. The vice-versa occurs when referring to the other side of the stereo rig.

As it was mentioned, there exists a mapping x 7→ l′ that is expressed with the equation

l′ = Fx (3.24)

where if a point x is choosen from l′, the following equation is satisfied

x′T Fx = 0 (3.25)

29



Figure 3.6: Epipolar lines [56].

where F is the fundamental matrix, and it contains the intrinsic parameters of both

cameras. The matrix F is

F = [e′]×P′P+ (3.26)

where P+ is the pseudo inverse of P and [e′]× is the right epipole vector expressed as a

skew-symmetric matrix. The epipole is the intersection of the baseline with the image

plane, so there are two epipoles in a two-view arrangement, like the stereo camera. As

can be seen, the matrix F is a function of epipole, the right and left cameras, however,

in this thesis is not necessary going in depth anymore (for details see [56]).

Image rectification

According to the Figure 3.5 the epipolar plane π intersects with both image views, cre-

ating the epipolar lines l and l′. If both cameras faces to the same scene at the same

time, there are points in l that correspond to the points in l′. Usually the correspond-

ing epipolar lines are slanted, as can be seen in Figure 3.6. This characteristic makes

the operation of finding in the images correspondence points a slow task. To speed

up this process both images can be rectified, which consists in applying a projective

transformation that makes all the epipolar lines of both sides coincident in the same

rows (or scanlines) of the images, so the search of a correspondence point in the first

30



image reduces to look for it only of the same row (v coordinate) of the other image.

There are many algorithms to compute the homography matrices H1 and H2, necessary

to transform the left and right images, respectively.

Most stereo rigs have both cameras facing front, its principal lines parallel and

with the world origin at the left camera, so for this case, the camera matrices can be

simplified as

P = K[I|0] P′ = K′[I|t]

where t is the translation of the right camera in the axis x.

3.2.2 Stereo correspondence

The correspondence problem consists in finding correspondence points in two or more

images of the same object but taken from different positions. The aim of a stereo

correspondence algorithm is to give a uni-valued function d(u,v) that best represent the

shapes of the surfaces captured by two displaced images. The special case when the

images are taken from two cameras at the same time is called stereo correspondence.

This problem is simpler when using a stereo camera with frontal parallel cameras,

known epipolar geometry and rectified image pair. However an algorithm of finding

stereo correspondence is not a trivial task, because the algorithm must measure the

evidence that correspondence points in the two images are projections of the same

scene point.

After both images are rectified, the comparison between right and left images is

performed only in the same row of the images. There are three stages [57] of the stereo

block corresponding algorithm:

• Employ a prefilter to normalize the input images, this is reduce the brightness

differences between them and improve textures.

31



• Look for correspondences in the row (or horizontal) of both images using a SAD

window.

• Apply a postfilter to remove bad-matched correspondences.

In the prefiltering stage, the normalization of images consists in running a window

of a predefined size (like 5x5, 7x7,...,21x21 as maximum) over the image. The center

of the window is a pixel represented by Ic = min(max(Ic− Î,−Icap), Icap), where Î is

the average value of the window and Icap is a limit value.

After prefiltering, it is followed by the correspondence computation made by slid-

ing the SAD window in the right image for each pixel in the left image. There is a

predefined value of maximum disparity, and it must be defined according to the image

resolution and if the cameras are frontal parallel or not. There may be missing features

that are found in the left image but cannot be found in the right image, and vice-versa.

this can be caused by occlusions and noise.

After correspondence algorithm, follows a postfiltering procedure which works re-

moving false matches. Also can occur problems near the edges of the objects because

in the window of one side is seen the foreground and in the other side is seen the back-

ground, resulting in a local region of large and small disparities called speckle. To

avoid the edge matches, can be set a speckle detector with a speckle window. The

speckle window works defining a pixel as a basis of making a component defined by a

variable range. This variable includes a neighboring pixel only if it is within the range

of the current pixel. When the connected component is calculated, the component is

considered as speckle if it is smaller than the speckle window.

Some key terminology of the stereo correspondence is listed in [58] and comple-

mented with [22]:

• Intensity I is the numerical value that represents the light intensity in an image

location (pixel).

32



• Disparity is defined as simply u−u′ for a correspondence between p = (u,v) and

q = (u′,v′) where v = v′ is assumed when the images are rectified. This term was

used for first time for human vision, which describes the difference in location

between two object correspondences seen by the left and right eyes. Frequently

disparity is treated as the inverse of depth.

• Disparity space (u,v,d) is the fundamental concept of stereo correspondence

methods.

• Disparity map for Ire f is an image made by the function d(u,v), where (u,v) ∈

Ire f .

• Occlusions are those points of a scene that does not have a real correspondence

in the both images. Common occlusion is a point that is visible from any of the

two images but in the other image is not because there is another object closer to

the cameras that is blocking the field of view.

• Calibration, is the information known about the cameras, which provides high-

quality estimates of the epipolar geometry and better estimation of disparity

• Block-matching is the process of forming a small block around each pixel (u,v)∈

Ire f and find the disparity d that minimizes some cost function of a corresponding

block around (x−d,y) ∈ Imatch.

• Dense correspondence is the computation of each pixel correspondence in the

images.

In [22] the authors made a taxonomy of stereo correspondence algorithms in general

that can be described by the following steps:

• Matching cost is the computation at each pixel for all disparities under consider-

ation. Every stereo correspondence algorithms uses a matching cost to measure

33



the similarity of image locations. The simplest examples of matching costs as-

sume constant intensities at matching images locations, like absolute differences

and squared differences.

• Cost aggregation is done by summing matching cost over the pixels surrounding

a central pixel, commonly performed in a squared area, called window. Some

examples of window-based matching cost are the sum of absolute differences

(SAD), sum of squared differences (SSD), normalized cross-correlation (NCC)

and census transform.

• Disparity computation/optimization is the selection of the disparity which corre-

sponds to the lowest matching cost, i.e. winner-takes-all (WTA).

• Refinement of disparities consists on removing peaks, checking the consistency,

interpolating gaps, or increasing the accuracy by sub-pixel interpolation (upsam-

pling).

Stereo algorithms classification

Local algorithms, also called window-based algorithms, computes the disparity at a

given point depending only on intensity values within a finite window. These methods

makes emphasis on the matching cost computation and on the cost aggregation. To

compute the final disparities simply choose at each pixel the disparity associated with

the minimum cost value. Then, a WTA local optimization is performed at each pixel.

However, the inconvenience of this algorithm is the uniqueness of matches is only

enforced for the reference image (usually the left one) while points in the other image

might get matched to multiple points.

Global algorithms make explicit smoothness assumptions and then solve an opti-

mization problem. Typically does not perform an aggregation step, but rather seek

a disparity assignment that minimizes a global cost function that combines data for

34



matching cost and smoothness terms. Many global methods are formulated in an

energy-minimization framework. The objective is to find a disparity function d that

minimizes a global energy

E(d) = Edata(d)+λEsmooth(d)

where Edata(d) measures how well the disparity function d agrees with the input image

pair. Its formulation is

Edata(d) = ∑
(u,v)

C(u,v,d(u,v))

where C is the matching cost Disparity Space Image or disparity map. The smoothness

term Esmooth(d) encodes the smoothness assumptions of the algorithm, and is often

restricted to only measuring the differences between neighboring disparities of pixel

Esmooth(d) = ∑
(u,v)

ρ(d(u,v)−d(u+1,v))+ρ(d(u,v)−d(u,v+1))

where ρ is a monotonically increasing function of disparity difference. Some methods

use more terms for penalizing occlusions, alternatively treating visibility, enforcing

a left/right or symmetric consistency between images or weight the smoothness term

according to segmentation information.

Exists a Semi-Global Matching (SGM or SGBM) method [24] which is an approach

between local and global matching, it can use a pixelwise matching of Mutual Infor-

mation or Birchfield-Tomasi.

The pixel-wise matching cost calculation of this method needs two input images

that are assumed to have a known epipolar geometry (see Subsection 3.2.1). The match-

ing cost is calculated using a reference image pixel p from its intensity Irp and the

suspected correspondence Imp with q = erm(p,d) of the match image. The function

q = erm symbolizes the epipolar line in the match image for the base image pixel p

35



with the line parameter d.

SGM aims to minimize a global 2D energy function E(D) by solving a large number

of 1D minimization problems, the energy used is

E(D) = ∑
p
(C(p,dp)+ ∑

q∈Np

P1T [|dp−dq|= 1]+ ∑
q∈Np

P2T [|dp−dq|> 1]) (3.27)

where C(p,dp), as defined before, is a pixel-wise matching cost, p is the vector of

the pixel (u,v) in the reference image Ire f and dp is its correspondent disparity. The

function T [] returns 1 if its argument is true and 0 otherwise, so it penalizes small

differences of neighboring pixels Np of p with the cost P1. In similar manner, the third

term of Equation (3.27) penalizes larger disparity steps (discontinuities) with a higher

penalty P2.

It is important the size and shape of the area that is considered for matching, since

the robustness of matching increases with large areas. However, the implicit assump-

tion of constant disparity inside the area is violated at discontinuities, causing blurred

objects borders and fine structures. So the constant disparities of the neighborhood of

p is discarded, so only the intensities Irp and Imq itself can be used for matching cost

computation.

Birchfield-Tomasi measure

Among the matching cost methods used in the stereo community, one of the most

widespread algorithms is the Birchfield-Tomasi (BT) which measures dissimilarity of

pixels which is insensitive to image sampling since it uses the linearly interpolated

intensity functions surrounding the pixels. As a note, must be mentioned that this

explanation and the Figure 3.7 is based on the original paper of S. Birchfield and C.

Tomasi [59], where the imaged point is represented by the vector p=(x,y), which come

into conflict with the convention of p = (u,v), so after the explanation the convention

36



Figure 3.7: Computation of dissimilarity [59].

of this thesis is taken again.

The cost CBT (p,d) is calculated using the absolute minimum difference of intensi-

ties in p and q = erm(p,d). Let IL and IR be the intensity functions and it is sampled at

discrete points by the image sensor. The goal is to calculate the dissimilarity between

a pixel at position xL in the left scanline and the pixel in the position xR. Then ÎR is

defined as the linearly interpolated intensity function between the sample points of the

right scaline. This function is defined in terms of I−R and I+R (see Figure 3.7)

I−R = ÎR(xR− 1
2) =

1
2(IR(xR)+ IR(x−1))

I+R = ÎR(xR +
1
2) =

1
2(IR(xR)+ IR(x+1))

(3.28)

We then define the same for ÎL. Now the dissimilarity between a pixel at position xL

and the pixel xR, is defined as

d̄(xL,xR, IL, IR) = max(0, IL(xL)− Imax
R (xR), Imin

R (xR)− IL(xL)) (3.29)

37



where Imin
R (xR) and Imax

R (xR) are the minimum and maximum, respectively, of the

intensities IR(xR) and the values of its interpolated values I−R (xR) and I+R (xR)

Imin
R (xL) = min(I−R , IR(xR), I+R )

Imax
R (x,y) = max(I−R , IR(xR), I+R )

(3.30)

and are similarly defined for Imin
L (xL) and Imax

L (xL) in the right side.

The dissimilarity D between the pixels is defined symmetrically as the minimum of

the two quantities

D(xL,xR) = min(d̄(xL,xR, IL, IR), d̄(xR,xL, IR, IL)) (3.31)

rewriting the function is

D(xL,xR) = min(max(0, IL(xL)− Imax
R (xR), Imin

R (xR)− IL(xL)),

max(0, IR(xR)− Imax
L (xL), Imin

L (xL)− IR(xR)))
(3.32)

Until now, we have omitted the y and disparity d in order to simplify the definition

of dissimilarity, but we need to express the cost as a function of the dissimilarity.

First of all, we need to change the variables xL = x and xR = x− d in the dissimi-

larity function. Then need to check every pixel in a window with center pixel (x0,y0)

and with a constant disparity and sum all the minimum values. The matching cost is

CBT (x0,y0,d) = ∑(x,y)∈W D(x,y,d), i.e.

CBT (x0,y0,d) = ∑(x,y)∈W min(max(0, IL(x,y)− Imax
R (x−d,y), Imin

R (x−d,y)− IL(x,y)),

max(0, IR(x−d,y)− Imax
L (x,y), Imin

L (x,y)− IR(x−d,y)))

38



Taking in count the convention of the image point p = (u,v)

CBT (u0,v0,d) = ∑(u,v)∈W min(max(0, IL(u,v)− Imax
R (u−d,v), Imin

R (u−d,y)− IL(u,v)),

max(0, IR(u−d,v)− Imax
L (u,v), Imin

L (u,v)− IR(u−d,v)))
(3.33)

3.3 Kalman Filter

The Kalman Filter was published in [60] by Rudolf Emil Kalman in 1960, and from

then on, it has been extensively applied in autonomous navigation. The KF is a set

of equations that computes the estimated values of the state of a process. It is able

to estimate past, present and future states, even if the modeled system is not precisely

known. This computation is performed by iterations in the time, with a specified period.

According to the simplified lecture note [61] the following description of the simple

Kalman Filter assumes that the system state equation has the following general linear

form:

xt = Atxt|t−1 +Btut +wt (3.34)

where xt is the state vector which contains the interesting terms of the system (e.g.,

position, velocity, acceleration) at time t; ut is the vector containing the control inputs

(steering angle, throttle setting, braking force); At is the state transition matrix which

applies the effect of each system state parameter at time t − 1 on the system state at

time t (e.g., the position and velocity at time t− 1 both affect the position at time t);

Bt is the control input matrix which applies the effect of each control input parameter

in the vector; ut on the state vector (e.g.,applies the effect of the throttle setting on the

system velocity and position); wt is the vector containing the process noise terms for

each parameter in the state vector. The process noise is assumed to be drawn from

a zero mean multivariate normal distribution with covariance given by the covariance

39



matrix Qt .

p(wt)∼ N(0,Qt)

Also the KF assumes a system measurement model that has the form

yt = Ctxt +vt (3.35)

where yt is the vector of measurements; Ct is the transformation matrix that maps

the state vector parameters into the measurement domain; vt is the vector containing

the measurement noise terms for each observation in the measurement vector. Like the

process noise, the measurement noise is assumed to be zero mean Gaussian white noise

with covariance Rt .

p(vt)∼ N(0,Rt)

The Kalman filter algorithm consists of two stages: prediction and measurement

update. For prediction stage, the equations are

x̂t|t−1 = At x̂t−1|t−1 +Btut (3.36)

Pt|t−1 = AtPt−1|t−1At
T +Qt (3.37)

The measurement update stage consists of the equations

x̂t|t = x̂t|t−1 +Kt(yt−Ct x̂t|t−1) (3.38)

Pt|t = Pt|t−1−KtCtPt|t−1 (3.39)

Kt = Pt|t−1Ct
T (CtPt|t−1Ct

T +Rt)
−1 (3.40)

The Equation (3.36) can be called State Extrapolation equation, Prediction equation or

more commonly Transition equation. This extrapolates the current state of the system

40



to the next state, makes a prediction.

The Equation (3.37) is obtained in a similar way to the state extrapolation, the esti-

mate uncertainty extrapolation is done with the dynamic model equations. The estimate

uncertainty extrapolation equation is called Covariance Extrapolation Equation.

The Equation (3.38) is called the State Update equation where Kt is called the

Kalman Gain, and the subscript t indicates that this gain can change with every it-

eration. The term (yt −Ct x̂t|t−1) can be called ”innovation” because it contains new

information. Since this formula is based on measurements, the first iteration can be

performed with an ”initial guess” that can be just a reference value or approximated

value.

The Equation (3.39) updates the estimate uncertainty of the current state. It is called

the Covariance Update Equation.

The Equation (3.40) is called the Kalman Gain equation, and it tells how much it

needs to change the estimate by a given measurement. It follows a restriction

0 < Kt < 1.

This gain has an effect on Equations (3.38) and (3.39) of weighting between mea-

surement and estimated values, i.e., if Equation (3.38) is reformulated as

x̂t|t = (1−KtHt)x̂t|t−1 +Ktzt

is evident that Kn is the weight given to the measurement, and the (1−KtCt) is the

weight given to the estimate. In the case of Equation (3.39) when it is reformulated it

is obtained

P̂t|t = (1−KtCt)P̂t|t−1

it is observed that as Kt increases the measurement uncertainty decreases. A complete

41



derivation can be studied in details in [61], [62] and [63].

3.4 Robotic Operating System

It is a meta-operating system for general purpose computers including Windows, Linux,

Mac, Android, iOS, among others. The ROS is a framework that consists of libraries,

tools and conventions that aim to simplify the development of robotic systems. ROS is

focused on maximizing code reusing in the robotics research and development, taking

the collaboration in robotics to a global level [64].

Next is briefly defined the used ROS terms for this work

• Node: Refers to the smallest unit of processor running in ROS. It is like a exe-

cutable program with a single purpose assigned (as recommended) to each node.

Examples of purposes are a sensor drive, sensor data conversion, obstacle recog-

nition, motor drive, encoder input, etc.

• Package: is the basic unit of ROS, and contains either a configuration file to

launch other packages or nodes.

• Message: It is the communication via between nodes. The type of data can be of

type integer, floating point and boolean.

• Topic: it is literally like a topic in a conversation. It is created by a publisher

node and can publish messages through them. Subscriber nodes can request to

connect to the publisher node to exchange messages as a topic.

42



CHAPTER 4

Methodology

In this section is presented the system overview, the information acquisition processes

for 1D-LiDAR and stereo camera rig. Also, the implemented KF is presented as a

sensor fusion method. Lastly, the obstacle methodology is going to be described.

4.1 System overview

The system is conformed by sensors, microcomputers, software and a quadrotor UAV.

In this part we begin by describing the sensors, particularly the stereo camera rig and

the 1D-LiDAR. How the provided information by these sensors is processed and inter-

preted is presented next. Later, we present results about implementation.

First, consider the pair of images provided by stereo camera. For each frame two

measurements are captured and then processed according to the system overview shown

in Figure 4.1. The KF have the aforementioned measurements as inputs which corre-

43



Figure 4.1: System overview. Blue blocks: Camera processes. Yellow block: 1D-
LiDAR processes. At bottom, both information are fused in a Kalman Filter.

spond to the disparity map and the distance acquired by the 1D-LiDAR. After that, in-

side the depth map, it is computed a rectangle with the height and width corresponding

to the dimensions of our UAV at a determined distance in front the UAV. The dimen-

sions of our UAV is about of 120 cm of width and 40 cm of height. The center of the

image captured corresponds to the same physical point that the 1D-LiDAR measures

as distance. Then, the rectangle is an area that must be free of any obstacles to avoid

any possible collision. If we are able to measure the distance with accuracy, the size of

quadrotor can be projected ahead and determinate if the UAV can access freely across

of the rectangle.

44



4.2 Platform setup

The UAV is a quadrotor Tarot XS690 quadrotor frame, as can be seen in the Figure 4.2.

As stereo camera rig we have mounted a ZED camera developed by Stereolabs, which

is attached in the upper part of the quadrotor. This stereo rig has a specified range up

to 40 meters and a number of third party support, among them, ROS and OpenCV,

where we have coded the obstacle detection algorithm. Particularly we have used the

ZED camera node provided by ROS, which gives the rectified right and left images

that are required to compute the disparity at a frame rate of 29.9 fps. The disparity

and autonomous operation is performed on-board with a Jetson TX2 development kit,

a embedded computing board developed by Nvidia that stands out for being designed

for machine learning applications. A laser distance sensor SW20/C [65] is fixed near

to the left and right camera. Both cameras and sensor are positioned facing forward, in

x direction of the quadrotor.

It is worth mentioning that ZED camera driver needs the Jetson computer to have in-

stalled JetPack 3.3 [66] which includes CUDA toolkit. In order to remove bad-matched

pixels that causes noise in the disparity map, is implemented a postfilter called WLS

filter. This filter needs to have OpenCV version 3.4.2 built together with the Extended

Image Processing module (ximgproc), that is included in OpenCV Contrib repositories.

The builder used for this purpose is the CMake. Nevertheless, WLS filter decreases sig-

nificantly the frame rate of disparity map computing, so the algorithm is written in C++

language, since it has a faster performance than Python in real-time image processing.

4.3 Nvidia Jetson TX2

The data given by the sensors must be processed, this requires a fast processing in

order to reduce the latency and increase the runtime of obstacle detection, the algorithm

45



Figure 4.2: Tarot XS690 quadrotor.

was then considered to be performed by the NVIDIA Jetson TX2 which is one of the

best high processing embedded computers designed specially for artificial intelligence

in autonomous machines, whose specifications could be seen in [67]. Moreover the

Jetson TX2 is mounted over a Development Kit (JDK) [68] that exposes the hardware

capabilities and interfaces of the Jetson TX2 Module. In Figure 4.3 we can observe the

computer and sensors conected via USB.

Jetson TX2 comes with preinstalled Ubuntu 16.04, with optional-flashed NVIDIA

JetPack, a Software Development Kit that includes libraries for deep learning, computer

vision, GPU computing and multimedia processing.

4.4 OpenCV

OpenCV is an open source computer vision and machine learning software library,

and can be used in a variety of programming languages, including Python and C++,

46



Figure 4.3: Components: ZED camera, 1D-LiDAR sensor, Jetson TX2 and Arduino
UNO.

supporting Windows or Linux operating systems. Python was contemplated as a first

option for stereo matching because of its extended use in artificial intelligence, however

C++ was used instead Python because of faster runtime. The faster runtime of the stereo

vision, the faster can detect and avoid obstacles, on the other hand, for using GPU

processing Python requires additional libraries and compilers, C++ has direct access to

GPU and more support from OpenCV and NVIDIA.

47



4.5 Stereo camera

The ZED camera is a stereo rig that includes a SDK that makes more efficient the devel-

opment of applications with its stereo camera, taking in count the third-party support by

ROS and OpenCV, in addition, SDK supports Windows and Linux operating systems.

It is worth mentioning that the JDK needs JetPack 3.3 [66] which includes CUDA

toolkit that is necessary to install the ZED drivers and its SDK.

Once ROS Kinetic is set as a framework, ZED SDK can be installed and run as a

node called zed ros wrapper. This node publishes to several topics, among them, the

interesting ones for this work are image type and camera info nodes.

4.5.1 Stereo Correspondence

Once the right and left images are accessed, the following process is stereo correspon-

dence. In Section 3.2, it is defined some of the necessary stereo matching parameters

that needs to be specified for processing the stereo images, in this Section is going to be

presented some extra parameters. OpenCV presents two stereo algorithms, the first one

is Block Matching (BM) presented as StereoBM using a simple block matching similar

to the proposed by K. Konolige, [69] with SAD cost function. The disadvantage of

this algorithm is the low detection of features in low-textured scenes, like indoors. The

other algorithm is Semi-Global Block Matching, and is presented as an object called

StereoSGBM [70] which is based on the original paper of H. Hirschmuller [24] but us-

ing a Birchfield-Tomasi cost function [59] which is mentioned in the paper as a simpler

option to the Mutual Information cost function. SGBM algorithm was chosen as the

stereo correspondence method despite this algorithm is slower than BM algorithm, but

it is more accurate.

The StereoSGBM parameters list is the following:

• minDisparity: the smallest disparity allowed, the value is stablished as 0, because

48



it corresponds to a far object detections.

• numDisparities: the maximum disparity allowed, and it should be greater than

min Disparity. It limits the nearer object detections.

• blockSize: the matched block size. It must be an odd value because the block size

should have a central pixel. In the original paper, the author suggests to use 7 as

maximum value.

• P1: corresponds to the P1 parameter, and controls the disparity smoothness. Its

suggested value is according to the following: 8∗image channels∗SADWindowSize∗

SADWindowSize = 8∗3∗3∗3 = 216

• P2: controls the disparity smoothness. The larger the values are, the smoother

the disparity is. The algorithm requires P2 > P1 . It is suggested set the value in:

32∗ image channels∗SADWindowSize∗SADWindowSize = 32∗3∗3∗3 = 864

• disp12MaxDiff : the maximum allowed difference (in integer pixel units) between

the left-right and right-left disparity check. If the two checks are different by

more than disp12MaxDiff, is considered as unknown. It is set to 1 to make sure

that it is the correct matching.

• preFilterCap: this value is the parameter Icap that limits the output of the pre-

filtering stage. Its default value is 30.

• uniquenessRatio: Margin in percentage by which the best (minimum) computed

cost function value should ”win” the second best value to consider the found

match correct. Normally, a value within the 5-15 range is good enough. For this

work is set to 15.

• speckleWindowSize: Maximum size of smooth disparity regions to consider their

49



noise speckles and invalidate. If it is set to 0 disables speckle filtering. Otherwise,

set it somewhere in the 50-200 range. In this code its value is 0.

• speckleRange: Maximum disparity variation within each connected component.

If speckle filtering is used, set the parameter to a positive value, it will be implic-

itly multiplied by 16. Normally, 1 or 2 is good enough. It is set to 2.

• mode: sets the mode of disparity directions, which can be 3, 5 and 8 directions.

The 8-directions mode requires great amount of memory, so the set value is for 3

directions, which makes the algorithm faster.

4.6 1D-LiDAR

The sensor SF20/C [65], is a low cost sensor LRF manufactured by Lightware, it is

specially designed for drones and robots and can be connected to different controllers

using I2C or serial protocol. This sensor has a measurement reach from 0.2m up to

100m in sunlit conditions. In scanning mode can made up to 388 measurements with a

resolution of 0.01m and an accuracy of 10cm

It can be connected to the JDK using I2C interface pins or using an Arduino con-

troller as interface to USB protocol. The first choice needs the computer a special setup

and takes longer. The second choice is the easiest and fastest manner to connect the

sensor despite the direct connection to JDK is better to obtain the maximum scanning

rate, however by time constraints it is left as a future work. The device can be observed

above the stereo camera at the Figure 4.3, specifically on the left camera.

The data acquisition from laser distance sensor to the Jetson TX2 is performed with

a code that reads data from I2C bus of an Arduino Uno microcontroller and then sent

to Jetson TX2 via USB. On the other hand hand, in ROS environment the acquisition is

performed with Lidar Lite ROS package [71], although we have modified the code to

our requirements.

50



4.7 Kalman Filter

Since the quadrotor is planned to stop to measure the distance of the object in front, the

measurement model of the system it is going to be assumed that the object in front is

static while the algorithm is measuring distance along the z axis.

xt+1 = xt +∆tẋt

ẋt+1 = ẋt

(4.1)

Therefore, the state vector is comprised of the position and velocity of the obstacle

in relation to the quadrotor, this is

xt =

 xt

ẋt

 (4.2)

This vector can be expressed in matrix form as xt

ẋt

=

 1 ∆t

0 1

 xt−1

ẋt−1

+w (4.3)

In discrete time the state space model and measurement model are given as follows

xt = Axt|t−1 +But +w (4.4)

yt = Cxt +v (4.5)

where the matrix A relates the state at the past time step t − 1 to the state at the

current step t state transition matrix is

A =

 1 ∆t

0 1

 (4.6)

51



in which ∆t is the sampling time, which is the time between each frame computed. The

matrix B is the control input matrix. Since we have two sensors that measure the same

variable, i.e. distance, the matrix C can be expressed as

C =

 1 0

1 0

 . (4.7)

The outputs are given by the sensor measurements, i.e. the 1D-LiDAR and the

disparity map; the (w,v) are the process and measurement noise, respectively. It is

assumed that both variables are independent (of each other), with zero mean and normal

probability distributions

p(w)∼ N(0,Q)

p(v)∼ N(0,R)
(4.8)

Due to the fact that the space and measurement model have been expressed as linear

can be solved by a simple discrete Kalman filter. The value of the state xt cannot be

observed directly, is in this case when Kalman filter can provide an estimate of the real

state x̂t by means of probability density functions.

The covariance matrix Rt = E[vvT ] of measurement vector y can be expressed as

Rt =

 σz 0

0 σl

 (4.9)

where σz and σl are the variances of the depth map estimation and 1D-LiDAR sensor,

respectively. This measurement noise matrix is diagonal, since we suppose the acqui-

sition data from sensors is independent between both [72]. The covariance matrix Rt

of the process is represented as 2× 2 matrix, which seems to Equation (4.9), but the

process covariance values are considered smaller than the measurement covariance ma-

trix because as we stated, we assumed the measurement process when the quadrotor is

52



static and modeled with the Second Law of Newton. To simplify this we assumed the

process variances equal to zero.

4.8 Depth map estimation

There are several algorithms under research for depth map estimation based on stereo

cameras, some of them are faster than others, but there is a tendency that the faster

the algorithm the less accuracy of the depth map. It is important to mention that in

the quadrotor navigation, the algorithm efficiency is crucial. There are two important

parameters for disparity map estimation: the quality of the depth map and the compu-

tation time. According to the Middlebury Stereo Evaluation [21], Semi-Global Block

Matching [73] (SGBM) algorithm has an absolute average error of 14.3 pixels and 0.68

sec/megapixels which can be implemented with OpenCV [24] easily. The absolute av-

erage error is the absolute difference of disparity between the computed disparity map

and the ground truth map, whereas the time of computation is the time it takes a one

million of pixels disparity map to be computed. The SGBM algorithm is based on

smoothness constrains applied on pixel-wise matching which removes outliers.

The approach used to achieve the disparity map from camera is performed through

OpenCV libraries, which is based on Hirschmüller algorithm with some modifications

added by OpenCV developers. Once the disparity is obtained we used a Weighted

Least Squares filter [74] (WLS) to remove holes due to half-occlusions, in other words

WLS filter fills the image to get a uniform segmentation. Depth is computed from the

following equation

D =
f B
d

(4.10)

where D is the depth, f is the focal distance in mm, B is the baseline between both cam-

eras in pixels, d is the disparity got previously in pixels. In (4.10) the depth depends

on focal distance and camera baseline, which are intrinsic parameters of camera and

53



they are unique values for each camera rig. Then, depth depends on disparity and on

the camera calibration matrix. According to epipolar geometry [56] the disparity is the

difference in pixels between the projection of a 3D point in the right camera and the

same 3D point projected on the left cameras, as the images were overlapped. If there is

an erroneous disparity or calibration, the depth will be erroneous. For that reason, pa-

rameters are modified to achieve a better matching between two images obtained from

the camera. The application of the WLS filter help to remove the NaN (Not a number)

and Inf (infinity) values. WLS filter was implemented as a fast global smoother but

running on CPU; the implementation on GPU is left for future work.

4.9 Obstacle detection

Let W ⊂R3 be the set of all points in a world coordinate system that are mapped inside

the field of view (FOV) of the stereo camera. The FOV can include objects, some of

them can be considered as obstacles if they are in the path space P ⊂W . The obstacles

are represented by the set O . Then, if the following equality holds

O ∩P 6= /0 (4.11)

means that the path is free to navigate. Let consider the filtered depth map explained

in the previous section. There is a maximum reach distance of the depth map, named

Dmax, please refer to Figure 4.4 a) (page 56). Also, there is a window in which the UAV

can pass trough without any obstruction shown at Figure 4.4 b) . Such window is at a

distance Dmin in the z-coordinate from the stereo camera, please see Figure 4.4 a).

On the other hand, in epipolar geometry [56] exists a function that maps 3D points

to 2D points, called 3D projection. Every 3D point and set in the field of view has a

projection to the 2D plane in the left camera sensor (by convention) of the stereo rig,

54



then
Wi 7→ wi

Pi 7→ pi

Oi 7→ oi

where Wi = (xi,yi,zi) ∈ W represents a point in the FOV; Pi ∈P is a point inside

the path of the UAV; Oi ∈ O is a point of a physical object; wi ∈W ∈ R2 is a point

of the FOV projected in the camera sensor; pi ∈ P ∈ R2 is a projected point of a path

in the camera sensor, in other words, it is the window projection in the camera; and

oi ∈ O ∈ R2 is a projected point of an obstacle, see Figure 4.4b . All the above for

i = { 0,1,2,3,...}.

The depth function of Equation (4.10) is used by means of the disparity between

a point pi seen from the right and the left camera sensors, in this way D(pi) is the

depth value in the position (ui,vi) of the depth map. Every value of (ui,vi) in the depth

map represents the zi coordinate value of the point Pi that is projected to the image

seen with respect to the left camera. Since the approach only considers displacements

in the z coordinate (forward direction) with respect to the UAV, it is proposed to use

the window projection as a rectangular region centered inside the depth map. Such

a region represents a free area in which the UAV can navigate. Then, pi ∈ P ∈ R2

represents the set of all points contained inside such a rectangular region, i.e. P ⊂W .

Inside the window region, we highlight the window centroid given by c ∈ P which is

ideally the same point mapped to Pi that the 1D-LiDAR is pointing at. At c, we get two

measurements: dL which is the distance measured by the 1D-LiDAR, and Dc = D(c)

which is the distance obtained from the depth map. When both measurements are fused

together we obtain dK , which is compared with dmin; if dK < dmin then the point c ∈O ,

i.e. it is part of an obstacle.

55



Le
ft
Fi
el
d 
of
 

Vi
ew

Location of 
the window

O

Stereo
camera

1D‐LiDAR

W

P

Top View

O

1D‐LiDAR 
beam

Object

(a) Top view of the system.

Front View

W

P

O

Object

Field of 
View

Measurement
point c

Location of 
the
window

(b) Front view, what the camera sees.

Figure 4.4: Diagram representing the main elements of our approach. Part a) is the top
view of the obstacle detection; and b) is the view seeing by the camera mounted on the
drone.

56



CHAPTER 5

Experiments

In this section the experimental platform and the obtained results is presented with the

approach seen in previous sections. The ROS general explanation is first explained

because all the hardware and software implementation is made through ROS. The next

subsections specifically talks about each ROS node.

5.1 ROS

The complete package created is shown in the Figure 5.1 The KF can be implemented

in Robotic Operating System (ROS) with the contribution of D. Ratasich et al [75],

which can be used for generic sensor fusion purposes. The sensor fusion node can

be configured according to the requirements of the system, in this manner, it is just

necessary to define the state space matrices including the process noise matrices and

the initial state.

57



Figure 5.1: ROS nodes

The parameters of the KF were set in the node /sf filter accordingly to the model

of our system explained in Section 4.7, using the Equations (4.6), (4.7) and (4.9), i.e.

covariance matrices, inputs, outputs, matrix dimensions and states. Furthermore, the

parameters of SGBM algorithm, implemented in node /depth using OpenCV, were set

as explained in the Subsection 4.5.1.

The ROS package used to get the stereo rectified images is the official one named

Zed Ros Wrapper. In Figure 5.1 can be seen that the node /depth subscribes to the topic

/left/image rect color and /right/image rect color published by /zed wrapper node (cre-

ated by the stereo rig manufacturer), the /depth node was developed for this work and

its purpose is to perform the block matching algorithm in the stereo images. The images

are rectified to correct errors in the lens structure and published in a ROS topic. The

/depth node also subscribes to the topics /left/camera info and /right/camera info in or-

der to obtain the calibration matrix of the stereo camera and get the epipolar values of

the stereo rig. The camera calibration parameters corresponding to each resolution are

stored in the package Zed Ros Wrapper. Thus we can compute the 3D position pointed

out by the center of the image, applying the method of 3D reconstruction theory [56].

Meanwhile, the node /lidar scanner publisher from the package /lidar scanner driver

publishes the topic /lidar with the distance measure of the approximated center of the

58



image. This node is in charge of receive the data from the USB port which is transmit-

ted by the 1D-LiDAR.

There is a node called /sf filter which is in charge of mixing the sensor measure-

ments coming from the /lidar and /stereo depth point. As mentioned before, this

node uses Kalman Filter algorithm to fuse the data that is published through the topic

/sf filter/z0 whose subscriber is the node /detect which is in charge of work with the

window of depth seen in section 4.8 and with the fused measurement of the center of

the window of depth as described in section 4.9.

5.2 Variance measurement

The covariance matrices were computed taking samples with the camera in a period

of time whose center was pointing at the same point that laser sensor, and using the

statistics covariance formula [76].

σ
2 =

∑(xi− x̄)2

n−1
(5.1)

where n is the number of samples; xi is the measurement; and x̄ is the expected value.

We obtain both measurement noise. In this calculation, we fixed the stereo camera

and the 1D-LiDAR. For stereo depth measurement 150 samples was taken, pointing

at a fixed object at a distance of 3.75 meters and taking measurements at 8.62 frames

per second. The frame rate was taken with the help of the ROS command rostopic hz

/stereo depth point.

The samples were taken from the ROS node /detect which is in charge of read the

measurements of the topics /lidar and /disparity map and then display their values in

terminal console of Ubuntu. That values was used to calculate the variances using the

formula 5.1 in a spreadsheet. The Figure 5.2 shows the graph of the samples taken to

obtain the variance of the stereo depth in the center of the window, when it is pointing

59



265 270 275 280 285 290 295
3.2

3.4

3.6

3.8

4.0

4.2

4.4

/lidar/z
/sf_filter/z0/value

/stereo_depth_point/z

Figure 5.2: Graph of the static measurement of variance.

at a low-texture area which causes noise. However when the object has enough texture,

the stereo depth value does not change in that magnitude.

According to the experiments it has a minimum detection distance of 8cm, and

its accuracy changes depending on the surface the laser beam is pointing at. When it

is an opaque surface, its accuracy is much less than 10cm, but if the surface is more

or less transparent, the distance accuracy is affected some times more than 10cm; for

instance, when measuring the distance to a computer monitor, of measuring through a

glass window, etc. The 1D-LiDAR position is near the left camera since the disparity

and distance measuring must match with the same object to the extent as possible.

5.3 Depth map ameliorate

The results obtained with disparity algorithm was conducted with OpenCV using three

processes to an image of 672x376 pixels: rectification, StereoSGBM function, WLS

filter. With the help of the ROS tool RViz which is a visualizer of sensor data, as

presented in Figure 5.3 (a) and (b) where is presented the difference between the left

60



(a) Left view (b) Right view

(c) Disparity map before WLS filter (d) Disparity map after WLS filter

Figure 5.3: Raw image and rectified image (a) and (b). Disparity with and without
WLS filter, using RViz to visualize the images (c) and (d).

camera view and the same scene from the right camera view. The next stage is to

compute the dense stereo matching, which produces a disparity map, shown in the

Figure 5.3 (c) and (d) where is illustrated the same images after being filtered with

WLS for disparity maps. It can be observed that the non-filtered disparity map has

black edges which are the occlusions, and the black point widespread in the image are

bad-matched pixels, therefore, it generate bad measures of depth when they appear in

the center of the map, which usually are caused by NaN, negative or infinity values.

Nevertheless, the images with a complete disparity without black spots show smoother

images with a better disparity, this means that the computation of depth map has less

noise.

61



(a) No obstacle inside window in RGB. (b) No obstacle inside window in depth map.

(c) Obstacle inside window in RGB (d) Obstacle inside window in depth map

Figure 5.4: Examples of detection of obstacle in exterior, using RViz to visualize the
images.

5.4 Obstacle detection

The stage of obstacle detection algorithm was written in the ROS node /detect, and the

topics that it publishes is presented using RViz, as shown in Figure 5.4, here is shown

the results of obstacle detection in exterior when the detection window is 3 meters

ahead from the quadrotor. In a) and b) the quadrotor is looking between two trees with

no detection of obstacles. But if we put an obstacle inside the center and from 1.5

meters away, it is detected as an obstacle in that flying direction.

62



5.5 Fusion Sensor

Figure 5.5 shows the behavior of depth respect to disparity, 1D-LiDAR and Kalman

Filter (KF) implementation; the distance is expressed in the x-axis in meters. The

plot depicted at Figure 5.5 (the graphs was taken using the ROS tool rqt plot), where

(a) shows a graph where the depth stereo resolution changes according to the sensing

distance from the object causing a stepped-shape line, where the more distance of de-

tection the higher is the ”step” of the graph. However the Kalman estimation is still

not configured correctly, due to the period should be bigger, causing a smoother shape

that appears not following the lidar graph. In Figure 5.5(b) is showing the shape of the

graph when the period is 0.116 seconds, how ever the shape of the estimated value is

noisy due to a big values of the elements of the process covariance matrix, near to 1.

The noise increases when the difference between both input signals diverge. In Figure

5.5(c) is observed a graph with less noise using a process noise with diagonal elements

equals to 0.25, which is a value obtained with trial and error. There are many methods

based on the work [77], but this process of estimation is left as a future work.

Depth obtained from ZED is noisier compared with the signal from 1D-LiDAR,

so the covariance from ZED is bigger than covariance from 1D-LiDAR. Observe the

effects of having a smaller 1D-LiDAR covariance than the disparity map coming from

the stereo camera rig. At this point, the advantage of using disparity map instead of

only 1D-LiDAR is that with the help of disparity map we can provide to the system

information regarding visual perception. Also, we can extend the covered area of the

potential obstacle; the 1D-LiDAR is used only to provide more precision to our esti-

mation of free-obstacle area. The Figure 5.5 (b) and (c) shows a peak caused by the

computation of depth from stereo camera does not largely affect the filter response.

63



90 100 110 120 130 140 150 160 170

0.5

1.0

1.5

2.0

2.5

/lidar/z
/sf_filter/z0/value

/stereo_depth_point/z

(a)

(b)

50 60 70 80 90

1

2

3

4

5

6
/lidar/z
/sf_filter/z0/value

/stereo_depth_point/z

(c)

Figure 5.5: Blue line represents the output of disparity, red line corresponds the output
of 1D-LiDAR and cyan line shows the output from Kalman filter.

64



CHAPTER 6

Conclusions

This work presents a low-cost implementation to estimate a free navigation area in

front of a quadrotor that is interpreted as a free-obstacle navigation area. For that aim,

it is proposed a Kalman-filter-based algorithm that uses information from a stereo cam-

era rig and a 1D-LiDAR. The results show that the estimation of free obstacle areas

are considerably ameliorated with this approach since: a) using only a 1D-LiDAR the

quadrotor cannot have any visual perception of their environment; and b) using only

disparity maps conducts to a noise response. Then, mixing these sensors in an appro-

priate Kalman Filter together with WLS filter results in more trustworthy depth map

for obstacle navigation inside a depth window, which is a predefined area depending on

the size of the drone in which this can navigate freely.

The implementation of the WLS filter greatly removes noise of the depth measuring,

as we can see from Figure 5.5, where it is shown that the depth map does not have any

big peaks or NaN values. However, the distance becomes more imprecise when the

65



distance increases and shows small peaks that represents the increase of a pixel in the

disparity map. This is caused by the small distance between the pixel where is an object

in the left image and the right image. So, while more depth, minus disparity and more

noise. In this case the distance sensor does not suffer that problem. The graphs showed

that the estimated measurement approaches to the laser sensor due to its variance was

smaller than the depth map. In this way, we can compute with more precision the depth

inside the depth window where is safe for the quadrotor to pass through.

There are some areas of improvement and points that cannot be finished due to

time restrictions, the most important of them is the experimental implementation of the

proposed obstacle avoidance approach working together with a navigation algorithm in

real environments. Regarding computing time, the implementation of our algorithm in

GPU instead of only CPU would increase the obstacle detection rate.

66



Bibliography

[1] A. Zhahir, A. Razali, and M. R. M. Ajir, “Current development of

UAV sense and avoid system,” IOP Conference Series: Materials Science

and Engineering, vol. 152, p. 012035, oct 2016. [Online]. Available:

https://doi.org/10.1088%2F1757-899x%2F152%2F1%2F012035

[2] B. N. Chand, P. Mahalakshmi, and V. P. S. Naidu, “Sense and avoid technology

in unmanned aerial vehicles: A review,” in 2017 International Conference on

Electrical, Electronics, Communication, Computer, and Optimization Techniques

(ICEECCOT), Dec 2017, pp. 512–517.

[3] G. Fasano, D. Accado, A. Moccia, and D. Moroney, “Sense and avoid for un-

manned aircraft systems,” IEEE Aerospace and Electronic Systems Magazine,

vol. 31, no. 11, pp. 82–110, November 2016.

[4] S. Hottman, K. Hansen, and M. Berry, “Literature review on detect, sense, and

avoid technology for unmanned aircraft systems,” 01 2009.

[5] A. D. Zeitlin, “Performance tradeoffs and the development of standards,” 2012.

67

https://doi.org/10.1088%2F1757-899x%2F152%2F1%2F012035


[6] T. B. Billingsley, M. J. Kochenderfer, and J. P. Chryssanthacopoulos, “Collision

avoidance for general aviation,” IEEE Aerospace and Electronic Systems Maga-

zine, vol. 27, no. 7, pp. 4–12, July 2012.

[7] E. Valovage, “Enhanced ads-b research,” Aerospace and Electronic Systems Mag-

azine, IEEE, vol. 22, pp. 35 – 38, 06 2007.

[8] “Distance measuring sensors.” [Online]. Available: http://www.sharp-world.com/

products/device/lineup/selection/opto/haca/diagram.html

[9] “Ultrasonic sensors.” [Online]. Available: https://www.sick.com/ag/en/

distance-sensors/ultrasonic-sensors/c/g185671

[10] “Lidar rangefinders.” [Online]. Available: https://lightware.co.za/collections/

lidar-rangefinders

[11] D. Falanga, S. Kim, and D. Scaramuzza, “How fast is too fast? the role of per-

ception latency in high-speed sense and avoid,” IEEE Robotics and Automation

Letters, vol. 4, no. 2, pp. 1884–1891, April 2019.

[12] “Arducam.” [Online]. Available: https://www.arducam.com/

[13] “Echoflight airborne radar.” [Online]. Available: https://echodyne.com/products/

echoflight/

[14] “2d lidar sensors tim5xx / outdoor.” [Online].

Available: https://www.sick.com/mx/en/detection-and-ranging-solutions/

2d-lidar-sensors/tim5xx/tim561-2050101/p/p369446

[15] “Single-chip 76-ghz to 81-ghz automotive radar sensor integrating mcu and

hardware accelerator.” [Online]. Available: http://www.ti.com/product/AWR1443

[16] “The dynamic vision sensor.” [Online]. Available: https://inivation.com/dvs/

68

http://www.sharp-world.com/products/device/lineup/selection/opto/haca/diagram.html
http://www.sharp-world.com/products/device/lineup/selection/opto/haca/diagram.html
https://www.sick.com/ag/en/distance-sensors/ultrasonic-sensors/c/g185671
https://www.sick.com/ag/en/distance-sensors/ultrasonic-sensors/c/g185671
https://lightware.co.za/collections/lidar-rangefinders
https://lightware.co.za/collections/lidar-rangefinders
https://www.arducam.com/
https://echodyne.com/products/echoflight/
https://echodyne.com/products/echoflight/
https://www.sick.com/mx/en/detection-and-ranging-solutions/2d-lidar-sensors/tim5xx/tim561-2050101/p/p369446
https://www.sick.com/mx/en/detection-and-ranging-solutions/2d-lidar-sensors/tim5xx/tim561-2050101/p/p369446
http://www.ti.com/product/AWR1443
https://inivation.com/dvs/


[17] “Blasterx senz3d.” [Online]. Available: https://us.creative.com/p/web-cameras/

blasterx-senz3d

[18] “The camera that senses space and motion.” [Online]. Available: https:

//www.stereolabs.com/zed/

[19] “Intel realsense depth camera d435.” [Online]. Available: https://www.

intelrealsense.com/depth-camera-d435/

[20] “Middlebury stereo evaluation - version 2.” [Online]. Available: http:

//vision.middlebury.edu/stereo/eval/

[21] “Middlebury stereo evaluation - version 3.” [Online]. Available: http:

//vision.middlebury.edu/stereo/eval3/

[22] D. Scharstein, R. Szeliski, and R. Zabih, “A taxonomy and evaluation of dense

two-frame stereo correspondence algorithms,” in Proceedings IEEE Workshop on

Stereo and Multi-Baseline Vision (SMBV 2001), Dec 2001, pp. 131–140.

[23] L. Li, S. Zhang, X. Yu, and L. Zhang, “Pmsc: Patchmatch-based superpixel cut for

accurate stereo matching,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 28, no. 3, pp. 679–692, March 2018.

[24] H. Hirschmuller, “Stereo processing by semiglobal matching and mutual informa-

tion,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30,

no. 2, pp. 328–341, Feb 2008.

[25] J. A. Jackson, J. D. Boskovic, and D. Diel, “Sensor fusion for sense and avoid for

small uas without ads-b,” 2015 International Conference on Unmanned Aircraft

Systems (ICUAS), pp. 784–793, 2015.

69

https://us.creative.com/p/web-cameras/blasterx-senz3d
https://us.creative.com/p/web-cameras/blasterx-senz3d
https://www.stereolabs.com/zed/
https://www.stereolabs.com/zed/
https://www.intelrealsense.com/depth-camera-d435/
https://www.intelrealsense.com/depth-camera-d435/
http://vision.middlebury.edu/stereo/eval/
http://vision.middlebury.edu/stereo/eval/
http://vision.middlebury.edu/stereo/eval3/
http://vision.middlebury.edu/stereo/eval3/


[26] S. Ramasamy and R. Sabatini, “A unified approach to cooperative and non-

cooperative sense-and-avoid,” in 2015 International Conference on Unmanned

Aircraft Systems (ICUAS), June 2015, pp. 765–773.

[27] K. Rahul Sharma, D. Honc, and F. Duek, “Sensor fusion for prediction of ori-

entation and position from obstacle using multiple ir sensors an approach based

on kalman filter,” in 2014 International Conference on Applied Electronics, Sep.

2014, pp. 263–266.

[28] K. Park, S. Kim, and K. Sohn, “High-precision depth estimation with the 3d li-

dar and stereo fusion,” in 2018 IEEE International Conference on Robotics and

Automation (ICRA). IEEE, 2018, pp. 2156–2163.

[29] G. Fasano, D. Accardo, A. E. Tirri, A. Moccia, and E. D. Lellis, “Radar/electro-

optical data fusion for non-cooperative uas sense and avoid,” Aerospace

Science and Technology, vol. 46, pp. 436 – 450, 2015. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S1270963815002540

[30] J. Kim and Y. K. Kwag, “Multi-sensor fusion based target detection using eo/ sar,”

in EUSAR 2014; 10th European Conference on Synthetic Aperture Radar, June

2014, pp. 1–2.

[31] S. A. Rethnaraj Rambabu, Muhammad Rijaluddin Bahiki, “Multi-sensor fusion

based uav collision avoidance system,” Jurnal Teknologi, vol. 76, no. 8, p. 89,

2015. [Online]. Available: http://dx.doi.org/10.11113/jt.v76.5630

[32] H.-R. Song, W. sub Choi, and H. dong Kim, “Depth-aided robust localization ap-

proach for relative navigation using RGB-depth camera and lidar sensor,” in The

2014 International Conference on Control, Automation and Information Sciences

(ICCAIS 2014), Dec 2014, pp. 105–110.

70

http://www.sciencedirect.com/science/article/pii/S1270963815002540
http://dx.doi.org/10.11113/jt.v76.5630


[33] H. R. Roopa, P. Parimala, and J. R. Raol, “Image sensor data fusion using factor-

ized kalman filter,” in 2016 IEEE International Conference on Recent Trends in

Electronics, Information Communication Technology (RTEICT), May 2016, pp.

1217–1220.

[34] G. Fasano, D. Accado, A. Moccia, and D. Moroney, “Sense and avoid for un-

manned aircraft systems,” IEEE Aerospace and Electronic Systems Magazine,

vol. 31, no. 11, pp. 82–110, November 2016.

[35] J. J. Ruz, O. Arevalo, G. Pajares, and J. M. de la Cruz, “Decision making among

alternative routes for uavs in dynamic environments,” in 2007 IEEE Conference

on Emerging Technologies and Factory Automation (EFTA 2007), Sep. 2007, pp.

997–1004.

[36] B. Vanek, T. Pni, P. Bauer, and J. Bokor, “Vision only sense and avoid: A prob-

abilistic approach,” in 2014 American Control Conference, June 2014, pp. 1204–

1209.

[37] A. Strobel and M. Schwarzbach, “Cooperative sense and avoid: Implementation

in simulation and real world for small unmanned aerial vehicles,” in 2014 In-

ternational Conference on Unmanned Aircraft Systems (ICUAS), May 2014, pp.

1253–1258.

[38] A. Zarandy, T. Zsedrovits, B. Pencz, M. Nameth, and B. Vanek, “A novel al-

gorithm for distant aircraft detection,” in 2015 International Conference on Un-

manned Aircraft Systems (ICUAS), June 2015, pp. 774–783.

[39] A. Stanoev, N. Audinet, S. Tancock, and N. Dahnoun, “Real-time stereo vision for

collision detection on autonomous uavs,” in 2017 IEEE International Conference

on Imaging Systems and Techniques (IST), Oct 2017, pp. 1–6.

71



[40] R. Labayrade, D. Aubert, and J. . Tarel, “Real time obstacle detection in stereovi-

sion on non flat road geometry through ”v-disparity” representation,” in Intelligent

Vehicle Symposium, 2002. IEEE, vol. 2, June 2002, pp. 646–651 vol.2.

[41] B. T. Lopez and J. P. How, “Aggressive 3-d collision avoidance for high-speed

navigation,” in 2017 IEEE International Conference on Robotics and Automation

(ICRA), May 2017, pp. 5759–5765.

[42] M. S. Aman, M. A. Mahmud, H. Jiang, A. Abdelgawad, and K. Yelamarthi, “A

sensor fusion methodology for obstacle avoidance robot,” in 2016 IEEE Inter-

national Conference on Electro Information Technology (EIT), May 2016, pp.

0458–0463.

[43] M. ki, J. cha, and H. Lyu, “Detect and avoid system based on multi sensor fusion

for uav,” in 2018 International Conference on Information and Communication

Technology Convergence (ICTC), Oct 2018, pp. 1107–1109.

[44] Y. Zuqiang, F. Zhou, and L. Ping, “A bio-inspired collision-free 4d trajectory

generation method for unmanned aerial vehicles based on tau theory,” in 2015

34th Chinese Control Conference (CCC), July 2015, pp. 6961–6968.

[45] A. L. Smith, “Uas collision avoidance algorithm that minimizes the impact on

route surveillance,” 01 2009.

[46] N. E. Smith, R. Cobb, S. Pierce, and V. Raska, Optimal Collision Avoidance

Trajectories for Unmanned/Remotely Piloted Aircraft. [Online]. Available:

https://arc.aiaa.org/doi/abs/10.2514/6.2013-4619

[47] E. J. Forsmo, E. I. Grøtli, T. I. Fossen, and T. A. Johansen, “Optimal search mis-

sion with unmanned aerial vehicles using mixed integer linear programming,” in

72

https://arc.aiaa.org/doi/abs/10.2514/6.2013-4619


2013 International conference on unmanned aircraft systems (ICUAS). IEEE,

2013, pp. 253–259.

[48] C. Lpez-Franco, J. Zepeda, N. Arana-Daniel, and L. Lpez-Franco, “Obstacle

avoidance using pso,” in 2012 9th International Conference on Electrical En-

gineering, Computing Science and Automatic Control (CCE), Sep. 2012, pp. 1–6.

[49] F. Rehmatullah and J. Kelly, “Vision-based collision avoidance for personal aerial

vehicles using dynamic potential fields,” in 2015 12th Conference on Computer

and Robot Vision, June 2015, pp. 297–304.

[50] B. Du and S. Liu, “A common obstacle avoidance module based on fuzzy algo-

rithm for unmanned aerial vehicle,” 06 2016, pp. 245–248.

[51] C. Fu, M. A. Olivares-Mendez, R. Suarez-Fernandez, and P. Campoy,

“Monocular visual-inertial slam-based collision avoidance strategy for fail-

safe uav using fuzzy logic controllers,” Journal of Intelligent & Robotic

Systems, vol. 73, no. 1, pp. 513–533, Jan 2014. [Online]. Available:

https://doi.org/10.1007/s10846-013-9918-3

[52] T. W. Liao, “Uav collision avoidance using a* algorithm,” 2012.

[53] R. Austin, Introduction to Unmanned Aircraft Systems (UAS), 04 2010, pp. 1–15.

[54] R. Beard and T. McLain, “Small unmanned aircraft: Theory and practice,” Small

Unmanned Aircraft: Theory and Practice, 02 2012.

[55] “Connect escs and motors.” [Online]. Available: http://ardupilot.org/copter/docs/

connect-escs-and-motors.html

[56] A. Z. Richard Hartley, Multiple View Geometry in Computer Vision. Cambridge

University Press, 2003.

73

https://doi.org/10.1007/s10846-013-9918-3
http://ardupilot.org/copter/docs/connect-escs-and-motors.html
http://ardupilot.org/copter/docs/connect-escs-and-motors.html


[57] A. Kaehler and G. Bradski, Learning OpenCV 3: Computer Vision in C++ with

the OpenCV Library, 1st ed. O’Reilly Media, Inc., 2016.

[58] R. J. Radke, Computer Vision for Visual Effects. Cambridge University Press,

2012.

[59] S. Birchfield and C. Tomasi, “A pixel dissimilarity measure that is insensitive to

image sampling,” IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, vol. 20, no. 4, pp. 401–406, April 1998.

[60] R. E. Kalman, “A new approach to linear filtering and prediction problems,”

ASME Journal of Basic Engineering, 1960.

[61] R. Faragher, “Understanding the basis of the kalman filter via a simple and intu-

itive derivation,” IEEE SIGNAL PROCESSING MAGAZINE, 2012.

[62] G. Welch and G. Bishop, “An introduction to the kalman filter,” Chapel Hill, NC,

USA, Tech. Rep., 1995.

[63] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent Robotics

and Autonomous Agents). The MIT Press, 2005.

[64] L. J. D. L. Yoonseok Pyo, Hancheol Cho, ROS Robot Programming (English).

ROBOTIS, 12 2017.

[65] “Sf20/c (100 m).” [Online]. Available: https://lightware.co.za/products/

sf20-c-100-m

[66] “Jetpack.” [Online]. Available: https://developer.nvidia.com/embedded/jetpack

[67] “Technical specifications.” [Online]. Available: https://developer.nvidia.com/

embedded/develop/hardware

74

https://lightware.co.za/products/sf20-c-100-m
https://lightware.co.za/products/sf20-c-100-m
https://developer.nvidia.com/embedded/jetpack
https://developer.nvidia.com/embedded/develop/hardware
https://developer.nvidia.com/embedded/develop/hardware


[68] “Harness ai at the edge with the jetson tx2 developer kit.” [Online]. Available:

hhttps://developer.nvidia.com/embedded/jetson-tx2-developer-kit

[69] K. Konolige, “Small vision systems: Hardware and implementation,” in Robotics

Research, Y. Shirai and S. Hirose, Eds. London: Springer London, 1998, pp.

203–212.

[70] “cv::stereosgbm class reference.” [Online]. Available:

https://docs.opencv.org/3.4.3/d2/d85/classcv 1 1StereoSGBM.html#

a6b4a2763384ad5c6746189be22b56130a0f746667febe92e1189e924c40752660

[71] “Ros driver for personal project.” [Online]. Available: https://github.com/r3n33/

lidar-lite-ros-scanner-driver

[72] H. Pishro-Nik, Introduction to Probability, Statistics, and Random Processes.

Kappa Research, LLC, 2014.

[73] “Stereo correspondance algorithms.” [Online]. Available: https://docs.opencv.

org/3.4.2/d1/d9f/classcv 1 1stereo 1 1StereoBinarySGBM.html

[74] “Disparitywlsfilter class reference.” [Online]. Available: https://docs.opencv.org/

3.3.1/d9/d51/classcv 1 1ximgproc 1 1DisparityWLSFilter.html#details

[75] D. Ratasich, B. Frmel, O. Hftberger, and R. Grosu, “Generic sensor fusion pack-

age for ros,” in 2015 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), Sep. 2015, pp. 286–291.

[76] J. L. Devore, Probability and Statistics for Engineering and the Sciences.

Brooks/Cole Publishing Co., 2012.

[77] J. P. Valappil and C. Georgakis, “Systematic estimation of state noise statistics for

extended kalman filters,” 2000.

75

hhttps://developer.nvidia.com/embedded/jetson-tx2-developer-kit
https://docs.opencv.org/3.4.3/d2/d85/classcv_1_1StereoSGBM.html#a6b4a2763384ad5c6746189be22b56130a0f746667febe92e1189e924c40752660
https://docs.opencv.org/3.4.3/d2/d85/classcv_1_1StereoSGBM.html#a6b4a2763384ad5c6746189be22b56130a0f746667febe92e1189e924c40752660
https://github.com/r3n33/lidar-lite-ros-scanner-driver
https://github.com/r3n33/lidar-lite-ros-scanner-driver
https://docs.opencv.org/3.4.2/d1/d9f/classcv_1_1stereo_1_1StereoBinarySGBM.html
https://docs.opencv.org/3.4.2/d1/d9f/classcv_1_1stereo_1_1StereoBinarySGBM.html
https://docs.opencv.org/3.3.1/d9/d51/classcv_1_1ximgproc_1_1DisparityWLSFilter.html#details
https://docs.opencv.org/3.3.1/d9/d51/classcv_1_1ximgproc_1_1DisparityWLSFilter.html#details

	Abstract
	Introduction
	Introduction
	Problem Statement

	State of the art
	Sense and Avoid systems

	Theory Fundamentals
	Quad-rotor model
	Reference frames
	Euler Angles
	Kinematics
	Dynamics

	Stereo Matching
	Epipolar geometry
	Stereo correspondence

	Kalman Filter
	Robotic Operating System

	Methodology
	System overview
	Platform setup
	Nvidia Jetson TX2
	OpenCV
	Stereo camera
	Stereo Correspondence

	1D-LiDAR
	Kalman Filter
	Depth map estimation
	Obstacle detection

	Experiments
	ROS
	Variance measurement
	Depth map ameliorate
	Obstacle detection
	Fusion Sensor

	Conclusions

