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Preface

At the beginning of this research, the main objective of this work was to
investigate some promising new techniques in interferometry. As usual in research, new
areas of interest appeared in the process. One of these new focus of interest was the
development of a method to measure the power of lenses using interferometric -

procedures.

Different interferometric methods were explored, mainly lateral shearing
interferometry and Talbot autoimaging using a Ronchi ruling. At the end, the seéond
method was selected. Chapter 1 makes a brief review of some of the main
interferometric systems described in Chapter 2. A moiré techniques is used to measure

the fringe period, which permits us to calculate the lens power.

The basic measurement of the fringe period can in principle be performed
by any of many different methods. The moiré method is the simplest. However in the
research process a digital fringe measurement was considered. At this stage a new
phase detection method was ‘implemented. This method is described with detail in
chapter 4, with a brief introduction to interferogram analysis and phase detection in

chapter 3.

Then, in an effort to find new phase detecting methods, a new graphical
representation of sampling function was found. This representation is described in

chapter 5.



Finally, applications of the final method were looked for. One of the most
interesting applications is the measurement of the power of ophthalmic lenses.
Nevertheless, these lenses may have several different power distributions, besides the
lenses with rotational symmetry, also called sﬁherical. One of these lenses are the ones
used to correct the axial astigmatism in the human eye. Here, a new problem was -
found, namely that many different types of lens surfaces may correct astigmatism. It is
only necessary that the curvatures be different along two perpendicular diameters. A

complete study of these surfaces was carried out and described in chapter 6.

Future plans for research include the measurement and characterization
of ophthalmic progressive lenses. Another project for the future is to measure the
fringes with better digital phase detecting technique immune to harmonics, which was

our main problem.



CHAPTER 1

Interferometric and Moiré Principles
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1.1 Interferometers

Interferometry is the science that studies interference. Interference
takes place when two light waves that have been splitted by refraction, diffraction

or reflection, are superimposed.

Interferometers are instruments used to take very precise
measurements. In metrology, interferometers are the most useful tools to measure
lengths, angles, etc. We have used these in our work to determine the power of
lenses, as will be described in this thesis.

As jlist pointed out, two wave interferometers produce an

interferogram by superimposing two wavefronts, derived from the same light -

source. One of the wavefronts is a flat reference wavefront and the other is a
wavefront with the information to be measured.

Let us consider an interferogram with a flat wavefront, which has a
positive tilt about the y axis and a wavefront under test that may have
deformations with respect to a flat, given by W(x, ). This tilt is positive when the
wavefront is as shown in Fig. 1.1, The amplitude in the observing plane, where
the two wavefronts interfere is the sum of the amplitudes of the two waves as
follows

E(x, y) = A, exp ikW(x, y) + A, exp i(kx sin )
(1.1)

hence the irradiance is



E(x, YE, (x, y) = Al + A} + 24,4, cos Kx sin 6 - W(x, )]
' | (1.2)

where the symbol * denotes the complex conjugate of the electric field. Here, an
optional tilt © about the y axis between the two wavefronts has been introduced.
The irradiance function I(x, y) may then be written as

Ix,y) =1, + I, + 2 \JI. I cos klx sin 6, - W(x, y)]
(1.3)

and it is graphically shown in Fig. 1.2.
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Figure 1.1.- Two wavefronts forming an interferogram.






and the minimum value of the irradiance by
L.y =@ -4y =1 +1, - 2.1,
Then, the fringe visibility /(x, y) as defined by Michelson is

_ Imax(x’ y) - Imin(x’ y)
D ey v Lm )

hence, we may find

Hence, using the fringe visibility Eq. (1.3) is sometimes also written as

Ix, y) = I(x, y)(l + Vx, y) cos k[x sin 0 - W(x, y)])

(1.6)

(1.7)

(18)

(1.9)

where I(x, ) is the irradiance for a fringe free field, when the two beams are

~incoherent to each other.

1.2 Some Typical Interferometers

There are several basic interferometric configurations used in
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metrology for optical testing, but almost all of them are two wavefront systems.
Both wavefronts come from a single light source, separated by amplitude division.
Most modern interferometers use a gas laser as the light source. The main
advantage of using a laser as the source of light is that fringe patterns may be
easily obtained, without any coherence problems. In fact, this advantage is also
a serious disadvantage, since spurious diffraction patterns and'secondary fringe
patterns are also easily obtained. Spatial precautions must be taken into account
to have a clean interference pattern. More detail about these systems may be
found in many books, for example, by Malacara (1992).

1.2.1 Twyman-Green Interferometer

The Twyman-Green interferometer was invented by F. Twyman and
A. Green (1916). The basic configuration of the Twyman-Green interferometer,
illustrated in Fig. 1.3, is a modification of the well known Michelson
interferometer.

REFERENCE
MIRROR
SURFACE
UNDER
i COLLIMATOR BEAM TEST
; MICROSCOPE SPLITTER
| OBJECTIVE 4
Ime—m: LASER : -
}
OBSERVATION
PLANE

Figure 1.3.- Basic configuration in a Twyman-Green interferometer.
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The fringes in a Twyman-Green interferometer are of the equal
thickness type. The light from the laser is expanded and collimated by means of
a telescopic system. This telescope is usually formed with a microscope objective
and a collimator. The quality of the wavefront produced by this telescope does not
need to be extremely high, because its deformations will appear on both
interfering wavefronts, without producing any fringe deviations.

If the beam splitter is non absorbing, the main interference pattern
is complementary to the returning one to the source, because of the conservation
of energy principle, even though the optical path difference is the same for both
patterns. Phase shifts upon reflection on dielectric interfaces may explain this
complementarity. The beam splitter must be of high quality, not only its surfaces,
but also its material.

Many different optical elements may be tested using a Twyman-
Green interferometer, as described by Malacara (1992). For example, a concave
spherical surface may be tested as in Fig. 1.4.

Figure 1.4.- Spherical concave mirror tested with twyman-Green interferometer.



1.2.2 Fizeau Interferometers

This is another two beam interferometer, with equal thickness
fringes. Its basic configuration is illustrated in Fig. 1.5. We will not describe in
detail this instrument because it is out of the purpose of this thesis.

Figure 1.5.- Basic Fizeau interferometer configuration.
1.2.3 Lateral Shearing Interferometers

A lateral shearing interferometer produces the interferogram by the
interference of the wavefront with itself. In this interferometer a wavefront is
splitted into two, as in Fig. 1.6. We then see that the optical path between these



two wavefront is given by

OPD(x, y) = W(x, y) - W(x-S, )

(1.10)

whi.ch may be approximated (if the lateral shear S is small compared with the

wavefront diameter) by

(1.11)

oW(x '
OPD(x, y) = X, Y) ¢
ox
Parallel or slightly
wedged plate
///
Spatial
filter
/ /,
He—Ne /s /,
Laser
7,
Microscope //
objetive Lens under 4
test

Lateral shear —=

e

Laterally sheared
wavefronts

Figure 1.6.- Schematic diagram illustrating the original and the sheared wavefront.
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If the wavefront is spherical, with a radius of curvature », we may write

2 2

M, y) = =2
2r
(1.12)
hence the optical path difference becomes
OPD@, y) = 23
r
(1.13)

Thus, this is an instrument that may be used for measuring the power
of ophthalmic lenses, which is one of our objetives in this thesis.

We see that with an spherical wavefront straight and parallel fringes
are obtained, as in Fig. 1.7. The spatial frequency for the fringes is thus given by

_ 0 OPD(x, y) _ S
ox r

S
(1.14)

The radius of curvature of the wavefront can be thus measured with
this interferometer by measuring the spatial frequency of the fringes.
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Figure 1.7.- Interferogram produced by the lateral shearing interferometer.

We explored the possibility of using this interferometer for our
purpose. The main atractive characteristic is the perfect sinusoidal profile of the
fringes and their high contrast.

However, two important problems were found. One is that either the
interferometer configuration is complicated and a laser source has to be used. A
second more important problem is that only wavefronts with a relative large radius
of curvature could be measured. In view of these disadvantages, another
alternative method using a Ronchi ruling, was adopted.
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1.3 Moiré Fringes

Moiré effect is an important method in metrologic procedures. This
is specially useful when the spatial period of interferometric fringes has to be
measured. We used moiré in our project. In this section, we will briefly describe
it. |

Figure 1.8 represents in a simple manner the nature of the moiré
effect, with the superposition of two linear gratings. These two fuljngs have the
same spatial frequency, but there is a small angle between them. As a result, we
see a fringe pattern of much lower frequency than the individual gratings. This is
- an example of the moiré effect. The resulting fringes are called moiré fringes or -
moiré pattern. Figures 1.8 and 1.9 are examples of the same effect. The
mathematical description of moiré patterns resulting from superposition of
sinusoidal gratings is similar to that for the interference patterns formed by
wavefronts. The moiré effect is sometimes called mechanical interference. The
main difference lies in the wavelength which is effectively different by a factor of
about 10? and greater.

The moiré effect can be observed in our everyday surroundings, for
example in folded fine-meshed curtains, rails on each side of a bridge or a
staircase, nettings, etc. On the TV screen it is quite frequent to observe moiré
effects.
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Figure 1.9.- Moiré effect produced by the superposition of two circular gratings.
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Figure 1.10.- Moir¢ effect produced by the superposition of a linear grating and a circular one.

Frequently, gratings used in moiré procedures are transparencies with
transmittances given by a square-wave function. However, for simplicity, instead
of square-wave functions, we describe linear gratings by sinusoidal transmittances
bearing in mind that all types of periodic gratings can be described as a sum of
sinusoidal gratings. A sinusoidal grating of constant frequency is then, given by

t(x, y) = a + a cos —2—nx
p
(1.15)

where p is the grating period and 0 < a < 2. The grating given by Equation (1.1 5)

can be expressed as
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L(x, ¥) = a + a cos 21:(-; + 1|J(x))
(1.16)

where (x) is equal to the displacement u(x) of the grating lines from its original
position divided by the grating period

(1.17)

We will study moiré fringes with more detail in Chapter 2.

1.4 Talbot Interferometry

The principle of Talbot interferometry was developed almost
simultaneously and independently by Yokozeki and Suzuki (1971) and by
Lobmann and Silva (1972). It is important to notice that ten years later a similar
technique was described by Kafri with the name of moiré deflectometry. A
diffraction and inteference approach is used to interpret Talbot interferometry, as
developed by Yokoseki and Susuki. On the other hand, Kafri used a geometrical
shadow approach based on ray optics, to interpret moiré deflectometry. The first
approach is more universal, taking into consideration various effects involved. The -
two apparently similar systems are so similar, that Patorski (1986) proved that
they are really the same, with two different interpretations. There is only one non
substantial difference pointed out by Keren and Kafri (1986) and several other
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authors. In one of the methods the phase object is placed in front of the first
grating, while in the other is placed behind it. The origin of Talbot interferometry
as well as of moiré deflectometry can be found in a paper by Oster et al.(1964).
This difference between the two methods finds its equivalent in the two
interpretations, physical and geometrical of the well known Ronchi test (Cornejo,
1992).

The principle of Talbot interferometry, or moiré deflectometry is
illustrated in Fig. 1.11, where a coherent collimated beam with a plane wavefront
illuminates a Ronchi ruling G, with a few lines per inch. The autoimaging
phenomenon form many of these autoimages at periodic distances from the ruling,
behind it, as well as in front of it. These autoimages may be detected using moiré
fringes. Then, a second Ronchi ruling G, identical to the first ruling is placed in
one of the autoimage planes of the first ruling G,. Any distortion in the ideally flat
illuminating light beam produce distortions in the fringes in the the autoimages.
The fringes produced by autoimaging are mathematically equivalent to the
interference fringes obtained in a lateral shear interferometer or in the Ronchi test.
As it is well known in the theory of the Ronchi test as well as in the theory of
lateral shearing interferometers, the deformation of the autoimage fringes is
directly proportional to the slope or first derivative of the wavefront phase
deformation, in the direction perpendicular to Ronchi ruling lines.

These fringe deformations may be visually observed if the
deformations are large enough. If they are relatively small, more sophisticated
detection methods must be employed to detect and measure these fringe
deformations. One possible approach is by digitizing the autoimage and then using
digital fringe phase detection procedures. Another alternative is the use of moiré
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Figure 1.11.- Optical setup of the Talbot interferometer.

When there are no wavefront deformations, the light beam is
perfectly collimated, and the lines of both Ronchi rulings are parallel to each
other, the fringe field is uniform, without any moiré fringes. We will show later
that if either the Ronchi ruling is rotated, or the illuminating light beam is not
collimated, or both, moiré fringes will appear. ‘

The experimental arrangement to perform Talbot interferometry may
be seen in Fig. 1.11. A well collimated light beam with an ideally flat wavefront
illuminates the Ronchi ruling. The sensitivity of the method may be adjusted by
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changing the separation distance between the object and the autoimage, that is, the
observation plane. To avoid large diffraction effects, the period of the Ronchi
ruling must be relatively low.

Figure 1.12.- Modified configuration of the Talbot interferometer with increased shear.
Talbot interferometry can be used in an extremely large number of
possible applications. In this thesis we will present one of them, for measuring the

power of ophthalmic lenses.

This method, if desired may be used with only two beams, instead
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of multiple beains, to reduce the diffraction effects, as described by Silva (1972),
Keren et al.(1985) and Patorski(1985, 1986). In the first two articles the
two-beam interference was performed by means of a spatial filtering method and |
an additional beam-splitter Ronchi ruling. Patorski use the basic Talbot
interferometer system shown in Fig. 1.11. Two-beam interference patterns formed
by the diffraction order pairs 0, + 1 and 0, -1 were made different from each other
by rotating the first Ronchi ruling about the axis parallel or perpendicular to its
lines. In this way spatial frequency or orientation of the two interferograms differ
and proper tuning of the detecting Ronchi ruling permits independent observing
either one of the two interference patterns. Figure 1.12 shows schematically one
of these configurations. When the object is placed in front of the first Ronchi
ruling a change in shear value over the observation plane is encountered. This
disadvantage is absent when the object is between the Ronchi rulings. This is a
small difference between Talbot interferometry and moiré deflectometry.

Talbot interferometry using linear diffraction Ronchi rulings gives
information about the slope (derivative) along the direction perpendicular to the
lines of the beam-splitter Ronchi ruling. The radial derivative can be obtained by
using circular Ronchi rulings. Evolvent Ronchi rulings, as proposed by
Szwaykowski (1988), can give radial as well as azimuthal slopes.

Figure 1.13 shows the experimental results obtained by
Patorzki(1989) with a Talbot interferometer with an acousto-optic cell serving as
the object under test. The temperature gradients near the piezoelectric transducer
are easily detected.
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Figure 1.13.- Experimental results obtained in the Talbot interferometer when testing
temperature gradients in an acoustic-optic cell. (From Krzysztof Patorski).

Several the modifications to the Talbot interferometer to improve its
performance use many modern devices. For example, an electronic video
superposition technique, the use of computer-generated detection Ronchi ruling,

and modern methods of moiré analysis.

Many applications of Talbot interferometry have been proposed: As
examples, we can mention beam collimation testing, testing and focal length,
measurement of optical elements, optical alignment, and analysis of vibrating

objects.
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Talbot interferometry is a multiple-beam interference system. All
diffraction orders produce by the Ronchi ruling interfere together. Only in the

special case of a Ronchi ruling with a sinusoidal amplitude transmittance only
three diffraction orders are present.
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CHAPTER 2

Measuring the Curvature of Spherical Wavefronts
- with Talbot Interferometry
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2.1 Introduction

If a flat wavefront illuminates a lens and we measure the curvature
of the refracted wavefront, the focal length of this lens may be determined.
Different alternatives to measure the convergence or divergence power of a
wavefront using fringes projected by a Ronchi ruling, placed in contact with the
lens are described. The Talbot autoimaging phenomenon is used to optimize the
contrast of the projected fringes as much as possible. The different manners in
which the fringes may be formed as well as the different manners in which this
fringes may be analyzed and its spatial frequency measured, are described using
Talbot interferometry, with a second ruling on the plane of observation. The two
rulings have a small angle between them. The curvature of the wavefront
illuminating the rulings is measured by the inclination of the moiré fringes formed
by the two ruling. Using the method described here, an instrument could be
constructed to measure the power of ophthalmic lenses.

An optical arrangement using projected fringes with a Ronchi ruling
is proposed to measure the degree of convergence or divergence of a wavefront,
or the power of lens. ‘A specific application is testing of ophthalmic lenses. This
system is based on the magnification of Rayleigh autoimages when the -
illuminating wavefront is convergent or divergent. A collimated light beam enters
the lens to be measured and after the lens, the wavefront becomes convergent or
divergent. At an observing screen the magnified autoimage of the ruling is
observed. This magnification permits us to measure the curvature of the refracted
wavefront. Since the observation distance is known, the lens vertex focal length
may be easily computed by measuring the spatial frequency of the projected fringe
pattern. Here, we propose to measure this fringe spatial frequency with the moiré
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fringes formed by the projected fringe pattern with a second ruling forming a small
angle with respect to the first ruling.

This idea, which forms the principle of the so called Talbot
interferometry is not new. The same basic arrangement with two parallel rulings
has been used by several authors to measure the degree of collimation of a nearly
collimated light beam, for example by Fouéré and Malacara (1974) and several
other authors. The power of a lens has been measured by Nakano and Murata
(1985), using Talbot interferometry, with two rulings with a small angle between
them. In this chapter we propose some practical improvements over this method,
as will be described.

OPHTHALMIC FIXED

LENS OBSERVING
PLANE
RULING
y/ :
~~~~~~~~ |
———————— -1
p |
L
1
| L || |
I I I
e ol

Figure 2.1.- Basic optical arrangement to measure the wavefront curvature.
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The basic system to measure the curvature of a wavefront or the lens
power is shown in Fig. 2.1. A Ronchi ruling is illuminated by a collimated beam
of light. The light, after being refracted in the lens, becomes convergent or
divergent, with its point of convergence at a distance / from the lens. If the ruling
is in contact with the back surface of the lens, this distance / is the back focal
length of the lens. Since the vertex power of a lens is defined as the inverse of its
back focal length, expressed in meters, we see that this vertex power P, is

1000

P =
oo

2.1)

where P, is expressed in diopters and the distance /, which is the lens back focal
length, is in millimeters. The magnification of the autoimages with convergent or
divergent light may be interpreted as a projected geometrical shadow. Then, if the
period of the Ronchi ruling is d, the period d; on the screen of the observed
periodic image is |

dy = d —— 2.2)

P =10ﬂ(1_§] ’ 2.3)
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We may see that the vertex power is a linear function of the
measured period of the fringes in the observing plane. The period of the fringes
in the observing screen is

dg
S-1- _
: 24

where o is the measuring sensitivity of the system, in millimeters per diopter, as
defined by

0‘ = - =
AP 1000 (2.5)

When the power of the lens is modified, the plane of the autoimage
shifts along the optical axis. Thus, the observing screen has to be shifted to
refocus the autoimage to avoid loosing fringe contrast, as pointed out by Nakano
and Murata (1985). An important difference, in our method is that here we
analyze the conditions under which the observing screen may be kept in a fixed
position, without loosing much fringe contrast. The measuring range over which
the power may be modified without a large variation in contrast, given a position
for the observing screen, is calculated. |
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2.2 Formation of Autoimages

It is well known that when a Ronchi ruling is illuminated with a beam
of collimated light the autoimages are formed at equal distance intervals separated
by a distance L, from the Ronchi ruling, called the Rayleigh distance. If the
wavefront is convergent or divergent we have the following expression for the
autoimage distance L, as explaineq by Patorski (1989).

i.:._A'__:M(l——.l) (2.6)

where M is any number, whose value determines the type of image being
observed, according to the following;

a) M =M, is an integer: autoimage locations.
b) Misaninteger +0.5= M, +0.5: contrast reversal positions
¢) Mis aninteger £0.25= M, +0.25:; . zero contrast

The distance ! is the distance from the Ronchi ruling to the point of
convergence (or divergence of the beam) and, d is the period of the ruling. This
expression has been plotted for a few integer values of A/ in Fig. 2.2. In this
expression L may be positive as well as negative. If L is negative, the observation
plane is mathematically placed behind the ruling and the image of the fringes is |
virtual.
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Figure 2.2.- Observing plane distance vs. distance from the ruling to the point of convergence
(or divergence) of the illuminating light beam, for different values of M.
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Figure 2.3.- Variation in the location of the autoimaging planes with the degree of convergence
or divergence of the illuminating light beam.



31

The location of the autoimages change with the degree of
convergence or divergence of the illuminating beam, as shown in Fig. 2.3. If we
keep the observing distance L fixed, while we vary the radius of curvature of the
wavefront, (dotted line) the image will not be a good autoimage for all wavefront
curvatures, since M does not have an integer value for all wavefront curvatures at
any fixed observing plane. If the illuminating beam increases its degree of
convergence with a fixed observing plane, the value of the number M also
increases at that observing plane. If the beam is made more divergent, the number
M decreases. Then, when the distance / changes, the variation AM in the value of
the integer number M at the observing plane should be within certain limits, so
that the fringe contrast remains acceptable. Thus, according to the minimum
allowed contrast, a maximum change in AM from a value M producing a high
contrast pattern is permitted, while changing the wavefront curvature.

The first decision we have to make is to select the number M, that
is, the autoimage plane number for the observing screen. Two different
possibilities from a practical point of view appear, either to use a relatively high
frequency ruling and form the detected autoimage with values of M greater than
or equal to 1, or to use a relatively low frequency ruling and form the detected
autoimage with the value A/ = 0. As we see from Eq. (2.4), the sensitivity to small -
curvature variations increases with the observation distance L. Thus, from this
point of view large values of M are desirable. However, as we will see later, high
value of M result in a decreased measurement range and may not result in
practical systems.

An alternative method of analysis to gain more insight into the nature
of this system is by plotting expression (2.6) in a different manner. Instead of
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plotting the location of the autoimage vs the focal length, here L is plotted against
the power of the lens. Let us rewrite this Eq. (2.6) as

1
L Lk P 2.7

1
M 1000

L
LR

We plot this expression as in Fig. 2.4. The value of the x coordinate
defines the power, that is, the degree of convergence or divergence of the
illuminating light beam. The axis is labeled in units of power equal to 1000/L
where L is in mm. In Fig. 2.5 we have plotted these curves for M = 0.9 and |
M=1.1. Here, we may clearly see the power measuring range.

Measuring
L range

-0.2 0.2

Figure 2.4.- Power versus L.
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Figure 2.5.- Measuring range with AM = +1.

a) If the coordinate x is equal to zero, the light beam is collimated
(zero power). In this case the ordinate y is equal to M. In other words, the value
of L is equal to M Lj. To say it in a different manner, when the coordinate x is
equal to zero, the light beam is collimated and the autoimaging planes are located
at integer multiple distances of the Rayleigh distance L.

b) If the coordinate x is infinite, the power is also infinite. Then, the

point of convergence is in the plane of the ruling.

¢) If the coordinate x is equal to -1/M, we are at the vertical
asymptote and hence the ordinate is infinite. We have a singularity, because the
autoimage that corresponds to this value of M is located at infinity.
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d) If the ‘coordinate x is greater than -1/M, the autoimage that
corresponds to this value of M is behind the ruling,. Hence, we have a virtual
image.

e) If the coordinate x is smaller than -1/, the autoimage that
corresponds to this value of M is in front of the ruling,. Hence, we have a real
image.

2.3 Fringe Observation

Let us first consider the case of a fringe pattern near the autoimage
with a positive integer value M,,,. We place a fixed observing plane at a distance
L slightly greater than or equal to an integer multiple of the Rayleigh distance Ly,
from the grating. When the light beam is collimated / is infinity and the autoimage
occurs exactly at an integer multiple of the Rayleigh distance. Nevertheless, the
observation plane is placed at a position slightly larger, corresponding to an A
value sightly greater than A, . If the light beam is made progressively more
convergent, the autoimage will move away for the observation plane, effectively
changing to value of M that is observed. The value of M is an integer only when
the illuminating light beam is nearly collimated, and the observed contrast is |
reduced for all other beams. The value of M increases until a maximum allowed
value of M, is reached. At this point, the autoimage is sufficiently removed to
the observing plane, so that the image contrast has dropped below as acceptable
threshold. The subscript CV stands for convergent. This value of M equal to M,
can be related to either the focal length or the power of the lens being tested (or
equivalently the distance /., from the grating to the point of convergence). Thus,
from Eq. (2.6), we may write
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1 _
AR, +l - (2.8)

and in an analogous manner, for divergent beams, the minimum allowed value of
M is equal to M}, corresponding to / equal to /,,,,, obtaining, again from Eq. (2.6)

1 _
L My L, 1 2.9)

where the subscript DV stands for divergent. We may refer the values M, and
M, to the integer value of M, by

M, = M,

int

+ AM
' (2.10)
My, = M,, - AM

int

where the fringe contrast is maximum when AM is zero. The larger the value of
AM, the lower the acceptable contrast becomes.

From these expressions we see that if the fringe contrast is to remain
within reasonable limits, both, the degree of convergence and the degree of
divergence of the light beam are limited. Thus, the measurement power range AP
in diopters over which the wavefront curvature may be measured within the limits
imposed for M is given by
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1000 1 1
AP., = (P = = 1000 | — -
v = CPepduax . ( LM, LR) @11
for a convergent wavefront, and
1000 1 1
APh, = (Pppyin = - = - 1000 (" - ] 2.12)
lDV L MDV LR

for a divergent wavefront. Hence, the total measurement power range is

AP = APCV + APDV (2.13)

These distances /., and [, are represented in Fig. 2.6. Thus, adding
Egs. (2.10) and (2.11) we obtain

AP = 1000 1 1 _ 1000 2 AM
L, (M, M, L 2 2 (214)
R DV cv R | M, - AM

We may see that the power range is only a function of the allowed
contrast variation AM, the order M,,, of the autoimage that has been selected and
the Rayleigh distance, which depends only on the grating period. The observing
plane may be placed at any place within the limits |
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Mpy Ly < L < Mgy, Ly (2.15)

or equivalently, the maximum and minimum values of L are given by
L=, +AM) L, (2.16)

Since we may select any position L for the observation plane, we
have four interesting possibilities:

1.- To place the observing plane at the distance L = (M, + AM)Ly.
In this case we may measure only diverging wavefronts, since M can not increase
more.

2.- To place the observing plane at the distance L = (M,,, - AM)L,,.
In this case we may measure only converging wavefronts, since A can not
decrease more.

L. In this
case, the range for converging wavefronts in terms of AM, from Eqgs. (2.9) and

int

3.- To place the observing plane at the distance L = M,

(2.10), is given by

1000 1000

(1 1) _ 1000 ( AM
ley Lg LMm Mgy, Ly M, (M + AM

int int

2.17)
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and from Egs. (2.9) and (2.11), the range for diverging wavefronts

Ap - . 1000 _ _1000( 1 _ 1) _ 1000 AM
e oy Ly kﬂlint M, Ly Mntk M, - AM

(2.18)

We may see that the measuring range for diverging wavefronts is
greater than that for converging wavefronts.

_ Another way of examining the available measuring range is to return
to Fig. 2.5 which plots the observing plane location vs the power of the lens. Any
horizontal line defines an observation plane. When one of the curves that
corresponds to an integer value of M crosses the line, we know that order of
autoimage occurs at the observing plane.

L

Figure 2.6.- Limits in the distance from the ruling to the point of convérgence (or divergence)
of the illliminating light beam, with M close to one.
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We can further examine the measuring range in terms of AM by
looking at a single order as plotted in Fig. 2.7 with A/ =1 and +£ AM = 0.2. The
measuring range is simply defined by the intersections of the horizontal line with -
the curves corresponding to M +AM.

4.- If we want the range for converging as well as for diverging
wavefronts to be equal, we have from Egs. (2.9) and by equating Eqgs. (2.10) and
(2.11)

2 2
L = 2 LR = LR int AM )
( 1, 1 ] M, (2.19)
MCV MDV

and using this result in Eq. (2.10) we find

1000 AM y
AP, = APy, = | 2.20
cv DV L [ IR AMz] (2.20)

int

If AM is equal to 0.25, the fringe contrast goes to zero. To avoid the
fringes to disappear completely, a maximum possible value for AM is around 0.2.
A better estimate for this value of AM may experimetally be found.
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Eq. (2.10), which, in this case may be expressed as

1 1
AP, = 1000 | = -
cv ( 03 LR] 2.21)

The observing plane distance L may be set by imposing a desired value for AP,
thus finding |

AP, 1

1
— = <+
L 1000 021L, | (2.22)

The maximum acceptable value of L corresponds to the minimum
acceptable value for the power range AP,

2.4 Some Autoimaging Numerical Calculations

To gain some practical insight into the applications of this theory, let
us make some calculations using some typical commercial Ronchi rulings. Table
2.1 shows some of the most important optical characteristics of these rulings.
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Table 2.1.- Some Ronchi rulings and their main characteristics.

50 0.5080 815.626
100 0.2540 203.907
150 0.1693 90.625
200 0.1270 50.977
250 0.1016 32.625

Let us first consider the case of M > 1. As an example, we set M=1.
We want a symmetrical range for convergent and for diverging wavefronts. By
using Eq. (2.15) and AM = 0.2, the measurement power range is APy, = 208.3/Ly.
The observing plane separatibn from the ruling is L = 0.96L,. Using these results
and Eq. (2.3) we may find the values in Table 2 for the Ronchi rulings in Table
2.1,
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Table 2.2.- Numerical results for some commercial Ronchi rulings, using M~1

50 783.001 +0.255 0.39776
100 195.750 +1.022 0.04972
150 87.000 +2.299 0.01473
200 48.938 + 4.087 0.00622
250 31.320 - +6.385 0.00318

Now, let us consider the case when M is close to zero. If the
converging wavefront measuring range is set to 10 diopters, we may obtain the
results in Table 2.3 for M near zero.
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Table 2.3.- Numerical results for some commercial Ronchi rulings, using M~0

50 61.995 0.03149
100 28.968 0.00736
150 15.344 0.00260
200 9.252 0.00118
250 6.125 0.00062

We may see that with M near zero instead of one, the advantage is

a large measuring range but at the price of a lower sensitivity, which might be

acceptable in many cases.

2.5 Detection and Measurement of the Talbot Fringes

The use of this technique requires an accurate measurement of the

period of the Talbot fringes in the observation plane. One method is to allow these

fringes to moiré with a known ruling. The approach will be described, using a
ruling parallel to the autoimage fringes and also with the ruling at an angle with

these fringes.
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The moiré fringes between two superimposed linear rulings, with
different frequencies and different orientations will now be studied (Patorski,
1989). Let us assume that the period of the observed fringe pattern or ruling to be
measured is ds, with their lines oriented at an angle 0 with respect to the y axis.
Then we may write

T(x,y) = |1 + cos ZdE (x cos O + y sin 6)] (2.23)

S

In the same mannef, for the reference ruling, with period d and their

lines forming an angle -0 with respect to the y axis we have

T)(x,y) = |1 + cos %;E (x cos © - y sin 6)] (2_24)

2

where the angle 0 is positive when rotated counter clockwise. Hence, the
transmitted irradiance is given by

I(x, y)=[1 +C0S i,—n (x cos B+y sin 6)] [l +COS %t (x cos 6 - y sin 0)
s
(2.25)

or, expanding this product of the transmittances
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I(x, y)=1+cos %;-t- (x cos O+y sin 0)+cos 271t (x cos 6-y sin 6)
m . om . (2-26)
+c0s — (x cos O+y sin 0) cos - (x cos 6-y sin 0)
s

but using the following trigonometrical identity to convert the product of cosines

into a sum of cosines

cos & cos B = %cos(oc + B) + -;—cos(oc - B (2.27)

we find

I(x, y)=1+cos i’_n (x cos O+y sin 6)+cos _2;1r (x cos O-y sin 0)+
I (2 om )
+ = cos| == (xcos© +ysinB) + = (x cos O - y sin O
> 7 ( y sin 0) + = y )< (2.28)
+ L cos 2—n(xcosﬁ+ys1'n6)—gz(xcos6—ysiraG)
2 g d )

or
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I(x, y)=1+cos i’—n (x cos O+y sin O)+cos ng (x cos O-y sin 0)+
+lcos2n 1,1 x cos 0 + 1.1 y sin O
2 d, d| d, d (2.29)

+lcos21t 1.1 x cos 0 + 1,1 y sin 0
2 d, d d, d |

This is the observed pattern, which really is a multiple fringe pattem,
one for each term in this expression. The first term is a constant. The second and
third terms are each of the two superimposed rulings forming the moiré pattern.
The last two terms are the most interesting ones, produced by the moiré effect.
Both terms appear but the most dominant is the one with the lower spatial
frequency (longer period), unless this lower spatial frequency is zero. Here, we

may clearly distinguish three interesting different cases:

a) If 0 is equal to zero and d; = d, the dominant moiré pattern is due
to the last term and it is formed by a set of fringes with zero angle with respect to
the y axis.

b) If 6 <45 degrees, the pattern with the lowest spatial frequency
is the first of the last two terms, because this contains the lowest spatial frequency

(largest period).

c) If 6 > 45 degrees, the pattern with the lowest spatial frequency
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is the second of the last two terms, because now this one contains the lowest
spatial frequency (largest period). '

To remove the unwanted patterns with higher spatial frequencies than
desired, we Visually apply a low pass filter to leave only the moiré fringes to be
observed. This process is performed by observing the moiré pattern from a large
distance or by a small defocusing. Let us now study with detail the three cases just
described.

a) If O is equal to zero and d; = d. Then, we have a pattern with a
period d,, given by

1.1 1 _,
a4 d (2.30)

The spatial frequency of the resulting moiré pattern is the difference
of the spatial frequencies of the two superimposed rulings. The fringes are parallel
to those of the rulings. Figure 2.8 illustrates this moiré effect.
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Figure 2.8.- Moiré pattern with two parallel rulings whose spatial frequency ratio is 0.9.

b) If 0 <45 degrees. The most visible pattern, with the lowest
spatial frequency, is that represented by the second of the two last terms in Eq.
(2.27). In this case it is possible to show that the period d,, of the moiré pattern
is given by

L:i+i—ic0526 :
d]\zl d; d* dgd (2.31)

and the fringes angle ¢, measured with respect to the y axis in the counter
clockwise direction is given by
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(1+£1d£
tan ¢ = —>—) tan 0 (2.32)
dy
1 -8
\ d

If dg = d, the angle ¢ is 90°, hence the fringes will be along the x
axis. In this case Eq. (2.30), which gives us the period of the moiré fringes,
becomes

dy 1
_2sin6

—C‘lﬁ 2.33)

Thus, the moiré fringes change their period as the angle between the rulings
change, as illustrated in Fig. 2.9. We may see that the visibility of the fringes
decrease as the angle between the rulings is increased.

Let us now consider the general case, when the ruling have different
orientations (one rotated an angle 6 and the other an angle -0 with respect to the
y axis. If the two rulings have the same periods, the moire fringes are parallel to
the x axis , as described before, but when the two rulings have different periods
ds and d, the moiré fringes have an angle ¢ with respect to the y axis, as given by
Eq. (2.31). If we measure the orientation of these moiré fringe with an angle y
respect to the x axis, we have y = ¢ + 90°. Hence,
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tan Y = - cot ¢

(2.34)
Thus, Eq. 2.31 may be written as
d \
7 - 1
tan y = Z cot O (2.35)
( d \
s
— +1
\d )

Figure 2.9 shows how the moiré fringes change orientation for different ratios of
the periods of the two rulings
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Figure 2.9.- Moir€ patterns formed by two crossed ruling with the same frequency. The angle
between the rulings is different in these four patterns
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c) If 0 > 45 degrees. The most visible pattern, with the lowest
spatial frequency, is that represented by the first of the two last terms in Eq.(2.28).
In this case it is possible to show that the period d,, of the moiré pattern is given

by

2

—1—'=—1'+"1—+ 00526 236
dfd dsz. d* dgd (2.36)
and the fringes angle ¢ is given by
(
1%
d
tan ¢ = 2 tan 0 (2.37)
dg
1 + =2
d

2.6 Curvature Measuring With Moiré Fringes

When measuring the curvature of the wavefront with this method, the
parameter to be determined is dg, which may be obtained from

ds 1 +tan y tan O
—_ = .8
d (l—tanytane (2:38)
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Figure 2.10.- Value of the ratio of the spatial frequencies of the rulings vs the orientation angle
y of the moire fringes. The graphs are for two rulings rotated three different angles 0 in
opposite directions.

Figure 2.10 shows the values of the ratio of the two periods of the rulings, versus
the angle vy, for several values of the angle between the two crossed rulings. Near
the origin, ('y~0), this expression may be approximated by '

dg

512 (mo)y (2.39)
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This ratio of the periods, given by Eq. (2.37) is plotted in Fig. 2.10 for three
different values of the angle 0.

By using two rulings with the same period d, the projected fringe
pattern will have a sightly different period d. In this manner we could measure the
curvature of a wavefront or the power of an ophthalmic lens. This arrangement
could also be used to measure small rotations if the wavefront curvature remains

fixed and one of the rulings is rotated.
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Figure 2.11.- Moiré patterns formed by two crossed ruling with slightly different frequencies.
The angle between them is the same in these four pattemns, but the ratio between the
frequencies of the rulings is different.
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Let us now use two rulings with 50 lines per inch, with an angle 5
degrees between them (0 = 2.5 degrees). By observing Fig. 2.11, where this value
of O is used, we may see that an acceptable pair of extreme values for the ratio
dg/d are 0.8 and 1.2. If we want to measure from - 10 diopters to + 10 diopters,
from Eq. 2.3 we see that the value of L should be equal to 20 mm.

From Eq. (2.21) we see that the maximum allowed value of Z when
M,,, 1s equal to zero, is 61.995 mm. Thus, a value of L = 0 is quite acceptable.

From Eq. 2.37 we may calculate the extreme values of y, which are - 68.55 and
+ 64.35 degrees, as illustrated in Fig. 2.12.

| Y =-68.55°

WA
[—80o —-60° —40° —20°

Figure 2.12.- Value of the ratio of the spatial frequencies of the rulings vs the orientation angle
y of the moire fringes. The two rulings are rotated an angle 0 equal to 2.5 degrees in opposite
directions.
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If we measure the angle y, by any means, for example, with a
circular scale, the period d; may be easily computed. The circular scale may then
be computed with the following expression, obtained from Eqs. (2.14) and (2.34)

P, L
= C
P, L - 2000

tan y ot O (2.40)

This scale is illustrated in Fig. 2.13. A hand rotating transparent screen with a very
coarse ruling formed by thin parallel and equally spaced lines, may be placed on
top of the moiré pattern, to make more accurate the measurement. This screen

may be manually rotated until their lines are parallel to those of the moiré pattern.

Figure 2.13.- Circular scale in diopters, with the observed moiré pattern for 10 diopters.
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The observation of the fringe pattern could me made by projecting

the fringes on a screen, as shown in Fig. 2.14(a) or by direct observation with a

magnifier or eyepiece, as in Fig. 2.14(b).
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Figure 2.14.- Two possible methods to observe the moiré fringes.
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2.8 Conclusions

A method has been presented to make ophthalmic lens power
measurements with an analog visual demodulation method using moiré fringes or
alternatively, with a mathematical method.

If a large measurement power range, with a relatively small
sensitivity is desired, the value of M should be close to zero. In applications where
a high measurement power range is not needed, but the sensitivity o has to be
high, it is better to use a larger value of M.
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Interferogram Analysis and Phase Detecting
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3.1 Interferograms with a Linear Carrier

The spatial frequency in a fringe pattern may be measured in many
different manners. We have already describe a method using moiré fringes.
Another possibility is to interpret the fringe patterns as one produced with a large
linear carrier or tilt. In this chapter a brief review of these procedures will be

reviewed.

If we introduce a large tilt about the y axis in one of the wavefront
in an interferogram a linear carrier in the x direction appears. Interferograms with
a spatial linear carrier may be analyzed to obtain the wavefront shape, by
processing the mformation in the interferogram plane (space domain) or in the
Fourier plane (frequency domain). We will review the first method in this Chapter.
A review on this subject has been published by Takeda (1989).

In an interferogram with a large tilt, the irradiance along a line
parallel to the x axis is a perfectly sinusoidal function if the two interfering
wavefronts are flat. Thus, if the reference wavefront is flat and the wavefront
under test is also flat the fringes are straight, parallel to the y axis and equidistant.
If the wavefront under test is not perfect, this irradiance function is a nearly
sinusoidal function but with phase modulation. The phase modulation is due to the
wavefront deformations W(x, ). If a tilt 0, about the y axis between the two
wavefronts is present, the irradiance function I(x, y) is given by
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I(x, y) = alx, y) + b(x, y) cos k [x sin 6, - W(x, y)]

=ax, y) +
+ 0.5 b(x, y) exp{i k [x sin 6, - W(x, y)]}

+ 0.5 b(x, y) exp{~i k [x sin 6, - W(x, Y]}
G.1)

where the irradiance functions a(x, y) and b(x, y) may change for different points
on the interferogram. An example of an interferogram with a linear carrier is
shown in Fig. 3.1. The phase modulating function #{(x, y) may be obtained using
standard electronic communication techniques, which are similar to holographic
techniques. |

Figure 3.1.- Interferogram with a linear carrier
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To achieve the phase demodulation it is necessary that the phase
modulating function W(x, y) for a fixed value of y inside the aperture
monotonically increases with the value of x. This is possible only if the tilt 6,
between the two wavefronts is chosen so that the slope of the fringes does not
change its sign inside the interferogram aperture. An immediate consequence of
this condition is that no closed fringes appear in the interferogram and that no
fringe in the interferogram aperture crosses more than once any scanning line
parallel to the x axis. The condition just expfeésed may be written by saying that |
the derivative

d (x sin 6, - W(x, y))
ox

(3.2)

is always positive or always negative, without any change in sign for all points
(x,y) inside the interferogram.

This result is equivalent to saying that the slope (tilt) of the reference
wavefront has to be greater than the maximum (positive) slope of the wavefront
under test in the x direction, or smaller than the minimum (negative) slope of the
wavefront in the x direction.

From a holographic point of view we may think that this is the
condition for the image spot of the first order of diffraction to be separated
without any overlapping from the zero order point at the optical axis.

A problem, when setting up the interferogram is the selection of the
tilt angle 0, that satisfies this condition. This tilt does not have to be very precise,
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but it always better to be on the upper side as much as possible, as long as the
Nyquist limit for the detector being used is not exceeded. In the case of aspherical
surfaces it is easy to approach the Nyquist limitation due to the uneven separation
between the fringes. In this case we are bounded between the lower limit for the
tilt, imposed by condition (3.2) and the upper limit imposed by the Nyquist

condition.

The minimum necessary amount of tilt may be experimentally
obtained by several different methods, for example:

a) The interferogram tilt is adjusted to obtain the maximum rotational
symmetry. Then, the tilt is slowly introduced until the minimum local slope of a
fringe in the interferogram has zero value (parallel to the x axis) at the edge of the
fringe, as shown in Fig. 3.2. The magnitude of this tilt may be found from the
interferometer adjustment.

b) Taking the fast Fourier transform of the irradiance along the
horizontal diameter in the interferogram and adjusting the tilt in an iterative
manner, until the first order spectrum is clearly separated from the zero order.
Then, the distance from the centroid of the first order to the zero order is the
minimum amount of tilt to introduce.

In our case the tilt adjustment is not a problem at all, since we must
only be careful that a sufficient number of fringes appear in the fringe pattern to

be measured.
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Figure 3.2.- Interferogram in which the minimum fringe slope on the interferogram is zero.
3.2 Holographic Interpretation of an Interferogram

It is quite interesting to see that an interferogram may be interpreted
as a hologram. An interferogram with a large linear carrier is formed by the
interference of the wavefront to be measured with a flat reference wavefront
forming an angle 6, between them, as in Fig. 3.3.

An interferogram with a linear carrier may be interpreted as an off axis
hologram of the wavefront #(x, y). The wavefront can be reconstructed by
illumination of the hologram with a flat reference wavefront R(x, ) with tilt 6 R
This reference reconstructing wavefront does not necessarily have the same
inclination 6, as the original flat wavefront used when taking the hologram. It may
be almost the same as shown in Fig. 3.4, but it may quite different if desired. It
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will be seen latter that the condition in Eq. (3.3) is still valid, even if these angles
are very different.

REFERENCE
WAVEFRONT

6

. | WAVEFRONT

| TO RECONSTRUCT

| HOLOGRAM

Figure 3.3.- Recording of a hologram.

|

|

! RECONSTRUCTED
WAVEFRONT

ILLUMINATING
WAVEFRONT

HOLOGRAM

CONJUGATE
WAVEFRONT

Figure 3.4.- Reconstruction of a wavefront with a hologram.
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The reference wavefront may be written as

R(x, y) = exp i (kx sin 0,)

: : 3.3)
= cos (kx sin 8;) + i sin (kx sin 0,)
obtaining:
E@x, y) = R(x, y) - I(x, y) = Ix, y) exp i k(x sin 0)
= a(x, y) exp i k(x sin 0)

+ 0.5 b(x, y) exp iklx sin 6, + x sin 6, - W(x, y)]

+ 0.5 b(x, y) exp-ik|x sin 6, - x sin 6, - W(x, y)]
3.4)

These three diffracted wavefronts, as expressed by this expression
are completely general, independently of the relative magnitude of the angles used
during the hologram formation and during the reconstruction step.

These wavefronts and their frequency distribution in the Fourier
plane (Fourier transforms) will now be described with some detail. To begin let
us first remember that the phase ¢ of a sinusoidal function exp ¢ and its
frequency f'and the angular frequency w are related by
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® = 2nf = g—f (3.5)

where a positive slope for the phase and hence for the wavefront is related to a
positive spatial frequency. Thus, according to this sign convention the axes on the
Fourier plane must have opposite directions to those on the interferogram.

The linear carrier spatial frequency introduced by the tilt in the flat
wavefront used when forming the hologram is

_sinBc p
Jom — (3.6)

and the spatial frequency spectrum produced by the wavefront #(x, y) is given by

Jw = % -al—(xx’l) (3.7)
The spatial frequency is directly proportional to the wavefront slope in the x
direction at the point (x, y). The first term in Eq. (3.4), represents the flat non
diffracted or zero order wavefront with tilt 6. The spatial frequency of this term
is constant and so in the Fourier plane it has a delta distribution with spatial
frequency f. As pointed out before, this frequency is not necessarily equal to that
of the carrier, as obtained with relation (3.5), given by
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sin 6,
Jr = 7 | (3.8)

This reference spatial frequency, was fixed to a certain value when the multiplying
or reference wavefront R(x, y) in Eq. (3.3) was determined.

The first term is the zero order beam and corresponds to the flat
illuminating wavefront, with spatial frequency f;. The second term with order
minus one, represents a wave with deformations conjugate to those of the
wavefront being reconstructed. The spatial frequency of this function is f,(x, y)
given by

B sin 6, + sin 6 1 oW(x, y)
S ) = 7 T T (3.9)

Its deviation from this average value depends on the wavefront slope in the x
direction at the point (x, ) on the interferogram, that is, in the frequency f,. The
third term with order plus one represents the wavefront under test, with a
frequency f,(x, ¥) given by

sin 0, -sin ®_ 1 gm
fa®, ») = - » 1)) (3.10)
A A Ox

Figure 3.5 shows the spectra of these waves for the particular case when
the two angles 0, and 0, are close to each other.
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Figure 3.5.- Fourier transform of the three waves diffracted by a hologram when the angles 0,
and O, are close to each other.

We may see that for a positive tilt, if we require that
T > [ ) (3.11)

or

f> ) ' @1



73

in order to be able to filter out these frequencies, we obtain again the same

condition previously obtained in Eq. (3.3), written in a different but equivalent
manner. |

This holographic model is useful because it may be used to interpret
several phase demodulation schemes for interferograms with a linear carrier.

| £,(0.0) 4
0

e
1 %(digx.y ax %(d dg:'ymm f L( 0)
| " o c

———.| rl———
5 | - >
I I
‘ { I [ 1, R I
: ' : — |
| | |
| | l
1 | I
2 | |
| | |
I :
|-
|
CONJUGATE REFERENCE RECONSTRUCTED
| WAVEFRONT WAVEFRONT WAVEFRONT

Figure 3.6.- Fourier Transformof the three diffracted waves in a hologram when the condition
for separation of the beams is at the lower limit.
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3.3 Spatial Frequencies Filtering

Phase demodulation schemes for interferogram work better if we
have a sinusoidal fringe. Some times this is not the case. Then, it is appropiate
first to perfom a low pass digital spatial filtering process. To remove unwanted
wavefront a digital filtering has to be applied along the scanning lines in the
interferogram irradiance. This spatial filtering may be performed by the
convolution of a one dimensional filter function A(x) with the function g(x, y) to
be filtered, using one of several possible different functions. The convolution is

expressed as

&x. ) = [ele, y) hx-0) do (3.13)

where the bar indicates that the function g(x, y) has been filtered. To understand
how this spatial filtering really works let us consider the definition of convolution
i Fourier theory, which is

}g(oc, ¥) h(x-a) do = F { Fi(h(x)} - Fig(x, y)} }
- - F Y (FY) - G, ) }

(3.14)

where the function 7 or a variable written with a capital letter denote the Fourier
transform and f is the spatial frequency in the Fourier plane. Then, in this
convolution the Fourier transform (spectrum) of the function E(x, ) is multiplied
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by the Fourier transform of the filtering function A(x). In this multiplication all
frequencies outside of the spectrum of /(x) are eliminated. |

One possible filter function is a square function, with a width «,,
defined by

, o,
h(e) = 1.0 for|e| < 5

(3.15)

=0 elsewhere

The spectrum of this filter, shown in Fig. 3.7(a) is the sinc function,
illustrated in Fig. 3.7 (b) and given by

sin (Tfor,)

Tfo,

H(f) = = sinc (7o) (3.16)

The first zero of the spatial frequency f; has a value equal to

1 .
fo = P (3.17)

This filter is equivalent to the averaging of the irradiance of all pixels
in a window with 1 pixel height by N pixels wide. This width is selected so that
the row of N pixels just cover the window width o, defined by the desired low
pass cutting point £, for the spatial frequency.
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Figure 3.7.- A one dimensional window square filter and its spectrum.

The height of the first (negative) lobe is equal to 0.2172 of the central
peak, hence, the amplitude of this secondary maximum is 7.63 Db down. We may
also use a window with a sinc profile. Thus, the spectrum would be a square
function.

The square filter just described is not the ideal because it leaves
unfiltered some high frequencies due to the secondary maxima in the spectrum of -
the sinc function. A better filtering function is the Hamming function defined by

o
L for |a] < =2

h(ee) = 0.54 + 0.46 cos
o, 2 (3.18)

=0 elsewhere
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This function and its spectrum are illustrated in Fig. 3.8 and given by

H(f) = 1.08 sim (mtfeg)+ 0.23 sin (mfoey+m)+ 0.23 sin (mf,—T)
| (3.19)

The first zero for the spatial frequency for this filter is

fo = e (3.20)

The height of the first secondary lobe (negative) has a height equal
to 0.0063 or 22 Db down, which is a much lower value than for the square filter.

Wb JH(f)
» - R
o, i,

Figure 3.8.- A Hamming window filter and its spectrum.
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3.4 Direct Phase Demodulation

The space domain analysis of interferograms began with Ichioka and
Inuiya (1972). They used a dedicated electronics hardware to measure the phase
of a signal obtained by scanning the interferometer with photoelectric detector.
The phase evaluation was performed with the quadrature method to be described
in this section. Several years later this method was described by Mertz (1983) in
a slightly different manner. Using again electronics hardware, he made three
measurements in a small interval where the phase could be considered to change
linearly with the distance. The measurements were separated 120° in their phase.
Macy (1983) used Mertz method using software calculation instead of hardware.
Commercial interferometers had been constructed that evaluate the wavefront
using direct phase demodulation (Dorband et al, 1990 and Kiichel, 1990).

A standard communications technique to phase demodulate a signal
is quite similar to the holographic interpretation. To separate the three waves in

the holographic method we illuminated (multiplied) the hologram (interferogram)
with the flat wave in Eq. (3.3) obtaining Eq. (3.4), which may be written as

E(x, y) = R(x, y) - Ix, y) = H(x, y) +1i G(x, y) . (3.21)
where

H(x, y) = I(x, y) cos [kx sin O] . (3.22)

and



79

G(x, y) = I(x, y) sin [kx sin 6] . (3.23)

These expressions are for a continuous irradiance function, but if the
the interferogram is digitalized, the irradiance values will be sampled at every
pixel in the detector. Thus, we may write

M
H(x, y) = Y, e, y) cos [k, sin 6] - 8(x-c) (3:24)
i=1

and

G(x, y) = f: I, y) sin [ke; sin O] -+ O(x-a) (3.25)

i=1

where M is the number of pixels in a horizontal line to be scanned and sampled.

In this demodulation method described by Womack (1984) the
carrier and the reconstruction frequencies are made as close to each other as
possible. This is with the purpose that the spectrum of the reconstructed wavefront
is centered as much as possible on the zero spatial frequency point, as shown in
Fig. 3.6. If there is a small difference between these frequencies, a residual tilt in
the wavefront will appear in the final result.

We may perform these operations numerically, instead of
illuminating with a real hologram. If we numerically multiply all interferogram
irradiance measured values by cos (kx sin 0,) obtaining the values of the function
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H{(x, y). Then, we numerically multiply all interferogram irradiance measured
values by sin (kx sin 6) to obtain the values of the function G(x, y). In electrical
communications this procedure has received the name of quadrature synchronous
detection.We may see that there is a phase difference of 90° between the two
patterns. Hence the name of quadrature method, frequently used.

The function R(x, y) is determined by the reference frequency £,
which should be selected as close as possible to the carrier frequency £, used and
determined when producing the interferogram, otherwise, a residual tilt appears

in the results.

In the holographic reconstruction we isolate the wave in which we
are interested by selecting only the wavefront propagating in the correct direction.
In the Fourier space a direction is related to a spatial frequency. The wave under
reconstruction has a range of spatial frequencies, all of them higher than the
carrier frequency due to the condition in Eq. (3.2). Besides, the carrier and
reference frequencies are almost equal, the spectrum of the desired wavefront is
centered on the y axis, as shown in Fig. 3.6. Thus, if in these functions H(x, y)
and G(x, y) all spatial frequencies are equal to or greater than the reference
frequency f; are removed, with a low pass filter centered on the y axis. In other
words, all light beams propagating with an angle whose absolute value is larger
than the reference wavefront angle 0, are eliminated. The low pass filter may be
performed with any filter centered about the origin, for example the square or the
Hamming filter. Mathematically this filtering is described by the following
expressions
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N

Cx,y) = Y K, y) cos [ke, sin 6,] A(r-o) (3.26)
-N
and
N
Sx, y) = E Ko, y) sin [ke, sin 0.] A(x-o) (3.27)
-N

where N is the number of pixels taken before and after the point x being
considered. The only term that remains after this filtering is the one with the
lowest spatial frequency, obtaining

S (x, ¥) = - 05 b(x, y) sin k[x sin 6, - x sin 0, - W(x, ]
(3.28)

and

C(x,») = 05 bx, y) cos k[x sin 6, - x sin 0, - Mx, y)]
(3.29)

Hence, the wavefront W(x, y) is given by

- [
(3.30)
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which is our desired result. The last term is a residual tilt that appears if the carrier

and reference frequencies are not exactly equal, but it may easily be removed in
the final result.

After the spatial filtering, as described in next section, the wavefront
deformation, including the small residual tilt may be computed. It is important to
notice that the function tan™ gives the result modulo 27. This means that the real
desired result for #(x, y) is the calculated result plus (or minus) an integral
number of wavelengths. This is what is called wrapped phase.

3.4.1 Synchronous Detection of Sinusoidal Signals

A case of particular interest is the detection of sinusoidal signals
whose frequency is known. In our case, where the fringes are straight and
equidistant, this is particulary interesting. In this case the problem is the
measurement of the phase. The expression for the sinusoidal signal may be
regarded as a particular case of Eq. (3.1) where the wavefront W(x, y) is flat and
only contains a piston term with phase ¢, obtaining

I(x) =a + b cos [wx + ¢]
(3.31)

The phase ¢ to be determined is the phase at the origin (x = 0). From
Eqgs. (3.28) and (3.29), we may write

N

C(x) = Y Ie) cos (wxe,) h(x-a) (3.32)

-N
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and

N

S(x) = Y. Ke) sin (wu0) h(x-o) (3.33)

-N

where A(x) is the filtering function and the values of the angular frequencies ®,
and w, are close to each other. In this case, assuming an infinitely extended
aperture (infinitely extended sinusoidal function), the spectrum of the
reconstructed wavefront is a delta function. Thus, the filtering function A(x) may
be a constant equal to one for the whole interval from - to +oo.

Hence, Eqs. (3.32) and (3.33) become

Clx) = fj Ka) cos (wget,) | (3.34)
and
S&) = fj Kot sin (wge) (3.35)

j=—c

This expression indicates that the meassurements have to be made in the whole
interval from -o to +, or in an interval as large as possible. Then, the phase ¢ is
given using Eq. (3.30), by ’
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[¢ - (@, - wp) x] = tan’! [g—((z))}

(3.36)

In this method we do not need to have an exact previous knowledge of the
frequency of the sinusoidal function, but at least an approximate value, if a
sufficienly large interval is sampled. A particular case of interest is then the exact
frequency is known in advance. Then, if we select w, = w,, we do not need to
sample a large interval, only a period, since the same pattern will repeat every
period. However, the sampling points must be equally and uniformly spaced in
this period, to simulate a regular sampling in the whole infinite interval. Then, if
we take N sampling points equally and uniformly spaced in a sampled period, Eqgs.
(3.34) and (3.35) become

M-

1]
—

Cx) = I(ee;) cos (wy0) 3.37)

and

N
SEx) = E I(ee,) sin (wz0) (3.38)
i=1

and Eq. (3.36) is transformed into
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- tan-l | S )
b= [coo]

(3.39)

3.5 Spatial Carrier Phase Shifting Method

The spatial carrier phase shifting method is a modification of the
phase shifting techniques. The basic assumption is that in a relatively small
window the wavefront may be considered flat. Then, the linearly varying phase
is determined in a small interval. In other words, the wavefront is assumed to be
flat in this region. Then, the whole wavefront shape along the scan line is found
by adding together all this small segments. There are several possibilities for the
determination of the phase in these small intervals, as we will now describe.

One obvious possibility is to use the method described in Sec. 3 .4.
by expressing the irradiance on this segment (Toyooka and Tominaga, 1984) as
follows

Ix, y) = a(xy, ) + blx,, ¥) cos 2nfx + P(x,, ¥)]
(3.40)

where a(x,, ¥), b(x,y) $(x,y) are constants on this segment, the point (x,,y)
is the beginning of the interval and f, is the reference frequency on the
interferogram. This method assumes that the spacing between the fringes is
approximately constant, which is not true when the wavefront is aspherical. The
advantage of this procedure over the direct interferometry method is speed. An
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improvement over this method to include wavefront that are not close to flat or are
aspherical has been proposed by Ransom and Kokal (1986), by writing the
wavefront in this interval as

Ix, y) = a(xy, y) + blxy, ) cos [2nf, + alx, ) + §(xy ¥)]
(3.41)

Another possibility is to consider three equally spaced points along
a line parallel to the x axis, as originally performed by Mertz (1983) who used a
phase spacing of 120°. Again, the irradiance in the small interval covered by these
three points may be considered to be perfectly sinusoidal and the reference
frequency f; is considered constant.

Another condition frequently used requires that the tilt is such that
two consecutive pixels on a scanning line have a phase difference of 1/2 (or A/4)
(Kujawinska and Wjciak, 1991). Using an algorithm frequently used in phase
shifting interferometry, for these three points the irradiance may be written

I(x, ) = a(x, ) + b(x, y) cos [P, y) + /]
L, ) = a(x, y) + b, ) c0s [$, y) + 3n/4]

L(x, y) = a(x, y) + b(x, y) cos [¢(x, y) + 5m/4]
(3.42)

from which we may obtain
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o(x, y) = tan'{ f _ 52) (3.43)
1 2

Then, the next set of three points is measured and the same
procedure repeated until a line is finished. After this, more lines are scanned, until
the whole interferogram is covered. The next step is to perform a phase

unwrapping. Finally, the tilt producing the spatial carrier is removed.

When the spatial frequency is unknown, which is exactly our case,
because we want to measure the spatial frequency of the fringe, it is better to
assume that the phase step between adjacent pixels is not constant and still to be
determined. Then, the phase may be found only with four measurements. As
proposed by Melozzi et al, (1995), a Carré may be used, with the phase given by

A BIG,- 1) - A= DIA,- L) + (- L)
I+ L) - (,+ 1)

¢(x, y) = tan

(3.44)

This is the best method to be used when we have only an aproximate
idea of the spatial frequency.
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A New Phase Detecting Algorithm
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4.1 Introduction

Different phase detection algorithms have been devised with different
properties. Two important algorithms are the Hariharan algorithm, with five
sampling points, which is insensitive to small frequency detunings. Another
algorithm is the Carré algorithm, with four points, which permits to compute the
frequency. Here, we describe a four point algorithm that has the advantages of
both of these algorithms.

Different phase detection algorithms have been devised with different
properties, as described with detail by Greivenkamp and Bruning (1992). When
phase detecting in temporal or spatial phase shifting interferometry, errors may
occur because the phase increments are not well known. This may happen due to
phase shifter miscalibration or in spatial phase shifting, because the spatial
frequency is not well known. This problem has been treated by many authors,
with several different approaches.

The earliest treatment is by Carré (1966), using a non linear
algorithm with four sampling points. This algorithm has several disadvantages,
pointed out frequently in the literature. Its main virtue is that it is self calibrating
and relatively large errors may be compensated. Another approach is with
algorithms that are insensitive to small detuning errors. A typical example is the
linear five sampling points algorithm devised by Hariharan et al (1987). Additional
solutions have been described by several authors, for example, by Schwider et al
(1993), by Larkin and Oreb (1992) and by Joenathan (1994) and many others.

Two important algorithms are one by Hariharan et al (1987), with
five sampling points, which is insensitive to small frequency detunings, and
another by Carré (1966), with four points, which permits to compute the
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frequency if it is not well known. Here, we describe a four point algorithm, not
previously reported in the literature, to the authors knowledge, that has the
advantages of both of these algorithms.

4.2 BASIC THEORY

In principle, three steps are enough to determine the three unknown
constants, however, small measurement errors may have a large effect in the
results. Four step methods may be better in this respect. Also, even if the errors
are not reduced, similar algebraic expressions are sometimes obtained.

The values of the irradiance are measured using four different values
of the phase. Three measurements would be sufficient but with four a very simple

algebraic expression is obtained. The following four values of the irradiance may
be easily obtained

I, =a +bcos(c[)0 —3oc)
I, =a +bcos((|>0 —oc)
I, =a+b cos‘(cb0 + oc) 4.1)

I4=a+bcos(¢0+3a)

and from these equations we have
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I, =a + b cos ¢ cos 3 + b sin ¢ sin 3
I, =a+bcosPcosa +bsindsina
. 4.2)
I, =a + bcos ¢ cos o - bsindsna
I, =a + b cos ¢ cos 3 - b sin ¢ sin 3a

Up to this point, this is a common four sampling points algorithm, for
example, the Carré algorithm. However, when the number of sampling points is
greater than three, the number and relative phase location of the sampling points
do not completely define the algorithm. The algebraic manipulation of the
measurements is also quite important to determine the structure and properties of
the algon'thm. From Egs. 4.2 we may find

I, + I, = 2a + 2b cos ¢ cos 3a

I, + I, = 2a + 2b cos ¢ cos a

: . 4.3)
I, -1, = 2b sin ¢ sin 3a
L -1 = 2b sin ¢ sin o
From these four expressions we may obtain
_ I, -1)
tan ¢ = [ €O 305. cos o €, - L) 44)
sin o ¢, +1) -, + L)

which is equal to
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(12 - 13)
(11 + 14) B (12 + 13)

tan ¢ = - 2 sin 20 (4.5)

Here, the value of o« may be unknown, if the signal frequency is not |
well determined. In this case the value of & and hence the value of the frequency
may obtained from

L, 3, -L)-U -1)
sm” o = IRTAA (4.6)

or combining these two expressions to avoid the singularity when ¢ = 0, (I, = L)

[3 (4, - Ly - d, - LY -2, - L, - 14)] 12
(4, +1) -, + L)

tan ¢ = @.7)

A linear displacement x, in the phase shifter may be related to the |
phase displacement o by

o =2mx, f, (4.8)

Since the sine function is squared, the quadrant on which the phase
angle value is located is completely undetermined. To avoid this problem, the
value of « has to be smaller than /2. When the uncertainty in the displacement
X, 1s due to phase shifting miscalibration in temporal phase shifting, this condition
is easily fulfilled.

If the uncertainty in the phase increment o comes from a poor
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knowledge of the frequency, as in spatial phase shifting, we require that

@<= @.9
< 5 . )
or
1 T,
X, < = — .
Ry 4.10)

In other words, the value of the linear displacement x, has to be smaller than one
fourth of the estimated fringe period 7.. Then, the exact frequency value may be
determined with this algorithm.

If the signal frequency is known with a relatively small uncertainty,
the value of & may be chosen so that there is not sensitivity to small frequency
detunings, by requiring that

| I, - 1 i
d(and) _ _, d, - I d (sin 20) _ a11)
dao (g, +1) -, +1L) d o
and thus we find that the ideal value of « is 45 degrees, obtaining
-2 -1)
tan ¢ = 22 (4.12)

G+ -y + 1y

This algorithm may be analyzed in the Fourier space, by using
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Freischlad and Koliopoulos (1990) theory. The sampling reference functions for |
this algorithm when « = w/4, shown in Fig. 4.1, are

&) =2 [3(x + xp) - 8(x - x))] (4.13)

and
g,x) = [— 8(x + 3xy) + O(x + xp) + O(x - xy)) — O(x - 3x0)] (4.14)

where x, is related to the phase shift o, by Eq. 4.8. Assuming a reference
frequency f,, which is not necessarily equal to the signal frequency.

8;(x)

W -sin(27Tf.x)

. x4y W Jx
‘ L1 47 W
W,
0(2 13
% “gz(x) cos(2T,.x)
1 al 2 f »
/T@z%a | X
Wz, X0 Woy

Figure 4.1.- Sampling reference functions for ¢ = 7/4.
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These Fourier transforms are thus given by

SIS

Gl(}‘)=2exp(i% ]—2sin2aexp[—i% ) (4.15)

I

and

G,() = —exp(i 3% 7{) + exp(i % 7{] + exp( =i % %] - exp( =i 3% ;:-]
(4.16)
which may reduce to
Gl(f) =-4i SI.E{—I— -f:‘] (4.17)
and
Gz(f) = -2 [003(3% %) + cos(_z_ %) ] =
(4.18)
-4 cos(E i) sinz(-'jE -/f) '
4 f \ 4 f

As described by Freischlad and Koliopoulos (1990), in order to have
good error free phase detection, we require that
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a) The functions G,(f) and G, (f) must be orthogonal at the signal
frequency. Since G,(f) is imaginary and G,(f) is real, they are thus orthogonal to
all frequencies.

b) These functions must not have any constant DC term, which is
true for both functions.

¢) They must have the same magnitude at the frequency of the signal.
Given a reference frequency f,, this condition may be satisfied only at certain
signal frequencies. Any possible detuning makes this condition unsatisfied. This
condition may be written as

|G(A| = |G (4.19)

To reduce as much as possible the errors due to small detunings, we
may require that the graphs of the two functions G,(f) and G(f) touch tangentially,
1.€., that besides having the same magnitude, they also have the same slope at the
frequency of the signal. Thus

4160 d |G|
af . df

(4.20)

As we observe in Fig. 4.2, both conditions are satisfied at values of
flif.equalto 1, 5,9, 13, etc., if « is equal to m/4.
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Figure 4.2.- Fourier transforms of sampling reference functions for o = ©/4.

Once these conditions are met, the phase ¢ may be found with

W, sn 2n f x)
tan ¢ = -

4.21)
W, cos 2m f, x)

=204

-~
1l
(=]

where W), and W, are the sampling weights.

If we compare this expression with Eq. 4.12, we see that the
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sampling weights are W,, =0, W, =2, W, =-2, W, =0, W, =-1, W, =1,
Wy=1, W,,=-1. We can see now, as pointed out before, that a phase detecting
algorithm is defined not only by the sampling point distribution, but also by the
values of their sampling weights.

4.3 CONCLUSIONS

A new phase shifting algorithm with the advantages of the Hartharan
and Carré algorithms using only four sampling points have been devised. If the
frequency of the signal is not known, it is first determined. Then, using the same
algorithm, the phase may be found using & = 45 degrees.
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5.1 Introduction

An theory of phase detecting algorithms based on Fourier theory has
been described by Freischlad and Koliopoulos (1990). On the other hand, a least
squares procedure to fit measurements of digitized interferograms has been
described by Greivenkamp (1984). Here, it is shown that Greivenkamp results
may be obtained from this Fourier theory. We also present here a graphical
description of the conditions required by the sampling weights in synchronous
phase detection algorithms.

An elegant general theory of phase detecting algorithms based on
Fourier theory has been described by Freischlad and Koliopoulos (1990) . On the
other hand, a least squares procedure to fit measurements of digitized
interferograms has been described by Greivenkamp®. Here, it is shown that
Greivenkamp’s results may be obtained from this Fourier theory. We also present |
here a graphical description of the conditions required by the sampling weights in
synchronous phase detection algorithms. This graphical interpretation may be a
useful tool when designing or analyzing new phase detectmg algorithms with ant
sampling point distribution.

A sinusoidal signal s(x) to be detected may be written as
s(x) = a + b cos (wx + }) S.1)
This function is sampled at N points, or more generally, correlated

with two sampling reference functions g;(x) and g,(x) as will be shown with some
detail later in this article. As an example, illustrated in Fig. 5.1(a), let us take N>3
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points with their relative phases «,, referred to the origin O.

2ty
ITI /

2nlx,

0 n X
o o
[ 12 nN \/
¢=0 ¢
o (a)
“s(x) sin(27L- x—¥(f,))
BTl X,
o | | 4 1| X
12 T N \/
Yo |
ia,
(b)

Figure 5.1.- Origin for reference functions

The ideal position for the origin of coordinates for the sampling
reference functions is a point O, shown in Fig. 5.1(b), where the Fourier element
dg,(x) has zero phase, so that it becomes antisymmetric and thus the phase {(f)
becomes zero. The exact location for this point can be found only after the Fourier
transform G,(f,) has been calculated. To make this problem more general, let us
assume as in Fig. 5.1(b), that the origin O, for the phases «, is shifted to another
location to the right of the origin of coordinates Q.. Thus,

o, (x) = 2nfx, - W(f) (5.2)

Now, if the calculated phase at the origin O, is equal to ¢ at the
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origfn 0,, it is equal to
by = ¢ - Y(f) (5.3)

The splitting of the origins O, and O, allows us to move the
reference sampling functions with respect to the sampling points.

Freischlad and Koliopoulos(1990) have proved that if certain
conditions are met, the phase may be calculated with the following general

expression

M=

s(x,) & (x,) dx

n
—

tan (¢ - W(f)) = - | = (5.4)

M=

s(x,) gy(x,) dx

b
1
ey

- where the functions g,(x) and g, (x) are the reference sampling functions. We
represent the Fourier transforms of these functions by G,(f) and G,(f). The Fourier
components of these functions at the frequency of the signal being selected, may
be the typical sine and cosine, as follows

bg,(x) = * sin 2nfx - Y(f)) &f (5.5)
and

8g,(x) = cos 2nfx - () Of (5.6)
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where (/) is the displacement in the positive direction of the Fourier element
dg(x) with frequency f, of the reference function g(x), with respect to the origin
of coordinates. These functions must satisfy the following conditions:

a) | The Fourier elements of the reference functions g,(x) and g ,(x)
at the frequency /. must be orthogonal to each other. Thus

Gy(mf)) = i H Gy(mf,) | (5.7)
where H is a real constant or function.
b) The Fourier elements of the reference functions at the frequency

Jfmust have a zero DC term. To have a zero DC term, from the central theorem
in Fourier theory, we may write

G](O) = Gz(o) =0 (5.8)
c) All interference between undesired harmonics in the signal and

in the reference functions must be avoided. This condition is satisfied if for all

harmonics n, with the exception of the harmonic 7 being measured, we have
S, G{nfy) = 0 (5.9)

This means that this harmonic component #» = m should not be present either in
the signal or in the reference functions.

d) The Fourier elements of the two reference functions, at the
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frequency f, must have the same amplitude. This condition requires that
|Gy (mf)| = |Gy(mf)| | (5.10)

These four conditions can in general be satisfied only at certain
frequencies, thus, they have to be satisfied at the fundamental frequency of the
signal to be detected.

5.2 SYNCHRONOUS DETECTION USING A FEW SAMPLING POINTS
Let us now apply this theory of synchronous detection to the

particular case of a discrete sampling procedure, with only a few sampling points.
The sampling reference functions are given by

y |
g ) = 2; W, 8x - x) (5.11)
and
N
g,®) = 21 W,, 8 - x,) (5.12)

where the W, are the sampling weights for each sampling point and N is the
number sampling points with coordinates x = x,. The Fourier transform of these
sampling reference functions are
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N
G,(H = YW, exp (-i2mfx,) (5.13)
n=1
and
N
G,(f) = Y W,, exp (-i2nfx) (5.14)
n=1
We may define a phase a, by
2n fx = + z
fx, = (o, + () y (5.15)
hence, these Fourier transforms become
N
G,(f) = exp —i1|J—f— E W,, exp —ian—f— (5.16)
Jr) a1 I,
and
NN
G,(f) = exp [—iq:?f—] X; W,, exp (~ian}j:) (5.17)

Now, since the reference functions are to be orthogonal to each other and

have the same magnitude at the frequency /= f,, we need



109

Gi(f}) = £ 1 Gy(f) (5.18)

where the upper (plus) sign indicates that the phase of G,(nf,) is 7/2 ahead of the
phase of G,(nf)). Using this expression with Eqs. 5.12 and 5.13 we may find

N
Y (Wyx i) exp (-2mfx,) = 0 (5.19)

n=1

Thus, we may obtain from this expression

N N

> Wy iW,) cos Rnfx,) = i Y (W, iW,) sin Rfx,) =0 (5.20)
n=1 n=1
or
N
Z;[Wz”cos (an,xn) + W, sin (an,xn)] -
y ' (5.21)
i E[Wznsin (an,xn) F W, cos (an,xn)] =0
n=1
which can be true only if

N
> [Wac0s Rnfx,) £ W, sin Rnfx,)] = 0 (5.22)
n=1



110

and

N
E[H’Znsin (21tfr x,) ¥ W,cos (2nfr xn)] =0 (5.23)

n=1

where the upper sign or the lower sign is to be taken in both expressions,
depending on the selection of the reference functions. We now may define the
sampling reference vectors W, and W, as

W, = [f: W,,c08 Rnfx,) fj W, sin (2nf,,xn)) (5.24)
n=1 n=1
and
N N
W, = (Z W,,c0s Rnfx) , 3 W,,sin (an,,xn)) (5.25)
n=1 n=1

If we use in these vectors in Egs. 5.18 and 5.19 we see that these
vectors are orthonormal, that is, they are mutually perpendicular and have the
same magm'tudé at the frequency f,. Thus, we may say that the two reference
sampling functions are orthogonal and have the same amplitude if the two
sampling reference vectors are mutually perpendicular and have the same -
magnitude, as illustrated in the upper half of Fig. 5.2, for a four sampling points
algorithm. The phase of W, is 1/2 greater that of W, for the upper sign.

Additionally, we must require that there is no bias in the reference



111

functions, which is true if
N
Y w,=0 (5.26)
n=1

and
N
2 W, =0 (5.27)
n=1

‘//\T\a 4
AN e 7 N

Figure 5.2.- Graphical vector interpretation of the sampling reference functions
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This is a completely general treatment, with any number of sampling
functions, with any separation and with different weights.

5.3 SA\MPLING WITH UNIFORMLY SPACED SAMPLING POINTS

A frequent particular case is when the sampling points are equally
separated and uniformly distributed in a sampling interval X, with the positions
defined by

az(n_l)Xr__:(n_l)
" N NS

=2nf x, - () ; n=1,..,N

(5.28)

The reference frequency f, is defined as 1/X, and it is usually equal to the signal
frequency.

With this sampling distribution we may prove with the help of a polar

diagram, that
N N
Y sin (21 £, x, - ¥(f)) = Yosin 2n £, x,) = 0 (5.29)
n=1 n=1
N N .
Y cos 2m f, x, - W(f)) = X cos 2n £, x,) = 0 (5.30)
n=1 n=1

N
Y sin (4 £, x, - W(F) = 0 (5.31)
n=1
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and
N
> cos (4m £, x, - W(f)) = 0 (5.32)
n=1

The condition that there should be no DC term (bias) on the
reference functions, is expressed by Eqs. 5.25 and 5.26. From Eq. 5.28 we may

see that
N ' N
Z:; cos (an,,xn— lll(fr)) cos (21tf,,xn) - Z_; sin (21tf,,xn— lp(fr)) sin (anfxn) =
(5.33)
and from Eq. 5.27
N
E sin (21f,x,- W(£,)) cos (an ) Z_; sin (27fx,) cos (2fx, - V(1)) =
(5.34)

Now, we may see that these two last expressions become identical
to Eqgs. 5.18 and 5.19 if the sampling weights are defined by

N .
=+ E sin (21tfr x, - ‘l’(fr)) =0 (5.35)
n=1
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and
N .
Wy, =Y cos 2n f, x, - ¥(f)) = 0 (5.36)
n=1

and the phase expression becomes

N

Zs(xn) sin (2‘n fox, - IIJ(fr)) dx
tan (b - ¥(f) = - | 57
Y s(x,) cos (2‘n fox, - 1|J(fr)) dx

n=1

(5.37)

Expressions 5.25, 5.26, 5.29 and 5.30 are the same as those used by
Greivenkamp® in order to make the least squares matrix diagonal.

5.4 CONCLUSIONS

We have presented a graphical interpretation of the sampling
reference functions, using Fourier theory. This may be used as a tool when
designing new sampling algorithms. We have also shown that Greivenkamp’s
conditions for diagonalizing the least squares matrix may be derived from this
theory.
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Axially Astigmatic Surfaces:
Different Types and Their Properties
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6.1 Introduction

Axially astigmatic surfaces have different curvatures in othogonal
diameters. Toroidal and sphero-cylindrical optical surfaces are two
mathematically different special cases of axially astigmatic surfaces (Menchaca
and Malacara, 1986), but they are almost identical in the vicinity of the optical
axis. The difference between these two surfaces increases when the distance to
the optical axis increases. In this work we study the general properties of
astigmatic surfaces and some special interesting cases.

An optical surface may be analytically written as a two dimensional
functlon 2(x, y) that can be represented by a two-dimensional Taylor series for the
coordinates (x, y) expanded about the origin vertex, as follows

2 4y -aa—] 2%, ¥) ©.1)
Yy

w 1
2%, ) =Z_ ox

n=1 h!

where all partial derivatives are to be evaluated at the origin. Expanding up to the
fourth degree we obtain
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2w, y) = |Lx + &,
ox ay
1| 0% &z , 0%z
——x + —y* + 2 Xy
2!l ox 2 ayz oxoy

(6.2)

However, for an astigmatic surface with symmetry about the x and
y axes the following symmetry conditions have to be satisfied

z(x, y) = z(-x, y) = z(x, -y) - (6.3)

For example, an off-axis paraboloid is an astigmatic surface (Malacara, 1991), but

it does not satisfy this symmetry requirement. With this condition, all odd power -
terms must disappear, and we may write

2 2
oy - Uz, P2
2![8x2 ay?

+ ——x" +

4\ox4 oy* ox 20y 2

1[642 o, 9%
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The vertex curvatures along the x and y axes are given by the second
partial derivatives respect to x and y as follows

. 1 (& p)
i Ty ox? ] 00
\ (6.5)
o = L _| 9 y)
g Ty oy? /00
hence, Eq. 6.4 becomes
P G Uy RS - SV W1 B
’ 2 2 24 ox4 24 gy 40x%y% "~ (6.6)

This expression is completely general, for any astigmatic optical
surface with symmetry about the x and y axis, as required by Eq. 6.3.

6.2 AXIAL CURVATURES IN ANY RADIAL DIRECCTION
The vertex curvatures along any arbitrary diameter for this astigmatic

surface may be found by means of the second directional derivative in the radial
direction p, evaluated at the origin, as follows
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dz(x, y) _ 0z(x,y) ox _ 0z(x, y) Oy
= — F ——l

op ox op ady op
(6.7)
_ 025y g s 200 g
ox oy
hence, we may find the second derivative as
2 a2 2 2 '
0 Z(x: y) = 0 Z(xa y) COSZG + d Z(x: y) Sinze + 28 Z(x’ y) sin 0 cos
op? ox 2 ' dy? ox dy
(6.8)

but due to the symmetry about the x and y axes of the two surfaces as required by
Eq. 6.3, the last term evaluated at the origin becomes zero, obtaining

c = L%y 20 y) o9 . FEHY) G20 ©9)
r

o, op? Ox 2 oy?
and using here Eq. 6.5 we have

c, = rl = ¢, cos® 6 + c, sir® B . (6.10)
p
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Instead of using the curvatures c, along the x axis and ¢, along the
y axis it is sometimes more convenient to define the astigmatic or cylindrical
curvature Ac and the average or spherical curvature ¢ by

Ac = %" Y
2
(6.11)
.- ¢, +¢,
2
and using this we have
c. = 1 = ¢ + Ac cos 20
P | (6.12)

P

This result tells us that the axial curvatures in all directions varie as
the cosine of twice the angle, as shown in Fig. 6.1. This result is valid for all
astigmatic surfaces defined by Eq. 6.6.

6.3 TYPES OF ASTIGMATIC SURFACES

All astigmatic surfaces described by Eq. 6.6 have vertex curvatures
as in Egs. 6.10 and 6.12. However, there is an infinite number of possible
surfaces, depending on the coefficients for all the terms after the second one. An

example is an ellipsoid rotated about its major axis (prolate spheroid), with its
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vertex on one side as shown in Fig. 6.2. In this case we may easily see that the

cross section on the x-z plane is a circle, but the cross section on the y-z plane is
an ellipse.

2d N AT

i

| 90° 180° 27° 360° @
Figure 6.1.- Vertex curvatures for different angles with respect to the x axis.

Y
A

X

—» 7/

Figure 6.2.- Rotationally symmetric ellipsoid with its vertex on one side
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We now may particularize the astigmatic surface a little more by
requiring that the cross sections in both planes are circles. Then, we may easily
show that Eq. 6.6 becomes '

2 2 3 4 34 .
o, 3) = LY R S A l( 0%z ) 2 (6.13)
2 T2 T8 T8 1 l\gge

Even now, with the restriction that both cross sections are circles,
there is an infinite number of possible surfaces, depending on the coefficients of
the terms after the first four. There are, however, two important well known |
special cases, ie. the toroidal and the sphero-cylindrical surfaces. Sphero-
cylindrical optical surfaces are a kind of optical surfaces reported by Menchaca
and Malacara, (1986).

A toroidal surface, illustrated in Fig. 6.3, with its axis parallel to the
y axis, may be mathematically expressed by

zt — rx _ {[(ryZ _ y2)1/2 + rx - ry]2 _ x2}1/2 (6.14)

A characteristic of this surface is that it has four roots because there
are two square roots in this expression. These roots represent the intersections
with the toroid of a line parallel to the z axis. This expression does not resemble
the well known expression for a spherical optical surface. It is easy to visualize
in Fig. 6.4 that the cross section in a plane containing the z axis, but at an angle
differerent from zero and 90 degrees with respect to the z-x plane is not a circle.
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Figure 6.3.- A toroidal surface

Figure 6.4.- Cross section of a toroid in a plane at an angle 0

After some algebraic steps we may see that for the case of the toroid
Eq. 6.13 becomes
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cx c C.X c
z(x,y) = — + Yo S L SY % cxzcy x%y?  (6.15)
Another expression for an optical surface having axial astigmatism
is the sphero-cylindrical surface, represented in Fig. 6.5 and given by

2 T2
cxx + cy_y

s 12
(e x2 + c, y2)? | (6.16)

@2+ y?

i

’!;//

)
N, ‘!,")"!}’ g

L/
[

Figure 6.5.- An sphero-cylindrical surface

This expression closely resembles the usual expression for an optical
spherical surface. Unlike the toroidal surface, it has only two roots, since there is
only one square root. This surface may be mathematically generated by writing
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the expression for a circle in a plane containing the z axis and at an angle 0 with

respect to the z-x axis, as follows

z = %P (6.17)
1 .
1wl -2 p?
If we now substitute Eq. 6.10 for the value of ¢, we find
(c, cos’ 0 + ¢, sin® ) p?
z = 6.18
1+ [1 - (c, cos® B + ¢ sin’* ) p2]1/2 (6.13)
but
cos § = X
p |
(6.19)
sin§ = £
~ P

hence, substituting these values in Eq. 6.18 we obtain the expression for the
sphero-cylindrical surface in Eq. 6.16 This result proves that the cross section of

this surface in any plane containing the z axis is a circle.



| 127
For the sphero-cylindrical surface Eq. 6.13 becomes

2 2 3.4 3.4
Zs(x, y) _ cxx N ny N c.X N ny
2 8 8
(6.20)
3 1 3 3 2.2
+ |— CcC(C *+C )—— (C_*+C X + ...

The toroidal and sphero-cylindrical surfaces are almost identical in
the neighborhood of the optical axis, but the difference between these two
surfaces increases when the distance to the optical axis increases. The separation
between these two surfaces outside of the central region is the difference between
the toroidal and the sphero-cylindrical surface is given by

Az(x, y) = 3 c.c

1 1
= 6, () - - (6]+) - el ¥ . (621)

then, we may write

1[@ac) | 5 @A
gl 8 4

Az(x, y) = - (Ac) c?| x%Hy?+ .. (6.22)

which is a quadratic astigmatism term, as represented in the isometric plot in Fig.
6.6. Thus, the two surfaces are similar but not identical. If either the spherical
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curvature c or the cylindrical curvature Ac are small, the toroidal and the sphero-
cylindrical surfaces become identical. With a moderate amount of cylindrical

power this expression may be approximated by

1
Az(x, y) = - = (A9) c? x%y? (6.23)
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Figure 6.6.- Isometric plot showing the separation between the sphero-cylindrical and the

toroida.l surface
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The maximum absolute value of this term in wavelenghts, at the edge of a surface

with diameter D is

Az(x, y) _ (Ac)c?D*
) 512 A

(6.24)

As an example, let us consider an astigmatic surface with the
following data (a strong astigmatic ophthalmic lens)
D =60 mm.
¢ = 12x10° mm™
Ac = 6x10° mm™?
We obtain Az(x, y)/A = 43.74, which is a large value.

6.4 MANUFACTURING SCHEMES

Some insight on the nature of the toroidal and the sphero-cylindrical |
surfaces can be obtained by considering the way in which these two surfaces can -
be mathematically generated and fabricated. By examining Fig. 6.7 (a) we can see
that the toroidal surface is generated by the rotation of a circle about a generating
axis, passing off the center of this circle. In the figure, this axis is outside of the
circle, but it may also pass through it, but off-axis. On the other hand, the sphero-
cylindrical surface is generated by rotating the circle about a generating axis
passing througt the center of the circle, as in Fig. 6.7 (b). In this case, however,
the circle cahnges its radius as it rotates, according to Eq. 6.11.
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Figure 6.7.- Geometrical generation of toroidal and spherocylindrical surfaces.

Mechanically, the toroidal surface is usually generated with the well
know mechanism shown in Fig. 6.8. The spherocylindrical surface can be
generated with a mechanism working as schematically shown in a very simplified
manner in Fig. 6.9. Two mechanical bars slide inside of pieces 4 and B as the tool
axis rotates to produce different radii of curvature to different angles of the tool
axis. The mechanism must provide a manner in which the tool always passes over
the top (vertex) of the surface, for any angle of the tool axis.
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Figure 6.8.- Mechanical generation of a toroidal surface.

An sphero-cylindrical surface may be mechanically generated using
its property that all cross sections are circles. This proposed method is
schematically illustrated in Fig. 6.9.
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Figure 6.9.- Mechanical generation of an sphero-cylindrical surface
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6.5 CONCLUSIONS

In conclusion, there is an infinite number of astigmatic surfaces with
vertex curvatures as in Egs. 6.10 or 6.12. All of these surfaces are formally |
different but close to each other in the vecinity of the vertex. Three interesting
particular cases of astigmatic surfaces with symmetry about the x and y axis are:

a) The rotationally symmetric ellipsoid, with its vertex on one side.
For this surface only the z-x plane is a circle. Besides its obvious axial
astigmatism, this surface has spherical aberration in the y-z plane, unless used in
an off-axis configuration as it is customary.

b) The toroidal surface, which has circular cross sections in the x-z
and y-z planes, but not in any other plane containing the z axis. When used on
axis, this surface may introduce cuadrangular astigmatism, as given by Eq. 6.20.

c) The sphero-cylindrical surface, which has circular cross sections
in any other plane containing the z axis. Thus, besides it axial astigmatism, which
is desired in many applications where astigmatic surfaces are used, no other
aberration is introduced.
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The research on a method to measure the power of a lens by
interferometric means has been an interesting and fruitful one. As it is frequent in
almost any research subject, the process had many side result that were not looked
for.

The main results that were obtained are:

a) An interesting procedure to measure the power of ophthalmic
lenses was developed. The new contributions to this method is not its basic
principle, but the theoretical analysis, taking into account diffraction effect.

b) The second result was the invention of an algorithm to detect the
phase of the fringes, with applications in phase shift interferometry. This algorithm
is self calibrating and also insensitive to detuning.

¢) The third result was a vector graphical interpretation of the
sampling weights used in digital phase shifting algorithms.

d) The fourth and last original result was a complete study of the
different possible astigmatic optical surfaces. It was shown that there are several
configurations with the same astigmatic power, but different marginal aberrations
and also different method for their construction.

As it is to be expected, more questions than answers appeared during
this research. There are several topics that deserve to be explored further. Some
of these projects are:
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a) To apply the power measurement method to aspheric and
progressive power ophthalmic lenses.

b) To consider some modifications of the digital phase detection
method to make it insensitive to the large amount of harmonic distortion in the
signal. To possible solutions come to mind. One is a previous spatial low pass
filtering, perhaps by means of a bucket integration. Another possible approach is
by designing better algorithm with a low sensitivity to harmonics.

¢) Another interesting subject for future research is the design and
testing of progresive power lenses.
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