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Abstract

A theoretical derivation of two-photon absorption (2PA) from bulk, surface and 2 dimensional
(2D) semiconductors, based on the length gauge analysis and the electron density operator, is
formulated; the intraband ri part and the interband re part of the position operator r are
properly accounted for. Within the independent particle approximation, the nonlinear third
order susceptibility tensor ‰

abcd(≠Ê; ≠Ê, ≠Ê, Ê) and the two-photon absorption coe�cient are
calculated, including the scissors correction needed to correct the well-known underestimation
of the local-density-approximation band gap. Using time-reversal symmetry, it is shown that
the expression for ‰

abcd(≠Ê; ≠Ê, ≠Ê, Ê) is finite at Ê = 0, avoiding nonphysical divergences
presented in previous calculations when Ê æ 0. Ab initio band structure calculations using
di�erent pseudopotential schemes that include spin-orbit coupling are used to calculate the
2PA for several semiconductors, and the calculations are compared with available experimental
results for photon energies that are below the optical band gap. The TPA results for the chosen
bulk semiconductors cover a wide range of wavelengths as well as a wide intensity range, in
such a way that depending on the sought application one would be able to chose among the
studied materials. For instance, the semiconductors with the biggest absorption could be used
as components in flourophores for two-photon excitation microscopy, also these materials could
be used in multiphoton microfabrication and lithography technologies. Moreover, the materials
with wide band gap could be used for optical power limiting, optical data storage, or two-
photon photodynamic therapy technologies. In addition, the 2PA susceptibilities for the following
surface structures GaAs-1◊1(110):Sb, Si-1◊1(111):H and clean GaAs-1◊1-110 were calculated,
obtaining a spectral range that shows a remarkable widening of bandwidth for GaAs-1◊1(110):Sb
and Si-1◊1(111):H structures compared with the corresponding bulk response, and for clean
GaAs-1◊1-110 surface the spectral shape shows a resonance in the terahertz region. Finally,
we calculated the 2PA susceptibility for the following 2D monochalcogenides materials GeSe,
SnSe, SnS and GeS. These materials are commonly used in optoelectronic devices and our study
motivates the experimental investigation of 2PA in 2D structures. The 2PA susceptibility of
above surfaces and 2D materials is as large as the standard bulk semiconductors, thus opening
a myriad of application for 2PA, such as non-invasive terahertz medical applications. In the
future, we are going to calculate 2PA for other crystalline structures besides FCC, extending
the calculation to more types of semiconductors. In addition to our numerical results presented
in this work, the theoretical derivation of 2PA presented in this thesis opens the possibility of
the study of other third-order nonlinear optical phenomena. For example, four-wave mixing,
Raman scattering, third harmonic generation, and the calculation to the nonlinear third order
susceptibility in order to obtain the nonlinear refractive index.
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1 Introduction

Outline

1.1 Experimental background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Theoretical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Since the development of the two-photon absorption (2PA) theory in 1931 by Maria Göppert-
Mayer [7], a new field of research emerged, as she was the first to predict the quantum mechanical
process that explains the simultaneous absorption of two photons of the same energy as the impinge
to excite a material. These new optical phenomena opened the gate to better understand optical
processes and to develop potential technologies based on 2PA. In this sense, there are current tech-
nologies related to 2PA phenomena, such as two-photon excitation microscopy [8] and multiphoton
microfabrication and lithography [9–11]; also, work on applications such as optical power limit-
ing [12], optical data storage [13, 14], or two-photon photodynamic therapy [15] is being done, as
well as research on bioimaging using materials at the nanoscale [16, 17]. For this, it is mandatory
to conduct experimental and theoretical research on 2PA phenomena in materials; in particular,
the explanation and prediction of the microscopic third-order optical response in materials are
theoretical targets.

1.1 Experimental background

Related to the experimental point of view of 2PA, there are diverse factors that contribute to the
di�culty in characterizing materials in the nonlinear regime. Third-order nonlinear susceptibility
related to 2PA is obtained through the measurement of nonlinear absorption in materials, and several
variables are involved in these kinds of experiments, such as laser-pulse duration and repetition rate,
peak power, laser coherence, the presence of free carriers, and competition between nonlinear and
linear absorption phenomena, which increases the complexity of material characterization. Hence
reported values for the 2PA coe�cient are only within a narrow region of the light spectrum and are
often varied over orders of magnitude [18], and even more, experimental work only reports the 2PA
coe�cient instead of the imaginary part of third-order 2PA susceptibility; to our knowledge, only
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1. Introduction

Furey et al. [2] have reported the value of all independent nonzero components of the imaginary
part of 2PA susceptibility tensors for GaAs, GaP, and Si in the vicinity of the half band gap for
each material. The complex measurement of 2PA third-order susceptibility motivates theoretical
investigation of this phenomenon.

1.2 Theoretical background

To theoretically describe nonlinear optical responses at the microscopic scale and, in specific, to
describe 2PA, some research has been done. Hutchings and Van Stryland [19] calculated the 2PA
coe�cient in zinc-blende semiconductors by means of the Kane band structure model; such a cal-
culation is a more comprehensive study than the two- band model used by Aversa et al. to describe
2PA [20]. Additionally, Hutchings and Wherrett [21] first calculated the polarization dependence
of 2PA by means of the four-band Kane band structure model and later calculated the anisotropy
parameter, including the influence of higher conduction bands, by using the Luttinger-Kohn band
structure model [22]. The band structure models cited have the disadvantage of being semiempir-
ical approximations and of describing the absorption phenomena in a vicinity near the center of
the Brillouin zone, with a limited number of electronic bands. Alternatively, Aversa and Sipe [23]
have cemented the formalism to obtain linear and nonlinear optical responses based on the pertur-
bation theory under the length gauge analysis and the electron density operator. This formalism
allowed the accurate calculation of nonlinear optical responses, such as the second-harmonic gener-
ator (SHG) [24], and they also suggested computing higher-order optical responses. Related to ab

initio 2PA calculations, to our knowledge, only Murayama and Nakayama [1,25,26] have presented
ab initio full band structure calculations; they presented the two-photon absorption spectra and
anisotropy of GaAs, ZnSe, and Si using the density-matrix theory, and nonlocal corrections to the
local momentum operator and a correction to the self-energy were presented. These calculations
have the disadvantage of presenting apparent unphysical divergences in the infrared regime.

The theoretical derivation of 2PA microscopic susceptibility is presented in this thesis under
the ab initio perturbative approach in the independent-particle approximation using a full band
structure. This work uses the length gauge approximation as the perturbative interaction between
materials and light to obtain the imaginary part of the third-order nonlinear susceptibility, which
describes third-order nonlinear absorption. The well-known band-gap underestimation in density
functional theory with the local-density approximation (DFT-LDA) is corrected at the scissors
operator level, and the inclusion of the spin-orbit coupling (SOC) is taken into account. Also,
we show that the unphysical divergences are analytically demonstrated to be zero when Ê æ 0,
which was not considered in previous ab initio calculations; moreover, the 2Ê and 1Ê terms of
‰

abcd(≠Ê; ≠Ê, ≠Ê, Ê) are analyzed to obtain a complete third-order optical response, where the
position matrix elements are distinguished in the intraband ri part and the interband re part
[23,27,28]; this di�erentiation allows us to disregard nonsignificant terms in ‰

abcd(≠Ê; ≠Ê, ≠Ê, Ê).

2



1.3. Outline

1.3 Outline

This thesis is divided into 5 chapters including this introduction. Chapter 2 presents the theoretical
derivation of explicit expressions for the nonlinear two-photon absorption (2PA) susceptibility, based
on quantum mechanical time-dependent perturbation theory. Chapter 3 presents the theoretical
calculated 2PA spectroscopy for several bulk semiconductors in particular for Si, GaAS and GaP,
for which a detailed comparison with experimental data is presented, finding that the results from
our derived theory compares very well to the experimental spectra. In Chapter 4 we extend the
general theory of 2PA susceptibility to the derivation for the nonlinear two-photon absorption surface
susceptibility. The theoretical expression is then used to calculate 2PA for three surface structures
and four mono-layer materials along with corresponding explanation. Chapter 5 is dedicated to
the final conclusions and remarks. Appendix A contains the derivation of the scissored velocity
matrix elements necessary to calculate the surface 2PA. Appendix B presents the disclaimer of the
paper “Ab initio calculation of two-photon absorption in semiconductors”, by Alan Bernal Ramı́rez
and Bernardo S. Mendoza, published in Physical Review B 106, 125201 (2022), whose results are
used in this thesis. Finally, the complete bibliography is located at the end of the thesis for easy
reference.
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2 Theory

Outline

2.1 Two-photon absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Perturbation approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Two-photon absorption susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Derivation of ‰

abcd(≠Ê; ≠Ê, ≠Ê, Ê) . . . . . . . . . . . . . . . . . . . . . . . . . . 12

In this chapter, we present the scheme used to calculate the third-order nonlinear response
‰

abcd(≠Ê; ≠Ê, ≠Ê, Ê) using the length gauge formalism, within the independent-particle approach.
Some detail is given, since it is important to distinguish between the so-called intraband and inter-

band transitions. In the Sec. 2.4, we show all the steps of the perturbation approach taken, and, in
particular, we show how through time reversal invariance, the expression for ‰

abcd(≠Ê; ≠Ê, ≠Ê, Ê)
is divergence-free at Ê = 0. We mention that the expression for ‰

abcd(≠Ê; ≠Ê, ≠Ê, Ê) presented in
Ref. [1] diverges at Ê = 0.

2.1 Two-photon absorption

The absorption of two photons of the same frequency is characterized through the third-order
nonlinear polarization, written as

P(t) = ‘0�
(3)E3(t), (2.1)

where the tensorial character of susceptibility �(3) is suppressed for convenience, and the perturbing
electric field E(t) is given by

E(t) = E+(Ê)e≠iỄt + E≠(Ê)eiỄt
, (2.2)

where E+(Ê) = E(Ê)Á̂ and E≠(Ê) = E(Ê)Á̂ú. Then, E(Ê) gives the magnitude and Á̂ the polariza-
tion of the electric field. For linear polarization Á̂ = Á̂ú, but for elliptical polarization, Á̂ will have
an opposite helicity to Á̂ú. Also, Ễ = Ê + i÷, and ÷ = 0+ adiabatically switches on the interaction
with the electric field. At the end of the calculation, we take ÷ æ 0. The above field is such that
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2. Theory

E+(Ê)e≠iỄt induces the absorption of a photon with energy ~Ê, whereas E≠(Ê)eiỄt induces the
emission of a photon with energy ~Ê. Then,

P(t) = ‘0�
(3)

1
E+(Ê)E+(Ê)E+(Ê)e≠i3Ễt + 3E+(Ê)E+(Ê)E≠(Ê)e≠iỄt

+ 3E+(Ê)E≠(Ê)E≠(Ê)eiỄt + E≠(Ê)E≠(Ê)E≠(Ê)ei3Ễt
2
, (2.3)

where the two-photon absorption (2PA) is given by

P(t) = 3‘0�
(3)E+(Ê)E+(Ê)E≠(Ê)e≠iỄt

, (2.4)

where two photons, each of frequency Ê, are simultaneously absorbed through E+(Ê), and the
resulting polarization oscillates at Ê. The above equation leads to

P
a(Ê) = 3‘0‰

abcd(≠Ê; ≠Ê, ≠Ê, Ê)Eb
+(Ê)Ec

+(Ê)Ed
≠(Ê), (2.5)

with ‰
abcd(≠Ê; ≠Ê, ≠Ê, Ê) being the degenerate third-order nonlinear optical susceptibility tensor

describing a polarization density response at the same frequency as the incident frequency. [29] It de-
scribes 2PA whose units are those of m

2
/V

2. The roman superscripts denote Cartesian components,
where we use the Einstein convention for repeated indices, and ‘0 is the vacuum permittivity.

2.2 Perturbation approach

In order to derive the analytic expression for the 2PA susceptibility of Eq. (2.5), we assume that
electrons may be described through an independent-particle approximation, although we do allow
for many-body e�ects through an e�ective Hamiltonian that depends on all the occupied states, as
in density functional theory. The electrons interact with an electromagnetic field, which we assume
is a classical field. Thus, we describe quantum mechanical matter interacting with classical fields.
We neglect the local fields and excitonic e�ects [30], and we write the one-electron Hamiltonian

Ĥ(t) = Ĥ0 + Ĥ(t) (2.6)

as the sum of an unperturbed e�ective time-independent Hamiltonian Ĥ0 that describes the interac-
tion of an electron with the crystalline lattice and its e�ective interaction with the other electrons,
as well as an interaction Hamiltonian Ĥ(t), which describes the interaction of the electron with
a time-dependent electromagnetic field. We mention that Ĥ0 includes the scissors operator that
allows for the energy correction of the pseudopotentials gap Egap to the experimental energy of the
gap Eexpt [5]. We describe the state of the system through the one electron density operator fl̂, with
which we can calculate the expectation value of any single-particle observable Ô as ÈÔÍ = Tr(fl̂Ô)
with Tr denoting the trace. Within the interaction picture (I), the density operator evolves in time
due to the interaction Hamiltonian according to

i~ d

dt
fl̂I(t) = [ĤI(t), fl̂I(t)], (2.7)

6



2.2. Perturbation approach

while the operators that correspond to all observables evolve through Ĥ0 according to

ÔI(t) = Û
†(t)Ô(t)Û(t), (2.8)

where Ô(t) is the same observable in the Schrödinger picture, given by Ô(0) for operators that do
not depend explicitly on time, and

Û(t) = exp(≠iĤ0t/~) (2.9)

is the nonperturbed unitary time-evolution operator. Assuming the field is turned on adiabatically,
we may integrate (2.7) to yield

fl̂I(t) = fl̂I0 + 1
i~

⁄ t

≠Œ
dt

Õ[ĤI(tÕ), fl̂I(tÕ)], (2.10)

where fl̂I0 is the unperturbed, time-independent equilibrium density matrix. We look for the stan-
dard perturbation series solution, fl̂I(t) = fl̂I0 + fl̂

(1)
I (t) + fl̂

(2)
I (t) + . . ., where the superscript denotes

the order (power) with which each term depends on perturbation ĤI(t). The (N + 1)-th order
solution is given as

fl̂
(N+1)
I (t) = 1

i~

⁄ t

≠Œ
dt

Õ[ĤI(tÕ), fl̂
(N)
I ], N Ø 0, (2.11)

where fl̂
(N)
I is the density matrix of the previous order perturbation term. For 2PA, N + 1 = 3, and

then, we need to know fl̂
(0)
I , fl̂

(1)
I , and fl̂

(2)
I to obtain fl̂

(3)
I .

We take our system as a solid described by a nonperturbed periodic Hamiltonian, whose eigen-
functions are Bloch states, |mkÍ, characterized by a band index m and a crystal momentum k. For
ĤI(t), we take the interaction with an electromagnetic field with a wavelength much larger than
the crystal unit cell dimension. Thus, electronic transitions due to this interaction are vertical; that
is, they conserve k. Taking the matrix elements between Bloch states of Eq. (2.8), we obtain

Ènk|ÔI |mkÍ © OI,nm(k, t) = e
iÊnm(k)tÈnk|Ô|mkÍ = e

iÊnm(k)tOnm(k, t), (2.12)

where Ênm(k) © Ên(k) ≠ Êm(k) and En(k) = ~Ên(k) are the unperturbed energy eigenvalues
corresponding to the stationary Schrödinger’s equation Ĥ0 |nkÍ = En(k) |nkÍ, where the Bloch
states |nkÍ are chosen so that Èr|nkÍ = unk(r)eik·r, with unk(r) being cell periodic and Ènk|mkÕÍ =
”nm”(k ≠ kÕ).

Within the dipole approximation, the interaction Hamiltonian in the length gauge is given by [5]

ĤI(t) = ≠er̂I(t) · E(t), (2.13)

where r̂I(t) = Û
†
0(t)r̂U(t) is the position operator of the electron at time t, and from Eq. (2.2),

E(t) = E±(Ê)eûiỄt, the time dependent perturbing classical electric field that, as explained in the
previous section, induces two-photon absorption through the correct choices of E(t), as given in
Eq. (2.5). Then, from Eqs. (2.11) and (2.12) we obtain

fl
(N+1)
I,nm (k, t) = ie

~

⁄ t

≠Œ
dt

Õ
e

iÊnm(k)tÕ Ènk|[r̂, fl̂
(N)]|mkÍ · E(tÕ), (2.14)

7



2. Theory

where it is convenient to represent the position operator in the coordinate space r̂ æ r when
calculating its interband matrix elements, and in the reciprocal space r̂ æ iÒk when calculating
its intraband matrix elements, so that following Refs. [23,31,32], the matrix elements of r are split
between the intraband (ri) and interband (re) parts, where r = ri + re and

Ènk| r̂i |mkÕÍ = ”nm
#
”(k ≠ kÕ)›nn(k) + iÒk”(k ≠ kÕ)

$
, (2.15)

Ènk| r̂e |mkÕÍ = (1 ≠ ”nm)”(k ≠ kÕ)›nm(k), (2.16)

with
›nm(k) © i

(2fi)3

�

⁄

�
dr u

ú
nk(r)Òkumk(r) (2.17)

being the Berry connection, where � is the unit cell volume. The well-known commutator

v̂ = ˆ̇r = 1
i~ [r̂, Ĥ0] (2.18)

allows us to write the interband matrix element as

rnm(k) = vnm(k)
iÊnm(k) (n ”= m), (2.19)

where v̂ is the velocity operator related to the momentum operator by p̂ = mv̂, with m being the
mass of the electron. For re, we obtain that

Ènk| [r̂a
, fl̂

(N)(t)] |mkÍ =
ÿ

”̧=m,n

1
r

a
n¸(k)fl(N)

¸m (k, t) ≠ fl
(N)
n¸ (k, t)ra

¸m(k)
2

(1 ≠ ”nm)

© R
a,(N)
nm (k, t), (2.20)

where we used the closure relationship
q

n |nkÍÈnk| = 1. When ri appears in commutators, we use

Ènk| [r̂a
i , fl̂

(N)(t)] |mkÍ = ifl
(N)
nm;ka(k, t) © R

a,(N)
i,nm (k, t) (2.21)

with
fl

(N)
nm;k(k, t) = Òkfl

(N)
nm (k, t) ≠ ifl

(N)
nm (k, t) (›nn(k) ≠ ›mm(k)) , (2.22)

where “; k” denotes the generalized derivative with respect to k, and fl
(N)
nm (k, t) could be replaced

by any function.
From Eq. (2.14), we obtain

fl
(N+1)
I,nm (k, t) = ie

~

⁄ t

≠Œ
dt

Õ
e

i(Ênmk±Ễp)tÕ Ë
R

b,(N)
nm (k, t

Õ) + R
b,(N)
i,nm (k, t

Õ)
È

E
b
û(Êp), (2.23)

where sublabel p is a tag to keep track of the frequency Êp that belongs to the Cartesian direction
b.

The perturbation series is generated by the unperturbed density operator

Ènk|fl̂(0)|mkÍ = ”nmf(~Ên(k)) © fn(k), (2.24)

8



2.2. Perturbation approach

with fn(k) being the Fermi-Dirac distribution; for a clean, cold semiconductor fn(k) = 1 when n is
a valence (v) or occupied band, and zero when n is a conduction (c) or empty band. This defines
the distribution functions fn(k) in reciprocal space, one for each band. Also, following Ref. [23], we
can readily show that

Ènk|[r̂, fl̂
(0)]|mkÍ = fmn(k)rnm(k) + i”nmÒkfn(k), (2.25)

where fnm(k) = fn(k) ≠ fm(k). For a clean, cold semiconductor, Òkfn(k) = 0, and thus, there are
no intraband contributions to the optical response; however, this term is finite for metallic systems
and gives rise to their low-frequency optical behavior through the so-called Drude Tensor [33]. From
Eq. (2.20), R

a,(0)
nm (k, t) = fmn(k)ra

nm(k)(1 ≠ ”nm), and from Eq. (2.21), R
a,(0)
i,nm(k, t) = 0, which when

used in Eq. (2.23), leads to fl
(1)
I,nm(k, t) = e

iÊnm(k)t
fl

(1)
nm(±Êp, t), where

fl
(1)
nm(±Êp, k, t) = B

b
nm(±Êp, k)(1 ≠ ”nm)Eb

û(Êp)e±iỄpt
, (2.26)

with

B
b
nm(±Êp, k) = e

~
fmn(k)rb

nm(k)
Ênm(k) ± Ễp

. (2.27)

For the linear response, fl
(1)
nm(≠Êp, k, t) (fl(1)

nm(+Êp, k, t)) would lead to the absorption (emission) of
a photon with energy ~Êp.

We proceed with the second-order terms, and from Eq. (2.20) and (2.21), we obtain

R
b(1)
e,nm(k, t) = e

~
ÿ

”̧=m,n

1
r

b
n¸(k)Bc

¸m(k, ±Êq) ≠ B
c
n¸(k, ±Êq)rb

¸m(k)
2

(1 ≠ ”nm)Ec
ûÊq

e
±iỄqt (2.28)

and
R

b(1)
i,nm(k, t) = ie

~ B
c
nm;kb(k, ±Êq)(1 ≠ ”nm)Ec

ûÊq
e

±iỄqt
, (2.29)

where we use Êq to di�erentiate it from Êp, since it is associated to the electrical field along the
c direction. From Eq. (2.23), we obtain that fl

(2)
I,nm(k, t) = e

iÊnm(k)t
fl

(2)
nm(±Ễp ± Ễq, k, t), where

fl
(2)
nm(±Êp ± Êq, k, t) = fl

(2)
nm(±Êp ± Êq, k)Eb

ûpE
c
ûqe

i(±Ễp±Ễq)t , with

fl
(2)
nm(±Êp ± Êq, k) = e

2

~2
1

Ênmk ± Ễp ± Ễq

5
iB

c
nm;kb(±Êq, k)

+
ÿ

”̧=nm

1
r

b
n¸B

c
¸m(±Êq, k) ≠ B

c
n¸(±Êq, k)rb

¸m

26
(1 ≠ ”nm). (2.30)

We mention that the above expression would lead to second-harmonic generation by taking ≠Êq =
≠Êp = ≠Ê [5, 34].

Finally, we proceed with the third-order nonlinear response. Then, from Eqs. (2.20) and (2.21)

R
d(2)
e,nm(k, t) =

ÿ

¸ ”=nm

1
r

d
n¸(k)fl(2)

¸m(±Êp ± Êq, k) ≠ fl
(2)
n¸ (±Êp ± Êq, k)rd

¸m(k)
2

E
b
ûpE

c
ûqe

i(±Êp±Êq≠i÷)t(1 ≠ ”nm),

(2.31)

9



2. Theory

and
R

d(2)
i,nm(k, t) = ifl

(2)
nm;kd(±Êp ± Êq, k)Eb

ûpE
c
ûq(1 ≠ ”nm)ei(±Êp±Êq≠i÷)t

. (2.32)

Then, from Eq. (2.23) fl
(3)
I,nm(k, t) = e

iÊ�
nmkt

fl
(3)
nm(±Êp ± Êq ± Ês, k, t), where

fl
(3)
nm(±Êp ± Êq ± Ês, k, t) = fl

(3)
nm(±Êp ± Êq ± Ês, k)Ed

ûsE
b
ûpE

c
ûqe

i(±Êp±Êq±Ês≠i÷)t
, (2.33)

and

fl
(3)
nm(±Êp ± Êq ± Ês, k) = e

~
Ë ÿ

”̧=nm

1
r

d
n¸(k)fl(2)

¸m(±Êp ± Êq, k) ≠ fl
(2)
n¸ (±Êp ± Êq, k)rd

¸m(k)
2

+ ifl
(2)
nm;kd(±Êp ± Êq, k)

È 1 ≠ ”nm

Ênm(k) ± Ễp ± Ễq ± Ễs
, (2.34)

where now, Ês is associated with the Cartesian direction d of the electric field.
From Eq. (2.5), 2PA is given by this combination of fields, E

b
+(Ê)Ec

+(Ê)Ed
≠(Ê), which in turn

implies that Êp = ≠Ê, Êq = ≠Ê, and Ês = Ê, so that from Eq. (2.34), the third-order density matrix
that describes 2PA is given by

fl
(3)
nm(≠Ê, k) = e

~
ÿ

”̧=mn

Ë 1
r

d
n¸(k)fl(2)

¸m(≠2Ê, k) ≠ fl
(2)
n¸ (≠2Ê, k)rd

¸m(k)
2

+ ifl
(2)
nm;kd(≠2Ê, k)

È 1 ≠ ”nm

Ênm(k) ≠ Ê
,

(2.35)

where, from Eq. (2.30),

fl
(2)
nm(≠2Ê, k) = e

2

~2
Gbc

nm(≠Ê, k)
Ênm(k) ≠ 2Ễ

(2.36)

with

Gbc
nm(≠Ê, k) = iB

c
nm;kb(≠Ê, k) +

ÿ

¸”=mn

1
r

b
n¸(k)Bc

¸m(≠Ê, k) ≠ B
c
n¸(≠Ê, k)rb

¸m(k)
2
, (2.37)

and B
c
nm(≠Ê, k) is given in Eq. (2.27), with the generalized derivative ; k in Eq. (2.22).

2.3 Two-photon absorption susceptibility

To obtain the 2PA response, we look for the expectation value of the macroscopic polarization
density P , whose time derivative yields the current density, J , as

ˆ

ˆt
P = J = e

�Tr
1
v̂fl̂

(3)(t)
2

. (2.38)

where � is the volume of the unit cell, from Eq. (2.33),

P (Ê) = ie

Ê

⁄
dk

8fi3
ÿ

mn

vmn(k)fl(3)
nm(≠Ê, k)Eb

+E
c
+E

d
≠, (2.39)

10



2.3. Two-photon absorption susceptibility

and using Eq. (2.5), we obtain that

‰
abcd(≠Ê; ≠Ê, ≠Ê, Ê) = ie

2

~Ê

⁄
dk

8fi3
ÿ

m”=n

v
a
mn(k)

Ë ÿ

¸ ”=mn

1
r

d
n¸(k)fl(2)

¸m(≠2Ê, k) ≠ fl
(2)
n¸ (≠2Ê, k)rd

¸m(k)
2

+ ifl
(2)
nm;kd(≠2Ê, k)

È 1
Ênm(k) ≠ Ễ

(2.40)

is the third-order nonlinear susceptibility that describes 2PA in semiconductors; integration over
k is over the Brillouin Zone (BZ). In Sec. 2.4, we show how to obtain explicit expressions for
‰

abcd(≠Ê; ≠Ê, ≠Ê, Ê) that we use to calculate 2PA. Those expressions are composed of terms that
resonate when the external frequency of the incoming beam of light ~Ê Ø Egap or ~Ê Ø Egap/2,
where Egap is the energy gap of the semiconductor. We mention that the factor of 3 that appears
in Eq. (2.5) is the factor of 3 that is given in the numerator of Eq. (3.1) as obtained in Ref. [2].

In this work, we are mainly interested in 2PA for Egap/2 Æ ~Ê < Egap, which, according to Sec.
(2.4), would correspond to the 2Ê expression for ‰

abcd(≠Ê; ≠Ê, ≠Ê, Ê) given in Eq. (2.62), (2.66),
(2.76), and (2.79), so that

Im[‰abcd
2Ê ] = fie

4

~3

⁄
dk

8fi3
ÿ

vc

A
16�d

cv(k)Im[rc
cv;kb(k)va

vc(k)]
Ê4

cv(k) ≠ 32�b
cv(k)�d

cv(k)Im[va
vc(k)rc

cv(k)]
Ê5

cv(k)

≠
8Im[va

vc;kd(k)rc
cv;kb(k)]

Ê3
cv(k) +

16�b
cv(k)Im

#
r

c
cv(k)va

vc;kd(k)
$

Ê4
cv(k)

B

”(Êcv(k) ≠ 2Ê), (2.41)

where we have suppressed the argument (≠Ê; ≠Ê, ≠Ê, Ê) to save space; the generalized derivatives
of v

a
nm;kb(k) and r

a
nm;kb(k) are given in Eqs. (2.50) and (2.51), respectively. It is worth mentioning

that the expression involves transitions only from valence (v) to conduction (c) states. Indeed, as
it turns out, the terms of ‰

abcd
2Ê (≠Ê; ≠Ê, ≠Ê, Ê) that have summations that involve three and four

energy states (see Sec. 2.4), are 105 times smaller than what Eq. (2.41) gives; therefore, we could
ignore them throughout this work. Finally, as described in Ref. [5], the scissors operator would lead
to the following modifications:

Ê
�
n (k) = Ê

LDA
n (k) + (1 ≠ fn(k))�, (2.42)

with Ê
LDA
n (k) being the LDA energy of band n at point k, and � the energy or “scissors shift”

required to obtain the experimental energy gap of the semiconductor in question. Also,

v�
nm(k) = vLDA

nm (k) + i�fnm(k)rnm(k) (2.43)

gives the scissor shift to the velocity matrix elements.
To summarize the procedure used to obtain the 2PA susceptibility, in Fig. 2.1 we show a tree

diagram of the electronic density fl
(N)
i,e and its intraband ri and interband re contributions to every

order in the perturbation scheme presented above. As mentioned before, for a clean cold semicon-
ductor, Òkfn(k) = 0, and there are no intraband contributions to fl

(1)
i , for which the left branch of

Fig. 2.1 vanishes; however, this branch is finite for a metal. On the other hand, the right branch of
the tree is always finite for both semiconductors and metals. As shown in Sec. 3, the contributions

11
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fl
(0)

fl
(1)
i

fl
(2)
ii

fl
(3)
iii fl

(3)
iie

fl
(2)
ie

fl
(3)
iei fl

(3)
iee

fl
(1)
e

fl
(2)
ei

fl
(3)
eii fl

(3)
eie

fl
(2)
ee

fl
(3)
eei fl

(3)
eee

Figure 2.1: Tree diagram of the electronic density fl
(N)
i,e and its intraband ri and

interband re contributions to every order in the perturbation scheme presented
in Sec. 2.2. The fl

(3)
eii , fl

(3)
eie, fl

(3)
eei and fl

(3)
eee are given in Eqs. (2.93)-(2.96), respec-

tively. The only contributing term to 2PA susceptibility of the tree is term fl
(3)
eii ,

circled in violet, which is composed of only two-band transitions. The fl
(3)
eie, fl

(3)
eei

and fl
(3)
eee branches are related to three- and four-band transitions, and although

finite, they are negligible, as shown in Sec. 3 . For a semiconductor, the left
branch of the tree in red vanishes identically.

from three bands and four bands to 2PA are negligible with respect to the contributions from two
bands, that is why the only contributing term to 2PA susceptibility is the branch circled in the
tree, and it corresponds to fl

(3)
eii , which involves “one” contribution from re and “two” from ri. In-

deed, in Eqs. (2.93)-(2.96) we identify each of the contributions of the last right branch of Fig. 2.1
given by fl

(3)
eii , fl

(3)
eie, fl

(3)
eei and fl

(3)
eee. As we show in Sec. 3 fl

(3)
eii dominates the 2PA response for the

semiconductors used in this work.

2.4 Derivation of ‰abcd(≠Ê; ≠Ê, ≠Ê, Ê)

In this section, we give the main steps to obtain the 2PA ‰
abcd(≠Ê; ≠Ê, ≠Ê, Ê) susceptibility of

Eq. (2.40). Using Eq. (2.36) and the chain rule,

fl
(2)
nm;kd(≠2Ê, k) = e

2

~2

A
Gbc

nm;kd(≠Ê, k)
Ênm(k) ≠ 2Ễ

+ Gbc
nm(≠Ê, k)

3 1
Ênm(k) ≠ 2Ễ

4

;kd

B

, (2.44)
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2.4. Derivation of ‰
abcd(≠Ê; ≠Ê, ≠Ê, Ê)

which from Eq. (2.40) leads to

‰
abcd(≠Ê; ≠Ê, ≠Ê, Ê) = ie

4

~3Ễ

⁄
dk

8fi3
ÿ

m”=n”=¸

A
v

a
mn(k)rd

n¸(k)Gbc
¸m(≠Ê, k)

Ê¸m(k) ≠ 2Ễ
≠ v

a
mn(k)Gbc

n¸(≠Ê, k)rd
¸m(k)

Ên¸(k) ≠ 2Ễ

+ i

v
a
mn(k)Gbc

nm;kd(≠Ê, k)
Ênm(k) ≠ 2Ễ

+ iv
a
mn(k)Gbc

nm(≠Ê, k)
3 1

Ênm(k) ≠ 2Ễ

4

;kd

B
1

Ênm(k) ≠ Ễ
.

(2.45)

Integrating by parts the last term of above equation, we obtain that

‰
abcd(≠Ê; ≠Ê, ≠Ê, Ê) = ie

4

~3Ễ

⁄
dk

8fi3
ÿ

m”=n

CA

≠ i

v
a
mn;kd(k)Gbc

nm(≠Ê, k)
(Ênm(k) ≠ 2Ễ)(Ênm(k) ≠ Ễ)Î1 (2.46)

+ i
v

a
mn(k)�d

nm(k)Gbc
nm(≠Ê, k)

(Ênm(k) ≠ 2Ễ)(Ênm(k) ≠ Ễ)2 Î2

B

+
ÿ

¸ ”=m,n

A

≠ v
a
mn(k)rd

n¸(k)Gbc
¸m(≠Ê, k)

(Ê¸m(k) ≠ 2Ễ)(Ênm(k) ≠ Ễ)Î3 + v
a
mn(k)rd

¸m(k)Gbc
n¸(≠Ê, k)

(Ên¸(k) ≠ 2Ễ)(Ênm(k) ≠ Ễ)Î4

BD

,

(2.47)

where we have labeled the four terms from 1 to 4 and used the fact that [5]

Êm;ka(k) = v
a
mm(k) (2.48)

is the velocity of band m, and we defined

�a
mn(k) © v

a
mm(k) ≠ v

a
nn(k). (2.49)

From Eq. (2.19),

v
a
nm;kb = i�b

nmr
a
nm + iÊnmr

a
nm;kb , (2.50)

where [23,34]

r
b
nm;ka = r

a
nm�b

mn + r
b
nm�a

mn

Ênm
+ i

Ênm

ÿ

¸”=m,n

3
Ê¸mr

a
n¸r

b
¸m ≠ Ên¸r

b
n¸r

a
¸m

4
. (2.51)

Apparently, Eq. (2.46) diverges as Ê goes to zero; however, in what follows, this divergence will
be shown to cancel out by invoking time-reversal symmetry (TRS) [6]. To show the mathematical
steps involved in reducing Eq. (2.46) into a 1/Ê-divergent-less expression, we take as an example
its second term, ‰

abcd
2 (omitting the Ê arguments), and write

‰
abcd
2 = ≠ e

4

~3Ễ

⁄
dk

8fi3
ÿ

m”=n

v
a
mn(k)�d

nm(k)Gbc
nm(≠Ê, k)

(Ênm(k) ≠ 2Ễ)(Ênm(k) ≠ Ễ)2 , (2.52)
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2. Theory

where from Eqs. (2.27) and (2.37), we obtain that

Gbc
nm =

ifmnr
c
nm;kb

Ênm ≠ Ễ
≠ ifmnr

c
nm�b

nm

(Ênm ≠ Ễ)2 +
ÿ

¸”=mn

1
fm¸r

c
¸mr

b
n¸

Ê¸m ≠ Ễ
≠ f¸nr

c
n¸r

b
¸m

Ên¸ ≠ Ễ

2
, (2.53)

where we omitted the (≠Ê, k) and (k) arguments to save space. After substituting Eq. (2.53) into
(2.52), we split the result into three terms and perform a partial fraction expansion on Ê, for each
of the three terms. For the first term, we obtain that

‰
abcd
2,1 Ã 1

Ễ(Ênm ≠ 2Ễ)(Ênm ≠ Ễ)3 © W̃
(2,1)
nm = 1

Ê4
nmỄ

+ W
(2,1)
nm,Ê + W

(2,1)
nm,2Ê, (2.54)

where

W
(2,1)
nm,Ê = ≠ 7

Ê4
nm(Ênm ≠ Ễ) ≠ 3

Ê3
nm(Ênm ≠ Ễ)2 ≠ 1

Ê2
nm(Ênm ≠ Ễ)3 , (2.55)

and

W
(2,1)
nm,2Ê = 16

Ê4
nm(Ênm ≠ 2Ễ) . (2.56)

In Eq. (2.54), the 1/Ễ divergent term is isolated from the rest of the nondivergent Ễ and 2Ễ terms
given in W

(2,1)
nm,Ê and W

(2,1)
nm,2Ê, respectively. Using the TRS relations shown in Table 2.1, we obtain

that

‰
abcd
2,1 = ≠i

e
4

~3

⁄

k>0

dk

8fi3
ÿ

m”=n

fmn(k)W̃ (2,1)
nm (k)

1
r

c
nm;kb(k)va

mn(k)�d
nm(k) + r

c
nm;kb(≠k)va

mn(≠k)�d
nm(≠k)

2

= e
4

~3

⁄
dk

8fi3
ÿ

m”=n

fmn(k)W̃ (2,1)
nm (k)�d

nm(k)Im[rc
nm;kb(k)va

mn(k)], (2.57)

and using
q

mn Fmn =
q

m<n (Fmn + Fnm), the above equation is converted into

‰
abcd
2,1 = e

4

~3

⁄
dk

8fi3
ÿ

m<n

fmn(k)�d
nm(k)Im[rc

nm;kb(k)va
mn(k)]

!
W̃

(2,1)
nm (k) ≠ W̃

(2,1)
mn (k)

"
, (2.58)

where we used the fact that Onm = Oú
mn, with Ô being a Hermitian operator, and that Im[zú] =

≠Im[z]. From Eq. (2.54)

W̃
(2,1)
nm ≠ W̃

(2,1)
mn = W

(2,1)
nm,Ê + W

(2,1)
nm,2Ê + 1

Ê4
nmÊ

≠ W
(2,1)
mn,Ê ≠ W

(2,1)
mn,2Ê ≠ 1

Ê4
mnÊ

= W
(2,1)
nm,Ê + W

(2,1)
nm,2Ê ≠ W

(2,1)
mn,Ê ≠ W

(2,1)
mn,2Ê, (2.59)

since Ê
4
nm = Ê

4
mn, and therefore, the divergent 1/Ê cancels out due to TRS. Thus,

‰
abcd
2,1 = e

4

~3

⁄
dk

8fi3
ÿ

vc

�d
cv(k)Im[rc

cv;kb(k)va
vc(k)]

!
W

(2,1)
cv,Ê (k) ≠ W

(2,1)
vc,Ê (k) + W

(2,1)
cv,2Ê(k) ≠ W

(2,1)
vc,2Ê(k)

"
,

(2.60)
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2.4. Derivation of ‰
abcd(≠Ê; ≠Ê, ≠Ê, Ê)

Ênm(≠k) = Ênm(k),
r

a
nm(≠k) = r

a
mn(k)

r
a
nm(≠k);kb = ≠r

a
mn(k);kb

v
a
mn(≠k) = ≠v

a
nm(k)

v
a
mn(≠k);kb = v

a
nm(k);kb

�a
nm(≠k) = ≠�a

nm(k)

Table 2.1: Relations obtained from time-Reversal symmetry [6].

since m < n implies from fmn(k) that m = v and n = c, with v and c being valence and conduction
states, respectively. We see that ‰

abcd
2,1 could be split into 1Ê and 2Ê terms, as follows,

‰
abcd
2,1,pÊ = e

4

~3

⁄
dk

8fi3
ÿ

vc

�d
cv(k)Im[rc

cv;kb(k)va
vc(k)]

!
W

(2,1)
cv,pÊ(k) ≠ W

(2,1)
vc,pÊ(k)

"
, (2.61)

where p = 1, 2 and ‰
abcd
2,1 = ‰

abcd
2,1,Ê + ‰

abcd
2,1,2Ê.

Since we are mainly interested in 2PA for photon energies below the gap, we focus on the 2Ê

term. Then, taking ÷ æ 0 upon W
(2,1)
vc,2Ê(k) leads to a nonresonant denominator, and from W

(2,1)
cv,2Ê(k),

we obtain

Im[‰abcd
2,1,2Ê] = fie

4

~3

⁄
dk

8fi3
ÿ

vc

16�d
cv(k)Im[rc

cv;kb(k)va
vc(k)]

Ê4
cv(k) ”(Êcv(k) ≠ 2Ê), (2.62)

which is a closed expression that can be readily evaluated, and through its Kramers-Kroning trans-
formation, the real part of ‰

abcd
2,1,2Ê could be calculated.

Using the above procedure, we obtain that

‰
abcd
2,2,pÊ = ≠ e

4

~3

⁄
dk

8fi3
ÿ

vc

�b
cv(k)�d

cv(k)Im[va
vc(k)rc

cv(k)]
1
W

(2,2)
cv,pÊ(k) + W

(2,2)
vc,pÊ(k)

2
, (2.63)

with

W
(2,2)
nm,Ê = ≠ 15

Ê5
nm(Ênm ≠ Ê) ≠ 7

Ê4
nm(Ênm ≠ Ê)2 ≠ 3

Ê3
nm(Ênm ≠ Ê)3 ≠ 1

Ê2
nm(Ênm ≠ Ê)4 , (2.64)

and

W
(2,2)
nm,2Ê = 32

Ê5
nm(Ênm ≠ 2Ê) . (2.65)
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2. Theory

The 2Ê term is given by

Im[‰abcd
2,2,2Ê] = ≠fie

4

~3

⁄
dk

8fi3
ÿ

vc

32�b
cv(k)�d

cv(k)Im[va
vc(k)rc

cv(k)]
Ê5

cv(k) ”(Êcv(k) ≠ 2Ê). (2.66)

Lastly,

‰
abcd
2,3,pÊ = ≠ e

4

~3

⁄
dk

8fi3
ÿ

m”=n”=¸

fm¸(k)�d
nm(k)Re[rc

¸m(k)rb
n¸(k)va

mn(k)]
1
W

(2,3,1)
nm¸,pÊ(k) ≠ W

(2,3,2)
mn¸,pÊ(k)

2
,

(2.67)

where

W
(2,3,1)
nm¸,Ê = ≠ 3Ê¸m ≠ 4Ênm

Ê3
nm(Ênm ≠ Ê¸m)2(Ênm ≠ Ễ) + 1

Ê2
nm(Ênm ≠ Ê¸m)(Ênm ≠ Ễ)2

≠ 1
Ê¸m(Ê¸m ≠ Ênm)2(2Ê¸m ≠ Ênm)(Ê¸m ≠ Ễ) , (2.68)

W
(2,3,1)
nm¸,2Ê = ≠ 16

Ê3
nm(Ênm ≠ 2Ê¸m)(Ênm ≠ 2Ễ) , (2.69)

W
(2,3,2)
nm¸,Ê = ≠ 3Ên¸ ≠ 4Ênm

Ê3
nm(Ênm ≠ Ên¸)2(Ênm ≠ Ễ) + 1

Ê2
nm(Ênm ≠ Ên¸)(Ênm ≠ Ễ)2

≠ 1
Ên¸(Ên¸ ≠ Ênm)2(2Ên¸ ≠ Ênm)(Ên¸ ≠ Ễ) , (2.70)

and

W
(2,3,2)
nm¸,2Ê = ≠ 16

Ê3
nm(Ênm ≠ 2Ên¸)(Ênm ≠ 2Ễ) . (2.71)

Then,

‰
abcd
2 =

2ÿ

p=1

1
‰

abcd
2,1,pÊ + ‰

abcd
2,2,pÊ + ‰

abcd
2,3,pÊ

2
. (2.72)

Following the same steps that lead to ‰
abcd
2 , we obtain that

‰
abcd
1 =

2ÿ

p=1

1
‰

abcd
1,1,pÊ + ‰

abcd
1,2,pÊ + ‰

abcd
1,3,pÊ

2
, (2.73)

where, for ‰
abcd
1,1,pÊ we obtain

‰
abcd
1,1,pÊ = ≠ e

4

~3

⁄
dk

8fi3
ÿ

m”=n

fmnIm[va
mn;kd(k))rc

nm;kb(k)]W (1,1)
nm,pÊ, (2.74)
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2.4. Derivation of ‰
abcd(≠Ê; ≠Ê, ≠Ê, Ê)

with

W
(1,1)
nm,Ê = ≠3

Ê3
nm(Ênm ≠ Ễ) ≠ 1

Ê2
nm(Ênm ≠ Ễ)2 ,

W
(1,1)
nm2,Ê = 8

Ê3
nm(Ênm ≠ 2Ễ) , (2.75)

and

‰
abcd
1,1,2Ê = ≠ e

4

~3

⁄
dk

8fi3
ÿ

vc

8Im[va
vc;kd(k)rc

cv;kb(k)]
Ê3

cv(k) ”(Êcv(k) ≠ 2Ễ). (2.76)

‰
abcd
1,2,pÊ is given by

‰
abcd
1,2,pÊ = e

4

~3

⁄
dk

8fi3
ÿ

m”=n

fmn�b
nmIm

#
r

c
nmv

a
mn;kd

$
W

(1,2)
nm,pÊ, (2.77)

with

W
(1,2)
nm,Ê = ≠7

Ê4
nm(Ênm ≠ Ễ) ≠ 3

Ê3
nm(Ênm ≠ Ễ)2 ≠ 1

Ê2
nm(Ênm ≠ Ễ)3 ,

W
(1,2)
nm,2Ê = 16

Ê4
nm(Ênm ≠ 2Ê) , (2.78)

and

‰
abcd
1,2,2Ê = e

4

~3

⁄
dk

8fi3
ÿ

vc

16�b
cv(k)Im

#
r

c
cv(k)va

vc;kd(k)
$

Ê4
cv(k) ”(Êcv(k) ≠ 2Ê). (2.79)

‰
abcd
1,3,pÊ is given by

‰
abcd
1,3,pÊ = e

4

~3

⁄
dk

8fi3
ÿ

m”=n”=¸

fm¸Re
#
v

a
mn;kdr

c
¸mr

b
n¸

$1
W

(1,3,1)
nm¸,pÊ ≠ W

(1,3,2)
mn¸,pÊ

2
, (2.80)

where

W
(1,3,1)
nm¸,Ê = 1

Ê2
nmÊn¸(Ênm ≠ Ễ) ≠ 1

Ê¸mÊ¸n(Ênm ≠ 2Ê¸m)(Ê¸m ≠ Ễ)

W
(1,3,1)
nm¸,2Ê = ≠ 8

Ê2
nm(Ênm ≠ 2Ê¸m)(Ênm ≠ 2Ễ) ,

W
(1,3,2)
nm¸,Ê = 1

Ê2
nmÊ¸m(Ênm ≠ Ễ) + 1

Ên¸Êm¸(2Ên¸ ≠ Ênm)(Ên¸ ≠ Ễ) ,

W
(1,3,2)
nm¸,2Ê = ≠ 8

Ê2
nm(Ênm ≠ 2Ên¸)(Ênm ≠ 2Ễ) . (2.81)
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2. Theory

For ‰
abcd
3 and ‰

abcd
4 , we write

‰
abcd
3 + ‰

abcd
4 =

2ÿ

p=1

1!
‰

abcd
3,1,pÊ + ‰

abcd
4,1,pÊ

"
+

!
‰

abcd
3,2,pÊ + ‰

abcd
4,2,pÊ

"
+

!
‰

abcd
3,3,2,pÊ + ‰

abcd
4,3,1,pÊ

"
+

!
‰

abcd
3,3,1,pÊ + ‰

abcd
4,3,2,pÊ

"2
,

(2.82)

where we have grouped the ‰’s that have common factors within the small parentheses. We have
that

‰
abcd
3,1,pÊ + ‰

abcd
4,1,pÊ = ≠ e

4

~3

⁄
dk

8fi3
ÿ

m”=n”=l

fnlRe
#
v

a
nmr

d
mlr

c
ln;kb

$1
W

(4,1)
nml,pÊ ≠ W

(3,1)
nml,pÊ

2
, (2.83)

where

W
(3,1)
nml,Ê = 1

Ê
2
nlÊml(Ênl ≠ Ễ) + 1

ÊnmÊlm(2Ênm ≠ Ênl)(Ênm ≠ Ễ) ,

W
(3,1)
nml,2Ê = ≠ 8

Ê
2
nl(Ênl ≠ 2Ênm)(Ênl ≠ 2Ễ) ,

W
(4,1)
nml,Ê = 1

Ê
2
lnÊlm(Êln ≠ Ễ) + 1

ÊmnÊml(2Êmn ≠ Êln)(Êmn ≠ Ễ) ,

W
(4,1)
nml,2Ê = ≠ 8

Ê
2
ln(Êln ≠ 2Êmn)(Êln ≠ 2Ễ) . (2.84)

Now,

‰
abcd
3,2,pÊ + ‰

abcd
4,2,pÊ = e

4

~3

⁄
dk

8fi3
ÿ

m”=n”=l

fnl�b
lnRe

#
v

a
nmr

d
mlr

c
ln

$3
W

(4,2)
nml,pÊ ≠ W

(3,2)
nml,pÊ

4
, (2.85)

with

W
(3,2)
nml,Ê = ≠ 3Ênm ≠ 4Ênl

Ê
3
nl(Ênl ≠ Ênm)2(Ênl ≠ Ễ) + 1

Ê
2
nl(Ênl ≠ Ênm)(Ênl ≠ Ễ)2 ≠ 1

Ênm(Ênm ≠ Ênl)2(2Ênm ≠ Ênl)(Ênm ≠ Ễ) ,

W
(3,2)
nml,2Ê = ≠ 16

Ê
3
nl(Ênl ≠ 2Ênm)(Ênl ≠ 2Ễ) ,

W
(4,2)
nml,Ê = ≠ 3Êmn ≠ 4Êln

Ê
3
ln(Êln ≠ Êmn)2(Êln ≠ Ễ) + 1

Ê
2
ln(Êln ≠ Êmn)(Êln ≠ Ễ)2 ≠ 1

Êmn(Êmn ≠ Êln)2(2Êmn ≠ Êln)(Êmn ≠ Ễ) ,

W
(4,2)
nml,2Ê = ≠ 16

Ê
3
ln(Êln ≠ 2Êmn)(Êln ≠ 2Ễ) . (2.86)

Next,

‰
abcd
3,3,1,pÊ = ‰

abcd
4,3,2,pÊ = e

4

~3

⁄
dk

8fi3
ÿ

m”=n”=l ”=q

fqlIm
#
v

a
nmr

d
mlr

c
lqr

b
qn

$!
W

(4,3,2)
nmlq,pÊ + W

(3,3,1)
nmlq,pÊ

"
, (2.87)
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abcd(≠Ê; ≠Ê, ≠Ê, Ê)

where

W
(3,3,1)
nmlq,Ê = 1

Ênm(2Ênm ≠ Ênl)(Ênm ≠ Êql)(Ênm ≠ Ễ) + 1
Êql(2Êql ≠ Ênl)(Êql ≠ Ênm)(Êql ≠ Ễ)

W
(3,3,1)
nmlq,2Ê = 8

Ênl(Ênl ≠ 2Ênm)(Ênl ≠ 2Êql)(Ênl ≠ 2Ễ) ,

W
(4,3,2)
nmlq,Ê = 1

Êmn(2Êmn ≠ Êln)(Êmn ≠ Êlq)(Êmn ≠ Ễ) + 1
Êlq(2Êlq ≠ Êln)(Êlq ≠ Êmn)(Êlq ≠ Ễ) ,

W
(4,3,2)
nmlq,2Ê = 8

Êln(Êln ≠ 2Êmn)(Êln ≠ 2Êlq)(Êln ≠ 2Ễ) . (2.88)

Finally,

‰
abcd
3,3,2,pÊ + ‰

abcd
4,3,1,pÊ = ≠ e

4

~3
ÿ

m”=n”=l ”=qk

fnqIm
#
v

a
nmr

d
mlr

c
qnr

b
lq

$3
W

(4,3,1)
nmlq,pÊ + W

(3,3,2)
nmlq,pÊ

4
, (2.89)

where

W
(3,3,2)
nmlq,Ê = 1

ÊnmÊqm(2Ênm ≠ Ênl)(Ênm ≠ Ễ) + 1
ÊnqÊmq(2Ênq ≠ Ênl)(Ênq ≠ Ễ)

W
(3,3,2)
nmlq,2Ê = 8

Ênl(Ênl ≠ 2Ênm)(Ênl ≠ 2Ênq)(Ênl ≠ 2Ễ) ,

W
(4,3,1)
nmlq,Ê = 1

ÊmnÊmq(2Êmn ≠ Êln)(Êmn ≠ Ễ) + 1
ÊqnÊqm(2Êqn ≠ Êln)(Êqn ≠ Ễ) ,

W
(4,3,1)
nmlq,2Ê = 8

Êln(Êln ≠ 2Êmn)(Êln ≠ 2Êqn)(Êln ≠ 2Ễ) . (2.90)

Collecting the above results leads us to write the full 2PA susceptibility as

‰
abcd = ‰

abcd
Ê + ‰

abcd
2Ê , (2.91)

where

‰
abcd
pÊ =

1
‰

abcd
1,1,pÊ + ‰

abcd
1,2,pÊ + ‰

abcd
1,3,pÊ + ‰

abcd
2,1,pÊ + ‰

abcd
2,2,pÊ + ‰

abcd
2,3,pÊ + ‰

abcd
3,1,pÊ + ‰

abcd
3,2,pÊ + ‰

abcd
3,3,1,pÊ + ‰

abcd
3,3,2,pÊ

+ ‰
abcd
4,1,pÊ + ‰

abcd
4,2,pÊ + ‰

abcd
4,3,1,pÊ + ‰

abcd
4,3,2,pÊ

2
, (2.92)

with p = 1, 2. Using Fig. 2.1, we identify every element of the right branch that origins the
respectably susceptibility term, this is

fl
(3)
eii æ ‰

(3)
2,1 + ‰

(3)
2,2 + ‰

(3)
1,1 + ‰

(3)
1,2, (2.93)

fl
(3)
eie æ ‰

(3)
2,3 + ‰

(3)
1,3, (2.94)

fl
(3)
eei æ ‰

(3)
3,2 + ‰

(3)
4,2 + ‰

(3)
3,1 + ‰

(3)
4,2, (2.95)

fl
(3)
eee æ ‰

(3)
3,3,1 + ‰

(3)
4,3,2 + ‰

(3)
3,3,2 + ‰

(3)
4,3,1. (2.96)
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In order to calculate the 2PA susceptibility spectrum, the self-consistent ground state and the
Kohn-Sham states were calculated in the DFT framework using the plane-wave ABINIT code [35].
In what follows, we calculate the results for 2PA using di�erent pseudopotentials within several
approximations, in order to determine which scheme gives the best results. For LDA, we used
Troullier-Martins pseudopotentials [36] that are fully separable nonlocal pseudopotentials in the
Kleinman-Bylander form [37] [LDA with norm-conserving pseudopotentials (LDA-PSPNC)]. To
include the spin-orbit coupling (SOC) e�ect, we used Hartwigsen-Goedecker-Hutter (HGH) rela-
tivistic separable dual-space Gaussian pseudopotentials (LDA-HGH) [38]. To go beyond the LDA
approximation, we use the generalized-gradient approximation (GGA) [39–41] and the meta-GGA
(mGGA) [42].

We used 58415 k-points in order to have well-converged results for the irreducible Brillouin zone
(IBZ) integration, as given in Eq. (2.41), using the linear analytic tetrahedron method of Ref. [43].
Also, a cuto� energy of 24 Hartrees was used for the plane waves, and nine conduction bands (c)
were used for the summations in Eq. (2.41). BeTe, diamond, GaP, GaAs, GaSb, Ge, InAs, InSb, Si
CdTe, ZnS and ZnSe have eight valence bands (v), all the semiconductors have been studied with
their corresponding experimental lattice constant a0 and band-gap Eg, as shown in 3.2 Table 3.1
for a non-SOC calculation, and in Table 3.2 for a SOC calculation. For GaAs, Si and GaP, there
are experimental data with which we compare our theoretical results and discuss them in detail; for
all the other semiconductors mentioned above we only present the 2PA spectra as obtained within
the SOC approach.
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Figure 3.1: Im[‰xxyy
2Ê ] for GaAs using di�erent pseudopotentials. Eg = 1.424 eV

is the experimental energy gap of GaAs, and Eg/2 is half the gap where 2PA
becomes finite. No spin-orbit coupling is used in these results.

We start by comparing the results for ‰
abcd
2Ê (≠Ê; ≠Ê, ≠Ê, Ê), using the several pseudopotential

schemes described in the first paragraph of this section. All the semiconductors studied in this work
are fcc, and thus, the only components that are di�erent from zero due to their cubic F-43m space
group are the xxyy, xyyx and xxxx (and the cyclic x æ y æ z change). From here on, we suppress
the (≠Ê; ≠Ê, ≠Ê, Ê) argument for ease of presentation. We chose only the xxyy component as an
example; on one hand, it gives the largest value for ‰

abcd
2Ê , and on the other hand it conveys the

same conclusions that the xxxx and xyyx components lead to. We chose GaAs, since the 2PA
for this semiconductor has been recently measured [2], and it is a representative example of all the
semiconductors used in this study. In Fig. 3.1, we show Im[‰xxyy

2Ê ] vs the photon energy (~Ê) for GaAs
using the LDA-HGH, GGA-HGH, GGA-PSPNC, LDA-PSPNC, and mGGA-HGH. This sequence
of pseudopotentials goes from the highest to the smallest magnitude of Im[‰xxyy

2Ê ]. The energy value
where Im[‰xxyy

2Ê ] is abruptly finite corresponds to Eg/2, as expected then, Im[‰xxyy
2Ê ] shows a first

very well defined resonant peak, and then, other resonances that are below Eg. Also, the theoretical
value of Eg/2 for each approach increases towards the experimental 2PA gap Eexpt/2. Indeed, we
see that for mGGA-HGH, the 2PA gap Eg/2 = 0.617 eV is very similar to the experimental value
of Eexpt/2 = 0.707 eV. As we see from Table 3.1, the mGGA-HGH gaps are much closer to the
experimental values than the LDA gaps are. We also notice that the magnitude of Im[‰xxyy

2Ê ] for
mGGA-HGH is much smaller than for the other pseudopotentials. Due to the fact that mGGA-
HGH gives the best energy gap Eg, in the following results we only use these pseudopotentials to
calculate 2PA. In this section, we present the results without the inclusion of the SOC e�ect, leaving
its inclusion to Sec. 3.1.1.

In Fig. 3.2, we show Im[‰abcd] as a function of ~Ê, where the 2Ê response starts being di�erent
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Figure 3.2: Im[‰abcd
2Ê ] for GaAs, where we see that the 2Ê response starts at

Eg/2, while the 1Ê response starts at Eg = 1.235 eV, which is the mGGA gap.

from zero just at Eg/2 as expected, and then, it goes through a maximum and decreases as ~Ê

approaches Eg. Also, we see that Im[‰xxxx
2Ê ] and Im[‰xxyy

2Ê ] are positive, whereas Im[‰xyyx
2Ê ] is negative

below Eg. In the same figure, we only show Im[‰xxxx
1Ê ], as it is the largest of the three components

related to 1Ê resonances, as explained in the section 2.4, particular in Eqs. (2.91) and (2.92). We
see that Im[‰xxxx

1Ê ] is finite around Eg, as it must, and although it is a factor of 2 larger than Im[
‰

abcd
2Ê ], Im[‰abcd

1Ê ], it does not contribute to 2PA below the gap Eg, which makes it unnecessary in
this work.

As it is well known, the LDA schemes underestimated the energy gap Eg, as clearly seen in
Fig. 3.1. To correct this deficiency within the scissors approximation, one needs to apply the
scissors shift, as prescribed in Eqs. (2.42) and (2.43). For GaAs, a value of � = 0.189 eV is required
to bring the mGGA-HGH gap to 1.424 eV, which is the experimental value at room temperature.
We mention that this value of � is rather small as compared with what would be needed for the other
pseudopotential schemes presented in Fig. 3.1. In Fig. 3.3, we show Im[‰abcd

2Ê ] for the nonscissored
case, i.e., � = 0, and the scissored case of � = 0.189 eV. Both spectra are roughly the same, as if
the scissors correction rigidly shifted the spectra from lower energies to higher energies; however,
the scissors operator also lowers the intensity of the 2PA susceptibility by a factor of ≥ 0.73. In
Sec. 3.1, where the theoretical 2PA absorption is compared to experimental results, it is shown that
the scissors correction yields the correct experimental values.

Eq. (2.92) shows all the terms that contribute to ‰
abcd
pÊ , where p = 1 refers to the 1Ê processes

that are di�erent from zero above the gap and thus, as explained before, are of no interest for this
work. For p = 2, we get the 2Ê processes that are di�erent from zero below the gap, where ‰

abcd
1,1,2Ê,

‰
abcd
1,2,2Ê, ‰

abcd
2,1,2Ê, ‰

abcd
2,2,2Ê are the terms that contribute the most to ‰

abcd
2Ê , and which all come from

transitions between two bands only. Indeed, the terms that involve transitions among three bands
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Figure 3.3: Im[‰abcd
2Ê ] for GaAs, with and without the contribution of the scissors

operator. The experimental gap of GaAs at room temperature is 1.424 eV, and
with � = 0.189 eV, it is enough to get the 2PA susceptibility to the experimental
value Eexpt/2.

and four bands are negligible, as shown in Fig. 3.4, where we show ‰
xxyy
2Ê = ‰

xxyy
1,1,2Ê +‰

xxyy
1,2,2Ê +‰

xxyy
2,1,2Ê +

‰
xxyy
2,2,2Ê corresponding to two bands, and ‰

xxyy
3&4 = ‰

xxyy
1,3,2Ê + ‰

xxyy
2,3,2Ê + ‰

xxyy
3,1,2Ê + ‰

xxyy
3,2,2Ê + ‰

xxyy
3,3,1,2Ê +

‰
xxyy
3,3,2,2Ê + ‰

xxyy
4,1,2Ê + ‰

xxyy
4,2,2Ê + ‰

xxyy
4,3,1,2Ê + ‰

xxyy
4,3,2,2Ê corresponding to three bands and four bands; there,

we see that these terms are a factor of 10≠6 smaller, and therefore they can be neglected. We
mention that calculating these terms takes a factor of ¥ 300 times longer than the calculation of
‰

abcd
2Ê ; the latter takes ¥ 210 min in 64 cores of an Intel processor for ¥ 58415 k-points, which gives

well converged results for the IBZ integration, as given in Eq. (2.41). Therefore, the fact that ‰
xxyy
3&4

is negligible eases the burden of numerical calculation.

3.1 Comparison with experiments

In Ref. [2], the 2PA of GaAs, GaP and Si was experimentally measured using femtosecond pump–probe
modulation spectroscopy. For GaAs, which is a direct-gap semiconductor, the measurements were
done for photon energies ~Ê such that Eg/2 < ~Ê < Eg, where Eg is the gap energy of GaAs.
For GaP, which is an indirect-gap semiconductor, the measurements were done for photon energies
~Ê such that Eg/2 < ~Ê < Eg, where Eg is the direct-gap energy of GaP. However, for Si, which
is also an indirect-gap semiconductor, the measurements were done only for photon energies ~Ê

such that E
i
g/2 < ~Ê < E

i
g, where E

i
g the indirect-gap energy of Si. Therefore, for such photon

energies, the indirect transitions are most likely due to phonon-assisted processes, and since our
theoretical framework only considers direct transitions, it does not apply to this experimental sit-
uation. Nevertheless, we use the results for Si of Ref. [4] that were measured for photon ~Ê such
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Figure 3.4: Im[‰xxyy
2Ê ] for GaAs corresponding to transitions of two bands, and

‰
xxyy
3&4 corresponding to transitions among three bands and four bands. The

latter is smaller by a factor of 10≠6.

that Eg/2 < ~Ê < Eg, with Eg being the direct-gap energy of Si.
Phenomenologically the optical absorption is re presented as – = –0 + —I where –0 is the linear

absorption and — represents the third-order nonlinear absorption this means that the absorption
depends on the light intensity and is modulated by the nonlinear absorption coe�cient —, we need
to express — through the nonlinear third order susceptibility. 2PA is characterized by a pump-
probe —

Î
11 coe�cient, where Î indicates the co-polarized beams used in the experiment, and the

subindex 11 means that the two photons have the same energy. As explained in Ref. [2], after
solving the nonlinear wave equation on a plane-wave basis under the slowly varying field amplitude
approximation, for a monochromatic and linearly polarized incident field, one gets a relation between
the 2PA —

Î
11 coe�cient and the imaginary part of third-order nonlinear susceptibility, as follows:

—
Î
11(Ê) = 3Ê

2‘0n2(Ê)c2 Im[‰XXXX
2Ê ], (3.1)

where ‰
XXXX
2Ê is given in the XY Z laboratory coordinate system. Indeed, in the experiments,

the beams propagate along Z = 110 in crystallographic coordinates, with X = 1̄10 and Y = 001,
which defines a basis of linear polarization directions. Therefore, we have to rotate ‰

abcd
2Ê to the

crystallographic coordinates by applying the following rotation:

‰
ABCD
2Ê = Ra

ARb
BRc

CRd
D‰

abcd
2Ê , (3.2)
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3. Two-photon absorption bulk spectroscopy

using the rotation matrix that applies to the experimental conditions of Ref. [2], i.e.,

R =

S

WU
≠ cos ◊ cos ◊

Ô
2 sin ◊

sin ◊ ≠ sin ◊
Ô

2 cos ◊

1 1 0

T

XV , (3.3)

where ◊ is the sample rotation angle in order to express Eq. (3.1) in terms of ‰2Ê tensor components
in crystallographic coordinates. This enables us to take advantage of the 4̄3m (GaP and GaAs) or
m3m (Si) crystal symmetry, for which there are only three independent, nonvanishing components,
‰

aaaa
2Ê , ‰

aabb
2Ê = ‰

abab
2Ê , and ‰

abba
2Ê , where a”=b. Then [2],

—
Î
11(Ê) = 3ÊIm[‰xxxx

2Ê (Ê)]
32‘on2(Ê)c2

1!
3 cos(4◊) ≠ 4 cos(2◊) ≠ 7

"
‡(Ê) + 16

2
, (3.4)

and

‡(Ê) = 1 ≠ 2Im[‰xxyy
2Ê ] + Im[‰xyyx

2Ê ]
Im[‰xxxx

2Ê ] (3.5)

is known as the anisotropy parameter, with ◊ being the sample rotation angle, which, from Ref. [2],
is equal to zero. Thus, the three independent components of Im[‰abcd

2Ê ] of a 4̄3m or m3m crystal
contribute to the measurement of two-beam 2PA while rotating the sample about Z = 110 in
copolarized geometry. Finally, n(Ê) =


‘(Ê) is the index of refraction with ‘(Ê) being the dielectric

function, which for the 4̄3m and m3m crystal symmetries ‘(Ê) = ‘
xx(Ê) = ‘

yy(Ê) = ‘
zz(Ê).

In Fig. 3.5, we show the convergence of —
Î
11(Ê) as a function of the number of k points required

for the integration over the IBZ. We mention that as seen in Eqs. (3.4) and (3.5), —
Î
11(Ê) depends

on ‰
xxxx
2Ê , ‰

xxyy
2Ê and ‰

xyyx
2Ê and the index of refraction n(Ê). As it turns out, n(Ê) converges much

faster than ‰
abcd
2Ê , and a rather large number of k points are needed in order to get converged results

for —
Î
11(Ê). As a compromise for the numerical burden, we chose 58415 k points for the integration

over the IBZ of the results shown below.
In Fig. 3.6, we show —

Î
11(Ê) for the di�erent pseudopotential schemes used in this work, all

calculated with 58415 k points. Just as in Fig. 3.1, we see a similar spectral shape with the big
di�erence that the result for mGGA-HGH now has the same order of magnitude as for the other
approaches. This comes from the fact that —

Î
11(Ê) is a ratio between ‰

abcd
2Ê and n(Ê), and n(Ê)

is larger for LDA-HGH, GGA-HGH, GGA-PSPNC and LDA-PSPNC, than for mGGA-HGH, thus
giving a similar magnitude for —

Î
11(Ê).

In Fig. 3.7, we compare our results of —
Î
11(Ê) with the corresponding experimental results of

Ref. [2] for GaAs. The theoretical results have � = 0.189 eV, which corresponds to the scissors shift
to bring the mGGA-HGH gap to the experimental gap, as given in Table 3.1. We mention that �
shifts 2PA by �/2, since below the gap, only 2Ê transitions are di�erent from zero. As with the
results presented in Fig. 3.3, where the scissors shift lowers the magnitude of ‰

abcd
2Ê , the magnitude

of —
Î
11(Ê), also decreases as � increases; in this case, n(Ê) also contributes to this e�ect, as it also

decreases as � increases, and since —
Î
11(Ê) Ã 1/n

2(Ê), as seen from Eq. (3.4), the overall e�ect of
increasing � is that —

Î
11(Ê) diminishes more than ‰

abcd
2Ê does. From Fig. 3.7, we find a reasonable
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Figure 3.5: Convergence of —
Î
11(Ê) as a function of the number of k points

required for the integration over the IBZ. As a compromise for the numerical
burden, we chose 58415 k points for the calculations.
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Figure 3.7: Theoretical 2PA —
Î
11(Ê) coe�cient for GaAs vs photon energy, where

the scissors shift � = 0.189 eV takes the theoretical gap energy Eg/2 of the
mGGA-HGH scheme to the experimental value. The theoretical results of Mu-
rayama and Nakayama [1] are shown by the green line. The squares are the
experimental results for —

Î
11(Ê) of Furey et al. [2]. See text for details.

match between the theoretical results and the experimental results, as far as the spectroscopic
signature is concerned. To wit, there is a clear maximum in both, and although the width of
the 2PA peak is not equal, the theoretical results clearly show a resonance in the response. Also,
both the experimental and theoretical spectra are of the same order of magnitude. In Fig. 3.7,
we also compare our results with the theoretical results of Murayama and Nakayama Ref. [1]. We
see that the results of Murayama and Nakayama do not present a resonance and the maximum
value is a factor of ≥ 6 smaller than the experimental maximum value. Although the object of
this article is not to analyze why Ref. [1] gives such results, we mention that their expression for
Im[‰abcd(≠Ê; ≠Ê, ≠Ê, Ê)] diverges at Ê = 0, does not include the intraband r̂i contribution of the r̂
position operator, and only presents Ê resonances. We emphasize that from Fig. 2.1, our expression
for ‰

abcd
2Ê depends mainly on fl

(3)
eii , which includes contributions from both ri and re, and that below

the energy gap Eg, only 2Ê resonances contribute, in contrast to the expression of Ref. [1]. As
shown in Fig. 3.7, the 2Ê resonance qualitatively matches the experimental results.

3.1.1 Spin-orbit coupling e�ects

In Fig. 3.8, we show —
Î
11(Ê) vs photon energy with and without the inclusions of the spin-orbit

coupling (SOC) interaction for GaAs. For this case we have used � = 0.65 eV (with SOC) and
� = 0.540 eV (without SOC) as the scissors shift values needed to bring the theoretical with-SOC
and without-SOC results to where the experimental 2PA rises from near to zero values to finite
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Figure 3.8: 2PA GaAs coe�cient —
Î
11(Ê) vs photon energy with and without

spin-orbit coupling (SOC) e�ect. The blue squares are the experimental results
of Furey et al. [2]. See text for details.

values. We see that the SOC theoretical spectrum shows a small shift to larger photon energies and
a larger magnitude, as compared to the result without SOC. The second broad resonance obtained
in the result without SOC for —

Î
11(Ê) is absent in the results with SOC, and the magnitude of the

SOC result is much closer to the experimental results shown in the same figure.
In Fig. 3.9, we compare our 2PA Im[‰abcd

2Ê ] for GaAs including SOC with the experimental results
of Ref. [2] and those of Ref. [3]. As we did in Fig. 3.8, we use � = 0.65 eV to bring the theoretical
SOC results to where the experimental 2PA rises from near-zero values to finite values. The results
of Ref. [2] give Im[‰xxyy

2Ê ] ¥ Im[‰xxxx
2Ê ], and Im[‰xyyx

2Ê ] is smaller, whereas for Ref. [3], the results are
only for a photon energy of 1.3 eV, and Im[‰xxxx

2Ê ] > Im[‰xxyy
2Ê ] ¥ Im[‰xyyx

2Ê ]. The relative size of our
theoretical results follows Im[‰xxyy

2Ê ] > Im[‰xxxx
2Ê ] > Im[‰xyyx

2Ê ]; then, only Im[‰xxyy
2Ê ] and Im[‰xyyx

2Ê ]
follow the experimental trend of Ref. [2]. We remark that the experimental values of Im[‰abcd

2Ê ]
are inferred from the measurement of the —

Î
11 coe�cient, and judging from the experimental error

bars, they may be not precise. Finally, we see that the order of magnitude of the theoretical and
experimental values for Im[‰abcd

2Ê ] are similar.
In Fig. 3.10, we compare our 2PA —

Î
11(Ê) results for Si, with and without SOC, with the exper-

imental results —e�(Ê) of Ref. [4]. The values of � are those required to get the theoretical half gap
of Si to its experimental value of 1.7 eV, as given in Table 3.1. Our results show an abrupt rise of
—

Î
11(Ê) just above Eexpt/2, and then, several resonances. The first one is a strong narrow resonance

that starts just above 1.8 eV, raises sharply as the photon energy increases, and then it encounters
a second sharp resonance, albeit with a smaller intensity; this second resonance is much stronger
for the SOC case. Then, around 2.2 eV, both the SOC and the non-SOC spectra show signatures
that resemble the experimental results, as far as the spectral features are concerned. Indeed, the
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Figure 3.9: Theoretical 2PA Im[‰abcd
2Ê ], including SOC for GaAs, compared with

the experimental results of Furey et al. [2] (F) and Dvorak et al. [3] (D). See
text for details.

experimental results of Ref. [4], which cover a limited energy range, show a clear resonance that
resembles our theoretical calculations, and the overall spectrum follows reasonably well the theoret-
ical trend; we mention, though, that the SOC results better resemble the experimental spectrum.
The magnitude of theoretical results di�ers from that of the experimental results. This could be
related to the fact that —e�(Ê) was measured in such a way that the crystallographic contribution
of the several components of ‰

abcd
2Ê was not taken into account, thus giving a 2PA that comes from

the experimental “averaging” of the mixing of di�erent Si ‰
abcd
2Ê components. Indeed, as explained

in Ref. [4], an “e�ective” —e�(Ê) was extracted by measuring the intensity I(Ê) dependence of an
e�ective absorption coe�cient –e�(Ê), whose derivative with respect to I(Ê) gives the 2PA —e�(Ê),
whereas, in Ref. [2], it is the 2PA —

Î
11(Ê) of Eq. (3.4) which is measured. This could lead to

the di�erent magnitude of 2PA measured in the two experiments; nevertheless, the spectroscopic
experimental signature is similar to our 2PA —

Î
11(Ê) theory.

Likewise, in Fig. 3.11, we show the 2PA —
Î
11(Ê) for GaP. The two values of � take the corre-

sponding calculation without SOC and with SOC to the experimental 2PA gap. We see, at the
onset of the two-photon transitions, a modest rise of the 2PA, followed by an almost constant 2PA
and an intense and broad resonance at ≥ 1.7 eV. In this case, the first two experimental points
seem to follow the monotonic increase of the theoretical result, and the third experimental point
misses the strong theoretical resonance. This shows how theory could guide the experiments; had
the experiment been carried around 1.7 eV, the resonance could have been detected.

Finally, in Sec. 3.2, we show a comparison of 2PA —
Î
11(Ê) coe�cient and Im[‰aa(Ê)] for GaAs,

Si and GaP, and most importantly, also, in Sec. 3.2, we show —
Î
11(Ê) for several semiconductors,

where it is worth mentioning that the 2PA energy range spans from ≥ 0.1 for InSb to ≥ 6.5 eV
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Î
11(Ê) (left axis) and experimental —e�(Ê) (right axis)

2PA coe�cient for Si vs ~Ê, where the red squares are the experimental results
of Reitze et al. [4]. See text for details.

for diamond, and the intensity in mW≠1 ◊ 10≠8 goes from ≥ 0.4 for ZnS to ≥ 70 for InSb. Our
theoretical formulation leads to results that would certainly enhance the applicability of 2PA, as it
permits predictions that compare qualitatively well with available experiments.

3.1.2 Si band structure

In Fig. 3.12, we show the band structure for Si including SOC, where the thick-thin lines represent
degenerated states due to high-symmetry lines in the Irreducible Brillouin Zone (IBZ). We mention
that for the energy scale used in Fig. 3.12, the SOC-split bands, whose energy splitting is small, are
not discernible. However, in Fig. 3.14 for GaAs, the SOC splited bands are readily seen. The arrows
represent the ~Ê photons, two of them per transition, that go from valence (v) to conduction bands
(c), covering the energy range of the experimental data shown in Fig. 3.10, which goes from 2.05 eV
to 2.35 eV. The 2Ê transitions around � in the L-�-X path go from v = 2 to degenerated c = 2&3,
and from degenerated v = 3&4 to c = 1, c = 2&3 and c = 4, where we have used “‘&” to denote
the bands degeneracy. The next sets of transitions are those away from � along the �-X path. The
first set goes from v = 3&4 to c = 2, and then, there are two sets of transitions (violet-blue arrows)
whose energy is 2.2 ± .05 eV, with the first set going from v = 2 to c = 1 and the second set from
v = 3&4 to c = 1. Along K-�, valence bands v = 2, 3 and v = 4, as well as conduction bands
c = 1, 2 and c = 3 are nondegenerated. The first set of transitions goes from v = 4 to c = 1, 2, 3,
and then, a second set of transitions goes from v = 3, 4 to c = 1, 2, 3. Finally, very close to � and
the last path �-L, is the mirror image of L-�. A full view of the L-�-X-K-�-L path for the bands
and its 2Ê arrows is given in Fig. 3.13. All these transitions contribute to the theoretical spectrum
shown in Fig. 3.10, within ±0.15 eV of the experimental peak at 2.2 eV, and we see that most of
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Figure 3.11: Theoretical and experimental —
Î
11(Ê) 2PA coe�cient for GaP vs

~Ê, with and without SOC. The squares are the experimental results of Furey
et al. [2]. See text for details.

the transitions are away from the � point, as expected since the peak is away from where —
Î
11(Ê)

becomes finite close to the band-gap of Si. It is interesting to see that the peak at 2.2 eV comes
from electronic transitions that originate among di�erent bands and in di�erent zones of the IBZ,
where those close to X in the �-X path dominate. The same analysis was carried out for GaAs, and
the band structure, along with the main results, is given in Fig. 3.14.

In Fig. 3.13, we show a full view of the band structure of Si along with the 2PA arrows around
2.2 ± 0.15 eV, and in Fig. 3.14, we show the band structure for GaAs around 0.94 ± 0.15 eV and
0.93 ± 0.15 eV, corresponding to the peak energies of the spectra in Fig 3.8 (the former is when
SOC is included and, the latter when SOC is not included). The spin-split bands are very well seen
in the top panels of Fig. 3.14. For these energies, the only transitions that contribute to —

Î
11(Ê) are

from v = 1, 2, 3 to c = 1.

3.2 Experimental lattice constant and experimental and

theoretical band-gap energy values and additional results

In this section we show the results for 2PA spectroscopy for several fcc semiconductors. The cal-
culated band-gap for every semiconductor is calculated using the pseudopotentias schemes used for
spectroscopy calculations. In tables 3.1 and 3.2, we give the room-temperature experimental lattice
constant a0, in Bohrs, along with the experimental and theoretical band gaps energies Eg, in eV, for
the semiconductors studied in this work, with and without SOC. For the indirect semiconductors,
we only report the direct-gap. It is worth mentioning that the mGGA-HGH scheme overestimates
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3. Two-photon absorption bulk spectroscopy
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Figure 3.14: Band structure of GaAs, where the arrows denote the correspond-
ing 2Ê transitions that contribute to 2PA around 0.94 ±0.15 eV where SOC is
included (top panels), and around 0.93 ±0.15 eV where SOC is not included
(bottom panels). These energies correspond to the peak of the spectra shown
in Fig 3.8. Each arrow represents the two Ê photons that are absorbed, thus
going from a valence band to a conduction band. See the text for details.

Eg for InSb, InAs, ZnS, CdTe and BeTe without SOC, and only for InAs and ZnS with SOC; this
could be due to the fact that we are using room-temperature lattice constants instead of 0-K values.

In Fig. 3.15, we show a comparison of the 2PA coe�cient —
Î
11(Ê) and Im[‰aa(Ê)] (whose abscissa

is rescaled by ~Ê/2) for GaAs, Si and GaP. We see that although for Si and GaP —
Î
11(Ê) and

Im[‰aa(Ê)] resemble each other only up to the first resonance, for GaAs there is no resemblance
for most of the 2PA photon energies, and only they resemble each other just around Eexpt, where
2PA would compete with the linear absorption, and thus is not interesting for 2PA. Also, except for
the Si resonance ≥ 2.6 eV, we do not find a clear and compelling correlation between —

Î
11(Ê) and

Im[‰aa(Ê)].
In Fig. 3.16, we show the spectra of the 2PA coe�cient —

Î
11(Ê) of several direct and indirect

semiconductors, where the direct-band-gap Eg is used in the calculation. We show the spectra
for energies Eg/2 Æ ~Ê < Eg, where only 2PA is present, and thus, the linear absorption does not
intervene. The —

Î
11(Ê) obtained for the di�erent semiconductors, is arranged from the semiconductor
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3.2. Experimental lattice constant and experimental and theoretical band-gap energy values and
additional results

Direct semiconductors without SOC
a0 Eg

Expt. LDA-HGH GGA-HGH GGA-PSPNC LDA-PSPNC mGGA-HGH

GaAs 10.684 1.424 0.470 0.509 0.572 0.597 1.235
InSb 12.243 0.18 ¥ 0 ¥ 0 0.053 0.098 0.305
GaSb 11.519 0.75 0.099 0.113 0.203 0.260 0.613
InAs 11.448 0.345 ¥ 0 ¥ 0 0.113 0.128 0.522
ZnS 10.223 3.54 2.642 2.818 2.033 1.698 3.898
ZnSe 10.711 2.82 1.670 1.830 1.253 0.967 2.728
CdTe 12.24 1.5 1.029 1.168 0.7203 0.458 1.772

Indirect semiconductors without SOC
Si 10.26 3.4 2.555 2.610 2.570 2.516 2.880

GaP 10.3 2.78 1.795 1.849 1.978 1.960 2.723
Diamond 6.74 6.5 5.677 5.743 5.664 5.593 5.865

Ge 10.69 0.805 ¥ 0 ¥ 0 0.007 0.091 0.516
BeTe 10.61 4.1 3.647 3.744 2.918 2.838 4.221

Table 3.1: Room-temperature experimental lattice constant a0 in bohrs along
with the experimental and theoretical direct-band-gap energies Eg in eV of the
semiconductors studied in this work without SOC. For the indirect semiconduc-
tors, we only report the direct gap. We mention that for InSb, InAs and Ge the
notation “¥ 0” means that the theoretical gaps are of the order of ¥ 10≠11 eV.

with the highest value (InSb) to the semiconductor with the lowest value (ZnSe). It is worth
mentioning that the 2PA energy range spans from ≥ 0.1 for InSb to ≥ 6.5 eV for diamond, and the
intensity in mW≠1 ◊ 10≠8 goes from ≥ 0.4 for ZnS to ≥ 70 for InSb. It should be clear that the
particular characteristic of every material determines the spectral range of absorption and intensity.
Moreover, the spectroscopy 2PA line shape depends on the electron dynamics, mainly that of the
electrons in the last valence and first conduction bands, as explained above.
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3. Two-photon absorption bulk spectroscopy

Direct semiconductors with SOC
a0 Eg

Expt. LDA-HGH GGA-HGH mGGA-HGH

GaAs 10.684 1.424 0.356 0.394 1.125
InSb 12.243 0.18 ¥ 0 ¥ 0 0.069
GaSb 11.519 0.75 ¥ 0 ¥ 0 0.385
InAs 11.448 0.345 ¥ 0 ¥ 0 0.412
ZnS 10.223 3.54 2.639 2.815 3.892
ZnSe 10.711 2.82 1.524 1.684 2.590
CdTe 12.24 1.5 0.732 0.869 1.493

Indirect semiconductors with SOC
Si 10.26 3.4 2.515 2.569 2.843

GaP 10.3 2.78 1.785 1.838 2.714
Diamond 6.74 6.5 5.666 5.732 5.856

Ge 10.69 0.805 ¥ 0 ¥ 0 0.421
BeTe 10.61 4.1 3.297 3.393 3.892

Table 3.2: Room-temperature experimental lattice constant a0 in bohrs along
with the experimental and theoretical direct-band-gap energies Eg in eV of the
semiconductors studied in this work with SOC. For the indirect semiconductors,
we only report the direct gap. We mention that for InSb, GaSb, InAs and Ge
the notation “¥ 0” means that the theoretical gaps are of the order of ¥ 10≠11

eV.
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3.2. Experimental lattice constant and experimental and theoretical band-gap energy values and
additional results
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3. Two-photon absorption bulk spectroscopy
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4 2PA Surface Response

Outline
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4.1 Theory

In this section, we derive the expressions for the microscopic current density of a given layer in
the unit cell of a surface system [23]. The approach we use to study the surface of a semi-infinite
semiconductor crystal is as follows. Instead of using a semi-infinite system, we replace it by the
slab shown in Fig. 4.1. The slab consists of a front and back surface, and in between these two
surfaces is the bulk of the system. In general the surface of a crystal reconstructs or relaxes as the
atoms move to find equilibrium positions. This is due to the fact that the otherwise balanced forces
are disrupted when the surface atoms do not find their partner atoms that are now absent at the
surface of the system.

To take the reconstruction or relaxation into account, we take “surface” to mean the true surface
of the first layer of atoms, and some of the atomic sub-layers adjacent to it. We chose the front and
the back surfaces of the slab to be identical, rendering the total slab to be centrosymmetric. This
way one could do a calculation for the whole slab and obtain ‰

abcd
2Ê (Ê) which would give the 2PA

for the “whole slab” as well; the 2PA for the surface would be ‰
S,abcd
2Ê (Ê) = ‰

abcd
2Ê (Ê)/2, where the

superscript S denotes surface. Nonetheless, it is very convenient to introduce a “cut function” [44],
C¸(z) given by

C¸(z) = �(z ≠ z¸ + �b
¸ )�(z¸ ≠ z + �f

¸ ), (4.1)

which is a top-hat cut function that selects a given layer of the slab, where � is the Heaviside
function, �f/b

¸ is the distance that the ¸-th layer extends towards the front (f) or back (b) from its
z¸ position and �f

¸ + �b
¸ is the thickness of layer ¸ (see Fig. 4.1). Then, with C¸(z) we can calculate

‰
¸,abcd
2Ê (Ê), for any given layer of the surface, subsurface and bulk of the slab. In principle one should

be able to get that ‰
¸=bulk,abcd
2Ê (Ê) is equal to ‰

abcd
2Ê (Ê) calculated for a bulk. In practice, the size
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4. 2PA Surface Response

of the slab needed to achieve this may be so large that the computation is not feasible. However,
since the idea is to get the “surface” response, the cut function C¸(z) works just fine.

Now, we show how C¸(z) is introduced in the calculation of ‰
¸,abcd
2Ê (Ê). The microscopic current

density is given by
j(r, t) = Tr(̂j(r) ˆfl(t)), (4.2)

where the operator for the electron current is

ĵ(r) = e

2
1
v̂� |rÍ Èr| + |rÍ Èr| v̂�

2
, (4.3)

where v̂� is scissors corrected the electron velocity operator to be dealt with below. We define
µ̂ © |rÍ Èr| as the electron position operator and use the cyclic invariance of the trace to write

j(r, t) = Tr(̂j(r)fl̂(t) = Tr(fl̂(t)̂j(r)) = e

2
1
Tr(fl̂v̂�

µ̂) + Tr(fl̂µ̂v̂�)
2

= e

2
ÿ

nk

1
Ènk| fl̂v̂�

µ̂ |nkÍ + Ènk| fl̂µ̂v̂� |nkÍ
2

= e

2
ÿ

nmk

Ènk| fl̂ |mkÍ
1
Èmk| v̂� |rÍ Èr|nkÍ + Èmk|rÍ Èr| v̂� |nkÍ

2

=
ÿ

nmk

flnm(k; t)jmn(k; r), (4.4)

where
jmn(k; r) = e

2
1
Èmk| v̂� |rÍ Èr|nkÍ + Èmk|rÍ Èr| v̂� |nkÍ

2
, (4.5)

are the matrix elements of the current operator, and we have used the fact that the matrix elements
between states |nkÍ are diagonal in k, i.e. proportional to ”(k ≠ kÕ).

Integrating the current j(r, t) over the entire slab gives the averaged current density. If we want
the contribution from only one region of the slab towards the total current, we can integrate j(r, t)

Figure 4.1: A sketch of a slab where the circles represent atoms, figure from [5].
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4.1. Theory

over the desired region. The contribution to the current density from the ¸-th layer of the slab is
given by

1
�

⁄
d

3
r C¸(z) j(r, t) © J ¸(t), (4.6)

where J ¸(t) is the current of the ¸-th layer. Therefore we define

eV�,¸
mn(k) ©

⁄
d

3
r C¸(z) jmn(k; r), (4.7)

to write
J

(N,¸)
a (t) = e

�
ÿ

mnk

V�,a,¸
mn (k)fl(N)

nm (k; t), (4.8)

as the induced current of the ¸-th layer, to order N in the external perturbation. The matrix elements
of the density operator for N = 1, 2, 3 are given by Eqs. (2.26), (2.30) and (2.34), respectively.

The Fourier component of the ¸-th layer current of Eq. (4.8) is given by

J
(N,¸)
a (Ê) = e

�
ÿ

mnk

V�,a,¸
mn (k)fl(N)

nm (k; Ê), (4.9)

and we proceed to give an explicit expression of V�,¸
mn(k). From Eqs. (4.7) and (4.5) we obtain

V�,¸
mn(k) = 1

2

⁄
d3

r C¸(z)
5
Èmk|v�|rÍÈr|nkÍ + Èmk|rÍÈr|v�|nkÍ

6
, (4.10)

where dividing the pseudopotential of the Hamiltonian in local and non-local, we see that v� =
v�(r, rÕ) is a non-local operator. Using the well known property

s
dr |rÍ Èr| = 1, we obtain

Èmk| v̂�(r, rÕ) |rÍ =
⁄

d
3
r

ÕÕ Èmk| v̂�(r, rÕ) |rÕÕÍ ÈrÕÕ| |rÍ =
⁄

d
3
r

ÕÕ Èmk|rÕÕÍ v̂�(r, rÕ) ÈrÕÕ|rÍ

=
⁄

d
3
r

ÕÕ
Â

ú
mk(rÕÕ)v̂�(r, rÕ)”(rÕÕ ≠ r)

IBP= ≠
⁄

d
3
r

ÕÕv̂�(r, rÕ)”(rÕÕ ≠ r)Âú
mk(rÕÕ) = v̂�ú(r, rÕ)Âú

mk(r), (4.11)

where IBP means integrating by parts, and we used v̂�ú(r, rÕ) = ≠v̂�(r, rÕ); also

Èr|v̂�(r, rÕ)|nkÍ =
⁄

d
3
r

ÕÕ Èr| v̂�(r, rÕ) |rÕÕÍ ÈrÕÕ|nkÍ =
⁄

d
3
r

ÕÕ Èr|rÕÕÍ ÈrÕÕ|nkÍ)v̂�(r, rÕ) = Ânk(r)v̂�(r, rÕ),
(4.12)

where we used the fact that the operator v�(r, rÕ) does not act on rÕÕ, Èr|nkÍ = Ânk(r) and
Èmk|rÍ = Â

ú
mk(r). Therefore, Eq. (4.10) reduces to

V�,¸
mn(k) = 1

2

⁄
d3

r C¸(z)
5

Èr|nkÍ Èmk|v�|rÍ + Èmk|rÍ Èr|v�|nkÍ
6

= 1
2

⁄
d3

r C¸(z)
5
Ânk(r)v̂�ú

Â
ú
mk(r) + Â

ú
mk(r)v̂�

Ânk(r)
6

=
⁄

d3
r Â

ú
mk(r)

C
v�C¸(z) + C¸(z)v�

2

D

Ânk(r)

=
⁄

d3
r Â

ú
mk(r)V�,¸

Ânk(r), (4.13)
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4. 2PA Surface Response

where we used the hermitian property of v�, i.e.
s

Â
ú
F̂„ dx =

s
dx(F̂Â)ú

„ dx with F̂ = v�, and
defined

V �,¸(z) © v�C¸(z) + C¸(z)v�

2 , (4.14)

where the superscript ¸ is inherited from C¸(z). We see that the replacement

v̂� æ V̂�,¸(z) =
C

v̂�C¸(z) + C¸(z)v̂�

2

D

, (4.15)

is all that is needed to change the velocity operator of the electron v̂� to the new velocity operator
V�,¸(z) that implicitly takes into account the contribution of the region of the slab given by C¸(z).
From Appendix A,

V�
nm(z) = Ê

�
nm

ÊLDA
nm

VLDA
nm (z), (4.16)

just as it happens for the bulk calculation. With this expression we can easily calculate

1
V�,a,¸

nm (z)
2

;kb
=

A
Ê

�
nm

ÊLDA
nm

VLDA,a,¸
nm (z)

B

;kb

=
Ê

�
nm;kb

ÊLDA
nm

VLDA,a,¸
nm (z) ≠ Ê

�
nm

(ÊLDA
nm )2 VLDA,a,¸

nm (z)ÊLDA
nm;kb + Ê

�
nm

ÊLDA
nm

VLDA,a,¸
nm;kb (z)

= �b
nm

ÊLDA
nm

A

1 ≠ Ê
�
nm

ÊLDA
nm

B

VLDA,a,¸
nm (z) + Ê

�
nm

ÊLDA
nm

VLDA,a,¸
nm;kb (z), (4.17)

In this way we can obtain the contribution from layer ¸ with the knowledge of LDA matrix elements
only.

To limit the response to one surface, the equivalent of Eq. (4.15) was proposed in Ref. [44] and
later used in Refs. [45], [46], [47], and [48] also in the context of SHG. The layer-by-layer analysis
of Refs. [49] and [50] used Eq. (4.1), limiting the current response to a particular layer of the slab
and used to obtain the anisotropic linear optical response of semiconductor surfaces. However, the
first formal derivation of this scheme is presented in Ref. [51] for the linear response, and here in
this chapter, for the optical 2PA response of semiconductors.

From above procedure, we simply take Eq. 2.41 to write that, [52]

Im[‰¸,abcd
2Ê ] = fie

4

~3

⁄
dk

8fi3
ÿ

vc

A
16�d

cv(k)Im[rc
cv;kb(k)V�,¸,a

vc (k)]
Ê4

cv(k) ≠ 32�b
cv(k)�d

cv(k)Im[V�,¸,a
vc (k)rc

cv(k)]
Ê5

cv(k)

≠
8Im[V�,¸,a

vc;kd(k)rc
cv;kb(k)]

Ê3
cv(k) +

16�b
cv(k)Im

#
r

c
cv(k)V�,¸,a

vc;kd(k)
$

Ê4
cv(k)

B

”(Êcv(k) ≠ 2Ê), (4.18)
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4.2. Results for Si and GaAs surfaces

where we have dropped the z argument as it should be understood that the z dependence is actually
given by the “position” of the ¸-th layer. Finally, we calculate the surface susceptibility as

‰S
2Ê ©

Nÿ

¸=1
‰S,¸

2Ê , (4.19)

where ¸ = 1 is the first layer right at the surface, and ¸ = N is the bulk-like layer at a distance ≥ d

from the surface as seen in Fig. 4.1, such that

‰S,¸=N
2Ê = ‰S,bulk

2Ê , (4.20)

as explained above. We can use Eq. (4.19) for either the front or the back surface. We remark that
the value of N is not universal, which means that the slab needs to have enough atomic layers for
Eq. (4.20) to be satisfied and at the same time to give converged results for ‰S

2Ê; in practice though,
such value of N may be numerically di�cult to achieve and one has to look for a “reasonable”
fulfilment of Eq. (4.20).

4.2 Results for Si and GaAs surfaces

To present the 2PA spectroscopy results obtained for surfaces and 2D materials is important to
recall that TPA surface susceptibility tensor of Eq. (4.18), considers the same matrix elements as
the bulk susceptibility of Eq. (2.41). As described in chapter 3 the only contributing term to 2PA
surface susceptibility is fl

3
eii circled in Fig. 2.1. This term is 2Ê dependent and considers transitions

between two bands only. As showed chapter 3, the 1Ê along with the three and four band-transitions
terms are also negligible for surfaces and 2D materials in the range of interest Eg/2 < ~Ê < Eg.

The self-consistent ground state and the Kohn-Sham states were calculated in the DFT frame-
work using the plane-wave ABINIT code [35]. In what follows we calculate the results for 2PA using
meta-Generalized Gradient Approximation (mGGA) pseudopotentials [42] scheme that as showed
in the previous chapter gives the best results. [52]

We used ¥ 1000 k-points in order to have well converged results for the irreducible Brillouin zone
(IBZ) integration, as given in Eq. (4.18), using the linear analytic tetrahedron method of Ref. [43].
Also, a cut-o� energy of 10 Ha was used for the plane waves, and 30 conduction bands (c) were
used for the summations in Eq. (4.18). We calculated 2PA susceptibility for three di�erent surface
structures and for four 2D chalcogenide structures using SOC interaction.

In Fig. 4.2 we show the calculated Im[‰xxxx
2Ê ] spectra of GaAs-1◊1(110):Sb surface, this material

consist of GaAs layer terminated with 2 Sb atoms, in this case we have 12 Ga and 12 As atoms to
form the surface. We compare the half-slab calculation of above surface with the bulk calculation
for GaAs. The GaAs-1 ◊ 1(110):Sb surface spectra shows a shifted band-gap to high energies from
the bulk spectra, the Eg/2 of GaAs bulk is 0.6 eV, and 0.8 eV for the surface. This means, that
the gap shift of the surface is 0.4 eV to higher energies. It is remarkable that both spectra are of
the same order of magnitude, but there are a noticeable di�erence between the spectral shape. The
bulk calculation presents well localized peak resonances after half band-gap with a thin bandwidth
followed by a zone of broad resonances, and finally another resonance after band-gap. Instead, the
surface spectra presents a broad resonance that grows slowly forming a broad bandwidth where 2PA
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4. 2PA Surface Response

0

0.5

1

1.5

2

2.5

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

Im
[χ

x
x
x
x

2
ω

](
m

2
/V

2
×
10

−
1
7
)

photon energy (eV)

GaAs:Sb surface
GaAs bulk

Figure 4.2: Comparison of Im[‰xxxx
2Ê ] between GaAs-1 ◊ 1-(110):Sb surface and

bulk calculation. The surface material consist of 12 GaAs layers terminated
with Sb atoms.

could be generated in a continuous way with an intensity larger than that of bulk GaAs. Moreover,
there are thin local resonances not seen in the bulk material. All in all, this surface has several
advantages against bulk structure that could be used for possible scientifical and technological
applications.

The Im[‰xxxx
2Ê ] spectrum of a clean GaAs-(1 ◊ 1)-110 surface is presented in Fig. 4.3. In this

case there are 22 atoms, which 11 are Ga and 11 are As forming an array with 11 layers. A
remarkable di�erence among the spectra of Fig. 4.3 for GaAs-1 ◊ 1-(110) and that of Fig. 4.2 for
GaAs:Sb; for the latter we obtained a 2PA peak-shaped spectrum with a fast growth at the start
of the half band-gap (0.06 eV) and a decrease when the energy goes towards the gap. Thus, this
surface shows a 2PA spectrum with only one broad resonance. We see that the 2PA maximum
intensity for the GaAs clean surface is ≥ 20 and ≥ 33 larger than that of GaAs bulk and GaAs:Sb
surface respectively; moreover is the largest 2PA intensity of all the surfes studied in this thesis.
Additionally, the bandwidth of GaAs clean surface is very small ≥ 0.02 eV and falls in an energy
range that corresponds to the tera Hertz (THz) spectral region from 0.06 eV to 0.18 eV; the use of
THz will be very convenient for non-invasive 2PA medical applications.

In Fig. 4.4 the corresponding results for Si bulk and the Si-1◊1(111):H surface are presented. The
Si surface structure consists of 14 layers of which the top and bottom atoms are H, the remaining
12 layers are Si. Indeed, H passivates the Si surface atoms thus rendering a “bulk-like” surface
structure. In this case, the band-gap of both bulk and surface starts at 2.84 eV, and thus they
have the same half-band gap. The Si bulk spectra is explained in chapter 3, and here we only
contrasted it with the surface 2PA calculation. The bulk spectra has a big maximum just above
the half-band gap besides several resonances at higher energies, instead the surface spectra shows
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Figure 4.3: Im[‰xxxx
2Ê ] of GaAs (110) clean surface. The surface material consists

of 11 layers of GaAs (110). To compare between magnitude of response a inset
of GaAs bulk is shown.

a broad resonance of almost the same intensity. We notice that the intensity of surface and bulk
responses have the same order of magnitude above 1.8 eV. Additionally, is important to note the
large bandwidth of surface spectra, which have a slow decrease when photon energy is near of Eg,
is also presented in all bulk calculations as expected.

Last but not least, in Fig. 4.5 the calculations of 2PA susceptibility for 2D chalcogenides are
presented. The studied materials are GeS, GeSe, SnS and SnSe, this group of materials have a
range of Im[‰xxxx

2Ê ] magnitudes that goes from 50 to 5 m2/V2 ◊ 10≠18, being the biggest intensity
for GeSe mono-layer. Also, in Fig. 4.5 the spectra of bulk Si and bulk GaAs are presented in
order to compare them with the results of the mono-layer 2D chalcogenides. We see that the 2D
chalcogenides present a more complex 2PA spectra, this means that the spectrum have several
intense and localized resonances. This behaviour comes from the complex electronic band structure
of these materials. The susceptibility spectra of the 2D chalcogenides cover the range from ≥0.6 to
≥3.5 eV allowing to use of this wide spectral range in potential 2PA nano-optoelectronic applications.
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Figure 4.5: Calculations of Im[‰xxxx
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without the scissors shift and bulk GaAs of Fig. 3.3.
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5 Conclusion

With the independent-particle approach, we have presented a theoretical derivation of two-photon
absorption (2PA) from semiconductors based on the length gauge formalism, where the contribu-
tion of the intraband ri part and the interband re part of the position operator r are properly
accounted for and the scissors operator is included. Using time-reversal symmetry, we obtained an
expression for ‰

abcd(≠Ê; ≠Ê, ≠Ê, Ê) that avoids nonphysical divergences presented in previous cal-
culations when Ê æ 0 [1]. Within the independent-particle approximation, ab initio band structure
calculations using several pseudopotential schemes that include the SOC interaction were used to
calculate the 2PA coe�cient, —

Î
11(Ê), below the band gap of several semiconductors. In particular

the —
Î
11(Ê) was calculated for GaAs, Si and GaP, and compared with available experimental results.

Using di�erent values of the scissors correction, we were able to reproduce the experimental results
qualitatively, showing that our calculations follow the trend of the experimental spectra signatures
reported in GaAs and Si, giving a resonant behavior in the spectrum of —

||
11(Ê) for Eg/2 < ~Ê < Eg.

The spectrum reported for GaAs mainly comes from the last valence band to the first conduction
band around the � point of the IBZ; in contrast, for Si there are transitions from the second,
third, and fourth valence bands to the second, third, fourth, and fifth conduction bands, which are
spread over the IBZ, in particular, along the �-X path, thus explaining the complexity of the 2PA
spectrum for this material. Moreover, the 2Ê and 1Ê terms of ‰

abcd(≠Ê; ≠Ê, ≠Ê, Ê) are analyzed
to obtain a complete third-order optical response. The position matrix elements are distinguished
in the intraband ri part and the interband re part, allowing us to disregard numerically negligible
terms in ‰

abcd(≠Ê; ≠Ê, ≠Ê, Ê) that come from three- and four-band transitions. Additionally, we
formulated the theoretical derivation for surface 2PA susceptibility, that includes the correct imple-
mentation of cut function to obtain the surface response. We calculated 2PA susceptibility for three
surface structures GaAs-1◊1(110):Sb, Si-1◊1(111):H and clean GaAs-1◊1-(110). We obtained the
2PA susceptibility spectra in the range of Eg/2 < ~ÊEg and compared the surface spectra with
the corresponding bulk calculations. We found a remarkable widening of bandwidth for GaAs-
1◊1(110):Sb and Si-1◊1(111):H structures compared with the corresponding bulk response, and
for clean GaAs-1◊1-(110) surface the spectral shape shows a resonance in the tera-Hertz region
which enables the use of this material in non-invasive medical applications. Moreover, we calcu-
lated the 2PA susceptibility for four 2D materials: GeSe, SnSe, SnS and GeS, such materials are
commonly used in optoelectronic devices and our study motivates the experimental investigation
of 2PA of 2D structures. To strengthen our results, a full GW calculation, which goes beyond the
scissors approximation, would be able to produce a band structure that, through our expression for
‰

abcd(≠Ê; ≠Ê, ≠Ê, Ê), could match the experiment on firmer grounds; however, the large number
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5. Conclusion

of k points needed to achieve convergence (≥60 000) represents a numerical challenge in its own
terms. Moreover, it would be desirable to go beyond the independent-particle approximation and
develop the 2PA theory including the electron-hole interaction. However, including the electron-hole
interaction even for the linear response is a very demanding problem, not only with regard to the
theoretical part, but also with regard to the numerical computation, as described in Refs. [30, 53];
this would constitute a very challenging problem that ought to be pursued in the future. Nonethe-
less, our results show the correct order of magnitude and spectral features with which an adequate
semiconductor could be chosen for myriad of applications of 2PA. Thus our predictions of 2PA
that cover both a wide spectral range and a wide intensity range for the semiconductors which are
commonly used in semiconductor technology will certainly motivate 2PA experimental investigation
for these materials.

Final Remarks

In closing, we want to emphasize the main contributions of this thesis. First of all, an unprecedented
theoretical derivation of 2PA for bulk and surface materials was presented. For Si, GaAS and GaP
semiconductors the comparison with experimental data of calculated spectroscopy is presented,
and was found that the results from our derived theory compares quite well to the experimental
spectra. To the best of our knowledge, our ab initio calculations are the most accurate up to
date, and, for some materials it is the first time that a calculation like this has been presented.
Consequently, our results of 2PA that cover both a wide spectral range and a wide intensity range
for the semiconductors will certainly motivate 2PA experimental investigation for these materials.
Even more, our predictions suggest which materials with the best 2PA characteristics could be used
in the development of scientific and technological applications. Finally, as future prospects, we are
going to calculate 2PA for other crystalline structures besides FCC, extending the calculation to
more types semiconductors, and we intend to extend the calculation to the nonlinear third order
susceptibility in order to obtain the nonlinear refractive index.
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A Scissors renormalization for V�
nm

To re-normalize V�
nm we start applying the cut function to position operator matrix elements, then

Ènk| C(z)r |mkÍ (E�
m ≠ E

�
n ) =

⁄
dr Â

ú
nk(r)C(z)r(E�

m ≠ E
�
n )Âmk(r)

=
⁄

dr Â
ú
nk(r)C(z)[r, H

�]Âmk(r)

= ≠i

⁄
dr Â

ú
nk(r)C(z)v�

Âmk(r), (A.1)

since (E�
m ≠ E

�
n ) = Ê

�
mn then

Ènk| C(z)r |mkÍ = i
V�

nm

Ê�
nm

, (A.2)

we do the same for LDA electron position elements

Ènk| C(z)r |mkÍ (ELDA
m ≠ E

LDA
n ) =

⁄
dr Â

ú
nk(r)C(z)r(ELDA

m ≠ E
LDA
n )Âmk(r)

=
⁄

dr Â
ú
nk(r)C(z)[r, H

LDA]Âmk(r)

= ≠i

⁄
dr Â

ú
nk(r)C(z)vLDA

Âmk(r), (A.3)

then

Ènk| C(z)r |mkÍ = i
VLDA

nm

ÊLDA
nm

, (A.4)

comparing Eq. A.2 and Eq. A.4 we find

V�
nm = Ê

�
nm

ÊLDA
nm

VLDA
nm . (A.5)
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